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Abstract—To model the periodicity of beats, state-of-the-art beat
tracking systems use “post-processing trackers” (PPTs) that rely
on several empirically determined global assumptions for tempo
transition, which work well for music with a steady tempo. For
expressive classical music, however, these assumptions can be too
rigid. With two large datasets of Western classical piano music,
namely the Aligned Scores and Performances (ASAP) dataset and
a dataset of Chopin’s Mazurkas (Maz-5), we report on exper-
iments showing the failure of existing PPTs to cope with local
tempo changes, thus calling for new methods. In this paper, we
propose a new local periodicity-based PPT, called predominant
local pulse-based dynamic programming (PLPDP) tracking, that
allows for more flexible tempo transitions. Specifically, the new PPT
incorporates a method called “predominant local pulses” (PLP)
in combination with a dynamic programming (DP) component to
jointly consider the locally detected periodicity and beat activation
strength at each time instant. Accordingly, PLPDP accounts for the
local periodicity, rather than relying on a global tempo assumption.
Compared to existing PPTs, PLPDP particularly enhances the
recall values at the cost of a lower precision, resulting in an overall
improvement of F1-score for beat tracking in ASAP (from 0.473 to
0.493) and Maz-5 (from 0.595 to 0.838).

Index Terms—Beat tracking, expressive music, post-processing
tracker.
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I. INTRODUCTION

B EATS, which are generally referred to as a sequence of
perceived pulses at the temporal level that a listener would

tap to, are fundamental to the understanding of music [1], [2].
The ability to perceive beats not only allows us to follow the
music, but also serves as the basis for decomposing, reconstruct-
ing, or interacting with music. Computationally, a variety of
downstream applications are related to, and could be enhanced
by beat tracking [3], [4].

Existing beat tracking systems are mainly composed of two
parts. First, a novelty detection module generates a so-called
“novelty function” (sometimes also called “activation func-
tion”), which is a continuous-valued curve that captures the en-
ergy or spectral changes over time so as to reveal beat candidates.
Second, a post-processing tracker (PPT) gives the final binary
decision regarding beat occurrence [5], [6], [7]. While traditional
model-based systems usually derive the novelty function based
on onset detection methods [8], [9], [10], [11], [12], more
recent deep learning (DL)-based systems use a feature-learning
network to compute directly from audio signals an activation
function, indicating the likelihood of observing a beat at each
time instant. Due to the fact that existing novelty detection
methods do not handle well the periodic nature of beat times [13],
existing beat tracking systems generally rely on periodicity-
aware PPTs to determine the beat positions. Motivated by the
design of [6], [14], most existing PPTs are state-space models
(see Section II-B for more details), such as dynamic Bayesian
network (DBN), hidden Markov model (HMM) [6], [13], [14],
conditional random field (CRF) [15], or particle filtering [16].

DL-based beat tracking systems have achieved great success
for music with steady tempo, in particular for pop, rock, and
dance music [6], [7], [17]. However, probably due to the scarcity
of publicly available data, the performance of state-of-the-art
DL-based beat trackers for expressive classical music has sel-
domly been discussed, or is far from satisfactory if reported.
Specifically, the performance of state-of-the-art DL-based sys-
tems for beat or downbeat tracking tends to be 20–30% worse
for classical music than for other music genres [18], [19], [20].
In this article, we are interested in finding out the underlying
reasons for the poor performance while improving beat tracking
for expressive classical music.

The challenges of beat tracking for expressive classical music
are closely related to the properties of the novelty function [21],
[22]. For example, the novelty function may get aperiodic due
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Fig. 1. Beat tracking result of a state-of-the-art DL-based system from madmom for two recordings of classical music, one from Maz-5 [21] (top) and the other
from ASAP [24] (bottom). The activation function (using a frame rate of FPS = 100) is shown in red. Green shades highlight the false-negative estimations with
activation peaks. Purple shades highlight the false-positive estimations caused by non-beat activation peaks. Best viewed in color.

to substantial tempo, rhythmic, or note density variations. Its
intensity may get weaker due to blurred note onsets and soft
note transitions for non-percussive instruments such as violins or
singing. It is also assumed that one may improve the accuracy of
beat tracking for classical music by using a larger classical music
training set [18], [23]. As one contribution of this article, we
present experiments on two large datasets of expressive classical
piano music, the Chopin Mazurkas (Maz-5) [21] and the Aligned
Scores and Performances (ASAP) dataset [24], and show that
there are fundamental issues related to the PPT that needs to be
addressed first.

Fig. 1 illustrates the result of beat tracking for two recordings
of classical music, one from Maz-5 and the other from ASAP,
using the system from the madmom library [6], [17]. The sys-
tem uses an ensemble of recurrent neural networks (RNN) for
estimating the beat activation functions, and an HMM-based
PPT [14] for ensuring the periodicity of the detected beats. As
mentioned, existing PPTs for beat tracking closely follow the
HMM-based PPT in madmom library [6], [14]. As such, we
adopt this PPT as one of our main baseline models, using the
default (and widely-used) parameter setting of madmom. We
refer to this PPT as “mHMM” hereafter. Besides, in our study
we also consider a more flexible version of mHMM where we
tune its parameter setting to allow for a higher tempo transition
likelihood, and refer to it as “mHMMT0” (see Sections IV-B
and IV-C for details). We can see from the reference beats (i.e.,
the ground truth annotations) that the two recordings feature
different degrees of tempo variation. We also see that the system
has many false positives and false negatives, caused not only by
its imperfect beat activation function (e.g., activation peaks at
non-beat positions), but also by the HMM-based PPT. For both
recordings, mHMM assumes that there is a relatively stable (and
slower) tempo and chooses to ignore local activation peaks cor-
responding to true beat positions. Similar detection errors can be
observed from the result of mHMMT0. Moreover, our analysis
(see Section IV-D) shows that, even with a perfect oracle acti-
vation function created synthetically with the reference beats,
the average F1 score obtained by the mHMM-based estimations

across the 301 recordings of Maz-5 remains lower than 0.80.
This suggests that the PPT makes some tempo assumptions that
do not work for expressive music.

