
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gnst20

Journal of Nonparametric Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/gnst20

Nonparametric inference about increasing odds
rate distributions

Tommaso Lando, Idir Arab & Paulo Eduardo Oliveira

To cite this article: Tommaso Lando, Idir Arab & Paulo Eduardo Oliveira (06 Jun 2023):
Nonparametric inference about increasing odds rate distributions, Journal of Nonparametric
Statistics, DOI: 10.1080/10485252.2023.2220050

To link to this article:  https://doi.org/10.1080/10485252.2023.2220050

Published online: 06 Jun 2023.

Submit your article to this journal 

Article views: 52

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gnst20
https://www.tandfonline.com/journals/gnst20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10485252.2023.2220050
https://doi.org/10.1080/10485252.2023.2220050
https://www.tandfonline.com/action/authorSubmission?journalCode=gnst20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=gnst20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10485252.2023.2220050?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10485252.2023.2220050?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10485252.2023.2220050&domain=pdf&date_stamp=06 Jun 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/10485252.2023.2220050&domain=pdf&date_stamp=06 Jun 2023


JOURNAL OF NONPARAMETRIC STATISTICS
https://doi.org/10.1080/10485252.2023.2220050

Nonparametric inference about increasing odds rate
distributions

Tommaso Landoa,b, Idir Arabc and Paulo Eduardo Oliveirac

aDepartment of Economics, University of Bergamo, Bergamo, Italy; bDepartment of Finance, VŠB-TU Ostrava,
Ostrava, Czech Republic; cCMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal

ABSTRACT
To improve nonparametric estimates of lifetime distributions, we
propose using the increasing odds rate (IOR) model as an alterna-
tive to other popular, but more restrictive, ‘adverse ageing’ models,
such as the increasing hazard rate one. This extends the scope of
applicability of some methods for statistical inference under order
restrictions, since the IOR model is compatible with heavy-tailed
and bathtub distributions. We study a strongly uniformly consistent
estimator of the cumulative distribution function of interest under
the IOR constraint. Numerical evidence shows that this estimator
often outperforms the classic empirical distribution function when
the underlying model does belong to the IOR family. We also study
two different tests to detect deviations from the IOR property and
establish their consistency. The performance of these tests is also
evaluated through simulations.
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1. Introduction

In statistics, the problem of estimating a cumulative distribution function (CDF) F, often
depends on any prior information on F. This is, for example, the idea that gives rise to
parametric inference. On the other hand, no information on F leads to the most basic
nonparametric estimator of F, namely, the empirical CDF Fn. The approach based on
shape-restricted inference represents an intermediate case, in which it is assumed that
F belongs to some important, and as broad as possible, nonparametric family of dis-
tributions, satisfying some shape constraints. It is obvious that, using a stronger shape
constraint, one may expect a larger estimation improvement upon Fn, but, on the other
hand, less applicability and higher risk, if the constraint is false. Thus, these shape restric-
tions should be chosen to reasonably conform to the data, and validated through statistical
testing.

In reliability and survival analysis, one is generally interested in random lifetimes, so it
is typically assumed that distributions may exhibit ‘adverse ageing’, vaguely meaning that
ageing has a negative effect on lifetime (Marshall and Olkin 2007). The classic (but not
unique) way of translating this intuitive notion into a mathematical language is assum-
ing that F has an increasing hazard rate (IHR). For this reason, nonparametric inference
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for IHR distributions represents an extremely relevant case, which has been studied by
Grenander (1956), Marshall and Proschan (1965) or Prakasa Rao (1970), among many
other authors. However, the IHR assumption is sometimes considered to be too strong.
For example, it is not compatible with heavy-tailed (as it requires the existence of all
moments) and bathtub distributions, namely, distributions that exhibit a U-shaped haz-
ard rate (Marshall and Olkin 2007). The solution to this problem may be using a weaker
shape restriction, which is still coherent with the ‘adverse ageing’ notion. For example,
Wang (1987), Rojo and Samaniego (1994) or El Barmi et al. (2021) estimate distributions
which exhibit an IHR, but only on average (IHRA). Although the IHRA class contains the
IHR class, this family still requires the existence of all moments and does not contain any
bathtub model. Therefore, the problem of estimating F within a weaker ‘adverse ageing’
setting, compatible with heavy-tailed and bathtub distributions, is particularly interesting.

In a recent paper, Lando et al. (2022a) proposed an ageing class that is based on the
monotonicity of the odds rate (OR), instead of the hazard rate. In fact, ageing classes are
typically defined in terms of some suitable stochastic ordering constraint, taking the expo-
nential distribution as the classic benchmark for ‘no ageing’. This is due to the well-known
‘lack of memory’ property. However, a wider family than the IHR may be constructed by
replacing the exponential with a different reference distribution, providing an alternative
interpretation of ‘no ageing’. In particular, as discussed in Lando et al. (2022a), the log-
logistic distribution (with shape parameter equal to 1), hereafter referred to as LL(1), may
be a suitable benchmark, as it satisfies a ‘multiplicative lack of memory’ property (Galam-
bos and Kotz 2006), and it is the only distribution such that the odds of failure by time x,
that is the probability of failure over survival at x, has a constant growth rate with respect to
time. Moreover, unlike the exponential distribution, the LL(1) distribution has an infinite
expectation, which is also more coherent with a literal intuitive translation of the ‘no age-
ing’ concept. The family of distributions that are dominated by the LL(1) with respect to the
convex transform order of Van Zwet (1964) is called the increasing odds rate (IOR) family.
Besides having some interesting properties, the IOR class has a wide range of applicabil-
ity: it does not require the existence of moments, it contains all IHR distributions, plus
some important heavy-tailed and bathtub ones (see Section 2.1 of Lando et al. (2022a)).
Accordingly, the objective of this paper is to obtain an estimator of F that satisfies the IOR
assumption, hence improving upon Fn under weak conditions. In Section 3, we construct
such an estimator, denoted as F̃n, using similar methods as those discussed in the books
of Barlow et al. (1971) or Robertson et al. (1988). F̃n is strongly uniformly consistent, and
simulations show that it is generallymore accurate thanFn, provided that the IOR assump-
tion holds. On the other hand, it is clear that the method does not work properly when the
IOR assumption is false, therefore it is important to decide, based on statistical testing,
whether the data support the IOR assumption or not. In Section 4, we obtain two differ-
ent nonparametric tests to detect violations of the IOR property. We study the properties
of these tests, establish their consistency, and compare their performances simulating the
values of the power function under some critical alternatives.

