A THEOREM OF FR. FABRICIUS-BJERRE ON HELICES

F. J. CRAVEIRO DE CARVALHO

ABSTRACT: We give an alternative proof of a theorem proved in [1].

1. In what follows $f: I \to \mathbb{R}^n$, where I is an interval with more than one point, will be a C^1 regular curve, parametrised by arc-length. We say that f is a *helix* with respect to a unit vector \vec{a} if there is $c \in \mathbb{R}$ such that, for $s \in I, (f'(s) \mid \vec{a}) = c$, where $(\ldots \mid \ldots)$ stands for the usual inner product. The unit vector \vec{a} is a *reference vector* for the helix f. If f happened not to be parametrised by arc-length we would require $(\frac{f'(s)}{\|f'(s)\|} \mid \vec{a}) = c$.

Let $(\vec{a_1}, \ldots, \vec{a_n})$ be an orthonormal basis for \mathbb{R}^n and write $f(s) = f_1(s)\vec{a_1} + \ldots + f_n(s)\vec{a_n}$, for $s \in I$. We then have the following observation.

f is a helix with respect to $\vec{a} = \vec{a_n}$ if and only if $f_n(s) = cs + d, s \in I$, where c, d are constants with $|c| \le 1$.

It follows that if f is a non-injective helix with respect to $\vec{a} = \vec{a_n}$ then c must be zero and, consequently, the image of f lies in a hyperplane. Therefore a twisted, that is to say not contained in a plane, closed curve in \mathbb{R}^3 is not a helix. For an interesting article on a related matter see [2].

We recall that two hyperplanes Y_1, Y_2 are *parallel* (*perpendicular*) if the underlying vector subspaces $D(Y_1), D(Y_2)$ are equal $(D(Y_1)^{\perp} \subset D(Y_2))$, where \perp means orthogonal complement as usual.

Let $f: I \to \mathbb{R}^n$ be a helix with respect to \vec{a} and constant c. We will denote by $F: I \to \mathbb{R}^n$ its orthogonal projection into a hyperplane Π normal to \vec{a} and will always assume that F is regular or, equivalently, that $c \neq \pm 1$. In the present context the choice of Π is not relevant since any two such projections are related by a translation determined by a scalar multiple of \vec{a} . Below we let $\Pi = \langle \vec{a} \rangle^{\perp}$, where $\langle \ldots \rangle$ means vector subspace spanned by.

If n = 3 then the helices in the plane Π , with respect to unit vectors in $D(\Pi)$, are precisely those curves which have a straight line segment as image and we have

Let $f: I \to R^3$ be a helix. Then F is a helix in Π if and only if f(I) is a straight line segment.

1

a statement which can be regarded as a motivation for Fabricius-Bjerre's result.

From now on the word helix will refer to helices with constant $c \neq 0, \pm 1$ and we will exclude the case of f having image contained in a straight line.

Theorem (Fr. Fabricius-Bjerre): Let $f: I \to \mathbb{R}^n$, n > 3, be a helix with \vec{a} as a reference vector and denote by $F: I \to \mathbb{R}^n$ its orthogonal projection into a hyperplane Π normal to \vec{a} . Then F is a helix in Π if and only if $f(I) \subset \Pi_1$, where Π_1 is a hyperplane neither parallel nor perpendicular to Π .

Proof: Let us assume that F is a helix with respect to $\vec{b} \in D(\Pi)$.

We consider an orthonormal basis $(\vec{a_1}, \ldots, \vec{a_{n-1}}, \vec{a_n})$ such that $\vec{a_{n-1}} = \vec{b}, \vec{a_n} = \vec{a}$, write $f(s) = f_1(s)\vec{a_1} + \ldots + f_n(s)\vec{a_n}$, for $s \in I$, and, as mentioned above, let Π be the vector subspace $\langle \vec{a_1}, \ldots, \vec{a_{n-1}} \rangle$. It follows that $f(s) = F(s) + (cs + d) \vec{a_n}$ and $\parallel F'(s) \parallel = \sqrt{1 - c^2} = c_1$, with $0 < c_1 < 1$. The map $\lambda(t) = \frac{t}{c_1}$ is a change of parameter such that $F \circ \lambda$ is parametrised by arc-length. Since F is an helix with respect to $\vec{a_{n-1}}$ we have