In cognitive neuroscience, it has been found that the human
brain generally focuses more on local events (e.g., musical onsets
within a small time window) and continuously tries to predict
incoming information [25]. Given a few musical onset events,
we may start having expectations for the incoming events [26],
[27], [28]. These expectations are to be adjusted, strengthened, or
abandoned based on the consistency between the expectations
and the incoming events. These “temporal expectations” may
be part of the reasons why humans can, to a certain degree,
adaptively deal with tempo variations, syncopation, and rest
notes on beat positions in music.

In light of the above observations, we develop a new PPT
method that mimics the temporal expectations computed from
the beat activation function. Specifically, we propose to use a fea-
ture called “predominant local pulses” (PLP) [8], [29], [30] (see
Section III for details) to estimate information regarding local
periodicity (analogous to temporal expectations) from the beat
activation function. The PLP curve is converted into two curves,
one of which contains information of local inter-pulse-intervals
(IPIs) and the other containing the confidence of locally detected
periodicity. Then, we propose a new dynamic programming
(DP)-based PPT that takes the two curves as time-varying tempo
conditions to track the beats. With quantitative experiments,
using both real and synthetic activation functions on Maz-5 and
ASAP (Section V), we demonstrate the advantages of the new
PPT method, named “PLPDP,” over representative existing PPTs
for beat tracking of expressive music with continuously varying
tempo. We also identify some limitations of PLPDP that need
to be further addressed in future work (Section VI).1

1For reproducibility, we provide open-source code for PLPDP at: https:
//github.com/SunnyCYC/plpdp4beat/. We also have a project web page that
provides examples of the beat tracking results: https://sunnycyc.github.io/
plpdp4beat-demo/.
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II. RELATED WORKS

A. Beat and Tempo for Expressive Classical Music

Research on beat tracking for classical music with large tempo
variations dates back two decades [2], [31]. However, it was not
until the work by Grosche et al. [8], [21] that larger evaluations
were carried out. In their first publication [21], they discussed
five musical properties that cause problems for beat tracking, and
subsequently conducted systematic experiments to analyze and
make the limitations of state-of-the-art beat trackers explicit. As
beat tracking systems at that time relied more on the quality of the
underlying novelty function, the influence of different musical
properties on the novelty detection was illustrated. However,
the influence of musical properties on the performance of PPT
was not explicitly investigated. In the publication [8], the idea
of predominant local pulse (PLP) was introduced and used for
modeling the local periodicity of model-based onset novelty
function. Specifically, PLP extracts and enhances the local pe-
riodicity of the input novelty function via analyzing the onset
peaks within small windows, which motivates the core idea of
this article (see Section III). The PLP-enhanced novelty function
can be combined with a PPT based on dynamic programming
(DP), e.g., as introduced by Ellis [1]. However, assuming an
overall constant tempo (see Section II-B), the DP-based PPT
cannot handle strong tempo variations.

More recently, motivated by the work of Böck et al. [6], [17],
a variety of DL-based feature learning networks have been pro-
posed [7], [32]. Moreover, as DL models typically require large
training data, only a few studies tackle beat tracking-related tasks
for classical music where beat annotations are hardly available.
For example, Schreiber et al. [23] pioneered the use of DL-based
methods for modeling local tempo of Maz-5. Specifically, they
aggregated several beats into a higher-level local tempo repre-
sentation, and used that local tempo representation as the target
of their DL-based model. In other words, their work aims at
estimating the local tempo, but not for predicting the individual
beats.

B. PPTs With Global Assumptions for Tempo

The dynamic programming-based beat tracker (DP) as intro-
duced by Ellis [1] is a widely-used PPT that we consider as
a baseline in our evaluation. The DP method assumes that the
musical piece is performed with a roughly constant tempo and
that the activation is high at beat positions. DP introduces a score
that jointly considers how well an input novelty function fits
the two assumptions and finds globally the best beat sequence
that maximizes the score via a dynamic programming algorithm.
Based on the constant tempo assumption, a global tempo value is
used to balance out the consistency between target and estimated
inter-beat-interval (IBI) (see Section III-D for details). The
global tempo value can be derived either from the mean IBI
of the reference beats [8], or via auotocorrelation-based tempo
estimation methods [1], [33].

While the constant tempo assumption grants DP a simple
formulation and realization, it also limits the PPT’s flexibility.
Aiming at jointly modeling tempi and beats, Krebs et al. [14]

extended the “bar pointer model” [34], [35], and proposed a
refined state-space discretization and tempo transition model.
Their main contributions are the design of a state-space dis-
cretization model that ensures sufficient tempo resolution for
each hidden state and time resolution consistency between hid-
den states of different tempi, and a new transition model based
on a first-order Markov assumption to improve the stability
of tempo trajectories. In particular, they increased the tempo
stability by proposing a transition model that only allows tempo
transitions at beat positions and empirically adopted an expo-
nential distribution function as the tempo transition likelihood
function (see Section IV-B3 for details).

