
An Intelligent Mechanism for Monitoring and
Detecting Intrusions in IoT Devices

Vitalina Holubenko∗†, Paulo Silva∗†
∗ LIS, Instituto Pedro Nunes, Coimbra, Portugal

† CISUC, DEI, University of Coimbra, Coimbra, Portugal

Abstract—As of recent years, the growth of data pro-
cessed by devices has been exponential, resulting of the
increasing number of Internet of Things devices connected
to the Internet, which has come to play a very critical role in
many domains, such as smart infrastructures, healthcare,
supply chain or transportation. Despite its advantages, the
amount of IoT devices has come to serve as a motivation
for malicious entities to take advantage of such devices.

To deal with potential cyberattacks in IoT devices,
Machine Learning techniques can be applied to Intrusion
Detection Systems along with Federated Learning to help
manage privacy related concerns. Several intrusion detec-
tion methods have been proposed in the past, however,
there’s a lack of research aimed at HIDS. Furthermore, the
focus is mostly on applied ML methods and evaluation and
not on real-world deployment of such systems. To tackle
this, this work proposes a framework for a lightweight host
based intrusion detection system based on system call trace
analysis for benign and malicious activity detection.

In summary, this work aims to present research about
Host Intrusion Detection that could be applied for IoT
devices, while leveraging Federated Learning for model
updates.

Index Terms—Intrusion Detection System, Federated AI,
Machine Learning, Internet of Things, Security, Privacy

I. INTRODUCTION

The dispersion and propagation of devices belonging

to the Internet of Things (IoT) has propelled the adoption

of such wide ranges of Internet connected devices, facil-

itating far more automation and information exchange

than was previously possible. However, as with any

device accessible to the Internet, there is no such thing

as a completely secure device or network. Malicious

parties always look for a vulnerability. IoT devices and

applications have also an increased risk of becoming

victims of cyberattacks due to a lack of security mea-

sures in the IoT ecosystem, which make IoT devices

more vulnerable to malicious attacks. Many security

flaws and vulnerabilities make devices on the Internet

of Things prime targets for exploitation by malware,

such is the case in services made accessible such as

Telnet and Secure Shell (SSH) are manufactured with

default passwords that are hardcoded in the firmware,

and the ability to change these passwords is either a

difficult process for consumers or is entirely impossible

for them. Furthermore, even more recent malware, such

as Mirai [5], are capable of launching high-scale floods

of Distributed Denial of Service (DDoS) attacks.

IoT is also continuously subject to evolution and is

progressively becoming more sophisticated, which is a

direct result of the increased ubiquity and processing

power of such devices, networking capabilities, intro-

duction of data analytics tools and development of new

standards, which in return facilitates data processing

in the analysis, management and making intelligent

decisions autonomously. This means that the information

processed by IoT devices is ever expanding, which may

concern relevant information about the owners of the

device themselves or other sensitive data.

Given the relevance of cybersecurity in IoT, it is

important to research and implement protective measures

with minimal impact on the operation of the devices,

such an approach is to propose an intrusion detection

system that collects and learns from IoT clients’ data,

while also taking measures that ensure that the data and

the device itself is private and secure from malicious

entities. To improve the security of IoT devices, some

work has been done to detect intrusions on smart de-

vices. ZarpelÃco et al. [6] explained the importance of

implementation of host based intrusion detection systems

(HIDS) since these systems are able to monitor more

information about the device, and therefore can help

to detect attacks that could not be identified with only

network information. Furthermore, the author explains

that traditional HIDS are not effective for IoT, however,

research is yet to be improved in this specific area of

IDS.

The main objective of this work is based on the

development of an Intrusion Detection System (IDS) for

IoT devices with the support of Artificial Intelligence

(AI) based models. To achieve this task, we perform

a state-of-the-art analysis regarding the various aspects

that this work entails, such as IDS, how do they work,

the overall architecture of such systems and the types

of data that could be used for intrusion detection. More

specifically, we seek to study host intrusion detection

methods that are compatible for IoT oriented systems.
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We also perform a study of Federated Learning, such as

its definition, the uses, why it is a suitable solution for

IoT devices and applications. Ultimately, we take a se-

lection of Federated Learning (FL) proposed algorithms

and perform an evaluation of the algorithms.

