A THEOREM OF FR. FABRICIUS-BJERRE ON HELICES

F. J. CRAVEIRO DE CARVALHO

Abstract: We give an alternative proof of a theorem proved in [1].

1. In what follows $f: I \rightarrow R^{n}$, where I is an interval with more than one point, will be a C^{1} regular curve, parametrised by arc-length. We say that f is a helix with respect to a unit vector \vec{a} if there is $c \in R$ such that, for $s \in I,\left(f^{\prime}(s) \mid \vec{a}\right)=c$, where $(\ldots \mid \ldots)$ stands for the usual inner product. The unit vector \vec{a} is a reference vector for the helix f. If f happened not to be parametrised by arc-length we would require $\left(\left.\frac{f^{\prime}(s)}{\left\|f^{\prime}(s)\right\|} \right\rvert\, \vec{a}\right)=c$.
Let $\left(\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}\right)$ be an orthonormal basis for R^{n} and write $f(s)=f_{1}(s) \overrightarrow{a_{1}}+$ $\ldots+f_{n}(s) \overrightarrow{a_{n}}$, for $s \in I$. We then have the following observation.
f is a helix with respect to $\vec{a}=\overrightarrow{a_{n}}$ if and only if $f_{n}(s)=c s+d, s \in I$, where c, d are constants with $|c| \leq 1$.
It follows that if f is a non-injective helix with respect to $\vec{a}=\overrightarrow{a_{n}}$ then c must be zero and, consequently, the image of f lies in a hyperplane. Therefore a twisted, that is to say not contained in a plane, closed curve in R^{3} is not a helix. For an interesting article on a related matter see [2].

We recall that two hyperplanes Y_{1}, Y_{2} are parallel (perpendicular) if the underlying vector subspaces $D\left(Y_{1}\right), D\left(Y_{2}\right)$ are equal $\left(D\left(Y_{1}\right)^{\perp} \subset D\left(Y_{2}\right)\right)$, where \perp means orthogonal complement as usual.
Let $f: I \rightarrow R^{n}$ be a helix with respect to \vec{a} and constant c. We will denote by $F: I \rightarrow R^{n}$ its orthogonal projection into a hyperplane Π normal to \vec{a} and will always assume that F is regular or, equivalently, that $c \neq \pm 1$. In the present context the choice of Π is not relevant since any two such projections are related by a translation determined by a scalar multiple of \vec{a}. Below we let $\Pi=<\vec{a}>^{\perp}$, where $<\ldots>$ means vector subspace spanned by.
If $n=3$ then the helices in the plane Π, with respect to unit vectors in $D(\Pi)$, are precisely those curves which have a straight line segment as image and we have
Let $f: I \rightarrow R^{3}$ be a helix. Then F is a helix in Π if and only if $f(I)$ is a straight line segment.
a statement which can be regarded as a motivation for Fabricius-Bjerre's result.
From now on the word helix will refer to helices with constant $c \neq 0, \pm 1$ and we will exclude the case of f having image contained in a straight line.

Theorem (Fr. Fabricius-Bjerre): Let $f: I \rightarrow R^{n}, n>3$, be a helix with \vec{a} as a reference vector and denote by $F: I \rightarrow R^{n}$ its orthogonal projection into a hyperplane Π normal to \vec{a}. Then F is a helix in Π if and only if $f(I) \subset \Pi_{1}$, where Π_{1} is a hyperplane neither parallel nor perpendicular to Π.

Proof: Let us assume that F is a helix with respect to $\vec{b} \in D(\Pi)$.
We consider an orthonormal basis $\left(\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n-1}}, \overrightarrow{a_{n}}\right)$ such that $\overrightarrow{a_{n-1}}=\vec{b}, \overrightarrow{a_{n}}=$ \vec{a}, write $f(s)=f_{1}(s) \overrightarrow{a_{1}}+\ldots+f_{n}(s) \overrightarrow{a_{n}}$, for $s \in I$, and, as mentioned above, let Π be the vector subspace $<\overrightarrow{a_{1}}, \ldots, a_{n-1}>$. It follows that $f(s)=F(s)+(c s+d) \overrightarrow{a_{n}}$ and $\left\|F^{\prime}(s)\right\|=\sqrt{1-c^{2}}=c_{1}$, with $0<c_{1}<1$. The map $\lambda(t)=\frac{t}{c_{1}}$ is a change of parameter such that $F \circ \lambda$ is parametrised by arc-length. Since F is an helix with respect to $\overrightarrow{a_{n-1}}$ we have