Due to their success in both reducing computational cost and
outperforming the original model, existing mainstream PPTs [6],
[13], [15], [16], [36], [37] are mainly motivated by [14]. These
PPTs may differ in their optimization mechanisms [36] or the use
of extra information (e.g., beat phase [13] or time signature [6]),
but they generally adopt similar empirically determined tempo
transition likelihood functions based on a first-order Markov
assumption.

We note that in related studies on rhythm transcription,
researchers also apply HMM-based methods to take an in-
put signal and estimate the metrical positions of all musical
notes. In particular, similar first-order Markov assumptions
and tempo transition probability distributions are adopted [38],
[39], [40]. Despite that local tempo and local tempo changes
are parameterized in these models, parameters are deter-
mined globally (e.g., based on a dataset) without the knowl-
edge of “local periodicity” (which is explicitly extracted
based on small local windows) proposed in this work. Fo-
cusing on beat tracking for expressive classical piano mu-
sic, we limit our discussion of HMMs to those proposed for
beat tracking and not for the considered HMMs for rhythm
transcription.

III. PLPDP-BASED PPT

In this section, we provide the details of the proposed PLPDP-
based PPT. We first introduce the PLP concept [8], [29], [30]
and then elaborate on the similarity between PLP and human
temporal expectations. Next, we describe a method to reduce
the artifacts of PLP curves at regions with tempo variations.
Subsequently, we demonstrate how to derive the tempo-related
information reflecting local temporal expectation and confi-
dence from a PLP function. Finally, we present the algorithm that
connects DP with the two tempo-related conditions to realize the
PLPDP-based PPT.

A. PLP as Local Temporal Expectations

As mentioned in Section I, we found that the PLP, a method
originally proposed to model and enhance the periodicity of
musical onset novelty functions [8], shows behaviors that are
interestingly akin to human temporal expectations [41]. Fig. 2
demonstrates the computation and the “temporal expectations”
of PLP given a pre-computed novelty function. The main idea
of PLP is to generate periodic pulses that align with a given
novelty curve based on a local periodicity assumption. This is
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Fig. 2. Illustration of the workflow of the PLP calculation. (a) The novelty
function (red curve; also plotted in (c) and (d) with smaller amplitude for
alignment comparison) computed from a recording. (b) Fourier tempogram with
four colored dots indicating the corresponding time positions of the optimal
sinusoidal kernels in (c). (c) Optimal sinusoidal kernels at four different time
positions. (d) PLP (blue curve) derived via overlap-adding and half-wave rec-
tification. Purple shades highlight the novelty peaks suppressed by PLP. Green
shade highlights the novelty peak enhanced by PLP.

achieved by locally comparing the novelty curve with windowed
sinusoidal kernels, and accumulating over time all the optimal
sinusoidal kernels that best capture the local peak structure of the
novelty function. Specifically, the computation of PLP begins
with computing the “Fourier tempogram” [42] (cf. Fig. 2(b))
via a short-time Fourier transform (STFT), for a certain pre-
determined tempo range (e.g., θ ∈ [30 : 300] beats-per-minute;
BPM). Then, given pre-determined values of the STFT param-
eters, kernel size κ and hop size h, the predominant tempo and
phase information of the optimal sinusoidal kernel of each time
instant can be derived from the tempogram and the underlying
complex-valued Fourier coefficients [43]. For example, Fig.
2(c) shows the optimal sinusoidal kernels at four time positions
with κ = 3 (seconds). Finally, via overlap-adding and half-wave
rectification (keeping only positive parts of the curve), the PLP
curve can be derived. Note that the peaks of PLP somehow
indicate PLP’s “expectation” of the existence of novelty peaks
(e.g., see Fig. 2(d) how the PLP peaks align with the peaks of the
novelty function). Even if some novelty peaks are low, as long
as the locally detected periodicity has high confidence, PLP still
generates strong peaks (see the peak underlined with green shade
in Fig. 2(d)). This is similar to how humans can still tap on weak
or even rest notes based on temporal expectations. Furthermore,
novelty peaks that do not match the detected local periodicity
are suppressed (see the regions indicated by purple shades).
Moreover, as exemplified in Fig. 2(d), PLP has lower peaks
(being less confident) when the neighboring musical events
are not consistent in periodicity. Inspired by the human ability
to adaptively adjust expectations and confidence concerning

Fig. 3. PLP functions with different kernel sizesκ = 1 (blue),κ = 3 (orange),
and κ = 5 (green), and the combined PLP function (red), computed using the
oracle novelty function created from the reference beats Δref (dashed vertical
lines). Purple shade highlights the region with a larger tempo/IBI variation where
extra peaks of individual PLP functions are suppressed by the combined PLP
function. Best viewed in color.

current and future events, we incorporate the idea of PLP in
our beat trackers to mimic this ability.