II. RELATED WORKS

In this section, we focus on reviewing various in-

trusion detection systems proposed in the literature for

Linux based systems, which is the core Operating Sys-

tem for many IoT devices and Android smartphones.

A. Intrusion Detection

The main objective of an IDS is to examine activities

within a system or a network, in order to keep track

of possible intrusions from malicious sources. Generally,

IDS can be divided into two main groups, Host Intrusion

Detection System (HIDS) or Network Intrusion Detec-

tion System (NIDS). Furthermore, the detection can be

made with two techniques: signature detection (SIDS)

or anomaly detection (AIDS). SIDS relies on a system

which can be based on known threats’, with rules about

the collected data, while the second monitors the system

behaviour to detect abnormalities that deviate from the

normal baseline. Both methods have their benefits, with

signature detection being accurate and working well

on known threats, but being unable to detect zero-day

attacks, contrary to AIDS. On the other hand, anomaly

detection requires characterizing and identify the com-

plete normal behaviour of the system, which can be

difficult to achieve.

IDS have been studied for a long time, however,

traditional IDS are not suitable for IoT for many reasons,

such as the limited resources on such devices, which are

often insufficient to run a traditional system. In addition,

there is considerable heterogeneity in the technologies

and network protocols used in IoT. However, little work

has been done with HIDS for IoT. In this particular

work, we set our focus on host-based intrusion detection

systems for IoT.

In HIDS, the data from the host system’s audit and

logging mechanisms are analysed to look for signs that

the system has been broken into or a possible attack.

Fig. 1. Open source HIDS datasets.

The data may include activity from the local hosts’

logins, file access, privilege escalation, alteration of

system privileges, system calls, file system changes and

application logs, and many others.

B. System Call Based Intrusion Detection Systems

System call traces in particular are very often used

in detecting intrusions with HIDS on program level.

System call traces, or the sequence of system calls of

a given process, are used to find repeated patterns of

system calls, enabling anomaly detection and misuse

detection during execution, intrusions could be in the

form of sub-sequential traces of intrusive activities. A

system call trace refers to the system call sequences

that have been ordered, performed by a process that a

program ran while executing, for instance, a write, read,

open, wait, exit sequence can be considered a system

call trace of length of 4. System calls can be extracted,

for example, via the strace Linux utility, although there

are many other ways to collect system call logs. The

system call analysis approach to intrusion detection was

first proposed by Forrest et al. [10]. Forrest et al. looked

at short sequences of system calls to generate profiles of

normal program behaviour. This approach is based on an

enumeration sequence-based method known as STIDE

(Sequence Time Delay Embedding). In this technique,

the sliding window method is used to generate short

sequences of system call traces and then a database with

the signature of the normal behaviour with the invoked

sequences. This algorithm was inspired by the natural

immune systems of organisms. The approach is claimed

to be simple and efficient to deploy for possible real-time

implementation. Parameters of system calls are removed

to reduce system load and obtain the best result with

system call identifiers only. In Forrest’s work, it has been

observed that simply running a batch of code will affect

the system, and as a result, anomalous behaviour of a

process/service should leave its system call traces.

Alternatively, analysis of log files can also be applied

for intrusion detection. However, it has several restric-

tions, as more often than not log files are large and have

a significant amount of noisy information. On the other

hand, an HIDS based on system call renders a better

data granularity. However, with increasing complexity of

systems, traditional Host Intrusion Systems have several

limitations to process large amounts of system call traces

in real-time, one of the ways to counteract this is to

create an HIDS that has an early detection ability which

classifies whether a program is benign or malicious by

analysing a specific number of system calls during the

initial execution of the process/program.

More recently, the system call analysis problem has

been interpreted as a Natural Language Processing

(NLP) problem in many research works. For instance,
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Lee [11] tried to improve on the results obtained by

Forres by using machine learning algorithms to extract

information from normal and abnormal sequences of

system call traces. Frequency based methods were also

explored by Helman and Bhangoo [12], however, instead

of keeping track of frequencies of each system call

individually, they recorded frequencies of sequences of

system calls by tokenizing the system calls into Ngram

sequences, which enabled them to preserve the order of

the system calls.

Liao and Vemuri [13] took a slightly different ap-

proach to using system calls. Instead of keeping track of

sequences of calls, they monitor the frequency of system

calls that are issued by a program. By doing this, they

avoid having to treat every system call individually and

reduce the overhead involved in analysing and storing

every system call. A system call is considered as an

instance of a text and the whole set of calls issued as a

document.
As we can see, many works consider analysis of

system calls to detect intrusion on Linux based systems.

