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Abstract

Music can convey fundamental emotions like happiness and sadness and
more intricate feelings such as tenderness or grief. Understanding the
neural mechanisms underlying music-induced emotions holds promise for
innovative, personalised neurorehabilitation therapies using music. Our
study investigates the link between perceived emotions in music and their
corresponding neural responses, measured using fMRI. Fifteen partici-
pants underwent fMRI scans while listening to 96 musical excerpts cate-
gorised into quadrants based on Russell’s valence-arousal model. Neu-
ral correlates of valence and arousal were identified in neocortical re-
gions, especially within music-specific sub-regions of the auditory cortex.
Through multivariate pattern analysis, distinct emotional quadrants were
decoded with an average accuracy of 62% ±15%, surpassing the chance
level of 25%. This capacity to discern music’s emotional qualities has
implications for psychological interventions and mood modulation, en-
hancing music-based treatments and neurofeedback learning.

1 Introduction

The benefits of music are well-documented across various domains. En-
gaging in musical activities has been shown to positively affect physi-
cal rehabilitation, pain management, stress reduction, immune function,
and cognitive skills enhancement. Music also represents a powerful tool
for emotional regulation, enabling individuals to cope with and alleviate
negative feelings such as anxiety, loneliness, and stress while cultivating
positive moods such as relaxation or arousal.

Given its profound influence on human emotions and well-being, it is
essential to delve into the underlying mechanisms by which music facil-
itates mood regulation. This includes a comprehensive understanding of
the neural correlates of music-evoked emotions, which will contribute to
developing neuro-rehabilitative music-based therapeutic approaches, par-
ticularly for disorders characterised by impaired emotional regulation.

Pursuing a greater understanding of human emotions has led to the
proposal of different emotional theories or models, each offering unique
perspectives on the comprehension of affective experiences. Russell’s cir-
cumplex model of affect describes emotions in a two-dimensional plane
using an unpleasantness/pleasantness dimension (valence) and a high/low
arousal dimension (activation) [4]. A linear combination of these two di-
mensions, or different intensities of both valence and arousal, can be used
to conceptualise each emotion.

Understanding how music elicits emotions combines exploring spe-
cific emotions linked to musical pieces and the underlying mechanisms
through which they are evoked. Various neuroimaging techniques have
been used to study the dynamic activation patterns of brain regions asso-
ciated with emotions during different tasks and stimuli. Functional mag-
netic resonance imaging (fMRI) has become one of the most powerful
techniques for evaluating brain function in clinical and research contexts,
as it provides a very high resolution with whole brain coverage.

Previous meta-analyses have demonstrated that brain structures in-
volved in music-evoked emotions are located in the limbic system, in-
cluding the amygdala, hippocampus, and parahippocampal gyrus, as well
as the insula, anterior cingulate cortex (ACC), and orbitofrontal cortex
(OFC) [2].

The present study addresses the neural correlates of music listen-
ing by using multivariate pattern analysis (MVPA) of functional mag-
netic resonance imaging (fMRI) data to identify brain regions that encode
emotional states. So far, most studies have focused on very restricted
music stimuli (few genres and/or music excerpts) and usually use mass-
univariate approaches. To this end, we used a large set of music stimuli
previously labelled according to Russell’s circumplex model of affect [3]
and applied an MVPA approach to identify brain regions that encode emo-
tional states.

2 Methods

2.1 Participants

Fifteen individuals (9 females, 6 male; age range 22–41 years, M=31.7,
SD=6.27) participated in the experiment. All participants gave written
informed consent. The study was conducted in accordance with the dec-
laration of Helsinki and approved by the Comissão de Ética e Deontolo-
gia da Investigação da Faculdade de Psicologia e Ciências de Educação
da Universidade de Coimbra. All the volunteers reported normal hearing,
without permanent or current temporary impairments and with no known
history of neurological disorders.

2.2 Setup and experimental protocol

Each participant listened to 96, 11.5 seconds musical excertps, randomly
selected: 24 for each quadrant. Within each run, participants listened to
24 excerpts, 6 of each quadrant grouped together in blocks of 3. Inter-
stimuli intervals (ISI) blocks consisted of 36 seconds (a 12-second seg-
ment of white noise, auditory control condition, interleaved with two 12-
second segments of ambient noise in the ISI) (see Figure 1).

Figure 1: Experimental protocol. Each run consisted of music presenta-
tion blocks (two repetitions, four quadrants) interleaved with ISI.