B. PLP Curves and Combination

The “local sensitivity” of a PLP function is largely determined
by the choice of the kernel size κ. Let Γκ : [1 : N ] → [0, 1]
denote the PLP function for kernel size κ (given in seconds),
where [1 : N ] := {1, 2, . . ., N},N ∈ N, represents the sampled
time axis with respect to a fixed sampling rate. In our experi-
ments, we use a rate of 100 frames per second. As an example,
Fig. 3 shows Γκ for three different kernel sizes κ ∈ {1, 3, 5},
using the oracle novelty function Δref : [1 : N ] → [0, 1] created
from its reference beats as input.2 It can be seen that at regions
with relatively stable tempo, PLP curves with different kernel
sizes generally have similar “temporal expectations” for peak
positions, though with different confidences (i.e., peak heights).
However, for regions with a larger tempo variation, the three PLP
functions show incosistent behaviors (e.g., see the region shaded
in purple in Fig. 3). As the PLP curves based on different kernel
sizes typically show artifacts at different time positions, we find
combining these PLP curves by element-wise multiplication a
simple yet effective way of reducing the artifacts. We therefore
define the combined PLP function Γcom by

Γcom(n) := Γ1(n) · Γ3(n) · Γ5(n) (1)

for n ∈ [1 : N ].

C. PLP as Tempo-Related Condition

PLP functions yield peak positions that are aligned with
peaks in the input novelty function while the peak heights
can be regarded as a measure of confidence. To obtain local
tempo-related information, we propose the following procedure
to convert a PLP function into a piecewise constant function
λ expressing confidence and a piecewise constant function δ̂
encoding inter-beat-intervals (IBIs). As exemplified in Fig. 4, we

2PLP can take as input either a real or synthetic novelty function (cf. Sections
IV-C and IV-D). We use a synthetic one here (created from reference beats; see
Section IV-D for details) to show the sensitivity of PLP to tempo variations.
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Fig. 4. Conversion of a PLP function into piecewise constant functions of
confidence λ and estimated IBI δ̂. (a) Division of a PLP function into segments
using right side anchor points of detected peaks. (b) Confidence function derived
from peak heights. (c) Estimated IBI function δ̂ derived from inter-peak-intervals
(IPIs).

first apply a simple peak picking function (SPPK)3 to the PLP to
obtain a list of peak positions BSPPK = (b1, b2, . . ., bK) (marked
by blue lines in Fig. 4(a)). We then divide the PLP into a number
of segments at time instances corresponding to the right side
anchor points of these peaks (marked by vertical orange lines).4

For each such segment, we compute the inter-peak-interval (IPI)
and set δ̂(n) to this value for all framesnwithin the segment, see
Fig. 4(c). Similarly, we define λ(n) to be the average height of
the segment’s two PLP peaks. We show below how the resulting
two functions, confidence and estimated IBI, can be employed
by a PPT for tracking the beats in expressive music.

D. Combination of PLP and DP

The DP-based beat tracker introduced in [1] aims at finding
the optimal beat sequence B∗ that maximizes a score function
C balancing out novelty intensity and tempo consistency. Let
B = (b1, b2, . . ., bK) be a sequence of estimated beat positions
in chronological order. The score C function is defined by:

C(B) :=

K∑
k=1

Δ(bk) + λ0

K∑
k=2

Pδ̂0
(bk − bk−1) , (2)

whereΔdenotes the novelty function,λ0 ∈ R≥0 denotes a factor
to balance the relative importance of the novelty function and

3In our implementation, we use scipy.signal.find_peaks [44] with
parameters height = 0.1, distance = 7, and prominence = 0.1. The dis-
tance value of seven frames is set to correspond to the tolerance window size
(i.e., 70 ms) for beat tracking evaluation, and the other two values are set to 0.1
to ensure basic height and prominence of peaks.

4While there might be other more complicated methods, we chose this simple
heuristic that divides the PLP curve at the right side anchor points (i.e., positions
where the curve reaches a low value after a peak).

Fig. 5. Illustration of the score function C(B) defined in (2), which jointly
shows the novelty function intensity Δ(bk) and the tempo consistency penalty
function Pδ̂0

(δ).

the tempo consistency condition. Furthermore, Pδ̂0
: N → R

denotes a penalty function for tempo consistency with respect
to a preassigned IBI δ̂0 ∈ N defined by

Pδ̂0
(δ) := −

(
log2

(
δ

δ̂0

))2

(3)

for δ = bk − bk−1. Note that Pδ̂0
(δ) is large for δ ≈ δ̂0 and

decreases for smaller or larger δ values. See Fig. 5 for an
illustration of Pδ̂0

and the definition of the score function C.
The original DP [1], [45], [29, Section 6.3.2] takes a fixed

IBI δ̂0 and a fixed factor λ0. In this article, we propose a new
DP-based PPT, named PLPDP, that takes the novelty function
δ and the time-varying values δ̂(n) and λ(n) introduced in
Section III-C as input. Compared to the original DP, we re-
place δ̂0 by δ̂(n), and replace λ0 by λ(n). In the DP forward
procedure, we compute at time frame n an accumulated score
D(n) which depends on the accumulated scores of the previous
frames m ∈ [1 : n− 1], the corresponding tempo consistency
penalties, and current novelty intensity:

D(n) = Δ(n)+

max

{
0, max

m∈[1:n−1]

{
D(m) + λ(n)Pδ̂(n)(n−m)

}}
.

At the same time, we save in P(n) the predecessor time position
of the maximum. D(n) and P(n) are then used in the backward
procedure to derive the optimal beat sequence B∗. Algorithm 1
shows the pseudo-code of PLPDP.5

We consider as the default case the combined PLP function
Γcom as input for PLPDP. To empirically justify the use of
multiple kernels, we also consider in our experiments an ablation
study, where we use only the PLP function Γ3 with a single
kernel, dubbed “PLPDP-Γ3.”