Creech et al. observed that the existing open source host

intrusion datasets (shown in Fig. 1) are mostly outdated

and are not representative of contemporary attacks [7].

C. Federated Learning

It is common, in traditional ML scenarios, to have a

centralized server or a cloud platform, where the data

from several devices (i.e. smartphones, tablets, laptops,

smart carts) is aggregated, and consequently, used to

train the central model. Such devices nowadays collect

vast amounts of data, especially data that is private,

which inherently creates a significant risk by having

such data stored on a central server. As a result, it

is imperative to find solutions that help maintain user

data private and secure. FL was introduced in order to

minimize these risks. Google, as a solution, proposed

Federated Learning in 2016. It was first applied as part

of their efforts to devise a decentralized method for using

data from mobile devices to improve the user experience

of other AI focused solutions. In FL the training, data is

kept on device-level, meaning that the client data is not

directly transmitted over the network in order to prevent

any data from leaking, therefore ensuring a basic level

of privacy. The only data to ever be transferred is the

locally computed updates from each device to a central

coordinating server, which is a cloud-based distributed

service (referred to as a server model) where they are

aggregated.

Since its introduction, Federated Learning has revolu-

tionized the field of IoT applications by providing new

AI based solutions due to its distributed and private-

driven nature. Federated Learning is particularly attrac-

tive for building distributed IoT systems due to the recent

advances in mobile technologies and the overgrowing

concerns of risks related to user privacy, by pushing AI

technologies to the network edge in IoT devices. In this

case, FL enables the cooperative training of a shared

global model, which benefits both network operators and

IoT clients in terms of network resource savings (because

data is decentralized) and privacy enhancements because

user data is not shared to a central entity.

III. METHODOLOGY

In this section, we discuss our approach for developing

an effective Host Intrusion Detection System based on

system call analysis along with its evaluation results.

System calls traces were collected from various Linux

based systems. Figure 2 illustrates the detailed steps fol-

lowed by the proposed Host Intrusion Detection System.

Additionally, in the next sections, we discuss the evalu-

ation approach of the Machine Learning methodologies

that were then applied in the framework.

In this work, the proposed system should enable

deployment in lightweight IoT devices with significantly

less computation power than classical computer systems.

To be deployed, the system needs to demand the min-

imum possible storage, and run on restrained memory

resources, the setback of making this optimized for

lightweight devices is that there is a possible effect in

accuracy due to the ML model’s size.

The experiments were done on three virtual machines

on a private network, whose requirements were set up to

closely emulate the resources of the target devices, with

ARM64 architecture and a QEMU 6.1 ARM system.

The starting point of the whole system is the data

extraction/tracer module, which the devices are running

locally. This module collects and aggregates the system

call traces, which are going to be processed and then

are going to be the subject of automated analysis by a

ML model unit that classifies the input as anomalies or

normal, and then raises an alert when an intrusion is

detected.

The proposed architectures are a centralized model

and a decentralized FL-based approach, where each

of the nodes represent IoT clients. The main idea of

this approach is to establish a comparison between the

traditional IDS approaches and the federated setting,

where the centralized architecture serves as baseline. The

process of training the ML models is depicted in Figures

8 (centralized and federated approach, respectively). In

Figure 7 provides a more detailed view of the prepro-

cessing, training and evaluation stage.

A. Data Acquisition Process

As the approach is based on continuous analysis of

system call flows in devices, we need to capture the

dynamic properties of processes that are running on the

472

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on April 01,2024 at 08:52:57 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Overall Architecture of the HIDS.

system. Thus, system call traces of running processes

are to be extracted and analysed. The use of system call

sequences for generating models that detect normal and

anomalous sequences is justified by the fact that security

violations on device level are likely to produce abnormal

system call invocations. System calls are the only means

by which a program operating in user space can enter

kernel space and make use of the services provided by

the kernel. The user space processes running on the

Operating System (OS) make system calls to request

services from the kernel.

In order to achieve the goal of producing a system that

analyses system call logs to detect intrusions, we start

by performing log collection, both benign and malign

traces. To do this, we are using a Linux tool called perf
to extract system calls in real time. Perf is a Linux tool

used for profiling, refined and upgraded by Linux kernel

developers.