2. The IOR property

Let us begin with some preliminary notations. Throughout this paper, ‘increasing’ signifies
‘non-decreasing’ and ‘decreasing’ signifies ‘non-increasing’. We define the greatest convex
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minorant (GCM) of a function g, denoted as gcx, as the largest convex function that does not
exceed g. Similarly, the least concave majorant (LCM) of g, denoted as gcv, is the smallest
concave function which is larger than or equal to g. Throughout this paper, X denotes a
random variable with an absolutely continuous CDF F and probability density function
(PDF) f. Moreover, for the sake of simplicity, any map φ which depends on a CDF F, will
be denoted as φF or just φ, whenever it is clear from the context.

Wewill now recall the definition and properties of the IOR family. The reader is referred
to Lando et al. (2022a) for a more detailed discussion.

Let us denote with L(x) = x
1+x , x>0, the CDF of the LL(1) distribution. The function

�F(x) = L−1 ◦ F(x) = F(x)
1 − F(x)

defines the odds of failure by time x. The function�F is obviously increasing, so it is natural
to get interested in its growth rate. In fact, one may expect that F exhibits ‘no ageing’, in
some sense, when the odds rate of F, defined as

λF(x) = �′
F(x) = f (x)

(1 − F(x))2
, (1)

is constant. Similarly, an increase of λ means that the probability of failure over survival
is accelerating with respect to time, suggesting an ‘adverse ageing’ scenario. Therefore, we
are interested in distributions with an increasing behaviour of λ, or, equivalently, with a
convex odds function�. This family, formallyFIOR = {F : �F is convex}, is referred to as
the IOR class.

Note that the convexity of� does not imply the existence of a density. Indeed, this con-
vexity allows for a single point mass of F at the right endpoint of the support. However, for
simplicity of the presentation, we shall assume the existence of a PDF.

It is easy to see that the IOR class contains thewell-known IHR class, whichmay be char-
acterised as {F : − ln(1 − F) is convex}. Indeed, if the HR, defined as (− ln(1 − F))′ =
f

1−F , is increasing, then the OR is increasing as well, taking into account (1). These two
classes may be equivalently defined in terms of the convex transform order, requiring
convexity of G−1 ◦ F, where G is some suitable (and fixed) reference CDF. In general,
G dominates F in the convex transform order, denoted as G ≥c F, if G−1 ◦ F is con-
vex (Shaked and Shanthikumar 2007). The IHR class is obtained by choosing G(x) =
E(x) = 1 − e−x, x>0, namely, the unit exponential distribution. The main reason for
choosing E as a benchmark is that it satisfies the ‘lack of memory’ property. Likewise,
for G = L, we obtain the IOR class, and it is also easy to see that, if X ∼ L, then the
shifted random variableX+ 1 satisfies the ‘multiplicative lack ofmemory’ property, that is,
P(X + 1 > ab|X + 1 > a) = P(X + 1 > b), for every a, b>1 (Galambos and Kotz 2006).
Bear inmind that ageing notions are typically location and scale independent, in particular,
X and σX + μ are equivalent in terms of the convex transformorder. In this regard, wemay
refer to the LL(1) location-scale family, determined by the CDF L up to location and scale
transformations.

We now discuss the applicability of the IOR model. First, note that the IOR class may
contain bathtub distributions, characterised by a ‘decreasing then increasing’ behaviour
of the HR, and are commonly employed in survival analysis and reliability (see, for



4 T. LANDO ET AL.

example, Marshall and Olkin (2007), or Glaser (1980)). For instance, under some con-
ditions on the parameters, the bathtub distributions defined by Topp and Leone (1955),
Hjorth (1980), Schäbe (1994) or Haupt and Schäbe (1997) are IOR. This class contains
also many heavy-tailed distributions, such as the log-logistic, the Pareto, the Burr XII, the
Fréchet, the Student’s t (with shape parameter(s) larger than or equal to 1), the lognor-
mal (under some conditions) and the Cauchy distributions. It is not possible to establish
inclusion relations between the IOR class and other relevant classes which contain the
IHR class, such as the IHRA and the DMRL families (Marshall and Olkin 2007). How-
ever, like the IHR, these latter classes require the existence of all moments, therefore they
cannot be used as shape constraints to estimate heavy-tailed distributions, which is one
of the main advantages of the IOR model. This discussion motivates us to study non-
parametric inference on lifetime distributions using the IOR constraint, instead of the
IHR one.

