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Abstract

Scalar generalized splines have been introduced in the late 50’s by Ahlberg et al.
These curves generalize the well known polynomial splines, the most used one
being the cubic spline, associated to minimization of the average acceleration.
Scalar generalized splines have recently been connected with optimal control.
It has been proven that they can be realized as the optimal output function
of a SISO classical control system. In this paper we describe how to extend
the definition of a scalar generalized spline to arbitrary Euclidean space R™
and present its minimality properties. This generalization is motivated by the
connection with optimal control of a MIMO higher order dynamical system.

1 Introduction

To define scalar generalized splines one considers a differential operator of the form
L=Dr—a, D" '—---—a,D—a,D° and its adjoint L* = (—1)?D?+(—1)?a, ,D*~"+
co-4a; D —agD° with a; € R. Then, for a given partition A : {, < t;, < --- <t, =T
of the time interval [t,, T] and given real numbers oy, i and ! , k=1,...,m —1
and 7 =0,...,p — 1, we have that a generalized spline is the unique real function s
defined in [t,, T] that satisfies simultaneously the following

5 € C?P2[t,, T] and se€ C?[t, ,,t,] forall k=1,...,m,

s satisfies L*Ls=0 ineach [t,_,,t], k=1,...,m,

s fulfils the boundary conditions  Dis(t,) =n., D's(T)=n', i=0,...,p—1,
and the interpolation conditions s(t,) =«,, k=1,...,m—1.

If one chooses for example I = D? then the resulting spline is the well known natural
cubic spline. In the literature (a reference about the subject is Ahlberg et al. [1])
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the spline function described above is precisely known as generalized spline of type
I. This is due to the fact that other boundary conditions can be chosen and that the
resulting function is also called a generalized spline.

The relationship between scalar generalized splines and optimal control of SISO sys-
tems is now well understood. (See C. Martin et al. [3] and R. Rodrigues et al. [5]).

The above definition may be extended to R” (n > 1), simply replacing scalar functions
by vector function and maintaining the operator L. This generalization is rather
simple once the scalar case is understood, since each component of the vector spline
is a scalar generalized spline. For the particular case n = 2, this approach has been
used quite often in engineering applications, namely in path planning of mechanical
systems. However, in general, such generalization doesn’t have a counterpart in
optimal control. And it turns out that the connection between optimal control of
MIMO systems and splines requires another more challenging generalization, that we
are going to introduce. We claim that this is the correct way of extending splines
from R to R", and to our knowledge this has not appeared in the literature before.

The organization of the paper is as follows. The main concepts are introduced at
the beginning of section 2, followed by existence and uniqueness results. In section
2.2 generalized splines appear as solutions of a certain variational problem. The
corresponding Euler-Lagrange equation is shown to have a special structure which
allows a significant reduction in complexity. Connections between generalized splines
and optimal control of MIMO systems appear in section 3. We also contrast our
approach with other existing methods.

2 Generalized splines in R”

The main feature in our approach is the appearance of differential operators with
matrix coefficients. This adds a significant amount of complexity, when compared
with the traditional way of generalizing splines to higher dimensional spaces.

Throughout the paper we consider R" equipped with the Euclidean inner product
(-s2)-
Let L be the following differential operator

L=D"—-A,_,D""'—...— A D— A,D° (2.1)

where p € N, A;, ¢ =0,...,p— 1, are n X n real matrices and L* the adjoint of L
defined as

L* = (=1)"D? + (=1)PAT_ D" 4+ (=1)" A} , D" +---+ ATD — AT D,

where AT indicates the transpose of matrix A. Also, let A 1 ¢, <t <---<t, =T
be a partition of the time interval [t,, T| and © the set of all functions f defined on
[to, T], having values in R™ and such that

feC?2[t, T| and fe€C¥[t, ,,t,] forall k=1,...,m.



We now present the definition of a generalized spline function in R" defined in the
time interval [t,, T] and associated to the operator L.