In the data collection phase, sequences are recorded in

the database as part of the normal profile. These profiles

usually consist of thousands of short sequences of system

calls. Since the majority of the IoT devices are built

using the Linux operating system, the benign samples

are going to be collected from the system/executables

on a Linux based Virtual Machine. These files are going

to be executed for one minute using perf tool to generate

system call traces for the respective process file.

In the generation of anomalous data phase, we simu-

late an environment of the OS which is under intrusion

and capture its behaviour under those circumstances.

Which is used in order to train a model that recognizes

anomalous device behaviour. To accomplish this task,

we resort to various tools to perform a DoS attack and

a brute force attack on a SSH port.

The reason of the simulation with the device running

a DoS attack on a server is due to the increasing

occurrences of Mirai Botnet attacks. In these instances,

the IoT devices of a particular network are infected by

an attacker, and then are used as means to perform the

Distributed Denial of Service (DDoS) attack on a target

server. So, this attack allows for the simulation of a how

a particular device would behave if it was to be used as

a botnet for a DDoS attack.

Brute force via hydra was also used as an attack

vector. Brute-force attacks represent the use of a tradi-

tional brute-force password-cracking application, Hydra
to discover users’ passwords over Secure Shell (SSH)

and File Transfer Protocol (FTP) ports. Most IoT devices

still use the default credentials for authentication, and

a lot of devices don’t even use credentials at all. In

IoT, Telnet and SSH brute force attacks still account for

nearly 70% of all IoT attacks [9].

Another type of intrusion that was tested was a nmap
scan, which discovers other devices on a traditional
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TCP/IP network, it is common for an attacker to want

to exploit a network in which the IoT device belongs to,

to do that, the attacker first has to analyse the network

in order to find potential targets systems. To accomplish

that, a network scan via the nmap tool can be done.

B. Data Preprocessing

In this step, we proceed to the system call sequence

generation. Each line of the recorded trace file represents

a log related to a system call that comprises execution

time of the system call, process name, process ID, name

of the system call, related parameters, and return value.

The system call names and associated process ID were

extracted from each of the logs, and converted them into

system call numbers by referring to the system call table

for the specific Linux version that was used, as each

system call has a distinct numeric reference.

The resulting data that was extracted is composed

of system calls, each executed system call per line.

These sequences need to be treated and processed in

order for us to have a structured dataset that can be

used for training ML models. In this step, we tokenize

the system calls into sequences of variable length. For

instance, let’s consider the following snapshot of system

calls recorded on a normal setting:

open(), mmap(), read(), socket(), mmap(), execve(),
open(), read(), close(), brk()

With a sequence size of 5, the following subsequences

would be produced by the sliding window method of

size 1:

Sequence 1: open(), mmap(), read(), socket(), mmap()
Sequence 2: mmap(), read(), socket(), mmap(), ex-

ecve()
Sequence 3: read(), socket(), mmap(), execve(), open()
Sequence 4: socket(), mmap(), execve(), open(), read()
Sequence 5: mmap(), execve(), open(), read(), close()
Sequence 6: execve(), open(), read(), close(), brk()

This process is applied to all the system call sequences

that are captured by the data extraction executable and

used to train a ML model to classify normal and abnor-

mal behaviour.

In case of an anomaly, lets, for instance, consider the

following pattern was observed:

socket(), mmap(), execve(), open(), write()

This would generate an alarm with the patterns stored

in the normal database. Thus, the anomalously behaving

process, which may have loaded another program (by the

execve() call) and opened a file and written to it (instead

of reading from it) would be detected.

After the tokenization process, we’ll clean the data, by

removing the intersecting rows (sequences) from both

normal and attack datasets in order to maximize the

distinction between the two class types for the learning

process. A row with a normal sequence is set with a

label of 0, whereas a row with an intrusive sequence is

set with a label of 1.

Having done that, we follow that up with a feature

extraction process. This process can be done through

various other approaches, in this work we evaluate the

following three techniques.

1) Trivial Representation: The most basic represen-

tation of a system call trace is to consider it as a string

(sequence) of system calls. Let us consider an operating

system with total m number of unique system calls, then

set of system calls can be represented by U = s1, s2, s3,

s4, sm.