IV. EXPERIMENT SETUP

In the following, we report on experiments to evaluate pre-
vious state-of-the-art and our proposed PPTs, see Section V.
In these experiments, we consider two datasets (Maz-5, ASAP),
see Section IV-A. Furthermore, we consider activation functions

5This algorithm is modified based on the DP algorithm in [29] pp.343, Table
6.1. and [46].
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Algorithm 1 PLPDP Beat Tracking.
INPUT
– novelty (activation) function Δ : [1 : N ] → [0, 1]
– confidence λ : [1 : N ] → [0, 1] and

estimated IBI δ̂ : [1 : N ] → R≥0 derived from PLP
OUTPUT
– optimal beat sequence B∗ = (b1, b2, . . ., bK)
– accumulated score D(n)
– predecessor information P(n)

PROCEDURE
Forward :
Initialize D(0) = 0 and P(0) = 0.
Then compute in a loop for n = 1, . . ., N :
D(n) = Δ(n)+
max{0,maxm∈[1:n−1]{D(m) + λ(n)Pδ̂(n)(n−m)}}

If D(n) = Δ(n) then set P(n) = 0,
otherwise set
P(n) =

argmaxm∈[1:n−1]{D(m) + λ(n)Pδ̂(n)(n−m)}
Backward :
Set k = 1 and ak = argmaxn∈[0:N ] D(n)
Then repeat the following steps until P(ak) = 0:

Increase k by one.
Set ak = P(ak−1).

If ak = 0, then set K = 0 and return B∗ = ∅.
Otherwise let K = k and

return B∗ = (aK , aK−1, . . ., a1).

TABLE I
STATISTICS OF DATASETS USED IN THE EXPERIMENTS

computed from audio recordings (real use case) and obtained
from GT annotations (synthetic scenario).

A. Statistics of Datasets

Table I lists the two datasets employed in this study. Maz-
5 [21] is a private collection of music composed of 301 audio
recordings corresponding to five of the 49 different Chopin
Mazurkas. These recordings were collected as part of the
Mazurka project [47] and manually annotated (beat positions)
by Sapp [48]. ASAP [24] is a public dataset newly released in
2020, consisting of 502 performances of Western classical piano
music from 15 composers.6

Table I also shows the tempo stability rate for the datasets, cal-
culated according to the approach of Schreiber [23]. Specifically,
we first convert all IBIs of a dataset into tempo values, and divide
these tempo values by the average tempo of the corresponding

6During the execution of this project, a dataset called ACPAS [49] that
combines ASAP and another 59 real recordings of classical piano performances
was released. We have the analysis and evaluation for those relatively small
number of recordings not included in this work.

track to derive normalized tempi. With the commonly adopted
±4% tolerance interval for quantifying whether the tempi of a
recording are stable or not [50], we calculate the percentage of
recordings in a dataset whose normalized tempi falls between the
0.96–1.04 interval. Table I shows that the tempo stability rate of
Maz-5 and ASAP is 13.1% and 24.6%, respectively, suggesting
that a large portion of the recordings in both datasets do not have
a steady tempo.7

B. Baseline/Proposed PPTs

We consider in our experiments four baselines PPTs(SPPK,
DP, mHMM, and mHMMT0) as well as our procedures, PLPDP,
and PLPDP-Γ3. In the following, we describe these PPTs in more
detail.

1) Simple Peak-Picking (SPPK): This procedure applies the
find_peaks function from the scipy library [44] to detect
peak positions in the activation function. These peaks are taken
as beats without imposing assumptions such as those regarding
the beat periodicity consistency, and without any corrections of
the input (e.g., novelty function enhancement).3

2) DP+GT: As mentioned in Section III-D, DP from [1] re-
quires a pre-assigned IBI δ̂0 as global tempo information, which
could be estimated by a global tempo detection approach [52].
However, as the focus here is to investigate the intrinsic limita-
tions of DP, we use the ground-truth (GT) global tempo derived
from the mean IBI of the reference beat positions. Note that using
GT tempo values gives DP advantages over the other uninformed
PPTs thus avoiding error propagation from imperfect global
tempo estimation. Moreover, we will show in our experiments
that, even with access to some GT information, this DP+GT
baseline does not perform well for Maz-5 and ASAP, due to its
intrinsic limitations. In our experiments, we use GT-informed
DP following the settings of Grosche et al. [8].8

3) mHMM and mHMMT0: As another baseline approach,
we employ the classic HMM-based PPT proposed by Krebs et
al. [14], [17].9 The main components of this approach are a
state-space discretization and tempo transition model. Given an
input novelty function Δ : [1 : N ] → [0, 1] as the observation
sequence, the tempi to be considered are represented by a set

A := {α1, α2, . . ., αI} (4)

of size I ∈ N consisting of distinct elements αi for i ∈ [1 : I].
The elements αi are referred to as hidden tempo states deter-
mined by the discretization methods and a given tempo range.
The tempo transition can be realized by a system that can be
described at any time instance n ∈ [1 : N ] as being in one of the
tempo states Ψ̇n ∈ A.

Kreb et al. [14] proposed a tempo transition model that mostly
stays in the same tempo and only allows tempo changes at
beat positions. For a time instance n that corresponds to a

7In comparison, as reported [23], the percentage of recordings with stable
tempi reaches 90.9% for the Ballroom dataset [51], a collection of dance music
widely used in research on beat and downbeat tracking.