Definition 2.1 (Generalized Spline).
The function q : [t,, T| — R™ is a generalized spline associated with the matrix
operator L and the partition A of [t,, T] if

q €,

q is a solution of the differential equation L*Lx = 0 in each [t,_,, ;] (2.2)

and ¢ satisfies
the boundary conditions

Diq(ty) =n,, D'¢(T)=n', i=0,...,p—1, (2.3)
and the interpolation conditions

qity) =aw, k=1,...,m—1, (2.4)
with 70,4y, ..., Qm_1,1%, m + 1 distinct points of R" and 7, n\ € R" for all i =

1,....,p— 1

Notice that the problem of finding a generalized spline is well defined in the sense that
there is the same number of unknowns and initial conditions. Indeed, Since ¢ is locally
a solution of a linear homogeneous matrix differential equation of order 2p, there is
2np constants to be found in each [t,_,, ], that give a total of 2npm unknowns. The
required boundary conditions provide 2np equations, the interpolation conditions
generate n(m — 1) equations and the continuity requirements give rise to n(2p —
1)(m — 1) equations, leading to a total of 2npm linear algebraic equations in the
2npm unknowns.

2.1 Existence and uniqueness

The first result establishes a useful relation between the operators L and L*.

Lemma 2.2.
If x and y are two vector functions defined on [a,b] C R and possessing derivatives
up to order p in |a,b], then

<LXvY> - (Xa L*Y> = % B(Xa Y)v (2'5)

where B(x,y) is defined by

B(x,y) = Z (—1)"*(D'~'~x, Al Dy).



Proof. Defining A, = —I we have

p p

(Lx,y) = (x, L%y) = _Z<AiDiXaY>_Z<Xa (1) Al D'y)

1=0

(A;D'x,y) + (=1)"*'(x, A D'y)

=0
P
i=1
P
Z(Dixa A;l—y} + (_1)i+1 (Xa AZTDIY> :
i=1
Notice that, for functions satisfying the required conditions, one has

1
(=1)(D""x, D’y)

i

(D'x,y) + (1) (x, D'y) =

SIS
]
(=)

J
for all i = 1,...,p. Using this identity we get finally

1

3

d
—B .

Mv

Lx x, L* i —1){D""*ix, AT Diy) =
Y y) dt Y
i=1 i

Il
=)

Lemma 2.3.
If g € Q, satisfies (2.2) and is such that

0, Dig(T)zo, i=0,...,p—1,

Dig(to) =
=0, k=1,...,m—1,

g(tx)

then g is a solution of the differential equation Lx = 0 in each interval [t,_,,1;].

Proof. 1t is clear that there exists at least one such function, namely g(¢) = 0 for all
t € [to, T]. We show that if g satisfies all the required conditions, then

/T(Lg,Lg> ds =0,

to

which clearly implies that Lg = 0 in each subinterval [t;_,, t;].

Using equation (2.5) with x = g and y = Lg and since g satisfies (2.2), we may write
m

/ T<Lg, Lgyds = ) / " (Lg,1g) ds

to k=1 tr—1

(/tk (9,L*Lg) ds + B(g, Lg)]i*_ 1)

M= T1:

B(g,Lg) 1}

=
Il
=



Finally, because g € 2 and satisfies null boundary and null interpolation conditions
the last expression also vanishes. Now it is also clear that

ty
/ (Lg,Lg)ds =0, forall k=1,...,m.

t—1

O

Lemma 2.4.
There exists a unique function g € § that satisfies (2.2) and has null boundary and
null interpolation conditions. This is the zero function.

Proof. We only have to show that ¢g(t) =0, t € [t,,T], is the unique such function.
We know by lemma 2.3 that g is a solution of the differential equation Lx = 0
in each subinterval [t,_,,%,]. Therefore, there exist linearly independent functions
V1,2, ., Unp, such that g(t) = cfvi(t) + - 4 ¢k vnp(t) in each [t,_1,t,]. In [t,t]
the boundary conditions Dig(t,) = 0,7 =0,...,p— 1, lead to the following algebraic
system of np equations in np unknowns

vi(to) -+ vnp(to) el
Dy (o) S Dy, (to) C% 0
Dp_lvl(tg) Dp_lvnp(t()) c}zp
Since the coefficient matrix is the Wronskian of vy, vo, ..., vy, evaluated at o, it is
invertible and this system only has the trivial solution ¢} = --- = c}w = 0, which

in turn gives g(t) = 0 in [ty,t,]. The same conclusion can be extended to all other
subintervals, repeating the same arguments and using the fact that g € C?*~2[t,, T].
U

Theorem 2.5.

Given the matriz operator L and the partition A of [t,, T], there exists a unique
function q € S that satisfies (2.2), the boundary conditions (2.3) and the interpolation
conditions (2.4).