2) Vector Space Model: Vector Space Model is a very

commonly used technique in information retrieval field

to represent a document as a set of words. This technique

is also known as the “bag of words” technique, in which

each word in a given document is assigned to a weight,

this determines how much the document is relevant to

specific words. In the process, the weight is assigned to

a word as the number of times the word appear in the

document. In the context of system call representation,

system call trace is considered as a document and each

system call as one word. Then we can apply a vector

space model to represent a given system call trace as

a feature vector. To represent the system call traces

using vector space model representation, let us consider

a feature set, as a set of vectors that corresponds to a set

of system call traces of the system. System call trace for

an application i with this model can be represented as a

vector, which represents the number of times the system

call appears in the system call trace sequence/row.

Fig. 3. Top 10 frequent 2-gram for benign sequences
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3) Term Frequency–Inverse Document Frequency: In

any document corpus, certain words are more common

than others. An assumption was made that the same idea

applies to logs of system calls, that certain sequences

refer to all operations of any program in an operating

system and certain sequences refer to specific operations

that may or may not be malicious. In document classifi-

cation, one of the most popular model to derive weights

to words that occur in a document is the TF-IDF. Term

Frequency (TF) is referent to the occurrences of a certain

word in a document, while Inverse Document Frequency

(IDF) pertains to the number of times the word occurs in

the document corpus. The big issue with the vector space

model representation is that the relational order of the

features/words in the input data is not kept in the training

input information. To keep that data relative to the order

of the words in the input sequence, we can to consider

tuples of words (or system calls) and not exclusively the

single words, as is done in the vector space model. This

method is called the n-gram technique, which is defined

as a tuple of n words where n is, in general, a small

positive integer.

The benefit of applying this type of feature extraction

technique is the fact that calculating the weights of the

n-grams present in the system call traces is not com-

putationally expensive. However, the n-gram approach

can lead to another problem which is the high sparsity

of the data matrix, which means we can end up with

a high number of features, which can be solved by

applying a feature selection method in order to reduce

the dimensionality of the input matrix.

In order to perform some data analysis on the dataset,

we created the n-gram representational model. In partic-

ular, we analysed the top 10 frequent bigram sequences

and top 10 common frequent bigram sequences. Figure 3

and 4 show the top-10 most frequent 2-gram sequences

for benign and malign traces, respectively. From the

graphs, we can observe that the patterns for benign and

Fig. 4. Top 10 frequent 2-gram for malign sequences

malware traces are different. For example, the sequences

“3 3” (3 corresponds to the close) and ”4 4” (4 corre-

sponds to the stat) is dominant in benign traces, while

sequence “14 14” (14 corresponds to rt sigprocmask)

and ”168 168” (168 corresponds to swapoff )is more

frequent in malicious traces. In both types of traces have

some unique frequent sequences, which can greatly help

machine learning models to distinguish between benign

and malicious traces.

To better understand the patterns between benign and

malware traces, we also counted the top 10 common

bigrams sequences in the two types of system call traces

(seen in Figure 5). For instance, sequence “10 265” (10

and 265 correspond to mprotect and linkat, respectively)

appears in similar amounts of time in benign and malign

sequences. This means that by analysing the top common

sequences between the two types of traces, we can find

the sequences that show up commonly in the both traces

and it is possible to discard them, as they will most likely

not be useful in differentiating between the two classes.

C. Feature Selection

Feature retrieval techniques play a major role in dif-

ferentiating malicious traces from non-malicious traces.

Existing feature retrieval techniques mainly focus on

different approaches.

Some features of the data may be more important

than others for the tasks of anomaly detection or at-

tack classification. Noisy features can exaggerate the

minor discrepancies in the dataset, and may reduce the

predictive performance of classification models. Thus,

feature selection is considered a crucial approach to

eliminate irrelevant attributes. Feature selection reduces

the training time involved, as few features are used

to develop model and for predictability of samples in

future. Through feature selection, high–ranked system

calls are determined that have greater ability to identify

malware from benign executable. Through our study,

Fig. 5. Top 10 most common 2-grams between benign and malign
sequences
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we also assess the impact of varying feature length

on detection accuracy and performance. For dimension

reduction, Principal Component Analysis (PCA) can be

applied. This method allows the classification framework

to use fewer features and helps to make the detection

system faster and less demanding in terms of memory

resources.

