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Abstract

We characterize the possible lists of ordered multiplicities among
matrices whose graph is a generalized star (a tree in which at most
one vertex has degree greater than 2) or a double generalized star.
Here, the inverse eigenvalue problem for symmetric matrices whose
graph is a generalized star is settled. The answer is consistent with a
conjecture that determination of the possible ordered multiplicities is
equivalent to the inverse eigenvalue problem for a given tree. More-
over, a key spectral feature of the inverse eigenvalue problem in the
case of generalized stars is shown to characterize them among trees.
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1 Introduction

Given an n-by-n Hermitian matrix A = (aij), we denote by G(A) the (undi-
rected) graph of A; it has vertex set {1, . . . , n} and an edge {i, j}, i �= j, if
and only if aij �= 0. For an undirected graph G on vertices 1, . . . , n, we denote
by S(G) the set of all Hermitian matrices whose graph is G. If A = (aij)
and α ⊆ {1, . . . , n} is an index set, we denote the principal submatrix of A
resulting from deletion (retention) of the rows and columns α by A(α) (A[α]).
Note that the subgraph G′ of G, induced by vertices in α corresponds, in a
natural way, to a graph G′′ whose vertex set is {1, . . . , |α|}. So we will often
identify the two graphs, G′ and G′′; namely, we will refer to matrices with
graph G′, meaning matrices with graph G′′. We also write A(G′) (A[G′])
instead of A(α) (A[α]). When α consists of a single vertex i, we abbreviate
A({i}) (G−{i}) by A(i) (G−i). In particular, if G is a tree and A is a matrix
in S(G), A(v) is a direct sum whose summands correspond to components
of G − v (which we call branches of G at v), the number of summands or
components being the degree of v (deg v) in G.

Here, we consider the case in which G is a tree T . If v is an identified
vertex of T of degree k, we identify the neighbors of v in T as u1, . . . , uk,
and we denote the branch of T resulting from deletion of v and containing
ui by Ti, i = 1, . . . , k. Special attention is given to a certain class of trees,
the generalized stars and the double generalized stars.

Definition 1 A generalized star is a tree T having at most one vertex of
degree greater than 2. We call central vertex of a generalized star T , to
a vertex v of degree k, whose neighbors u1, . . . , uk are pendant vertices of
branches T1, . . . , Tk, respectively, and each of these branches is a path.

Note that, according to our definition of generalized stars, the paths (trees
with no vertex of degree greater than 2) will be (degenerated) generalized
stars; in such a case any vertex will be a central vertex. If T is a generalized
star with a vertex of degree greater than 2, then it is the central vertex of T ,
which is uniquely determined. The above definition also includes the case of
stars; recall that a star on n vertices is a tree in which there is a vertex of
degree n − 1.

The following trees T ′, T ′′ and T ′′′, are examples of generalized stars. The
central vertex of T ′ and T ′′ are, respectively, v1 and v2, while any vertex of
T ′′′ is a central vertex.
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Note that T ′′ is a star and T ′′′ is a path.

Definition 2 Given two generalized stars, T1 and T2, a double generalized
star is the tree resulting from joining a central vertex of T1 to a central vertex
of T2 by an edge, which we denote by D(T1, T2).

Observe that, if T1 or T2 is a path, the double generalized star resulting
from joining a central vertex of T1 with a central vertex of T2, depends
obviously on the selected central vertex in the path. When we write D(T1, T2)
we are supposing that the central vertices were previously fixed. We note
that the paths and generalized stars are also (degenerated) double generalized
stars, as well as the double paths studied in [JL2].

Considering, for example, the generalized stars T ′ and T ′′, the double
generalized star D(T ′, T ′′) is then

� � � �

�
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�
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��
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.

For an Hermitian matrix A, we denote the (algebraic) multiplicity of λ
as an eigenvalue of A by mA(λ) and we denote the characteristic polynomial
of A by pA(t).

Because of the interlacing theorem for Hermitian eigenvalues [HJ], there
is a simple relation between mA(i)(λ) and mA(λ) when A is Hermitian:

mA(i)(λ) = mA(λ) + 1 or mA(i)(λ) = mA(λ) or mA(i)(λ) = mA(λ) − 1.
Here we identify a unique class of trees (generalized stars) in which, con-

sidering any tree T , there is an identifiable vertex v of T such that, if A is any
matrix in S(T ) and λ is any eigenvalue of A(v), then mA(v)(λ) = mA(λ) + 1.
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For any generalized star T we characterize the set of lists of multiplicities,
ordered by numerical order of the underlying eigenvalues, that occur among
matrices in S(T ).

We further solve the Inverse Eigenvalue Problem (IEP) for matrices whose
graph is a given generalized star T , and we note that the IEP is equivalent
to determining which lists of ordered multiplicities occur in S(T ); i.e., the
only constraint on existence of a matrix in S(T ) with a prescribed spectrum
(real numbers, as matrices in S(T ) are Hermitian) is the existence of the
corresponding list of ordered multiplicities.

Finally, we turn our attention to the double generalized stars. For a
double generalized star T we give a characterization of the lists of ordered
multiplicities among matrices in S(T ).

2 Prior Results

We record here some known results that will be important for the present
work.

It was shown in [Lea] that for any tree T on n vertices and real numbers

λ1 < μ1 < λ2 < · · · < μn−1 < λn,

choosing any vertex v of T , there is a matrix A in S(T ) with spectrum
{λ1, . . . , λn}, and such that A(v) has spectrum {μ1, . . . , μn−1}. This result
is fundamental for our results and may be stated as follows.

Theorem 3 Let T be a tree on n vertices and v be a vertex of T . Let
λ1 < · · · < λn and μ1 < · · · < μn−1 be real numbers. If

λ1 < μ1 < λ2 < · · · < μn−1 < λn,

then there exists a matrix A in S(T ) with eigenvalues λ1, . . . , λn, and such
that, A(v) has eigenvalues μ1, . . . , μn−1.

The key tool used in [Lea] to prove the above mentioned result was the
decomposition of a real rational function into partial fractions. We shall
recall the following well known results, which will be useful for the present
work.
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Lemma 4 Let g(t) be a monic polynomial of degree n, n > 1, having all its
roots real and distinct and let h(t) be a monic polynomial with deg h(t) <
deg g(t). Then h(t) has n − 1 distinct real roots strictly interlacing the roots
of g(t) if and only if the coefficients of the partial fraction decomposition of
h(t)
g(t)

are positive real numbers.