8Source codes of DP can be found in [45].
9We adopted the official released DBNBeatTrackingProcessor of

madmom, which does not consider the time signature of input tracks.
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beat position, they empirically adopt the following exponential
distribution function as the tempo change likelihood function:

f(Ψ̇n, Ψ̇n−1) = exp

(
−λtrans ·

∣∣∣∣∣ Ψ̇n

Ψ̇n−1

− 1

∣∣∣∣∣
)

, (5)

where the tempo transition lambda λtrans ∈ R≥0 determines the
steepness of the distribution.10 Intuitively speaking, using a large
parameter λtrans makes the model rigid, only allowing small
tempo changes from beat to beat. Conversely, a small parameter
λtrans (close to zero) makes a transition to all possible tempi
almost equally likely.

By default, the tempo transition lambda λtrans in (5) for
mHMM is empirically chosen as λtrans = 100 based on empirical
observations from mainstream pop, rock, or dance music. We
denote the default one as mHMM and refer to [14] for further
details. To allow for a much larger tempo variation, as encoun-
tered in classical music, we implement a variant of the mHMM
with λtrans = 0 and denote it as mHMMT0. To further reveal the
capability and limitation of the HMM-based PPTs, experiments
of grid search forλtrans are reported and discussed in Section V-D.

4) PLPDP and PLPDP-Γ3: There are several options for
implementing the PLPDP. For example, the hop size h, the
kernel size κ, or design choices for extracting tempo-related
conditions from PLP, could all be optimized in some way (e.g.,
grid search). However, as our focus is on investigating the
general behaviors of these local temporal-based methods rather
than optimizing these methods for a specific type of dataset, we
omit such optimization/fine-tuning processes. We empirically
set κ = 1, 3, 5 seconds for the combined PLP (Γcom) as input
of PLPDP, and κ = 3 seconds for the PLP (Γ3) as input of
PLPDP-Γ3 used in our ablation study. We set the tempo range
to [60 : 300] (given in BPM) for κ = 1 and to [30 : 300] (given
in BPM) for κ = 3, 5 to ensure that each PLP kernel can at least
accommodate one completed sinusoidal wave for each given
tempo.

C. Real Use Case

In the real use case, we take original audio recordings as the
input and derive for each recording the beat activation and down-
beat activation (indicating probability of beat and downbeat at
each frame) via RNNDownBeatProcessor of madmom [6],
[17], which is a DL-based approach. We then take the maximum
of the two activation functions at each frame to derive a joint beat
activation function as input of the various PPTs.

D. Synthetic Scenario

Rather than computing activation functions from audio
recording, we also consider a synthetic scenario where using
idealized activation functions derived from ground-truth beat
annotations. To this end, we transform the annotation into a pulse

10Note that the tempo discretization (Ψ̇) of mHMM state-space is nonlinear
and different from θ (in Section III-A). Readers may refer to [14] for details.
In this work, we set the tempo range of both mHMMs and PLPDP as 30–
300 BPM. I.e., θ ∈ [30 : 300], and (min_bpm, max_bpm) = (30, 300) for
DBNBeatTrackingProcessor of madmom.

TABLE II
BEAT TRACKING RESULT ON THE MAZ-5 DATASET

train of equal pulse magnitudes using a frame rate of 100 FPS.
This way, the input activation functions are “perfect” as they
are all of the maximum strength (set to 1− ε) at beat positions
and with minimum values (set to ε) at non-beat positions.11 We
expect the synthetic experiments based on synthetic activation
functions to reveal the sensitivity of the PPTs to tempo stability
without the influence caused by errors in the estimated activation
functions.

V. EXPERIMENT RESULTS

In this section, we report on our experiment results for the real
use case and synthetic scenario. We use a tolerance window of
± 70 ms to calculate the recall (R), precision (P), and F-measure
(F1) as the performance metrics.

A. Quantitative Result on Maz-5

We start our discussion with the Maz-5 dataset. Table II shows
the beat tracking results for various settings.

For the real activation case, we first look at the results for
SPPK to get some insights regarding the properties of the Maz-5
dataset and corresponding activation functions. As SPPK picks
all activation peaks as beat positions, we can infer from the
high precision value (P = 0.918) that most activation peaks
correspond to beat positions and infer from the recall value
(R = 0.754) that there are some missing peaks in Maz-5. Next,
note that the baseline PPTs (e.g., DP and mHMM) can hardly
achieve an F1 score higher than 0.6, which is in contrast to
their superior performance reported in references [6], [7], [8] for
music with steady tempo. From the lower recall values of DP and
HMM-based methods (DP: R = 0.501, mHMM: R = 0.393,
mHMMT0: R = 0.450) compared to SPPK (R = 0.754), we
can further see that their poor performance is mainly due to
ignorance of activation peaks. Besides, from the precision values
of DP (P = 0.475) and mHMM (P = 0.753) which are lower
than SPPK (P = 0.918), we can see that DP and mHMM insert
beat estimations at positions without activation peaks based on
their strict tempo assumptions.

On the other hand, PLPDP behaves differently than other
PPTs. From the remarkably high recall (PLPDP-Γ3:R = 0.936,
PLPDP: R = 0.917) compared to SPPK (R = 0.754), we see
the effectiveness of “local temporal expectations” to compensate

11A small value ε = 10−6 is needed to prevent error warnings of the madmom
API [17] for our implementation of mHMM.
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TABLE III
BEAT TRACKING RESULT ON THE ASAP DATASET

for the missing activation peaks at beat positions. On the con-
trary, from the lower precision values (PLPDP-Γ3: P = 0.696,
PLPDP: P = 0.777) compared to SPPK (P = 0.918), we see
that PLPDP also make false-positive estimations based on its
local temporal expectations. Overall, the above behavioral dif-
ferences between PLPDP and existing PPTs lead to a substantial
performance gap of F1 score (PLPDP: F1 = 0.838 vs. mH-
MMT0: F1 = 0.595 and mHMM: F1 = 0.499), indicating the
effectiveness of “local temporal periodicity” for Maz-5. Addi-
tionally, the high F1 score of SPPK (F1 = 0.822) implies that
for an expressive music recording with high-quality activation
functions (e.g., with fewer number of non-beat activation peaks),
SPPK may achieve a high F1-score.