D. Datasets

In the evaluation of ML models, we used two datasets.

Firstly, the ADFA-LD, which is a collection of system

call traces. A single trace is a sequence of system call

numbers, over some arbitrary time period. The traces

were collected from an Ubuntu Linux 11.04 operating

system. The ADFA-LD labelled dataset is the successor

of the KDD collection that applied the latest publicly

available exploits and methods for its data generation.

In addition to the ADFA-LD, we also generated our

own version of an HIDS dataset in order to validate the

deployed models on the system in real time. This dataset

based on system calls, with normal traces and attack

traces that were described in the data acquisition process,

and validated the developed intrusion system with that

dataset with a different set of attacks.

E. Training Approach

In the training phase, the class were balanced as 50%

benign traffic and 50% attack traffic, making the dataset

perfectly balanced for binary classification.

It is important to note that this rebalancing of the

data can lead to different problems, since in real world

scenarios the amount of benign data surpasses signifi-

cantly malicious data. Both train and test sets are indeed

affected by each change, and the goal is to compare the

impact on the model performance when the classes are

balanced.

F. Centralized Approach

In the centralized setting, we’ll apply the following

traditional ML algorithms:

K-Nearest Neighbour (KNN) classifies an observation

by counting the majority classes of the nearest neigh-

bours. This model enhances its performance by mini-

mizing intra-variability within a group while maximizing

inter-variability between different groups. For simplicity,

we choose the number of neighbours to be 3. Still, any

odd number of k is recommended to avoid a tie situation.

The Decision Trees (DT) algorithm relies on a set

of rules, derived from the training process, to partition

data into groups that are as homogeneous as possible.

The goal is to generate a Decision Tree to classify

normal sequences from intrusion sequences at the lowest

possible error rate. That way, it can be generalized to the

testing set as well as future unseen data.

Fig. 6. Steps for the data preprocessing and training process

Random Forest (RF) distinguishes normal sequences

from intrusion sequences using ensemble learning

method. RF creates multiple Decision Trees to classify

the same observation. The final decision is based on the

wisdom of the crowd that is the majority predicted class

of that particular observation.

Support Vector Machine (SVM) is a supervised ma-

chine learning algorithm which is good at detecting

anomaly by separating normal behaviour from the other

using different kernel types.

Naı̈ve Bayes (NB), This algorithm s known for clas-

sifying data based on conditional probabilities with-

out making any assumption. Given lots of labelled se-

quences, we hope that this model can efficiently dis-

tinguish intrusion sequences from normal sequences.

A predicted label is determined based on the highest

probability of a class.

We use Neural Networks (NN), more specifically

MLPs, both in the centralized and federated scenarios, as

it is parametric and model aggregation can be performed.

Neural networks are efficient at learning underlying com-

plex relationships because of its composite architecture.

The model is composed of four layers: an input layer,

two ReLU layers. and a sigmoid output layer with two

output nodes, where each one represents a probability of

a sequence belonging to either class.

G. Federated Learning Approach

In this section, we seek to propose the FL that are

developed and evaluated in the described scenario.

FedAvg as a baseline Federated Learning algorithm,

FedAvg was chosen for implementation, as it is simple

and widely used in FL scenarios. It is a simple algorithm,

which takes the parameters of all participating clients in

an epoch, and averages the values, resulting on a global

model.

Weighted Federated Averaging, from the implementa-

tion of FedAvg we constructed a weighted version of it
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Fig. 7. Training process, centralized setting and federated setting

that scales the client weights according to the amount of

data points that each client has, the more data points the

client has, the more weight the model parameters have in

the final calculation of the global model, and vice versa

when the client has fewer data points.

IV. EVALUATION APPROACH

To demonstrate the effectiveness of both the baseline

and federated approach, and to evaluate the approaches,

some performance metrics were selected to achieve that.

The performance of an IDS can be measured by the

following metrics.