Remark 5 If λ1, . . . , λn, μ1, . . . , μn−1 are real numbers such that

λ1 < μ1 < λ2 < · · · < μn−1 < λn,

and, g(t) and h(t) are the monic polynomials

g(t) = (t − λ1)(t − λ2) · · · (t − λn),

h(t) = (t − μ1)(t − μ2) · · · (t − μn−1),

then it is easy to show that g(t)
h(t)

can be represented in a unique way as

g(t)

h(t)
= (t − a) −

n−1∑
i=1

xi

t − μi

in which a =
∑n

i=1 λi −
∑n−1

i=1 μi and xi, i = 1, . . . , n − 1, are positive real
numbers such that

xi = − g(λi)∏n−1
j=1
j �=i

(μi − μj)
= −

∏n
j=1(μi − λj)∏n−1
j=1
j �=i

(μi − μj)
.

We will also need the characteristic polynomial of a matrix whose graph
is a given tree T . In the following lemma we focus upon the expansion of
the characteristic polynomial at a particular vertex v of T with neighbors
u1, . . . , uk (see eg. [JLS]).

Lemma 6 Let T be a tree on n vertices and A = (aij) be a matrix in S(T ).
If v is a vertex of T of degree k, whose neighbors in T are u1, . . . , uk, then

pA(t) = (t − avv)pA[T−v](t) −
k∑

i=1

|avui
|2pA[Ti−ui](t)

k∏
j=1
j �=i

pA[Tj ](t), (1)

with the convention that pA[Ti−ui](t) = 1 whenever the vertex set of Ti is {ui}.
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Since T is a tree, if A is a matrix in S(T ) and v is a vertex of degree k, we
have A(v) = A[T1]⊕· · ·⊕A[Tk] where Ti is the branch of T −v containing the
neighbor ui of v in T . It was shown in [JLS] that the existence of a branch Ti

of v, in whose branch the multiplicity of an eigenvalue λ of A[Ti] goes down
when ui is removed from Ti, implies that mA(v)(λ) = mA(λ) + 1.

Lemma 7 Let T be a tree and A be a matrix in S(T ). Let v be a vertex of
T and λ be an eigenvalue of A(v). Let ui be a neighbor of v in T and Ti be
the branch of T at v containing ui. If λ is an eigenvalue of A[Ti] and

mA[Ti](λ) = mA[Ti−ui](λ) + 1, (2)

then mA(v)(λ) = mA(λ) + 1.

A branch Ti satisfying (2) for an eigenvalue λ of A[Ti] is called a downer
branch at v for the eigenvalue λ (downer branch, for short); the vertex ui is
called a downer vertex.

The following result is well known and may be easily checked considering
the prior lemma and the interlacing theorem for Hermitian eigenvalues.

Lemma 8 If T is a tree, the largest and smallest eigenvalues of each matrix
A in S(T ), have multiplicity 1. Moreover, the largest or smallest eigenvalue
of a matrix A in S(T ) cannot occur as an eigenvalue of a submatrix A(v),
for any vertex v of T .

The paths play an important role in Section 4, so we record a long know
fact that we shall use.

Lemma 9 Let T be a path whose pendant vertices are the vertices ui and
uj. If A is a matrix in S(T ) then the eigenvalues of A are all of multiplicity
1 and the eigenvalues of A[T − ui] (A[T − uj]) strictly interlace those of A.

3 Inverse Eigenvalue Problems

One of the classical inverse eigenvalue problem is the following one.
General Inverse Eigenvalue Problem (GIEP) for tridiagonal ma-
trices: Given real numbers λ1, . . . , λn, and μ1, . . . , μn−1, construct a sym-
metric irreducible tridiagonal, n-by-n matrix A such that A has eigenvalues
λ1, . . . , λn and A(1) has eigenvalues μ1, . . . , μn−1.
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Lemma 9 gives a necessary condition for this problem to have a solution
and it is well known that such condition is also sufficient. For a survey of this
and others inverse eigenvalue problems see [Chu]; a physical interpretation
of the above inverse problem is also presented in [Chu] (see specially [Chu,
§3] and also [BG]).

Note that the graph of a tridiagonal matrix is a path and so is natural to
consider a analogous GIEP for the case in which A is a matrix in S(T ), T
being any tree.
General Inverse Eigenvalue Problem (GIEP) for S(T ) : Given a tree
T with vertex set {1, . . . , n}, a vertex v of T of degree k, T1, . . . , Tk being the
connected components of T −v and given real numbers λ1, . . . , λn, and monic
polynomials g1(t), . . . , gk(t), having only real roots, deg gi equal to the number
of vertices of Ti, construct a matrix A in S(T ) such that A has eigenvalues
λ1, . . . , λn and such that the eigenvalues of A[Ti] are the roots of gi.

This problem was studied in [Lea] where it was shown that the strict
interlacing between the λ’s and the μ’s (roots of g1× . . .×gk) was a sufficient
condition for the problem to have a solution (see Theorem 3 above). Note
that it follows immediately from Theorem 3 that for any tree T with n vertices
and any given set of distinct real numbers there exists a matrix A in S(T )
such that A has these numbers as eigenvalues.

The strict interlacing of Theorem 3 is no longer necessary for this inverse
eigenvalue problem to have a solution. In fact it is well known that a matrix
A in S(T ) can have multiple eigenvalues and recently a lot of research has
been done about the possible lists of multiplicities that may occur among the
eigenvalues of matrices in S(T ) (we refer to [JLS] and references therein for
a survey of the subject). The following inverse eigenvalue problem seems to
be related with this question.
Inverse Eigenvalue Problem (IEP) for S(T ) : Given a tree T with
vertex set {1, . . . , n} and real numbers λ1, . . . , λn, construct a matrix A in
S(T ) such that A has eigenvalues λ1, . . . , λn.

As mentioned before this problem has a solution if the λ’s are distinct and
we believe that the only restrictions on the λ’s for a solution to exist are the
ones on multiplicities. So, if this is the case, a description of all possible lists
of multiplicities for the eigenvalues of matrices in S(T ) will give a necessary
and sufficient condition for the IEP for S(T ) to have a solution. We will see
in the next section that, if T is a generalized star the two questions are in
fact equivalent.

The following theorem gives a partial answer of the GIEP for S(T ).
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Theorem 10 Let T be a tree on n vertices, v be a vertex of T of degree k
whose neighbors are u1, . . . , uk, Ti be the branch of T at v containing ui, and
si be the number of vertices in Ti.

Let g1(t), . . . , gk(t) be monic polynomials having only distinct real roots,
with deg gi(t) = si, and p1, . . . , ps be the distinct roots among polynomials
gi(t) and mi be the multiplicity of root pi in

∏k
i=1 gi(t).