3. An IOR estimator

Since we are interested in random lifetimes, hereafter we will focus on the case in which
the distribution of interest F has support included in the interval [0,∞). Given an ordered
sample X(1), . . . ,X(n) from F, the empirical CDF is defined as Fn(x) = 1

n
∑n

i=1 1X(i)≤x,
where 1A is the indicator of the event A. A realisation of the random process Fn will
be denoted with Fn. The empirical CDF represents the most natural way of estimating
F without any prior information, as it satisfies several important properties, in particu-
lar, the Glivenko–Cantelli theorem establishes strong and uniform convergence of Fn to
F. Assume that F ∈ FIOR: we are interested in determining an estimator, say F̃n, such that
F̃n ∈ FIOR and F̃n converges strongly and uniformly to F. A first intuitive solution would
be estimating �F using its empirical counterpart �Fn = L−1 ◦ Fn = Fn

1−Fn
(note that

�Fn(X(i)) = i
n−i ) and then estimate F using L ◦ (�Fn)cx. However, the function L−1(p) =

p
1−p is unbounded in [0, 1), accordingly, for every sample size, sup x|�Fn(x) − �(x)| = ∞,
and the corresponding IOR estimator defined earlier would not have the desired prop-
erty. This issue may be solved using a truncated version of �Fn , say �ν

Fn
= �Fn |Sν , where

Sν = {x : F(x) ≤ 1 − ν}, for some arbitrarily small ν > 0, and h|A is the restriction of a
function h to the set A. Accordingly, one may estimate F via L ◦ (�ν

Fn
)cx. In this case, the

problem of consistencymay be easily addressed, but just restricted to Sν . Therefore, we will
consider a somewhat more involved approach.

For some given CDF F ∈ FIOR, let us define the following integral transform

T−1
F (p) = ZF ◦ F−1(p) =

∫ F−1(p)

0
(1 − F(x))2 dx, p ∈ [0, 1],

where ZF(t) = ∫ t
0 (1 − F(x))2 dx, and the corresponding scale-free version T−1

F (p) =
T−1
F (p)

T−1
F (1)

. We shall focus on distributions such that T−1
F (1) = ∫∞

0 (1 − F(x))2 dx < ∞. In

particular, T−1(1) < ∞ if 1−F is integrable, that is, if F has finite mean, because
∫∞
0 (1 −

F(x))2 dx ≤ ∫∞
0 (1 − F(x)) dx = E(X). However, the existence of the mean is not neces-

sary: for example, for the CDF L we have T−1
L (1) = 1, although L has infinite mean. The
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function T−1 belongs to the family of generalized total time on test transforms, which has
been studied by Barlow and Van Zwet (1969). Note also that the inverse of T−1

F , namely
TF = F ◦ Z−1

F , is a CDF with support [0,T−1
F (1)].

It can be seen that

(T−1)′(p) = Z′ ◦ F−1(p)(F−1)′(p) = (1 − F ◦ F−1(p))2

f ◦ F−1(p)
, (2)

so thatT−1 is concave, or, equivalently,T is convex, if and only if f (x)
(1−F(x))2 is increasing, that

is, F is IOR. Note that T−1 is the identity function if and only if F is an LL(1) distribution.
For k = 1, . . . , n, the empirical counterpart of T−1

F ( kn ) is

T−1
Fn

(
k
n

)
=
∫ X(k)

0
(1 − Fn(t))2 dt = 1

n2

(k−1∑
i=1

(2n − 2i + 1)X(i) + (n − k + 1)2X(k)

)
,

where, in particular, X(0) := 0, T−1
Fn

(0) := 0, and T−1
Fn

(1) = 1
n2
∑n

i=1(2n − 2i + 1)X(i).
Note that T−1

Fn
( kn ) can also be expressed as

T−1
Fn

(
k
n

)
=

k∑
j=1

(
n − j + 1

n

)2
(X(j) − X(j−1)).

For general p ∈ [0, 1], T−1
Fn

(p) is defined, by linear interpolation, as the piecewise linear
function joining the points ( k−1

n , T−1
Fn

( k−1
n )) and ( kn , T

−1
Fn

( kn )), k = 1, . . . , n. Similarly, the

estimator of T−1 is T−1
Fn = T−1

Fn (p)
T−1

Fn (1)
. These estimators are strongly uniformly consistent.

Lemma 3.1:

• T−1
Fn

(T−1
Fn ) converges strongly and uniformly to T−1

F (T−1
F ) in [0, 1];

• TFn (TFn) converges strongly and uniformly to TF (TF) in [0,T−1
F (1)] ([0, 1]).

Proof: The strong uniform convergence of T−1
Fn

may be obtained as a special case of
Theorem 2.1 of Barlow and Van Zwet (1969). Alternatively, taking into account that the
functional F → ZF(x) is continuous in F, pointwise a.s. convergence of ZFn(F

−1
n (p)), for

every p, follows by the continuous mapping theorem, combined with the fact that empir-
ical quantiles converge strongly to true quantiles. Then, uniform a.s. consistency follows
by the same arguments of the Glivenko–Cantelli theorem. Since T−1

Fn
is bounded and has

bounded domain, its inverse function TFn is also strongly uniformly consistent. Since
T−1

Fn
(1) converges a.s. to T−1

F (1), it is clear that the same results hold for T−1
Fn and, likewise,

for TFn . �

Henceforth, we will abbreviate T−1
Fn

and T−1
Fn with T−1

n and T−1
n , respectively, whenever

it will be clear from the context that they correspond to a sample from Fn.
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Note that under the IOR constraint,T−1 is concave. Therefore, an IOR estimatormay be
constructed using (T−1

n )cv, namely, the LCMofT−1
n . In fact, (T−1

n )cv is a concave piecewise
linear function, so it always has a right derivative, denoted as ∂+(T−1

n )cv, which, by con-
struction, is a decreasing right-continuous step function. Accordingly, the relation in (2)
may be used to obtain an increasing estimator of the OR, defined as follows:

λ̃n(x) = 1
∂+(T−1

n )cv ◦ Fn(x)
, for x ∈ (0,X(n)),

whereas λ̃n(x) = 0, for x ≤ 0, and λ̃n(x) = +∞, for x ≥ X(n). In other words, λ̃n(x) is
the reciprocal of the slope (from the right) of (T−1

n )cv, evaluated at the point Fn(x).
Accordingly, the odds function is estimated by

�̃n(x) =
∫ x

0
λ̃n(t) dt =

∫ x

0

1
∂+(T−1

n )cv ◦ Fn(t)
dt. (3)

Finally, an IOR estimator of F is given by

F̃n = L ◦ �̃n = 1 − 1
1 + �̃n

.