The results of the synthetic case provide further insights into
the above observations. Note that taking the perfect synthetic ac-
tivation functions as input, one may expect all PPTs to achieve an
F1 score of 1.0. However, except for SPPK (the only PPT without
any tempo-related assumptions or restrictions), none of the other
PPTs could achieve so. From the imperfect recall and precision,
we can see that the strong global tempo assumptions of DP and
mHMM not only lead to discarding activation peaks, but also
introduce false-positive beat predictions in regions without any
activation peaks. Observing these inherent limitations, the poor
performance of DP and HMM in the real activation experiments
may be less surprising.

It can also be seen from the higher recall and precision of
PLPDP that the proposed method can adapt better to the local
tempo variations of Maz-5 when the input activation is perfect.
Accordingly, PLPDP is more flexible than DP and mHMM.12

Moreover, the higher precision of PLPDP compared to PLPDP-
Γ3 suggests the effectiveness of a combined PLP function rather
than a single-kernel PLP function.

B. Quantitative Result on ASAP

Table III shows the beat tracking results for the ASAP dataset.
From the substantial performance change of SPPK, we can

12One may argue that mHMMT0 outperforms PLPDP in this synthetic case of
Maz-5. We would like to note that the main purpose of synthetic experiments is to
investigate the limitations of the assumptions of each PPT. With the most flexible
setting of lambda, mHMMT0 is indeed more flexible than PLPDP (though with
difference <1.2%). However, this flexible setting also remarkably limits the
performance of mHMMT0 in real (imperfect) activation cases. Besides, we
note that when the optimal activation function is achievable (e.g., the DL-based
networks really learn the comprehensive idea of beats as humans), the best PPT
is always SPPK (i.e., without any assumption).

conclude that there are significant differences between the prop-
erties of ASAP and Maz-5. Both recall (ASAP: R = 0.419,
Maz-5: R = 0.754) and precision (ASAP: P = 0.607, Maz-5:
P = 0.918) values drop dramatically. This indicates that, for
ASAP, the madmom network fails to generate activation peaks
at some beat positions while generating a large number of
spurious activation peaks. Such differences may be caused by the
properties of datasets (e.g., ASAP may contain more non-beat
note events) or insufficient training of the DL-based madmom
network (not adapted to ASAP). These observations further
explain the results that none of the PPTs can achieve an F1 score
higher than 0.50, which is different from the result for Maz-5.
We recall that the tempo stability of ASAP is higher than Maz-5,
as shown in Table I. Therefore, the results for ASAP indicate that
the poor beat tracking performance may also be caused by the
properties of activation functions.

Despite the above mentioned differences between the two
datasets, similar behavioral patterns of PLPDP can be observed.
From the higher recall of PLPDP compared to the other PPTs,
we can see again the effectiveness of the “local temporal expec-
tations” to compensate for the missing peaks at beat positions
of activation functions. However, from the lower precision of
PLPDP in ASAP compared to Maz-5, one may deduce that
with an increasing number of activation peaks at non-beat
positions, the performance of PLPDP and PLPDP-Γ3 drop
substantially.

Similarly, the results of the synthetic case for ASAP support
the above observations. The obvious fact that SPPK has perfect
scores for all three metrics13 again reflects how PPTs are limited
by their intrinsic tempo assumptions. Comparing the F1 scores
between Maz-5 and ASAP in the synthetic case, we also see that
DP and mHMM are sensitive to low tempo stability and perform
much better as the tempo gets more stable in ASAP. In contrast,
PLPDP is less sensitive to tempo changes and performs similarly
for both datasets.

C. Qualitative Results

Fig. 6 shows the beat tracking result of PLPDP for two real
activation functions (continuing the examples from Fig. 1). The
reference beats and activation functions (Fig. 6, top row) illus-
trate the observations mentioned before. For example, the Maz-5
recording has more tempo variations and reveals fewer activation
peaks at non-beat positions. On the other hand, we see several
weak or missing activation peaks at beat positions of the ASAP
example. The PLP functions for κ = 1, 3, 5 (Fig. 6, middle
row) further reveal the different temporal expectations at regions
with tempo changes. The combined PLP function and estimated
beats of PLPDP (Fig. 6, bottom row) reveal the advantages
and limitations of the local temporal expectations. Specifically,
PLPDP nicely adapts for both examples to the local tempo
variations based on its local temporal expectations. However,
these expectations may also cause false-positive errors if there
are activation peaks at non-beat positions that match the locally

13Its recall rate is not 1.0, mostly due to annotation errors (i.e., reference beats
that are too close to each other and excluded by SPPK’s distance = 7 setting.)
caused by the semi-automatic annotating process of ASAP [24].
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Fig. 6. Beat tracking result of the proposed PLPDP-based PPT for the same two recordings used in Fig. 1. (a) Maz-5 example. (b) ASAP example. Top: madmom
activation function and reference beats. Middle: PLP functions with κ = 1, 3, 5. Bottom: Combined PLP function and estimated beats of PLPDP. Purple-shaded
regions highlight the false-positive estimations. Green-shaded regions highlight false-negative estimations. Best viewed in color.