Proof. We know by (2.2) that there is v1,v,. .., v2y,)y linearly independent functions
such that q(t) = cfuy(t) +--- + clgnpv%p(t) in each [t, ,,%;]. Forcing this function
to satisfy the boundary conditions, the interpolation constraints, and the continuity
conditions at each t,, gives rise to and algebraic system of the form Ac = b, with
2npm equations and 2npm unknowns. The existence and uniqueness of ¢ follows from
the invertibility of the matrix A. To see that A is indeed nonsingular, just notice
that for null boundary and null interpolation conditions we get Ac = 0, which has a
unique solution by lemma 2.4. O

2.2 Minimality properties of generalized splines

The result in this lemma is required to prove minimality properties of generalized
splines.



Lemma 2.6.
If q is a generalized spline and g is a function that belongs to ) and satisfies the same
boundary and interpolation conditions, then

Z/tk q),Lq)ds =0.

Proof. Using equation (2.5) with x = ¢ — q and y = Lq we have

ty, 123
/ (L(g—q),Lg)ds = Bl(g—q,Lg)l}"_ 1+/ (9 —q,L"Lq) ds

the1 o

= Blg—q. L)l |

since ¢ satisfies equation (2.2). Therefore,

tr m

Z ,Lgyds =Y _ Blg—q,Lq)|}* .

br—1 k=1

Due to the fact that ¢ and g belong to 2 and satisfy the same boundary and inter-
polation conditions the right hand side of the previous equation also vanishes, which
concludes the proof. O

Theorem 2.7. -
The generalized spline function minimizes the functional / (Lx, Lx) ds among all
¢

0
functions g € Q that satisfy the same boundary and interpolation conditions.

Proof.

T T T
/ (L(g — ). L(g — q)) ds = / (Lg, Lg)ds — 2 / (Lg, Lq) ds

to to to

T
+ / (Lq, Lq) ds
to

T T
— /(Lg,Lg>ds—2/ (L(g — q), Lq) ds

to to

- /T(Lq,Lq) ds.

to
Using the previous lemma we get the following equation

T T T

| twa.Loyis = [ (Latads+ [ (Llg—a)Llg—a)ds,
to to to

from which the minimality property of ¢ follows immediately. O

It must be clear that among the functions in € that fulfill the same boundary and

interpolation conditions, the one that minimizes the functional must be a solution of
the differential equation L*Lx = 0.



We next formulate an alternative definition of generalized spline that will be impor-
tant to understand the connection with optimal control. Although, in contrast with
the definition 2.1, no information about the expression of ¢ appears explicitly in this
new definition, it will be recovered from the Euler-Lagrange equation associated to
the corresponding variational problem.

Definition 2.8.

Let 00,1y sQm_1,1%, be m + 1 distinct points of R” and n;, n: € R" for all ¢ =
1,...,p — 1. The function q : [t,, T] — R" is a generalized spline associated with
the matrix operator L and the partition A of [t,, T] if ¢ € §, satisfies

the boundary conditions

the interpolation conditions
Q(tk):(]k, kzl,...,m—l,

and minimizes the functional

T
J(x) = / (Lx, Lx) ds . (2.6)

to

We have to show that the definitions 2.1 and 2.8 are in fact equivalent. The last
definition indicates that ¢ can be found as the solution of a variational problem
which consists in minimizing the functional (2.6).

Let A be the class of all admissible function x. That is, A consists of the functions x €
Q which satisfy the prescribed boundary and interpolation conditions. A necessary
condition for x to be an extrema of functional (2.6) is that

dJ(x,h) =0, for all function A such that x +h € A, (2.7)

where 0.J(x, h) is the Gateaux differential of the functional .J, defined by

6ﬂxh):<égj&+ah0

|a:0

Hence,

5I(xh) = ( . /tOT(L(erah),L(erah))ds)a0

T
= (/ 2(Lh,Lx + o Lh) ds)
tO ‘a:O

T
= 2/ (Lh, Lx) ds.
to

Therefore, by (2.7), we get

ﬁi/%(LML@ds:O.

k=1 "tk-1



Using identity (2.5) we can say that

m ts. m
Z/ (h,L*Lx)ds + > _ B(h,Lx)]}*_ =0,
k=1"7th-1

k=1

and since h € Q and satisfies null boundary and null interpolation conditions, the
previous equation reduces to

m

123
Z/ (h,L*Lx)ds = 0.
k=1"7th-1

Since this must hold for all A such that x + h € A we find finally that x must satisfy
L*Lx=0 (2.8)
in each interval [t,_,, t;].