F̃n is clearly IOR, and it is absolutely continuous, except in the right endpoint of its
support, X(n), at which it has a jump. Correspondingly, the PDF f can be estimated,
in (0,X(n)), as

f̃n = λ̃n

(1 + �̃n)2
. (4)

Using the methods described in the book of Robertson et al. (1988), it is possible to
establish the asymptotic properties of these estimators.

Theorem 3.2: Assume that F is IOR, then:

(1) λ̃n −→ λ almost surely and uniformly in [0, x0], for every x0 such that λ(x0) < ∞;
(2) F̃n−→F almost surely and uniformly in [0,∞);
(3) f̃n−→f almost surely and uniformly in [0, x0], for every x0 such that λ(x0) < ∞.

Proof: Following the approach as in Theorem 7.4.1 of Robertson et al. (1988), we prove
that λ(x−

0 ) ≤ lim infn→∞ λ̃n(x0) ≤ lim supn→∞ λ̃n(x0) ≤ λ(x+
0 ). Indeed, since the LCM

(T−1
n )cv is concave by construction, then, for some small ε > 0, we have that

(T−1
n )cv(Fn(x0) + ε) − (T−1

n )cv(Fn(x0))
ε

≤ ∂+(T−1
n )cv ◦ Fn(x0) = 1

λ̃n(x+
0 )

≤ 1
λ̃n(x−

0 )
= ∂−(T−1

n )cv ◦ Fn(x0) ≤ (T−1
n )cv(Fn(x0)) − (T−1

n )cv(Fn(x0) − ε)

ε
,
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for every x0 > 0 and ε ∈ (0,min(Fn(x0), 1 − Fn(x0))). T−1
n converges uniformly to T−1

on [0, 1], consequently, the Marshall’s inequality (Groeneboom and Jongbloed 2014,
Exercise 3.1) gives

sup
p∈[0,1]

|(T−1
n )cv(p) − T−1(p)| ≤ sup

p∈[0,1]
|T−1

n (p) − T−1(p)| −→ 0,

with probability 1. Then, letting n −→ ∞ in the above inequality, we obtain

T−1(F(x0) + ε) − T−1(F(x0))
ε

≤ lim sup
n→∞

1
λ̃n(x0)

≤ lim inf
n→∞

1
λ̃n(x0)

≤ T−1(F(x0)) − T−1(F(x0) − ε)

ε
,

which gives the claimed bound allowing ε −→ 0. In particular, λ̃n is uniformly strongly
consistent at the continuity points of λ. Now, if λ is increasing and continuous on some
compact set [0, x], λ̃n converges uniformly to λ on [0, x]. Setting x = x0, we obtain part 1).
Subsequently, the dominated convergence theorem (note that λ̃n is bounded on [0, x])
implies limn→∞

∫ y
0 λ̃n(t) dt = limn→∞ �̃n(y) = ∫ y

0 λ(t) dt = �(y), for every y ∈ [0, x].
Therefore, since the CDF L is uniformly continuous in [0,∞), it follows that

F̃n(x) = L ◦ �̃n(x) −→ L ◦ �(x) = F(x)

almost surely, for every x. Finally, following the same arguments in the proof of the
Glivenko–Cantelli theorem, we can ensure that F̃n −→ F almost surely and uniformly
in [0,∞). Since f (x) = λ(x)(1 − F(x))2 and, writing �̃n = �

F̃n
, we may express f̃n(x) =

λ̃n(x)(1 − F̃n(x))2. Then, part (1) and part (2) imply that f̃n −→ f strongly and uniformly
in [0, x0]. �

3.1. Simulations

We illustrate the numerical performance of F̃n and Fn in terms of MSE, as is well known,
MSE(Fn(x)) = 1

nF(x)(1 − F(x)). With regard to F̃n, the MSE was simulated using the fol-
lowing distributions: (i) log-logistic, F(x) = 1

1+x−a , a>0, hereafter LL(a), which is IOR
for a>1 and has a constant OR for a = 1; (ii) Weibull F(x) = 1 − e−xa , a>0, hereafter
W(a), which is IOR for a ≥ 1 (and also log-concave, IHR, IHRA and DMRL); (iii) beta
type II, F(x) = β( x

1+x ; a, b), a, b>0, hereafter B2(a, b), which is IOR for a > 1, b ≥ 1 (β
denotes the regularised incomplete beta function); (iv) theHaupt and Schabe’s distribution
(Haupt and Schäbe 1997) F(x) =

√
a2 + (2a + 1)x − a, a > −1/2, x ∈ [0, 1], hereafter

HS(a), which is bathtub for a ∈ ( 12 , 1) and IOR at the same time. Bear in mind that the
majority of the shape conditions which are commonly used for order-restricted inference
under an ‘adverse ageing scenario’ (log-concavity, IHR, IHRA, DMRL) require the exis-
tence of all moments, however, among the distributions considered, only the W and the
HS distributions have all moments, whereas the LL(a) has an infinite moment of order
a, and the B2(b) has an infinite moment of order r ≥ b. Note also that scale parameters
are conveniently not considered in our analysis, since ageing properties are scale invari-
ant. Figure 1 illustrates the estimators F̃n and Fn in the IOR case, for a small sample size.
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Figure 1. Simulated small sample (n = 20) from the IOR distribution HS(0.6). The plot on the left shows
the CDFs F (dot-dashed),Fn (solid) and F̃n (dashed); the plot on the right shows λF (dot-dashed) and λ̃n
(dashed).

Differently, the behaviour of such estimators in the non-IOR case is discussed in the next
section and depicted in Figure 6.