$$(F \circ \lambda)(s) = f_1(\lambda(s)) \ \vec{a_1} + \ldots + f_{n-2}(\lambda(s)) \ \vec{a_{n-2}} + (c_2s + d_2) \ \vec{a_{n-1}}$$

and, consequently,

$$F(s) = f_1(s) \vec{a_1} + \ldots + f_{n-2}(s) \vec{a_{n-2}} + (c_1c_2s + d_2) \vec{a_{n-1}}.$$

Therefore

$$f(s) = f_1(s) \vec{a_1} + \ldots + f_{n-2}(s) \vec{a_{n-2}} + c_1 c_2 s \vec{a_{n-1}} + c_3 \vec{a_n} + d_2 \vec{a_{n-1}} + d \vec{a_n} = (T \circ \phi)(F(s)),$$

where T is the translation determined by $(d - \frac{cd_2}{c_1c_2}) \vec{a_n}$ and $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is the linear map with matrix

Γ1	0	 0	0	0
0	1	 0	0	0
:				
0	0	 1	0	0
0	0	 0		0
0	0	 0	$\frac{c}{c_1c_2}$	0

with respect to the basis $(\vec{a_1}, \ldots, \vec{a_{n-1}}, \vec{a_n})$. Since the image of Π by $T \circ \phi$ is a hyperplane Π_1 which is neither parallel nor perpendicular to Π the conclusion follows.

Let us assume now that $f(I) \subset \Pi_1$, where Π_1 is a hyperplane neither parallel nor perpendicular to Π . Let $(\vec{a_1}, \ldots, \vec{a_n})$ be an orthonormal basis with $\vec{a_n} = \vec{a}$ and take a unit vector $\vec{u} = u_1\vec{a_1} + \ldots + u_n\vec{a_n}$ in $D(\Pi_1)^{\perp}$. We then have $(f'(s) \mid \vec{a_n}) = c$ and $(f'(s) \mid \vec{u}) = 0$ from where it follows $(F'(s) \mid u_1\vec{a_1} + \ldots + u_{n-1}\vec{a_{n-1}}) = -c u_n$. Since Π_1 is a hyperplane neither parallel nor perpendicular to Π we can conclude that F is a helix in Π_1 with reference vector $\vec{v} = \frac{u_1\vec{a_1} + \ldots + u_{n-1}\vec{a_{n-1}}}{\|u_1\vec{a_1} + \ldots + u_{n-1}\vec{a_{n-1}}\|}$ and constant $C = \frac{-cu_n}{\sqrt{1-c^2} \|u_1\vec{a_1} + \ldots + u_{n-1}\vec{a_{n-1}}\|}$. It only remains in fact to show that $C \neq \pm 1$. If $C = \pm 1$ then F(I)

It only remains in fact to show that $C \neq \pm 1$. If $C = \pm 1$ then F(I) would be contained in a straight line with $\langle \vec{v} \rangle$ as underlying vector subspace and, consequently, f(I) would be contained in a plane τ such that $D(\tau) = \langle \vec{a}, \vec{v} \rangle$. The plane τ cannot be contained in Π_1 since Π_1 and Π are perpendicular. Therefore $\tau \cap \Pi_1$ is a straight line which contains the image f(I). This has been ruled out from the beginning.

Going through the proof one sees that we can remove the restriction the image of f is not contained in a straight line if in the statement of the theorem we take helix to mean helix with non-zero constant.

References

[1] Fr. Fabricius-Bjerre, On helices in the euclidean n-space, Math. Scand. 35 (1974), 159-164.

 Joel L. Weiner, How helical can a closed, twisted space curve be?, Amer. Math. Monthly, 107 (2000), 327-333.

F. J. CRAVEIRO DE CARVALHO

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE COIMBRA, 3001-454 COIMBRA, PORTUGAL E-MAIL ADDRESS: fjcc@mat.uc.pt