Since we know, by theorem 2.5, that ¢ is the unique function that simultaneously
belongs to €2, satisfies given boundary and interpolation conditions and is a solution
of (2.8) in each subinterval, it is clear that the condition L*Lg = 0 in each [t, ,, ;]
is necessary and sufficient for ¢ to minimize the functional (2.6) and, consequently,
the equivalence between definitions 2.1 and 2.8 is clarified.

The Euler-Lagrange equation (2.8) is a homogeneous differential equation of order 2p
with matrix coefficients. Solving such differential equation is very hard even for low
order. Tisseur and Meerbergen [8] give an account of results and main difficulties for
general second order matrix differential equations, which are closely related with the
quadratic eigenvalue problem. Also, in a recent article, Mehrmann and Watkins [4]
discuss the numerical solution of eigenvalue problems for matrix polynomials where
the coefficient matrices are alternating symmetric and skew-symmetric or Hamilto-
nian and skew-Hamiltonian. Next we will show that the coefficients of equation (2.8)
have a particular alternating structure which may be used to reduce the computa-
tional effort in solving that Euler-Lagrange equation.

Proposition 2.9.
The even coefficients of the Euler-Lagrange equation L*Lqg = 0 are symmetric matri-
ces while the odd coefficients are skew-symmetric matrices.

Proof. To simplify notation, replace —A, by B, k¥ = 0,...,p — 1 and let [ = B,.
Then, the operators L and L* reduce to
L=B,D*"+B, ,D"'+---+ B, D+ B,D°,
L* = (-1)’B]D? + (-1)>'B] D" '+---—B/D+ B D°,
and a trivial calculation shows that
L*L=0C,D”+C, D' +...+C, D+ C,D°,

where the even coefficients are given by

Coo = (-)*"{B/B.+ > (-1)'(B/B;+B/B)}, k=0,...,p,

i+j =2k
1>



with 0 = % |i — 7] and the odd coefficients are given by

C2k71 = (_1)k Z (_]‘)0(B1TBJ - B]TBz)a k= ]-7' - Dy
ij =2k—1
1>
with o = 1 (|i — j| — 1).

It is now clear that (Cy,)" = C,, and (Cy,_y)" = —Cy,_ 4, as claimed. O

IfP(N) =IX?+C,p NP7+ Chp ) NP2+ - - -+ Cy A+ €, denotes the matrix polyno-
mial associated to the Euler-Lagrange equation (2.8), the alternating structure of its
coefficients implies that PT(A) = P(—\), so that, as in Mehrmann and Watkins [4],
PANv =0 <= v 'P(-X) =0, ie., v is a right eigenvector associated to the
eigenvalue X if and only if v7 is a left eigenvector associated to the eigenvalue —\.
The following Hamiltonian property of this polynomial eigenvalue problem is now an
immediate consequence of the last remarks.

Proposition 2.10.
The eigenvalues of the matriz polynomial P(\) associated to the Euler-Lagrange equa-
tion (2.8) are symmetrically placed with respect to both real and imaginary azes.

Remark 2.11.

1. Note that if n = 1 our approach reduces to the scalar generalized splines pre-
sented in section 1.

2. For general n and L = D", the solutions of L*Lq = 0 reduce to the polynomial
splines (of degree 2p — 1) in R, for which all components are scalar polynomial
splines of the same degree 2p — 1. This is the only particular case that has been
considered in the literature before.

2.3 Explicit solutions

Finding explicit solutions of the Euler-Lagrange equation (2.8) is now the crucial
point. Due to the Hamiltonian structure of the coefficient matrices of our problem, the
polynomial P()) factorizes as P(A\) = Q" (—X) Q(XA), where Q(A\) = A — A, A\~ —
-+ — A A—Ay. So, solving the Euler-Lagrange equation of order 2p, reduces to finding
explicit solutions of matrix polynomial equations of order p.

The quadratic eigenvalue problem, which corresponds to the case p = 1, can be easily
tackled as we now show.