In Figures 2 and 3, we plot simulated MSE values at all percentiles, based on 1000 runs,
standardised by the corresponding ones for Fn, that is, MSE(̃Fn(x))

MSE(Fn(x)) . The simulation results
show that when F is IOR, F̃n often outperforms Fn, especially for small and large deciles.
This is particularly visible for small sample sizes, as clearly when n grows both estimators
converge to F. According to our results, the largest improvements often occur in the left
tails, around deciles 0.1–0.3; however, in some cases F̃n performs worse at very small per-
centiles (0.01–0.05) for very small sample sizes (n = 10) and some particular models. In
terms of MSE, the variance of F̃n plays a critical role compared with the bias, for example,
for the smallest sample size n = 10 the variance is generally more than 90% of the corre-
spondingMSE, while for larger sample sizes, such as n = 100, the bias is almost null. It can
also be noted that convergence is somewhat slower for distributions with infinite variance.
The case of the LL(1) is especially critical, because, besides having an infinite mean, it has
a constant OR, so we expect no improvement, or less, compared to the cases in which the
OR is strictly increasing. Surprisingly, even in this case, F̃n performs slightly better than
Fn for smaller sample sizes, whereas, for larger samples, F̃n performs better at the tails and
Fn performs better around the median.

With regard to the Weibull family, note that only the W(a), for a ≥ 1, satisfies all
the aforementioned shape properties, besides being IOR. In this case, it is interesting to
compare F̃n with other shape-restricted estimators, obtained under log-concavity (see
Dümbgen and Rufibach (2009, 2016) for details and computational aspects) and under
IHR (Robertson et al. 1988, Ch. 7), and denoted as F̃

LC
n and F̃

IHR
n , respectively. We recall

that log-concavity implies IHR, which in turn implies IOR. It is reasonable to expect that
a stronger shape restriction leads to a stronger improvement. This is supported by the
numerical results, represented in Figure 3. In particular, F̃LC

n seems to provide the best over-
all performance, and, in turn, F̃IHR

n slightly outperforms F̃n, although this may depend on
the quantile, the sample size, and the underlying distribution. However, these alternative
estimators have less applicability compared to F̃n, as they do not work for the distributions
considered in Figure 2.
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Figure 2. Standardised MSE for n = 10 (solid), n = 30 (dashed), n = 50 (dot-dashed), n = 100 (dot-
ted), evaluated at all percentiles.

3.2. Smoothed estimators

One may wonder whether the improvement of F̃n over Fn depends on the fact that F̃n is a
smooth function. In response to this, a numerical comparison of F̃n with kernel estimators
of the CDF, may show that the MSE of F̃n is often smaller even in this case, suggesting that
the improvement of F̃n over Fn depends mostly on shape aspects, rather than on smooth-
ness. Although the objective of this paper is to estimate the CDF, wewill now briefly discuss
the possibility of obtaining smooth estimators even for the PDF. In fact, while F̃n is abso-
lutely continuous in [0,X(n)), the corresponding estimator of the PDF f̃n, defined by (4), is
typically discontinuous andmay exhibit spikes at the observed points (see Figure 4).Hence,
it is generally not a good pointwise estimator of f. For this reason, it may be interesting to
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Figure 3. Standardised MSE for F̃n (solid), F̃IHR
n (dashed), and F̃

LC
n (dot-dashed), evaluated at all per-

centiles.
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Figure 4. Simulated small sample (n = 20) from the IOR distribution B2(2,3). The plot on the left
shows the ORs λF (dot-dashed) λ̃n (solid) and λsn,h (dashed), for h = 1

4 ; the plot on the right shows f

(dot-dashed), f̃n (solid) and f sn,h (dashed).

obtain a smooth estimator of the PDF which preserves the OR properties of f̃n, which may
be achieved by smoothing the step function λ̃n and then applying the approach discussed
above.

Let k be a zero-mean PDF with support [−1, 1], for technical convenience. Given a
bandwidth h>0 define as usual kh(x) = 1

hk(
x
h ), and denote byKh the corresponding CDF,

that is, Kh(x) = ∫ x
−∞ kh(t) dt. A smooth version of λ̃n is given by

λsn,h(x) =
∫

kh(x − t)̃λn(t) dt =
∫

(1 − Kh(x − t)) d̃λn(t),

after integration by parts. Therefore, as λ̃n is increasing by construction, it follows imme-
diately that λsn,h is also increasing. Note that, since λ̃n(x) = +∞, for x ≥ X(n), then
λsn,h(x) = +∞, for x ≥ X(n) − h, hence the smoothing has an effect just at points smaller
than X(n) − h. Now, a convex estimator of � is given by �s

n,h = ∫ x
−∞ λsn,h(t) dt, where,

unlike (3), here the integration starts at −∞, meaning that it assigns positive mass to the
negative half line (this may be adjusted, if needed). Correspondingly, an IOR estimator
of the CDF is defined as F

s
n,h = L ◦ �s

n,h, and a smooth estimator of the PDF is given by

f sn,h = λsn,h
(1+�s

n)2
.

Since k has support [−1, 1], λsn,h(x) = ∫ x+h
x−h kh(x − t)̃λn(t) dt. Therefore, by mono-

tonicity, λ̃n(t) ∈ [̃λn(x − h), λ̃n(x + h)], which holds for t ∈ [x − h, x + h], implies that
λsn,h(x) ∈ [̃λn(x − h), λ̃n(x + h)]. Then, if h −→ 0 as n −→ ∞, the asymptotic behaviour
of λ̃n, proved in Theorem 3.2, entails that λsn,h −→ λ strongly and uniformly in [0, x0] for
every x0 such thatλ(x0) < ∞. So, using the same arguments as in the proof of Theorem3.2,
F
s
n −→ F uniformly in [0,∞) and f sn −→ f strongly and uniformly in [0, x0].
As usual in kernel estimation problems, the optimal choice of the bandwidth is the

crucial issue.We are not dealingwith this problem in the present paper, as the involved con-
struction of λ̃n makes it very hard to derive expressions for theMSE of λsn,h. This estimator
is also quite demanding from a computational point of view. As an illustration, Figure 4
shows λsn,h and f sn,h for a sample of size n = 20 from a B2(2,3) distribution, using the
Epanechnikov kernel with bandwidth h = 1