Fig. 7. IBI progression of reference beats (grey) and estimated beats (blue: mHMM, orange: mHMMT0, red: PLPDP) for the recordings of the excerpts used in
Fig. 1. (a) Maz-5 recording. (b) ASAP recording. Purple-shaded region highlights a region with slow unstable tempi. Green-shaded region highlights a region with
fast stable tempi which PPTs fail to follow.

detected periodicity, as highlighted by the the purple-shaded
regions. From false-negative errors (green-shaded regions), we
see that PLPDP may also ignore activation peaks at beat posi-
tions based on its local temporal expectations. However, as long
as most of the activation peaks are stronger at beat positions,
PLPDP introduces much less such false-negative errors than
mHMM.

Fig. 7 demonstrates the longer-term behavior of the PPTs
for the recordings of the two examples via plotting the inter-
beat-interval (IBI) progression. Specifically, for each sequence
of beat positions (e.g., reference beats or PPT-based estimated
beats), we include the beat positions bi (in horizontal axis given
in seconds) and its corresponding IBI (i.e., the value bi+1 − bi
plotted on vertical axis) to see the reference/estimated IBI pro-
gression within the recordings. We can see from the reference
(grey) curve that while the Maz-5 example (Fig. 7(a)) reveals
continuous tempo changes at faster tempi (i.e., 100–300 BPM,
corresponding to IBIs between 0.2–0.6 seconds.), the ASAP
example (Fig. 7(b)) has both an slow unstable region (shaded

in purple) and a region with faster stable tempi (shaded in
green). For both pieces, any global assumption without explicitly
considering the local musical contents is not likely to work well.
Explicitly, as the tempo transition function of mHMMs are set
in a global manner, both mHMMs are not able to align with the
reference IBI progression like PLPDP can do.

For more qualitative results, we refer the readers to the project
web page.1

D. Grid Search of mHMM Tempo Transition λtrans

The above experiments have already demonstrated the con-
ceptual difference between HMM-based PPTs and the proposed
PLPDP approach. We now present an additional grid-search
experiment with regard to the mHMM tempo transition param-
eter λtrans to provide some additional insights. Fig. 8 shows the
results for real the activation case. While the mHMM approache
with lambda λtrans varying from 1 to 25 performs better than
mHMMT0 for Maz-5, the best mHMM still performs worse
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Fig. 8. Grid search of mHMM tempo transition λtrans from 0–100 for real
activation experiments. A step size of one is adopted for 0 ≤ λtrans ≤ 20, and
five otherwise. Results of PLPDP are indicated as horizontal dashed lines for
comparison.

than PLPDP (shown as horizontal dashed lines) for both datasets.
Furthermore, though both datasets consist of expressive classical
music, the best performing λtrans are different (i.e., Maz-5:
λtrans = 5, ASAP: λtrans = 90). One may therefore deduce that
adjusting the parameter λtrans for each recording and even to
local sections within a recording may be essential to improve
the performance of the mHMM approach.

VI. CONCLUSION AND FUTURE WORK

In this article, we have made contributions towards improving
and better understanding beat tracking for expressive classical
music. First, we introduced a new local temporal expectation-
based post processing tracking (PPT) method. Second, we con-
ducted experiments to investigate the performance upper bounds
of the considered PPTs. Third, we presented a comprehensive
evaluation and analysis of beat tracking approaches for expres-
sive classical music. The proposed PLPDP method provides a
way to incorporate local tempo-related information into a beat
tracking system. Considering local periodicity consistency, our
method differs from existing PPTs that rely on globally deter-
mined tempo transition assumptions. Moreover, our synthetic
experiments demonstrate new ways to investigate and explore
the strength and limitations of PPTs. Overall, we hope this work
provides a new direction towards improving beat tracking for
expressive classical music.

From the real activation experiments on ASAP, we see that
the PPTs still have a large margin for improvements. Among
the factors that influence the performance of beat tracking, the
missing peaks of activation at beat positions could be potentially
reduced by adding more data of classical music for training
the feature-learning networks. In particular, this may lead to
substantial improvements of activation functions that can better
account for the various properties of note onsets as occurring in
classical music.

Adding training data alone, however, might not help the DL-
based networks to produce less (false-positive) non-beat activa-
tion peaks, which also constitute a large part of the beat tracking

errors in particular for ASAP. Instead of relying completely on
onset-related information, we conjecture that approaches that
consider hierarchical cues, e.g., frequency domain information
as pitch, melody, or longer-term structure-related information,
might prove useful. Besides, these hierarchically arranged mu-
sical and acoustic cues may also be helpful for future models to
adaptively adjust PLP kernel sizes.

From our empirical observations of the behavior of all the con-
sidered PPTs, we find that these procedures often switch between
different metric-levels (e.g., half, third, double or triple tempo of
reference beats) while tracking the beats of a recording. Such a
“metric-level switching” behavior, however, cannot be reflected
by the current evaluation metrics. We have recently proposed an
analysis method [53] for gaining a better understanding of such
issues. More results and discussions can be found in our GitHub
repository.

Lastly, as existing datasets of multi-instrument classical music
(e.g., RWC-Classical [54]) are relatively small, we consider only
Western classical piano music in our experiments. Compared to
piano music, there might be more onsets at non-beat positions
in multi-instrument classical music, and the activation intensity
at beat positions may be weaker due to soft onsets. To assess the
performance of PLPDP for expressive classical music in general,
future work is needed to consider datasets beyond piano music.
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