Theorem 2.12.
The generalized spline in R™ associated to the operator L = D — AD° is given in each
subinterval [t,_,,t,] explicitly by

t
q(t) = (Co + (/ g5 g5 AT ds) c1> )
th—1

. _ T
with ¢, = e tk_lAQkfl; C1 = ete—14 (Dq(tk—l) - AQk71)7 qo = 778 and q,, = ﬂ?n-



Proof. In this case, the Euler-Lagrange equation L*Lqg = 0 reduces to
G+ (AT—A)g—(ATA)q=0. (2.9)

Notice again that the coefficient matrices AT — A and AT A are respectively skew-
symmetric and symmetric matrices.

To solve this equation simply define Lq = z, so that z is the solution of the first order
differential equation L*z = 0, or equivalently z+ A7z = 0. So, z is given explicitly by

2(t) = e t-DAT51, V.t e[t ot

Since ¢ — Ag = z, it follows immediately that

t
q(t) — e(titk—l)A qk—1+/ e(t*S)A e(tk,l*S)ATZ(tk_l)ds

le—1

t
e(t—tk_l)A (qk—l + (/ e(tk—l_S)A e(tk—l—s)AT dS) Z(tk_1)>
te—1
t T
= e e+ / e e ds e |, (2.10)
tr—1

with ¢, = e7%-14q,_, and ¢, = etk—lATz(tk,l) = etk—lAT(Dq(tk,l) — Aqy_,) in each
subinterval [t,_,, t;]. O

3 Connections with optimal control

Consider the following optimal control problem defined on the interval [ty, T], of a
linear system of higher order differential equations:

T
min J(u):/ (Bu,Bu)ds

u € QY to

subject to the dynamics

P o)
the interpolation conditions

y(t) =yr, k=1,....m—1
and the boundary conditions

where, as usual, A : {, <, <--- <t, =T is a partition of the time interval [t,, T],
N0y Vis- -y Ymo1,7o, are m+1 distinct points of R”, n;, . € R” foralli =1,...,p—1,
L is the matrix differential operator (2.1) and Q' is the set of all functions v defined
on [ty, T], with values in R"" and such that

v E C”*Q[tO,T] and v € CPlt,_y,t,] forall kE=1,...,m.

10



Remark 3.1. The system (3.1) is fully observable (y = x) and so the boundary
conditions could be given for the state. However we prefer the statement above for
the optimal control problem in order to obtain the scalar case as a particular case of
this.

The natural procedure to turn (3.1) into a first order system of differential equations

by means of new variables w; = Di7'x for 7 = 1,...,p leads to the control system
w = Aw + Bu(t), with
w1 0o I O 0 0
wa o 0 I 0 0
w = : , A= and B = :
Wp—1 o 0 o0 -- 1 0
wp A, A A, - A, B

And since (Bu, Bu) = u" B" Bu = u" B" Bu = (Bu, Bu), the above optimal control
problem may be equivalently formulated as:

T
min / (Bu,Bu)ds
ue QY t

subject to the dynamics

Ww=Aw+ Bu(t)
=dvebun o

the interpolation conditions
wl(tk)ZYka k:]-aam_]-

and the boundary conditions

0 0

Tlo U
wite) = ¢ |, w(D=| :

p—1 p—1
o T

Assuming that the system (3.2) is completely state controllable, one can prove that
the optimal control problem has a unique solution. The proof can be found in ap-
pendix A. The connection between generalized splines in R” and optimal control of
MIMO systems of the form (3.1) is also clear from the observation that if Lx = Bu
both problems (the optimal control problem and the variational problem in definition
2.8) have the same energy function. The following is a consequence of these remarks.

Theorem 3.2. If the pair (K,E) 18 controllable, then the optimal control problem
formulated at the beginning of this section has a unique solution, and the optimal
output function, i.e., the optimal state trajectory, is the unique generalized spline in
R™ satisfying the required boundary and interpolation conditions.

Remark 3.3.

1. For a SISO system x = Ax+bu(t), y = z1 (z1 being the first componente of the
state) one obtains the generalized scalar splines (defined at the introduction)
as optimal outputs.

2. When Lx = D”x, one gets the polynomial splines in R™.

11



4 Conclusion

We have presented a new approach to produce splines in R"”, motivated by the rela-
tionship between SISO optimal control and scalar generalized splines.

This paper also clarifies the connection between scalar generalized splines and the
optimal control problem (for single-input single-output time invariant linear system)
studied in Martin et al. [3] and Rodrigues et al. [5] when the matrices A and B are
not in controllability canonical form.