4 , that is, k1/4(x) = 3
4 (1 − 16x2), x ∈ [− 1

4 ,
1
4 ].
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4. Tests for the IOR property

Tests of different ageing properties, or, as discussed above, shape restrictions, have been dis-
cussed extensively in the literature: amongmany other authors, Proschan and Pyke (1967),
Barlow and Proschan (1969), Bickel (1969) or Bickel and Doksum (1969) consider the null
hypothesis of exponentiality versus the IHR alternative; Deshpande (1983), Kochar (1985),
Link (1989), Wells and Tiwari (1991), and Ahmad (1994), consider the null hypothesis of
exponentiality versus the IHRA alternative; while Tenga and Santner (1984), Hall and Van
Keilegom (2005), Durot (2008), Groeneboom and Jongbloed (2012), Gijbels and Heck-
man (2004) or Lando (2022) consider the IHR null hypothesis versus the alternative that
the HR is non-monotone. This approach, that is, setting the shape restriction as the null
hypothesis, may be more demanding from a computational point of view, but it has several
advantages in controlling the behaviour of the test.We follow this idea and study tests of the
null hypothesisH0 : F ∈ FIOR versusH1 : F /∈ FIOR. Following a conservative approach,
this boils down to testing the null hypothesis that F has an LL(1) distribution, denoted as
HL

0 : F = L, versus H1, as the LL(1) represents the boundary between H0 and H1. Tests
of this kind have already been studied in Lando et al. (2022a), who focused on a restricted
null hypothesis Hν

0 : ‘λ is increasing in Sν ’, where Sν = {x : x ≤ F−1(1 − ν)}, ν ∈ (0, 1).
The domain restriction was necessary to control the behaviour of the test statistic, given
by the maximum distance between the empirical odds function�Fn = Fn

1−Fn
and its GCM

(�Fn)cx, due to the lack of uniform strong convergence of �Fn and (�Fn)cx to �F under
H0. Differently, transporting the testing problem to the maximum distance between the
estimators Tn, or Fn, and their corresponding constrained versions (Tn)cx, or F̃n, respec-
tively, means that, underH0, we do have uniform strong convergence in the whole domain,
hence restrictions are no longer necessary.

4.1. A test based on the convexity of T

Similarly to Tenga and Santner (1984), who deal with the IHR property, we may obtain a
first test which detects departures from the IOR property by considering a suitable distance
betweenTn and (Tn)cx, or, similarly,T−1

n and (T−1
n )cv.Wewill consider the following scale-

independent test statistic

KT(Fn) = sup
u∈[0,1]

|Tn(u) − (Tn)cx(u)| = max
1≤i≤n

| i
n

− (Tn)cx ◦ T−1
n ( i

n )|.

It can be seen that, if the jump points of the empirical odds function �Fn , determined by
the coordinates (X(i), i

n−1 ), i = 1, . . . , n − 1, lay on a convex curve, then KT(Fn) = 0.
To obtain a conservative test, the determination of the least favourable distribution of

KT under the null hypothesis is especially critical. As established in the following theorem,
owing to a stochastic ordering result, such a distribution coincides with the distribution of
KT in the case when the data are randomly sampled from the LL(1). To understand this
behaviour, we need to introduce some additional notations. Let us denote ZF = ZF

T−1
F (1)

, so

that TF = F ◦ Z−1
F , and define the functional


p(F) = (F ◦ Z−1
F )cx ◦ T−1

F (p) = (TF)cx ◦ T−1
F (p).
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The empirical counterpart of 
p(F), for p = i
n , is


i/n(Fn) = (Fn ◦ Z−1
Fn )cx ◦ T−1

Fn ( i
n ) = (TFn)cx ◦ T−1

Fn ( i
n ).

Let us recall that X is larger than Y in the usual stochastic order, denoted as X ≥st Y , if
P(X ≥ t) ≥ P(Y ≥ t), for every t (Shaked and Shanthikumar 2007). We can now establish
the following result.

Theorem4.1: LetLn be the empirical CDF corresponding to a random sample fromL.Under
H0, KT(Ln) ≥st KT(Fn).

Proof: Let Ln be a realisation ofLn, corresponding to the observed sample (y(1), . . . , y(n)).
Since L ≥c F, Theorem 1 of Lando et al. (2022b) implies that 
i/n(Fn) ≥st 
i/n(Ln), for
i = 1, . . . , n, provided that

(TF∗
n )cx ◦ T−1

F∗
n
( i
n ) = 
i/n(F∗

n) ≥ 
i/n(Ln) = (TLn)cx ◦ T−1
Ln ( i

n ), (5)

where F∗
n = F−1 ◦ L ◦ Ln = τ ◦ Ln is the empirical CDF corresponding to the values

τ(y(i)), which determine an ordered sample from F. Let

ui = T−1
Ln ( i

n ) =
∑i

j=1(
n−j+1

n )2(y(j) − y(j−1))∑n
j=1(

n−j+1
n )2(y(j) − y(j−1))

,

u∗
i = T−1

F∗
n
( i
n ) =

∑i
j=1(

n−j+1
n )2(τ (y(j)) − τ(y(j−1)))∑n

j=1(
n−j+1

n )2(τ (y(j)) − τ(y(j−1)))
.