Let g(t) be a monic polynomial of degree s + 1.
There exists a matrix A in S(T ) with characteristic polynomial f(t) =

g(t)
∏s

i=1(t− pi)
mi−1 and such that A[Ti] has characteristic polynomial gi(t),

i = 1, . . . , k, and, if si > 1, the eigenvalues of A[Ti − ui] strictly interlace
with those of A[Ti] if and only if the roots of g(t) strictly interlace with those
of

∏s
i=1(t − pi).

Proof. Let us prove the necessity of the stated condition for the ex-
istence of the matrix A. Observe that the characteristic polynomial of
A(v) = A[T1] ⊕ · · · ⊕ A[Tk] is

k∏
i=1

gi(t) =
s∏

i=1

(t − pi)
mi .

By hypothesis the eigenvalues of A[Ti − ui] strictly interlace with those
of A[Ti]; this means that each Ti is a downer branch for every eigenvalue of
A[Ti] and so we can apply Lemma 7; by that lemma each root pi of pA(v)(t)
occurs as a root of pA(t), with multiplicity mi − 1. Since

∑s
i=1 mi = n− 1, it

results
∑s

i=1(mi − 1) = n− 1− s. Thus, pA(t) must have more s + 1 distinct
roots, the roots of g(t), each one distinct of p1, . . . , ps. By the interlacing
inequalities for Hermitian eigenvalues, the roots of pA(t) must interlace with
the roots of pA(v)(t). Since g(t) has s + 1 distinct roots and also distinct of
the s roots p1, . . . , ps, then the roots of g(t) must strictly interlace those of∏s

i=1(t − pi).
Let us prove the sufficiency of the stated condition.
Due to the strict interlacing between the roots of g(t) and those of∏s

i=1(t − pi), attending to Remark 5 we conclude the existence of a real
number a and positive real numbers y1, . . . , ys such that

g(t)∏s
i=1(t − pi)

= (t − a) −
s∑

i=1

yi

t − pi
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i.e.,

g(t) =

[
(t − a) −

s∑
i=1

yi

t − pi

]
s∏

i=1

(t − pi). (3)

We denote by mij the multiplicity of pi as a root of gj(t). Observe that,
by hypothesis gj(t) has distinct real roots, so mij ∈ {0, 1}. Note also that∑s

i=1 mij = sj and
∏s

i=1(t − pi)
mij = gj(t).

Let yi1, . . . , yik be positive real numbers such that mi1yi1 + · · ·+mikyik =
yi, i = 1, . . . , s. Now, (3) may be rewritten as

g(t) =

[
(t − a) −

s∑
i=1

mi1yi1 + · · · + mikyik

t − pi

]
s∏

i=1

(t − pi)

=

[
(t − a) −

(
s∑

i=1

mi1yi1

t − pi

+ · · · +
s∑

i=1

mikyik

t − pi

)]
s∏

i=1

(t − pi). (4)

Recall that
∏s

i=1(t − pi)
mij = gj(t) and observe that, when deg gj(t) > 1,∑s

i=1
mijyij

t−pi
is a partial fraction decomposition (pfd) of

hj(t)

gj(t)
for some polyno-

mial hj(t) and, since the coefficients of this pfd are all positive, by Lemma 4,
it means that deg hj(t) = deg gj(t) − 1 and hj(t) has only real roots which
strictly interlace with those of gj(t). If deg gj(t) = 1,

∑s
i=1

mijyij

t−pi
=

mrjyrj

gj(t)
,

mrjyrj > 0, for some r ∈ {1, . . . , s}. In such case, for convenience, we also
denote mrjyrj by hj(t). We may rewrite (4) as

g(t) =

[
(t − a) −

(
h1(t)

g1(t)
+ · · · + hk(t)

gk(t)

)] s∏
i=1

(t − pi). (5)

Observe that the leading coefficient of hj(t) is the positive real number∑s
i=1 mijyij. Set xj equal to the leading coefficient of hj(t) and let hj(t)

be the monic polynomial such that hj(t) = xjhj(t). With this we obtain
from (5)

g(t) =

[
(t − a) −

(
x1

h1(t)

g1(t)
+ · · · + xk

hk(t)

gk(t)

)] s∏
i=1

(t − pi). (6)

Let T be a tree and v be a vertex of T of degree k, whose neighbors in T
are u1, . . . , uk. Let Ti, the branch of T at v containing ui, be any tree on si

vertices. By Theorem 3, there exist matrices Ai ∈ S(Ti) such that pAi
(t) =
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gi(t) and pAi[Ti−ui](t) = hi(t) (recall the convention that pAi[Ti−ui](t) = 1
whenever the vertex set of Ti is {ui}).

Now define a matrix A = (aij) ∈ S(T ), in the following way:

• avv = a;

• avui
= auiv =

√
xi, for i = 1, . . . , k;

• A[Ti] = Ai, for i = 1, . . . , k;

• the remaining entries of A are 0.

Attending to (1), the characteristic polynomial of A may be written as

(t − avv)pA[T−v](t) −
k∑

i=1

|avui
|2pA[Ti−ui](t)

k∏
j=1
j �=i

pA[Tj ](t).

Note that A[T − v] = A[T1] ⊕ · · · ⊕ A[Tk] so, pA[T−v](t) =
∏k

i=1 pA[Ti](t).
Moreover the characteristic polynomial of A[Ti] is gi(t) and the characteristic
polynomial of A[Ti−ui] is hi(t) and the roots of these two polynomials strictly
interlace.

Taking in account how we have defined the matrix A, it follows that

pA(t) = (t − avv)
k∏

i=1

pA[Gi](t) −
k∑

i=1

a2
vui

pA[Gi−ui](t)
k∏

j=1
j �=i

pA[Gj ](t)

= (t − avv)
k∏

i=1

pA[Gi](t) −
k∑

i=1

a2
vui

pA[Gi−ui](t)

pA[Gi](t)

k∏
j=1

pA[Gj ](t)

=

[
(t − avv) −

k∑
i=1

a2
vui

pA[Gi−ui](t)

pA[Gi](t)

]
k∏

j=1

pA[Gj ](t)

=

[
(t − a) −

k∑
i=1

xi
hi(t)

gi(t)

]
k∏

j=1

gj(t).