MR acquisition was performed with a 3 T Siemens Magnetom Prisma
scanner with a 20-channel head coil at the Institute of Nuclear Sciences
Applied to Health, Coimbra. First, a high-resolution (1 mm isovoxel) T1-
weighted anatomical reference image was acquired from each participant
using MPRAGE sequence. Four identical functional MR measurements
were performed using Simultaneous MultiSlice imaging (66 slices), with
six simultaneous slices, a flip angle of 68 degrees, an Echo Time of 37
ms, and a Repetition Time of 1000 ms. The functional data voxel was 2
mm (isovoxel).
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2.3 Decoding pipeline

Acquired functional data were pre-processed using fMRIPrep [1]. The
pipeline included slice timing correction, motion correction, susceptibil-
ity distortion correction using fieldmap images, registration of fMRI data
from subject space to template MNI, and estimation and regression of
confound signals. The data was converted to z-scores. In this sense, for
each excerpt, a whole-brain image was obtained (representing the activa-
tion level of each voxel for that stimulus) (see Figure 2).

Figure 2: Decoding pipeline overview

The target (classification classes) was defined according to the labels
provided by Panda et al. [3].

Statistical significance for each participant was assessed using per-
mutation tests. The significance threshold was set at p < 0.05.

2.3.1 Feature selection

Multivariate pattern analysis involves defining features that characterise
and allow the discrimination of the different classes in our classification
framework, the classification algorithm, and assessment measures.

Given the duration of the stimuli (each musical excerpt lasts 11.5 sec-
onds), we were interested in maximising the emotional response to the
stimulus. To this end, to create each feature vector we removed the first 6
seconds. The remaining voxel activation levels data points were averaged
(i.e.for each excertp, we created a single data point).

Regarding the spatial definition of the feature set, we estimated in-
dividual voxel stability masks. The most stable voxels in the brain are
defined as voxels presenting a stable activation profile across the multiple
presentations of a set of labels - defined here as the pairwise correlation.

2.3.2 Classification

Linear-kernel support vector machine classifiers were trained for each
participant (one model for each participant) to perform the classification
task, i.e., the prediction of the four quadrants Q1, Q2, Q3 and Q4 of Rus-
sell’s circumplex. The classification was performed using the scikit-learn
library. Each model was trained in a training set (70% of the data of each
participant) to find the optimal number of voxels to use in the stability
mask and to optimize the margin-parameter, C, in a grid-search 5-fold
cross validation. After training, the optimal parameter set was used to
predict labels on test set (30% of the data).

3 Results

3.1 Stability masks

The first step of the decoding pipeline was to identify the most stable
voxels. To better understand the spatial distribution of the subset of vox-
els selected (ultimately used to create the feature vector and input to the
classifier), we present the mask obtained combining the most stable vox-
els. The resulting mask, with a sparse distribution of voxels, is shown in
Figure 3.

3.2 Decoding analysis

The average decoding accuracy obtained using the proposed pipeline was
62% ±15% (chance level in this multiclass problem is 25%). Statistical
assessment based on permutation tests revealed that the decoding accu-
racy was significantly above chance level (p < 0.05) for 80% of the par-
ticipants.

Figure 3: Feature selection - most stable voxels mask

To further characterise the prediction pattern of this model, we present
the normalized confusion matrices associated to the predicted labels (the
diagonal represents the percentage of correct predictions) (see Figure 4).

Figure 4: Confusion matrix normalized by the number of samples

The results show that the model tend to correctly identify the target
label and no pattern emerges regarding the false negative.

4 Discussion

Constraining the total number of voxels based on a stability mask (feature
selection) and validating our model (optimized for each participant) in an
independent sample, we aimed at predicting the emotional quadrants of
music stimuli based on fMRI data.

Significant voxel to discriminate valence and arousal were found in
the multiple brain structures (in accordance with [2]). Clusters were
found in frontal, parietal, temporal, occipital lobes, cingulate cortex, and
cerebellum, noticeably in auditory cortex (superior temporal gyrus, Hes-
chl’s gyrus), primary somatosensory cortex (postcentral gyrus), and pri-
mary motor cortex (precentral gyrus), as well as supplementary and pre-
motor cortices. Regarding clusters in the auditory cortex, we cannot rule
out that these were based by acoustic differences between stimuli. Future
work should include a control condition to account for the contribution
of acoustical differences between stimuli and explore the contribution of
acoustic, musical features of each excerpt to the evoked emotions and
classification model performance.

Ultimately, the ability to discriminate valence and arousal of music
stimuli, supporting the modulation of psychological and mood factors,
will guide feedback in music-based interventions and contribute to neu-
rofeedback learning outcomes.
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