The denominators θ = ∑n
j=1(

n−j+1
n )2(y(j) − y(j−1)) and η = ∑n

j=1(
n−j+1

n )2(τ (y(j)) −
τ(y(j−1))) are constant because the samples are fixed. We now define the function h :
[0, 1] → [0, 1] by

h(ui) = h

⎛⎝ 1
θ

i∑
j=1

(
n − j + 1

n
)2(y(j) − y(j−1))

⎞⎠
= 1

η

i∑
j=1

(
n − j + 1

n
)2(τ (y(j)) − τ(y(j−1))) = u∗

i ,

and by linear interpolation between the ui’s values. The increments may be expressed
as ui − ui−1 = 1

θ
(
n−j+1

n )2(y(i) − y(i−1)) and u∗
i − u∗

i−1 = 1
η
(
n−j+1

n )2(τ (y(i)) − τ(y(i−1))),
respectively. To prove (5), note that, under H0, the function τ is increasing and concave,
hence

h(ui+1) − h(ui)
ui+1 − ui

= θ

η

τ(yi+1) − τ(yi)
yi+1 − yi

≤ θ

η

τ(yi) − τ(yi−1)

yi − yi−1
= h(ui) − h(ui−1)

ui − ui−1
.

Therefore the slopes of the piecewise linear function h are decreasing, that is, h is concave.
Now, Theorem 2.2 of Tenga and Santner (1984) yields (5). Subsequently, as 
i/n(Fn) ≥st
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i/n(Ln), KT(Fn) = maxi( i
n − 
i/n(Fn)) and similarly KT(Ln) = maxi( i

n − 
i/n(Ln)),
we obtain the desired result. �

Theorem 4.1 states that the random variable KT(Ln) represents a stochastic (upper)
bound for KT(Fn) under the null hypothesis. Accordingly, the problem boils down to test-
ing HL

0 : ‘F is LL(1)’ against H1, so we reject H0 when KT(Fn) ≥ cα,n, where cα,n is the
solution of P(KT(Ln) ≥ cα,n) = α. Theorem 4.1 ensures that the probability of rejecting
H0 when it is true, is at most α, that is, the test has size α under H0. Similarly, if F is
DOR, it is easy to see that P(KT(Fn) ≥ cα,n) ≥ P(KT(Ln) ≥ cα,n) = α, that is, the test
is unbiased under DOR alternatives. For a given realisation Fn, the p-value of the test is
p = P(KT(Ln) ≥ KT(Fn)).

As established by the following theorem, KT is also capable of detecting any deviation
from the IOR null hypothesis.

Theorem 4.2: UnderH1, limn→∞ P(KT(Fn) > cα,n) = 1.

Proof: IfH0 is true, considering the special case whenTn is obtained by sampling from the
LL(1), Tn and (Tn)cx converge strongly and uniformly to the identity function. In partic-
ular, Marshall’s inequality gives supu∈[0,1] |(Tn)cx(u) − u| ≤ supu∈[0,1] |Tn(u) − u|, with
probability 1. Then, for every fixed α ∈ (0, 1), there exists some n0 such that, for n > n0

P(sup
u

|Tn(u) − u| ≤ ε

2
∧ sup

u
|(Tn)cx(u) − u| ≤ ε

2
) ≥ 1 − α

However, the function u − ε
2 is convex, therefore, for n > n0, u − ε

2 ≤ (Tn)cx(u) ≤
Tn(u) ≤ u + ε

2 ,∀u, and by inclusion we obtain

P(−ε ≤ Tn(u) − (Tn)cx(u) ≤ ε,∀u) = P(sup
u

(Tn(u) − (Tn)cx(u)) ≤ ε) ≥ 1 − α.

Since ε can be arbitrarily small, cα,n −→ 0 for n −→ ∞.
Suppose that H1 is true. Then d = supu(T(u) − (Tn)cx(u)) > 0. Moreover, Tn con-

verges strongly and uniformly to T, whereas (Tn)cx converges strongly and uniformly to
Tcx (this can be seen using the same argument as inTheorem3of Lando (2022)). Therefore,
given some ε > 0, there exists some n0 such that, for n > n0, supu |T(u) − Tn(u)| < ε

2 and
sup |(Tn)cx(u) − Tcx(u)| < ε

2 , with probability 1. Then, for n > n0

Tn(u) − (Tn)cx(u) > T(u) − ε

2
− (Tcx(u) + ε

2
) = T(u) − Tcx(u) − ε

almost surely, for every u, which implies

sup
u

(Tn(u) − (Tn)cx(u)) > sup
u

(T(u) − Tcx(u) − ε) = d − ε > 0.

Therefore, since ε can be arbitrarily small, P(supu(Tn(u) − (Tn)cx(u)) ≥ d) −→ 1, for
n −→ ∞. But since cα,n → 0, then P(KT(Fn) > cα,n) −→ 1. �

It is important to remark that one may replace the sup-norm with a different type of
distance between (Tn)cx and Tn and still obtain a consistent test, since the key steps in the
proof of Theorem 4.2 are the uniform consistency of these two estimators underH0, while
only Tn converges to T underH1.
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4.2. A test based on F̃n

A second test can be obtained by considering a suitable distance between Fn and F̃n, such
as the uniform norm. Let us define the following Kolmogorov–Smirnov type test statistic

KS(Fn) = sup
x>0

|Fn(x) − F̃n(x)|.

About the IHR property, a Kolmogorov–Smirnov test of this type has been studied by
Lando (2022). Note that KS is also scale-independent. However, if the jump points of �Fn

lay on a convex curve, then KS(Fn) does not coincide with 0, differently from KT(Fn).
To fulfil this property, one should consider a modified version of KS, say K̂S(Fn) =
supx>0 |̂Fn(x) − F̃n(x)|, where F̂n has the same construction of F̃n, as described in
Section 3, with the exception that it does not include any shape constraint, namely,

F̂n(x) = L
(∫ x

0

1
∂+(T−1

n ) ◦ Fn(t)
dt
)
.

F̂n and Fn are very similar and it is easy to see that they are asymptotically equivalent,
moreover, the computation of F̂n is quite demanding without having an improvement on
the power of the test. Therefore, henceforth we will focus only on KS.