Since gj(t) =
∏s

i=1(t−pi)
mij and mi =

∑k
j=1 mij, it results that

∏k
j=1 gj(t) =
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∏s
j=1(t − pj)

mj . So, attending to (6), we have

pA(t) =

[
(t − a) −

k∑
i=1

xi
hi(t)

gi(t)

]
s∏

j=1

(t − pj)
s∏

j=1

(t − pj)
mj−1

= g(t)
s∏

j=1

(t − pj)
mj−1

i.e., pA(t) = f(t). �

The condition stated in Theorem 10 is not necessary in general; in fact
A[Ti] may have multiple eigenvalues (and so we can not apply Theorem 10),
and even if the eigenvalues of A[Ti] are simple, A[Ti] and A[Ti − ui] may
have common eigenvalues. Nevertheless there is a class of trees for which
Theorem 10 does give a necessary and sufficient condition for the solvability
of the GIEP: the generalized stars. We state this in the next theorem.

Theorem 11 Let T be a generalized star on n vertices with central vertex v,
T1, . . . , Tk be the branches of T at v and l1, . . . , lk be the number of vertices
of T1, . . . , Tk respectively (n = 1 +

∑k
i=1 li).

Let g1(t), . . . , gk(t) be monic polynomials having only real roots and such
that deg gi(t) = li, p1, . . . , pl be the distinct roots among polynomials gi(t)
and mi denote the multiplicity of root pi in

∏k
i=1 gi(t), (mi ≥ 1).

Let g(t) be a monic polynomial with deg g(t) = l + 1.
Then there exists a matrix A in S(T ) such that A has characteristic poly-

nomial g(t)
∏l

i=1(t − pi)
mi−1, gi(t) is the characteristic polynomial of sum-

mands A[Ti], i = 1, . . . , k, if and only if each gi(t) has only simple roots and
the roots of g(t) strictly interlace p1, . . . , pl.

Proof. The “if” part is a particular case of Theorem 10. For the “only
if” part just note that each Ti is a path and then apply Lemma 9 and the
“only if” part of Theorem 10. �

4 Lists of Multiplicities for the Case of Gen-

eralized Stars

Throughout this section T will be a generalized star on n vertices and v a
central vertex of T of degree k. Recall that, each branch, Ti, of T resulting
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from deletion of a central vertex v from T is a path which we call an arm of
T . The length of an arm Ti of T is simply the number of vertices in the arm
and is denoted by li. For convenience, we assume that l1 ≥ · · · ≥ lk.

In [JL2, Theorem 9] the set of possible multiplicities of matrices in S(T )
was characterized, that is, given a generalized star T , it was given a descrip-
tion the of set of lists (p̃1, p̃2, . . . , p̃k), p̃1 ≥ p̃2 ≥ · · · ≥ p̃k, for which there
exist a matrix A in S(T ) having k distinct eigenvalues with multiplicities
p̃1, p̃2, . . . , p̃k respectively.

Here we will give a necessary and sufficient condition for the IEP for S(T )
to have a solution, that is, we will describe the set of eigenvalues, counting
multiplicities, that may occur for matrices in S(T ) (Theorem 15 bellow). We
will also consider the question of ordered multiplicities : If λ1 < · · · < λr

are the distinct eigenvalues of a matrix A in S(T ), we associate with A the
r-tuple, q = q(A) = (q1, . . . , qr), in which qi = mA(λi), i = 1, . . . , r. Such an
r-tuple is the list of ordered multiplicities of A and we denote by L(T ) the
collection of lists q that occur, as A runs over S(T ). We will give a complete
description of this set.

First we state a lemma that we will use several times.

Lemma 12 Let T be a generalized star with central vertex v. If A is a matrix
in S(T ) and λ is an eigenvalue of A(v) then mA(v)(λ) = mA(λ) + 1.

Proof. Observe that, if A is a matrix in S(T ) then A(v) = A[T1] ⊕ · · · ⊕
A[Tk], in which each Ti is a path. By Lemma 9, A[Ti] has distinct eigenvalues
and the eigenvalues of A[Ti − ui] strictly interlace with those of A[Ti]. Thus,
if λ is an eigenvalue of A(v) then at least one arm Ti of T is a downer branch
for λ and the result follows from Lemma 7. �

The characteristic polynomial of a matrix A in S(T ) was characterized in
Theorem 11. Moreover, if we prescribe the eigenvalues of each summand of
A(v), such characterization also gives the relative position of the eigenvalues
of A, the eigenvalues of A(v), and their multiplicities.

As the following lemma shows, the only constraint for the existence of a
matrix in S(T − v) with a prescribed spectrum is the allocation of distinct
eigenvalues in each arm of T (components of T−v). The Gale-Ryser Theorem
(see eg. [Rys], pg. 63) characterizing the existence of a (0, 1)-matrix with
given row-sums and column-sums is relevant to this allocation. Let q1 ≥ · · · ≥
qr be the multiplicities of the distinct eigenvalues λ1, . . . , λr of a matrix B
in S(T − v). Since each B[Tj] has distinct eigenvalues, denoting by qij the
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multiplicity of the eigenvalue λi as an eigenvalue of B[Tj] it follows that

qij ∈ {0, 1}, ∑k
j=1 qij = qi and

∑r
i=1 qij = lj. So, there must exist an r-by-k

(0, 1)-matrix Q = (qij) with row-sum vector q = (q1, . . . , qr) and column-sum
vector l = (l1, . . . , lk), each one being partitions of n − 1. We denote by l∗

the conjugate partition of l, where l∗i is the number of j’s such that lj ≥ i so,
l∗ = (l∗1, . . . , l

∗
l1
) with l∗1 ≥ · · · ≥ l∗l1 ≥ 1.

Let u = (u1, . . . , ub), u1 ≥ · · · ≥ ub, and v = (v1, . . . , vc), v1 ≥ · · · ≥ vc,
be two partitions of integers M and N respectively, M ≤ N , such that
u1 + · · ·+us ≤ v1 + · · ·+vs for all s, interpreting us or vs as 0 when s exceeds
b or c, respectively. If M = N we say that v majorizes u and write u 
 v.
If M < N we denote by ue the partition of N obtained from u adding 1’s
to the partition u. Note that if M = N then ue = u. It is easy to see that
ue 
 v.

By the Gale-Ryser Theorem, the matrix Q = (qij) mentioned above exists
if and only if q 
 l∗.

Lemma 13 Let T be a generalized star on n vertices whose central vertex v
has degree k and whose arm lengths are l1 ≥ · · · ≥ lk. Then there is a matrix
A in S(T − v) with distinct eigenvalues λ1, . . . , λr such that q1 = mA(λ1) ≥
· · · ≥ mA(λr) = qr if and only if (q1, . . . , qr) 
 (l1, . . . , lk)

∗.