Finally, one can define L-splines in R” (for references about scalar L-splines see
Schultz & Varga [7]) and establish the connection with control theory as it was done
in Rodrigues & Leite [6].

A Solution of the optimal control problem (3.2)

We interpret the optimal control problem as a minimum norm problem in the Hilbert
space Lo[t,, T] of vector functions with inner product

T
(v, u) :/ viuds
t

0

and use the next result that can be found in [2].

Theorem A.1l.

Let X be a Hilbert space with inner product (.,.) and {y1,y2,...,yq} a set of linearly
independent vectors in X. There is a unique minimum norm vector vy among all
vectors v € X satisfying

<Uay1> = Qay, (Uay2> = Qag, ..., (Uayq> = Qq,

with real constants ay,...,aq. Vector vy is given by

q
V0= Nl
k=1
where the coefficients vy, satisfy the equations

(yi, yom + (W, y1)ve + -+ {Yg, y1)7g = 1
(Y1, y2)71 + (W2, y2) 72 + - + (g, Y2)7g = 2

Y1,y + W2 Yg)ve + -+ (Ygr Yg) Vg = Qg -

The next lemma will also be necessary.

Lemma A.2.
Functions

g:(t)

{ eTeDAR ety t]

12



t=1,---,np and k = 1,--- ;m, where e; identifies the ith vector of the canonical
basis of R, are linearly independent in each interval [ty, T].

Proof. We first show that functions g7 (t) = e;Te (T~ ‘ZE, i=1...,npandt € [t, T],
are linearly independent on the interval [¢,,_,, T| (and therefore linearly independent
on [ty, T)).

Define G(t) = 0, g7 (t) + --- + 0., g7 ().
We have

Gt) = 6,e e AR +---+0,, eine(T*t) AB

= O7¢ (T-t)Ap

If G(t) = 0 for all ¢ € [t,,_,, T] then G()(T) = (—=1)"0TA"B =0 for all r € N.

We get immediately that §T[B AB ... A"™~'B] = 0 but since the control system (3.2)
is completely state controllable we must have # = 0 and the conclusion follows.

A similar reasoning leads to the conclusion that for each &k = 1,...,m — 1 functions
gis-- -9y, are linearly independent on the time interval [t,_,,,].
Now we show that functions g"~*,..., g ", g7",..., gy are linearly independent on

interval [t,,_,, T].

Define equation

lj'lg;n_l(t) +e ang:;;_l(t) + Vlgln(t) +e Vnpgz;o(t) = 01 te [tm—Qa T] :

Ift > t,,_, we have for every i = 1,...,np that ¢”~'(¢) = 0 and the previous equation
reduces to

Vlgln(t)_i_"'"i_ynpg::;(t) :01 te [tm—laT]

which clearly gives v, =--- =v,, = 0.

Hence,
lj'lg;n_l(t) e+ ,unpg::;_l(t) = Oa te [tm—2a T] )

but since functions gi"~* ..., g " are linearly independent on [t,,_», t,,_.] we get p, =
ceo = by, = 0.

Applying the same procedure repeatedly leads to the conclusion that functions

m

1 1 m
gl""’gnp""’gl""’gnp

are linearly independent on [t,, T]. O

13



Remark A.3. We will be interested only in functions g%, i =1,...,n,k=1,...,m—1
and ¢, 1 = 1,...,np, which are also linearly independent in [t,, T)].

The solution of the differential equation w = Aw + Bu(t) that satisfies the initial
condition w(t,) = (S, ..., 75~ ")" is given by

_ t _
w(t) = e A w(t,) + / =94 Bu(s)ds.
to

Therefore, each interpolation condition wy(t;) =y, k = 1,...,m — 1, is equivalent
to n equations of the form

127 ~ ~
e’ </ et =94 Byy(s) ds) — e y, — e el TOA (g,
to

fori =7 =1,...,n, where e, identifies the sth vector of the canonical basis of R"? and
e; identifies the jth vector of the canonical basis of R". For the boundary condition
w(T)=(1n", ..., n2')T we have

m?

tm - _
e’ </ eltn=5)4 By (s) ds> =e; (W(T) — e(T-t0)A w(t0)> ,

to
1=1,...,np.