$$
(F \circ \lambda)(s)=f_{1}(\lambda(s)) \overrightarrow{a_{1}}+\ldots+f_{n-2}(\lambda(s)) \overrightarrow{a_{n-2}}+\left(c_{2} s+d_{2}\right) \overrightarrow{a_{n-1}}
$$

and, consequently,

$$
F(s)=f_{1}(s) \overrightarrow{a_{1}}+\ldots+f_{n-2}(s) \overrightarrow{a_{n-2}}+\left(c_{1} c_{2} s+d_{2}\right) \overrightarrow{a_{n-1}}
$$

Therefore

$$
\begin{gathered}
f(s)=f_{1}(s) \overrightarrow{a_{1}}+\ldots+f_{n-2}(s) \overrightarrow{a_{n-2}}+c_{1} c_{2} s \overrightarrow{a_{n-1}}+c s \overrightarrow{a_{n}}+d_{2} \overrightarrow{a_{n-1}}+d \overrightarrow{a_{n}}= \\
=(T \circ \phi)(F(s)),
\end{gathered}
$$

where T is the translation determined by $\left(d-\frac{c d_{2}}{c_{1} c_{2}}\right) \overrightarrow{a_{n}}$ and $\phi: R^{n} \rightarrow R^{n}$ is the linear map with matrix

$$
\left[\begin{array}{cccccc}
1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & \ldots & 1 & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & \ldots & 0 & \frac{c}{c_{1} c_{2}} & 0
\end{array}\right]
$$

with respect to the basis $\left(\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n-1}}, \overrightarrow{a_{n}}\right)$. Since the image of Π by $T \circ \phi$ is a hyperplane Π_{1} which is neither parallel nor perpendicular to Π the conclusion follows.

Let us assume now that $f(I) \subset \Pi_{1}$, where Π_{1} is a hyperplane neither parallel nor perpendicular to Π. Let $\left(\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}\right)$ be an orthonormal basis with $\overrightarrow{a_{n}}=\vec{a}$ and take a unit vector $\vec{u}=u_{1} \overrightarrow{a_{1}}+\ldots+u_{n} \overrightarrow{a_{n}}$ in $D\left(\Pi_{1}\right)^{\perp}$. We then have $\left(f^{\prime}(s) \mid \overrightarrow{a_{n}}\right)=c$ and $\left(f^{\prime}(s) \mid \vec{u}\right)=0$ from where it follows $\left(F^{\prime}(s) \mid\right.$ $\left.u_{1} \overrightarrow{a_{1}}+\ldots+u_{n-1} \overrightarrow{a_{n-1}}\right)=-c u_{n}$. Since Π_{1} is a hyperplane neither parallel nor perpendicular to Π we can conclude that F is a helix in Π_{1} with reference vector $\vec{v}=\frac{u_{1} \overrightarrow{a_{1}}+\ldots+u_{n-1} a_{n-1}}{\left\|u_{1} \overrightarrow{a_{1}}+\ldots+u_{n-1} a_{n-1}\right\|}$ and constant $C=\frac{-c u_{n}}{\sqrt{1-c^{2}}\left\|u_{1} \overrightarrow{a_{1}+\ldots+u_{n-1} a_{n-1} \|}\right\|}$.

It only remains in fact to show that $C \neq \pm 1$. If $C= \pm 1$ then $F(I)$ would be contained in a straight line with $\langle\vec{v}\rangle$ as underlying vector subspace and, consequently, $f(I)$ would be contained in a plane τ such that $D(\tau)=\langle\vec{a}, \vec{v}\rangle$. The plane τ cannot be contained in Π_{1} since Π_{1} and Π are perpendicular. Therefore $\tau \cap \Pi_{1}$ is a straight line which contains the image $f(I)$. This has been ruled out from the beginning.
\bowtie
Going through the proof one sees that we can remove the restriction the image of f is not contained in a straight line if in the statement of the theorem we take helix to mean helix with non-zero constant.

References

[1] Fr. Fabricius-Bjerre, On helices in the euclidean n-space, Math. Scand. 35 (1974), 159-164.
[2] Joel L. Weiner, How helical can a closed, twisted space curve be?, Amer. Math. Monthly, 107 (2000), 327-333.

F. J. Craveiro de Carvalho

Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
E-MAIL ADDRESS: fjcc@mat.uc.pt