Proof. The above discussion justifies the necessity of the stated condition.
If (q1, . . . , qr) 
 (l1, . . . , lk)

∗ then there exists an r-by-k (0, 1)-matrix
Q = (qij) with row-sum vector (q1, . . . , qr) and column-sum vector (l1, . . . , lk)
i.e., it is possible to prescribe λ1 . . . , λr as eigenvalues of A, counting multi-
plicities, in such way each of the direct summands of A, A[Ti], must have li
distinct eigenvalues. The existence of such matrices is guaranteed by Theo-
rem 3. �

The next step is to verify when a given sequence of real numbers can
be the spectrum of a matrix in S(T ). As we will show the only constraint
to construct a matrix in S(T ) with prescribed spectrum is the existence of
a corresponding list of ordered multiplicities. We start by giving necessary
conditions for the possible lists of ordered multiplicities that can occur for
the distinct eigenvalues of A, as A runs over S(T ), for a given generalized
star T .

Note that conditions (a) and (b) of next theorem are essentially the con-
ditions as (a) and (d) of [JL2, Theorem 9] and, in fact, they follow from the
necessity part of that theorem; for completeness we include a proof here.
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Theorem 14 Let T be a generalized star on n vertices with central vertex
v of degree k and arm lengths l1 ≥ l2 ≥ . . . ≥ lk (n = 1 +

∑k
i=1 li). If

(q1, q2, . . . , qr) ∈ L(T ) then:

(a)
∑r

i=1 qi = n;

(b) if qi > 1 then 1 < i < r and qi−1 = 1 = qi+1;

(c) (qi1 + 1, qi2 + 1, . . . , qih + 1)e 
 (l1, l2, . . . , lk)
∗, in which qi1 ≥ qi2 ≥ · · · ≥

qih are the elements of the r-tuple (q1, q2, . . . , qr) greater than 1.

Proof. Suppose that A is a matrix in S(T ) with distinct eigenvalues
λ1 < λ2 < · · · < λr whose list of ordered multiplicities is (q1, q2, . . . , qr). (a)
says that, since A is an n-by-n matrix, the number of eigenvalues, counting
multiplicities, must be n. If qi > 1 then λi is an eigenvalue of A(v). By
Theorem 11, there are two eigenvalues in A, λi−1 < λi+1 but not in A(v),
strictly interlacing λi. Therefore, 1 < i < n and qi−1 = 1 = qi+1, which
proves (b). To prove (c) we must note that if λi1 , λi2 , . . . , λih are eigenvalues
of A with multiplicities qi1 ≥ qi2 · · · ≥ qih ≥ 2, by Lemma 12, such eigenvalues
occur as eigenvalues of A(v) with multiplicities qi1 +1, qi2 +1, . . . , qih +1. By
Lemma 13, if there is a matrix in S(T − v) with such multiple eigenvalues
then (qi1 + 1, qi2 + 1, . . . , qih + 1)e 
 (l1, l2, . . . , lk)

∗. �

The next theorem shows that the above necessary conditions of Theorem
14 for (q1, . . . , qr) ∈ L(T ) are also sufficient. For this purpose, given q =
(q1, . . . , qr) satisfying the conditions (a), (b) and (c) of Theorem 14, we need
to construct a matrix in S(T ) whose list of ordered multiplicities is q. Now
Theorem 11 give us a way to construct, in particular, a matrix A in S(T ) with
prescribed distinct eigenvalues λ1 < · · · < λr, as soon as the corresponding
list of ordered multiplicities satisfies conditions (a), (b) and (c) in Theorem
14. So we may prove the sufficiency of the stated conditions (a), (b) and (c)
of Theorem 14.

Theorem 15 Let T be a generalized star on n vertices with central vertex
v of degree k and arm lengths l1 ≥ l2 ≥ . . . ≥ lk (n = 1 +

∑k
i=1 li). Let

λ1 < · · · < λr be any sequence of real numbers.
Then there exists a matrix A in S(T ) with distinct eigenvalues λ1 < · · · <

λr and q(A) = (q1, . . . , qr) if and only if (q1, . . . , qr) satisfies conditions (a),
(b) and (c) in Theorem 14.
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Proof. Since q satisfies condition (a) in Theorem 14, it means that the
matrix A must have n eigenvalues, counting multiplicities. Let h, h ≥ 0, be
the number of qi’s greater than 1 in q.

If h = 0 i.e., we have q1 = · · · = qr = 1, then r = n and, by Theorem 3,
considering any sequence of real numbers {μi}n−1

i=1 , such that λi < μi < λi+1,
i = 1, . . . , n− 1, there exists a matrix A in S(T ) such that A and A(v) have
spectrum {λi}n

i=1 and {μi}n−1
i=1 , respectively.

Suppose now that h ≥ 1, and let qj1 ≥ · · · ≥ qjh
be such elements of

q. Since q satisfies condition (c) in Theorem 14, we have (qj1 + 1, . . . , qjh
+

1)e 
 (l1, . . . , lk)
∗. It means that is possible to construct matrices Ai ∈

S(Ti) such that λj1 , . . . , λjh
occur as eigenvalues of A1 ⊕ · · · ⊕ Ak with total

multiplicities, respectively qj1+1, . . . , qjh
+1 (each of these real numbers occur

as an eigenvalue of at most one of the Ai’s). So, (qj1 + 1) + · · ·+ (qjh
+ 1) ≤∑k

i=1 li = n − 1. Let t = n − 1 − [(qj1 + 1) + · · · + (qjh
+ 1)](≥ 0) be the

number of remaining eigenvalues to prescribe for the construction of matrices
Ai, i = 1, . . . , k. Note that, since q satisfies condition (b) in Theorem 14, if
qi > 1 then 1 < i < r and qi−1 = 1 = qi+1. So, there are, h + 1 λi’s strictly
interlacing the real numbers λj1 , . . . , λjh

.
Observe that n = t + (h + 1) + qi1 + · · · + qih so, there are t + h + 1

distinct λi’s that must be (simple) eigenvalues of A but they do not occur as
eigenvalues of A(v). If t > 0, choose the remaining t eigenvalues to prescribe
for the construction of matrices Ai, all distinct and such that the t+h distinct
prescribed eigenvalues for A1 ⊕· · ·⊕Ak strictly interlace the t+h+1 simple
λi’s (If t = 0, the h + 1 simple prescribed eigenvalues for A strictly interlace
the h real numbers λj1 , . . . , λjh

).
From Theorem 10, there exists a real symmetric matrix A in S(T ) with

characteristic polynomial g(t)
∏h

i=1(t − λji
)qji in which g(t) is a monic poly-

nomial of degree t + h + 1 whose roots are the λi’s such that qi = 1 and,∏h
i=1(t−λji

)qji is a monic polynomial of degree qj1 + · · ·+qjh
= n−(t+h+1).