Hence, the interpolation conditions give rise to (m — 1) X n equations of the form

af=e"y,—e’ elte—to)A w(to)

foreachi=7=1,...,nand k=1,...,m — 1. We also have another np equations
(g7 () u(t) = a7

where
o = e (w(T) = T 0 w(t,))

1=1,...,np.

Finally, using the previous remark and applying theorem A.l, the following result
follows immediately.

Theorem A .4.
Problem (3.2) has a unique optimal solution of the form

m—1 n np
) =D Y A )+ ) (@) (A.1)
k=1 i=1 i=1

where yF € R for all i and k.
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The next result further characterizes the optimal control given above.

Corollary A.5.
The optimal control given by equation (A.1) has the following expression in each
interval [t; ., t;].

ﬂ(t) — Bﬂ"e(t]‘_l—t)gT S—l (6 (tj_1—tj)AWj o Wj—1) — ETe—thp (A2)

where w; = w(t;),

t‘ T~ o~
S =5(t; 1,t;) :/] it AR BT elti—9AT g
ti—1

and p is a constant matriz of dimension np x 1.

Proof. We know that there exist points w; and w;_, that belong to R" and are such
that

- t; _
w, =elliTi-0Ay 4 / " eti—9)A Bu(s)ds. (A.3)

tj—1

Also, in each interval [t;_,,t;] the optimal control can be rewritten as

ﬂ(t):mi:l(BT (te=t)A (Z% ))JrBT (T-t)A (Z% ) (A.4)

k=j

Replacing this expression in equation (A.3) we have

w, = eli’t J1+Z</ elti=DA B B Telth=9)AT ds(nye))
] 1
+ (/t] (t]_s) BBT (T 3 ) (Z,Yl )
ti_1

J

= (tJ_t] 1 J 1—|— Z < tﬂ_t] 1 (tk_t]‘—l)g—r (Z’sz 61))

=1

+ elti=ti- A S e(T=ti-1) (Z% )

Since the control system (3.2) is completely state controllable matrix S is invertible
and it follows that

m—1
St (e(t]-_l—t]-)le_wj ( (tr—tj-1) <27 ))
k=j

()

It is now sufficient to multiply both members of the previous equation on the left
hand side by B Telti-1=D47" and use equation (A.4). O
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A.1 Structure of the components of the optimal trajectory

When p=1and L = D — AD" in problem (3.1) some information can also be given
about the structure of the optimal components y’(t), i« = 1...,n, of the optimal
output function y(t) = (y'(t) y*(t)---y"(t))". We can say that there is at most 2n
linearly independent function such that each component are linear combination of
some of those 2n functions. It must be clear that there is at least one case in which
at least one component 4 is a linear combination of all 2n functions. This extreme
situation reveals when the control system has a single input and a single output. This
idea is explained in the following.

Let p(A) = A" —a, ;A" ! — ... —a,\ — a, be the characteristic polynomial of the
coefficient matrix A,

F=D"—q, ,D"'—..-—q,D —q,D°

the associated linear operator and F* it’s adjoint. The following result characterizes
the structure of each component.

Proposition A.6.
In each interval [t,_,,t;], the components of the optimal output function y belong to
the kernel of the operator F*F.

Proof. Using the dynamic equation x = A x + Bu(t) we deduce that
k—1
D'x = A'x+ > A'BD" 'y
j=0

for all £ € N. Hence,

Fy=(A"'-a, ,A"?—---—aid)Bu+---+ (A—a,_,id) BD"*u+ BD" 'u
and

F*Fy=(A""'-a, A" ?—---—ayid)F*Bu+---+ F*BD" " 'u

in each interval [t,_,,%;]. Now, the function Bu, where @ is given by equation (A.2),
is a solution of F*v = 0 in each interval [¢,_,,t;]. To see this, just apply the operator
F* to the function Bu and use Cayley-Hamilton’s theorem. Therefore, F*Fy = 0,
or equivalently, F*Fy’ =0, i =1...,n, in each interval [t,_,,,]. O

It is clear that there is 2n linearly independent function such that each component
y' is a linear combination of some of those 2n functions. Notice also that in order to
find those 2n linearly independent functions one only needs to find the spectrum of
matrix A.

It is important to observe that F*Fy* = 0 indicates what kind of function is y*
but doesn’t help if one wants to really determine y’. In general there will be less
conditions than necessary.
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