True Positive Rate (TPR) - TPR is calculated as

the ratio between the number of correctly predicted

attacks and the total number of attacks. The TPR can

be expressed mathematically as:

TPR =
TP

TP + FN
(1)

False Positive Rate (FPR) - FPR is the ratio between

the number of normal instances incorrectly classified

as an attack and the total number of normal instances,

expressed as:

FPR =
FP

FP + TN
(2)

Accuracy - The accuracy measures how accurate

the IDS is in detecting normal or anomalous traffic

behaviour. It is described as the percentage of all those

correctly predicted instances to all instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision - Precision measures the accuracy of posi-

tive predictions:

Precision =
TP

TP + FP
(4)

F1-score - Weighted average of the precision and

recall, defined as follows:

F1− score =
2 ∗ TP

2 ∗ TP + FP + FN
(5)

Number of Rounds - Amount of training rounds

needed in order to reach a certain training accuracy

threshold. Since our aim is to reproduce a model that

is capable of reach convergence quickly, needing less

communication rounds with the server.

V. EXPERIMENTAL RESULTS

Tables I, II and III show the performance of different

machine learning algorithms on ADFA-LD dataset in

regard to performance indicator accuracy, recall, false

positive rate and true positive rate. Our goal is to find

the best candidate model with high accuracy, high recall

but low FPR and FNR. High performance measures are

bolded so that we can easily identify the best candidate

model.

The approach of vector space and TF-IDF representa-

tion have shown to be better suited for model training,

since in general the results with those approaches have

showed to be higher than with the traditional represen-

tation.

TABLE I
TRIVIAL REPRESENTATION (ADFA-LD)

Algorithm Accuracy Precision TPR FPR F1
KNN 0.86 0.38 0.75 0.12 0.88

Decision Tree 0.95 0.64 0.93 0.07 0.95
Random Forest 0.97 0.82 0.97 0.02 0.98

SVM 0.71 0.68 0.64 0.22 0.71
Naive Bayes 0.53 0.50 0.48 0.46 0.42

MLP 0.72 0.22 0.80 0.33 0.78

TABLE II
VECTOR SPACE REPRESENTATION (ADFA-LD)

Algorithm Accuracy Precision TPR FPR F1
KNN 0.99 0.99 0.98 0.00 0.99

Decision Tree 0.96 0.94 0.94 0.06 0.95
Random Forest 0.98 0.97 0.97 0.02 0.98

SVM 0.93 0.91 0.89 0.02 0.93
Naive Bayes 0.86 0.80 0.84 0.13 0.86

MLP 0.98 0.95 0.98 0.02 0.98
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Decision Tree, Random Forest, KNN and MLP are

the best candidate algorithms since they achieved higher

accuracy, f1-score and precision, yet at a lower false

positive rate.

In terms of False Positives, the results reveal that Ran-

dom Forest, SVM, KNN, and MLP models outperform

other classifiers by a good margin, ranging from 0% to

0.02%. The best result achieved when looking at model

accuracy, Random Forest was able to obtain a value of

99%, with vector space representation and TF-IDF.

To verify that the Federated Learning (FL) approach

fits in this scenario properly, it is necessary to compare

it with traditional solutions. In the federated approach,

we took two ways of evaluating the algorithms.

In the first one, the data is distributed equally among

peers, making the data iid. In the second approach, the

data is randomly distributed among the clients, in other

words, non-iid. Table IV show the metrics obtained with

the experimentations done across all the scenarios.

The performance of the two federated algorithms was

similar, especially when iid data was used, this can be

explained due to the fact that since the distribution of the

data across the clients is almost similar, which will make

the algorithms of Weighted Federated Averaging behave

similarly to the standard Federated Averaging algorithm.

When the data is not equally distributed, however, we

can see that Weighted Federated Averaging has a slightly

better performance than Federated Averaging, and is able

to reach better accuracy with the scaling of the weights.

The evaluation results with the generated dataset have

shown to be of good performance, in both centralized

(Table IV) settings, obtaining performance results better

than ADFA-LD. This, however, can be due to the fact

that the data used, as mentioned previously, is very

limited, and the interpolation between normal traces

and attack traces is almost non-existent in this dataset,

TABLE III
TERM FREQUENCY INVERSE-DOCUMENT FREQUENCY

(ADFA-LD)

Algorithm Accuracy Precision TPR FPR F1
KNN 0.91 0.93 1.00 0.21 0.90

Decision Tree 0.98 0.98 0.98 0.02 0.98
Random Forest 0.99 0.99 99 0.01 0.99

SVM 0.96 0.95 0.94 0.02 0.96
Naive Bayes 0.76 0.76 0.78 0.25 0.76

MLP 0.98 0.99 0.98 0.01 0.98

TABLE IV
FEDERATED LEARNING (ADFA-LD)