�

In the construction of a matrix A in S(T ) with distinct eigenvalues λ1 <
· · · < λr whose list of ordered multiplicities, (q1, . . . , qr), satisfies conditions
(a), (b) and (c) in Theorem 14, the simple eigenvalues (of multiplicity 1) of
A do not occur as eigenvalues of A(v). (Recall that, by Lemma 12, if λ is
an eigenvalue of A and A(v) then mA(v)(λ) = mA(λ) + 1.) But under some
constraints, a matrix in S(T ) can be constructed with a simple eigenvalue (or
more than one) occurring as an eigenvalue of A(v). For this purpose, if A is a
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matrix in S(T ), we call an eigenvalue λ of A, verifying mA(v)(λ) = mA(λ)+1,
an upward eigenvalue of A at v. To the multiplicity of λ in A, we call an
upward multiplicity of A at v. If q = q(A) = (q1, . . . , qr), we define the list of
upward multiplicities of A at v, which we denote by q̂, the list with the same
entries as q but in which any upward multiplicity of A at v, qi, is marked as
q̂i in q̂. Of course, when T is a generalized star, all the qi’s greater than 1 are
marked in q̂ and, if qi is marked in q̂ then 1 < i < r and neither qi−1 nor qi+1

can be marked in q̂ (this means that qi−1 = 1 = qi+1). For a given vertex v
of T , we denote by L̂v(T ) the collection of lists of upward multiplicities at v
that occur among matrices in S(T ).

Now we can state the following theorem, whose proof is analogous to the
proof of Theorem 15 and so we omit the proof.

Theorem 16 Let T be a generalized star on n vertices with central vertex
v of degree k and arm lengths l1 ≥ l2 ≥ . . . ≥ lk (n = 1 +

∑k
i=1 li). Let

λ1 < · · · < λr be any sequence of real numbers.
Then there exists a matrix A in S(T ) with distinct eigenvalues λ1 < · · · <

λr and list of upward multiplicities q̂ = ̂(q1, . . . , qr) if and only if q̂ satisfies
the following conditions:

(a)
∑r

i=1 qi = n;

(b) if qi is an upward multiplicity in q̂ then 1 < i < r and neither qi−1 nor
qi−1 is an upward multiplicity in q̂;

(c) (qi1 +1, qi2 +1, . . . , qih +1)e 
 (l1, l2, . . . , lk)
∗, where qi1 ≥ qi2 ≥ · · · ≥ qih

are the upward multiplicities of q̂.

We have seen (Lemma 12) that, when T is a generalized star, there is a
vertex v of T , a central vertex, such that, for any matrix A in S(T ) and any
eigenvalue λ of A(v), we have mA(v)(λ) = mA(λ) + 1. We close this section
showing that the generalized stars are the only trees for which such a vertex
v exists.

Theorem 17 Let T be a tree and v be a vertex of T such that, for any matrix
A in S(T ) and any eigenvalue λ of A(v), mA(v)(λ) = mA(λ) + 1. Then T is
a generalized star and v is a central vertex of T .
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Proof. Suppose that T is a tree but not a generalized star. Then T
has at least two vertices of degree greater than 2. Let v be any vertex of
T and choose a vertex u of degree k ≥ 3 of T , u �= v. We show that
there is a matrix A in S(T ) such that λ is an eigenvalue of A(v) satisfying
mA(v)(λ) = mA(λ) − 1. In order to construct A, consider the vertex u,
whose removal leaves k components T1, . . . , Tk. For each of these components
construct a matrix Ai in S(Ti) whose smallest eigenvalue is λ. Let A be any
matrix in S(T ) with the submatrices Ai in appropriate positions. Recall that,
by Lemma 8, the smallest eigenvalue of a matrix whose graph is a tree does
not occur as an eigenvalue of any principal submatrix of size one smaller. It
means that any Ti is a downer branch at u for λ. Thus mA(u)(λ) = k and,
by Lemma 7, it follows that mA(λ) = k − 1.

Let us see that mA(v)(λ) = mA(λ) − 1. Observe that λ occurs as an
eigenvalue of only one of the direct summands of A(v), corresponding to the
component T ′ of T − v containing the vertex u. Since now λ is an eigenvalue
of k − 1 components of A[T ′ − u] (in each one with multiplicity 1) again, by
Lemma 7, it follows mA[T ′−u](λ) = mA[T ′](λ)+1 i.e., mA[T ′](λ) = k−2. Since
mA(v)(λ) = mA[T ′](λ) we have mA(v)(λ) = mA(λ) − 1.

If we assume that T is a generalized star and v is not a central vertex the
same argumentation holds to prove the claimed result. �

5 Double Generalized Stars

Here we give a characterization of the lists of ordered multiplicities among
matrices whose graph is a double generalized star. As we will see, any list of
ordered multiplicities of a double generalized star D(T1, T2) may be obtained
from the lists of upward multiplicities of T1 and T2.

Throughout this section, G will be a double generalized star D(T1, T2).
For convenience, we denote by vi, i = 1, 2, the central vertex of Ti, in Ti and
in G.

It is easy to see that, if A is a matrix in S(G), by permutation similarity,
A is similar to a matrix [

A1
e

ē A2

]
, (7)

in which Ai is a matrix in S(Ti), i = 1, 2, and e is the entry of A correspondent
to the edge {v1, v2} of G. For convenience, if A is a matrix in S(G) we assume
that it is written as in (7).
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The lists of upward multiplicities of T1 (T2) at v1 (v2) play an important
role in our results. Throughout, when we consider an upward eigenvalue
(multiplicity) in A1 or A2 or A, the related vertices are v1 or v2. If λ is an
upward eigenvalue of A and Ai, i = 1 or i = 2, we call such an eigenvalue of
A a doubly upward eigenvalue.

Theorem 18 Let A be a matrix in S(G) and λ be an eigenvalue of A1 or
A2. Then λ is an eigenvalue of A if and only if λ is an eigenvalue of A1(v1)
or A2(v2). In this event, we have mA(λ) = mA1(λ) + mA2(λ).

Proof. To prove the necessity of the claimed result, we assume without
loss of generality that λ is an eigenvalue of A and A1. We start showing
that λ must occur as an eigenvalue of A1(v1) or A2(v2). In order to get a
contradiction, we suppose that λ does not occur as an eigenvalue of A1(v1)
and A2(v2). Since A(v2) = A1 ⊕ A2(v2) and λ is an eigenvalue of A1 (A[T1])
but does not occur as an eigenvalue of A1(v1) (A[T1−v1]), this means that T1

is a downer branch for λ at v2 so, by Lemma 7, we have mA(v2)(λ) = mA(λ)+1.
Thus, mA(λ) = mA1(λ) − 1. Since λ is an eigenvalue of A1 but does not
occur as an eigenvalue of A1(v1), by the interlacing inequalities for Hermitian
eigenvalues, it follows that mA1(λ) = 1. But it results mA(λ) = 0 which gives
a contradiction. Therefore, λ is an eigenvalue of A1(v1) or A2(v2).

It remains to prove that mA(λ) = mA1(λ) + mA2(λ). Suppose without
loss of generality that λ is an eigenvalue of A2(v2). Since T2 is a generalized
star, there is in T2 a downer branch for λ at v2. Such downer branch of T2 for
λ is also a downer branch of G for λ at v2 so, we have mA(v2)(λ) = mA(λ)+1
and mA2(v2)(λ) = mA2(λ) + 1. Since A(v2) = A1 ⊕ A2(v2) it follows that
mA(λ) = mA1(λ) + mA2(λ).

To prove the sufficiency it suffices to observe that if λ is an eigenvalue of
A1(v1) or A2(v2) then mA(λ) = mA1(λ) + mA2(λ). �

Corollary 19 Let A be a matrix in S(G). If λ is an upward eigenvalue of A1

or A2 then λ is an upward eigenvalue of A and mA(λ) = mA1(λ) + mA2(λ).

Corollary 20 Let A be a matrix in S(G) and λ be an eigenvalue of A1 or
A2. Then λ is a multiple eigenvalue of A if and only if λ is an upward
eigenvalue of A1 or A2 and mA(λ) = mA1(λ) + mA2(λ) ≥ 2.

Corollary 21 Let A be a matrix in S(G) and λ be an eigenvalue of A1 and
A2. Then λ is an eigenvalue of A if and only if λ is an upward eigenvalue of
A1 or A2. In such a case, mA(λ) = mA1(λ) + mA2(λ) ≥ 2.
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Consider two lists of upward multiplicities of A1 and A2, respectively
̂(b1, . . . , bs1) and ̂(c1, . . . , cs2). If λ is an upward eigenvalue of A1 with upward

multiplicity bi then, by Corollary 19, λ is an upward eigenvalue of A. If λ
is also an eigenvalue of A2 with multiplicity cj, then mA(λ) = bi + cj. If λ
is not an eigenvalue of A2 then mA(λ) = bi. In either case, λ is a doubly
upward eigenvalue of A. (Observe that any multiple eigenvalue of A is a
doubly upward eigenvalue of A.) It remains the problem about what is the
relative position of λ (of mA(λ)) in the ordered spectrum of A (in the list of
ordered multiplicities of A). For this purpose, given a symmetric matrix B
and a real number λ we denote by lB(λ) (rB(λ)) the number of eigenvalues
(counting multiplicities) of B less (greater) than λ. Given two real numbers
λ < λ′ we denote by bB(λ, λ′) the number of eigenvalues of B strictly between
λ and λ′.

Lemma 22 Let A be a matrix in S(G) and λ be a doubly upward eigenvalue
of A. Then lA(λ) = lA1(λ) + lA2(λ).

Proof. Since λ is a doubly upward eigenvalue of A, we have mA(vi)(λ) =
mA(λ) + 1 ≥ 2 and mAi(vi)(λ) = mAi

(λ) + 1 ≥ 2, for i = 1 or i = 2.
Suppose without loss of generality that i = 1. By the interlacing inequalities
for Hermitian eigenvalues, lA(v1)(λ) = lA(λ) − 1 and lA1(v1)(λ) = lA1(λ) − 1.
Since A(v1) = A1(v1)⊕A2 it results lA(v1)(λ) = lA1(v1)(λ)+ lA2(λ). Therefore,
lA(λ) = lA1(λ) + lA2(λ). �

In the same way, we may show that rA(λ) = rA1(λ)+rA2(λ). If λh1 < λh2

are two doubly upward eigenvalues of A then, by Lemma 22, bA(λh1 , λh2) =
bA1(λh1 , λh2) + bA2(λh1 , λh2).

Lemma 23 Let A be a matrix in S(G) such that if A1 and A2 have a
common eigenvalue it must be an upward eigenvalue of A1 or A2. Then
q(A1 ⊕ A2) = q(A).

Proof. By hypothesis, if A1 and A2 have a common eigenvalue then it
must be an upward eigenvalue of A1 or A2. By Theorem 16 or Lemma 8 , the
smallest and largest eigenvalues of A1 and A2 cannot be upward. Thus, it
follows that the smallest and largest eigenvalues of A1 ⊕A2 have multiplicity
1.

If there are no multiple eigenvalues of A1 ⊕ A2, from Corollary 20, there
are no multiple eigenvalues of A and, therefore, q(A1 ⊕A2) = q(A). Suppose
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now that there is a multiple eigenvalue λ of A1⊕A2. Of course, mA1⊕A2(λ) =
mA1(λ) +mA2(λ) and, by hypothesis, λ is an upward eigenvalue of A1 or A2.
By Corollary 20, there is a multiple eigenvalue λ of A if and only if λ is an
upward eigenvalue of A1 or A2 and λ is a multiple eigenvalue of A1⊕A2 with
the same multiplicity as in A. Thus, A1 ⊕ A2 and A have the same multiple
eigenvalues with the same multiplicities. Since A1⊕A2 and A have the same
size, to complete the proof that q(A1 ⊕ A2) = q(A), it suffices to observe
that, given any multiple eigenvalue λ of A1 ⊕A2 (of A), from Lemma 22, we
have lA1⊕A2(λ) = lA(λ). �

The lists of ordered multiplicities for matrices A in S(G) whose A1 and A2

verify the assumption in Lemma 23 are easily determined. By Theorem 16,

given any list of upward multiplicities b̂ = ̂(b1 . . . , bs1) of T1 and any list of

upward multiplicities ĉ = ̂(c1 . . . , cs2) of T2, it is always possible to construct
matrices A1 in S(T1) and A2 in S(T2) with prescribed spectrum, having such
lists of upward multiplicities and, such that, λ occurs as an eigenvalue of A1

and A2 only when the multiplicity of λ is an upward multiplicity of b̂ or ĉ.
In such a case, if

A =

[
A1

e

ē A2

]
is a matrix in S(G) and λ is an eigenvalue of A1 and A2 then, by Corollary 20,
it follows that mA(λ) = mA1(λ) + mA2(λ).

The following theorem, which we call Superposition Principle, gives a way
to generate all possible lists of ordered multiplicities for matrices A in S(G)
whose A1 and A2 verify the assumption in Lemma 23.