Algorithm Accuracy Precision TPR FPR F1
FedAvg (iid) 0.96 0.97 0.97 0.03 0.96

FedAvg (non-iid) 0.92 0.91 0.91 0.06 0.92
WFedAvg (iid) 0.96 0.97 0.97 0.03 0.96

WFedAvg (non-ßiid) 0.95 0.93 0.94 0.03 0.95

TABLE V
TERM FREQUENCY INVERSE-DOCUMENT FREQUENCY

(GENERATED DATASET)

Algorithm Accuracy Precision TPR FPR F1
KNN 0.68 0.63 0.62 0.32 0.65

Decision Tree 0.96 0.93 0.99 0.05 0.97
Random Forest 0.99 0.98 1.00 0.01 0.99

SVM 0.99 0.71 0.00 0.00 0.50
Naive Bayes 1.00 0.90 0.93 0.00 0.96

MLP 1.00 0.94 0.92 0.00 0.96

TABLE VI
FEDERATED LEARNING (GENERATED DATASET)

Algorithm Accuracy Precision TPR FPR F1
WFedAvg (iid) 0.995 0.99 1.00 0.00 1.00

WFedAvg (non-iid) 0.95 0.93 0.94 0.03 0.95

contrary to ADFA-LD, so the model is able to distinguish

between the two classes very easily within the data that

was captured.

VI. MODEL DEPLOYMENT

After evaluating the results and selecting the best

model for our objectives, we developed a client-server

architecture for the deployment of our intrusion detection

system and federated learning supported approach.

The architecture includes a Linux deployable exe-

cutable as a client interacting with a Federated server

developed in Python and TensorFlow. Using the local

executable, clients can monitor system call traces of

other apps in their system, train local models with local

data and share those models with the server for model

aggregation. The server receives model parameters from

each of the clients, averages them, and sends the results

back to each of the clients for model updates.

A. Client Program

Figure 8 illustrates the interface of the developed

service as a client node and the general output of the

classification phase. By simply starting up the service,

the program starts by executing the perf trace command

in the background of the system and starts with the

system call trace classification process. It is possible,

as well, to monitor a set of programs, by specifying the

PID of the processes that we want to trace or filter out,

in the environment variables. Additionally, the client is

responsible for collecting the local data and re-training

the ML model from time to time, which results in an

updated model that is then sent to the global server for

model aggregation.

B. Global Server

The global server is located on a remote server,

which the clients connect to from time to time for

model updates. When a client connects to the server, the
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Fig. 8. Client HIDS Interface

server accepts the connection and initializes a connection

socket. Once the data is transferred from the client, the

server receives the data, and it performs the weighted

federated averaging technique that was described in a

previous section. After that, the server returns the model

parameters to each client via a .JSON file, which will

serve as the new model parameters for input classifica-

tion.

VII. CONCLUSION

In this work, the input attributes are system calls

which are generated from malicious samples occurred

in real time IoT attacks made in IoT devices. So the

designed a ML model using a simple Neural Network

architecture is proved to be efficient in classifying system

calls into benign and real time malicious samples and

it is evaluated in terms of performance metrics like

accuracy, precision and recall.

The evaluated algorithms that had a good performance

with the experiments done are based on supervised learn-

ing techniques, this means that the developed models can

solely detect attacks similar to what they have learned

from the dataset. As a consequence, a limitation of this

work is the number and relevance of attacks that have

been learned, and the lack of real IoT based malware

being used, since most IoT threats are not open-source.

This work can be further improved by performing

multi-class classification on system calls. In multi-class

classification these malware samples are further divided

into many classes such as virus, trojans, worms, ran-

somware and botnets. This kind of classification helps

to enhance the analysis of malware samples in an elab-

orative manner and it also gives insight view for the

behaviour of each malware samples. Furthermore, other

efficient machine learning algorithms can be considered,

such as deep learning techniques, like CNN, RNN and

LSTM for both binary and multi class classification. An-

other feature that would also be interesting to explore is

the scalability of the analysis engine, since the recorded

traces are analysed independently of each other in each

device, the solution can be migrated to a monitoring

server (or multiple) to mitigate high performance over-

head on the devices.

This work overall obtained promising results. How-

ever, future work could be focused on the learning step

processing time for the federated learning, since the

models have to be updated frequently to account for new

threats.
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