Theorem 24 (Superposition Principle) Let G be a double generalized
star D(T1, T2). Given two lists of upward multiplicities of T1 and T2, respec-

tively b̂ = ̂(b1, . . . , bs1) and ĉ = ̂(c1, . . . , cs2), construct b+ = (b+
1 , . . . , b+

s1+t1)
and c+ = (c+

1 , . . . , c+
s2+t2) with s1 + t1 = s2 + t2, in the following way:

1. b+ (c+) is obtained from b̂ (ĉ) inserting t1 (t2) 0’s, t1, t2 ≥ 0;

2. b+
i and c+

i cannot be both 0;

and

3. if b+
i > 0 and c+

i > 0, at least b+
i or c+

i must be an upward multiplicity

of b̂ or ĉ.
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Then the list b+ + c+ = (b+
1 + c+

1 , . . . , b+
s1+t1 + c+

s2+t2) is a list of ordered
multiplicities of G.

Proof. Let b++c+ = (b+
1 +c+

1 , . . . , b+
s +c+

s ), s = s1+t1, be any list obtained
from b̂ and ĉ by the Superposition Principle. Choosing any s distinct real
numbers λ1 < · · · < λs, by Theorem 16, there is a matrix A1 in S(T1) with
list of upward multiplicities b̂ such that mA1(λi) = b+

i and, there is a matrix
A2 in S(T2) with list of upward multiplicities ĉ such that mA2(λi) = c+

i . Of
course, mA1⊕A2(λi) = b+

i + c+
i and, by construction of b+ + c+, the matrices

A1 and A2 have a common eigenvalue λ only when λ is an upward eigenvalue
of A1 or A2. Since q(A1⊕A2) = b++c+, by Lemma 23, it follows that b++c+

is a list of ordered multiplicities of G. �

In the conditions and notation of Theorem 24, we say that the pair b+

and c+, is obtained from b̂ and ĉ, by the Superposition Principle.
As we shall see, any list of ordered multiplicities for a double generalized

star D(T1, T2) may be obtained, by the Superposition Principle, from the
lists of upward multiplicities of T1 and T2.

Lemma 25 Let

A =

[
A1

e

ē A2

]
be a matrix in S(G). Then there is a matrix

B =

[
A′

1
e′

ē′ A2

]

in S(G) such that q(B) = q(A), in which q(A′
1) = q(A1) and, A′

1 and A2

have a common eigenvalue only when it is an upward eigenvalue of A′
1 or

A2. Moreover, q(B) = q(A) for any e′ ∈ C.

Proof. Let λ1 < · · · < λs be the distinct eigenvalues of A1 ⊕A2 and λi1 <
· · · < λis1

be the distinct eigenvalues of A1 with list of upward multiplicities

b̂. Let αi1 < · · · < αis1
be the distinct eigenvalues of a matrix A′

1 in S(T1)

with list of upward multiplicities b̂ and such that, for i = i1, . . . , is1 we choose:

• αi = r, with

{
r < λi , for i = 1

λi−1 < r < λi , for i > 1,

if λi is an eigenvalue of multiplicity 1 of both A1 and A2 but is not an
eigenvalue of A;
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• αi = λi, elsewhere.

Recall that the existence of such matrix A′
1 is guaranteed by Theorem 16

because b̂ ∈ L̂v1(T1). By construction, A′
1⊕A2 and A have the same multiple

eigenvalues with the same multiplicities and, for any multiple eigenvalue λ
of A′

1 ⊕ A2 (of A), lA′
1⊕A2

(λ) = lA1⊕A2(λ). Therefore, q(A′
1 ⊕ A2) = q(A).

Again by construction, if A′
1 and A2 have a common eigenvalue it must be

an upward eigenvalue of A′
1 or A2. By Lemma 23, if

B =

[
A′

1
e′

ē′ A2

]

then q(B) = q(A), e′ ∈ C. �

Theorem 26 Let G be a double generalized star D(T1, T2). Then a ∈ L(G)
if and only if there is b̂ ∈ L̂v1(T1) and ĉ ∈ L̂v2(T2) such that a = b+ + c+.

Proof. Since the sufficiency is a direct consequence of the Superposition
Principle (Theorem 24), let us prove the necessity of the claimed result.

If a ∈ L(G) then, by Lemma 25, there is a matrix

A =

[
A1

e

ē A2

]

in S(T ) with q(A) = a, and such that A1 and A2 have a common eigenvalue
only when it is an upward eigenvalue of A1 or A2. In such case we have

q(A1 ⊕ A2) = a. Let b̂ = ̂(b1, . . . , bs1) and ĉ = ̂(c1, . . . , cs2) be the lists of
upward multiplicities of A1 and A2, respectively. Let us show that there are
b+ and c+, obtained from b̂ and ĉ, by the Superposition Principle, such that
a = b+ + c+. Let λ1 < · · · < λs be the distinct eigenvalues of A1 ⊕ A2

whose list of ordered multiplicities is a = (a1, . . . , as). Observe that, for
any eigenvalue λi of A1 ⊕ A2, we have mA1⊕A2(λi) = mA1(λi) + mA2(λi).
It allows us to construct b+ = (b+

1 , . . . , b+
s ) and c+ = (c+

1 , . . . , c+
s ) in which,

b+
i = mA1(λi) and c+

i = mA2(λi). Observe that, if b+
i > 0 and c+

i > 0, this
means that λi is an upward eigenvalue of A1 or A2. Thus, the pair b+ and
c+, can be obtained from b̂ and ĉ, by the Superposition Principle and verifies
a = b+ + c+. �

Example 27 Let T1 and T2 be the following stars with central vertices v1

and v2, respectively, and G be the double star D(T1, T2).
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� �
v1

�

�

T1

�
v2

�

�

T2 D(T1, T2)

� �
v1

�

�

�
v2

�

�

By Theorem 16, we have that

L̂v1(T1) = {(1, 2̂, 1), (1, 1̂, 1, 1), (1, 1, 1̂, 1)}

and
L̂v2(T2) = {(1, 1̂, 1)}.

Applying the Superposition Principle to the lists of upward multiplicities
of T1 and T2, it follows that

L(G) = { (1, 3, 2, 1), (1, 2, 3, 1), (1, 3, 1, 1, 1), (1, 1, 3, 1, 1), (1, 1, 1, 3, 1),
(1, 2, 2, 1, 1), (1, 2, 1, 2, 1), (1, 1, 2, 2, 1), (1, 2, 1, 1, 1, 1),
(1, 1, 2, 1, 1, 1), (1, 1, 1, 2, 1, 1), (1, 1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 1, 1)}.
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