As in the previous subsection, the distribution of KS may be determined by simulating
from L. Since F̃n is based on transformations starting from (T−1

n )cv, the basic idea is that
the empirical transform T−1

n obtained from strictly IOR distributions will have fewer devi-
ations from concavity, compared the that obtained from a sample from the LL(1) (forwhich
T−1 is linear). Accordingly, one may expect that KS tends to provide larger values in the
LL(1) case, compared to the strict IOR case. However, differently from KT, the stochastic
ordering arguments used in Theorem 4.1 do not hold for KS, because of the complicated
construction of F̃n. Accordingly, we cannot formally establish a stochastic bound for the
size of the test underH0, so it is more correct to present this as a test forHL

0 againstH1.We
reject the nullHL

0 whenKS(Fn) ≥ cα,n, where cα,n is the solution ofP(KS(Ln) ≥ cα,n) = α,
while the p-value is p = P(KT(Ln) ≥ KT(Fn)). Simulating from L does not ensure a con-
servative behaviour, as inTheorem4.1, although even in some critical IOR cases, numerical
evidence shows that the type-I error of KS is always smaller than α (as reported in the next
subsection). Moreover, the test is consistent against non-IOR alternatives, as established
by the following theorem. The proof is omitted because it can be obtained using the same
arguments as in the proof of Theorem 3 of Lando (2022).

Theorem 4.3: UnderH1, limn→∞ P(KS(Fn) > cα,n) = 1.

Similarly to what has been discussed in the previous subsection, one may replace the
sup-norm with a different type of distance between F̃n and Fn, and the corresponding test
would still be consistent.

4.3. Simulations

We compare the performance of the two tests proposed simulating from some popular
parametric families of distributions. As these tests are scale invariant, we set the scale
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Figure 5. Rejection rates (displayed on the x-axis) at the level α = 0.1 of KS (solid) and KT (dashed)
under particular distributional assumptions. The first row shows that the type-I error of both tests is
below α, as the LL distribution is IOR for a ≥ 1 (the value of a is displayed on the y-axis).

parameters to 1. Some special cases of interest are (i) IOR models, (ii) decreasing OR
(DOR) models, (iii) non-monotone OR models. As for (i), we consider the LL(a), with
shape parameter a ranging in the interval [1, 1.2].With regard to (ii), we consider the LL(a)
with a ∈ [0.7, 1). These cases are especially difficult to detect because, for a = 1, the OR
is constant. As for (iii), we consider the W(a) with shape parameter a ∈ [0.3, 0.8], which
exhibits a decreasing–increasing OR for a<1; the B2 distribution, which has an increas-
ing–decreasing OR for a<1 and b>1, (thus we consider b = 2, a ∈ [0.3, 0.7]); and the
Birnbaum–Saunders (BS) distribution with CDF
( 1a (

√
x − 1√

x )), x, a>0 (
 denotes the
standard normal CDF), which has an increasing–decreasing–increasing OR for a ∈ [2, 4]
(this is especially critical to detect for smaller values of a). The results are reported in
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Figure 6. Simulated sample (n = 50) from the non-IOR CDF F5,1. Tn and (Tn) on the left side;Fn and F̃n
on the right side. In both cases, the two estimators (constrained and unconstrained) diverge for quantile
values larger than 0.2, approximately.

Figure 7. Plots of Fn (step function) and F̃n.

Figure 5, which show the rejection rates at level α = 0.1, corresponding to 500 simula-
tion runs. The plots show that the performance of the tests is very similar when H0 is
true (LL(a) with a ≥ 1) and against DOR alternatives (LL(a) with a ≤ 1). In particular,
it can be seen that, for both tests, in the IOR case the simulated type-I error probability
is always bounded by α, whereas, in the DOR case, the simulated power is always greater
than α. About KT, this is formally established by Theorem 4.1, which represents an advan-
tage. However, it can be seen from Figure 5 that KS remarkably outperforms KT when F
has a non-monotone OR, which is typically the most critical case to detect. For both tests,
the simulated power increases with the sample size, confirming the consistency properties
established in Theorem 4.2 and Theorem 4.3.

To illustrate the behaviour of KT and KS under non-IOR alternatives, we also consider
the following CDF,

Fa,b(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xa

xa + 1
0 < x ≤ 1,

xb

xb + 1
x > 1,

a, b > 0.
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For a, b ≥ 1, the OR of this distribution is increasing almost everywhere; however, for
a>b, it has a downward jump at x = 1, so that Fa,b cannot be IOR. Figure 6 shows the
remarkable distance between Tn and (Tn), and between Fn and F̃n, for a simulated sample
of size 100 from F5,1. In both cases, these large distances lead to the rejection ofH0.

4.4. An example

Nelson (2003, p. 105) provides a sample of 19 times to breakdown of an insulating fluid
between electrodes at the voltage of 34 kV. By applying the test for the IHR property of
Lando (2022), we obtain an approximate p-value of 0.02, which leads to the rejection of
the IHR hypothesis. However, to test if the data conform to the ‘adverse ageing’ concept,
we may apply a test for the weaker IOR property, in particular, we obtain KT(Fn) = 0.21
andKS(Fn) = 0.14, and the corresponding approximate p-values are of 0.5 for KT and 0.42
for KS. These results provide some empirical evidence supporting the IOR null hypothesis,
and accordingly one may estimate the underlying distribution using F̃n, which is depicted
in Figure 7.

Acknowledgements

We are grateful to the two anonymous referees for their valuable comments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

T.L. was supported by the Italian funds ex MURST 60% 2021, by the Czech Science Foundation
(GACR) under project 20-16764S and VŠB-TU Ostrava under the SGS project SP2021/15. I.A.
and P.E.O. were partially supported by the Centre for Mathematics of the University of Coim-
bra UID/MAT/00324/2020, funded by the Portuguese Government through FCT/MCTES and
co-funded by the European Regional Development Fund through the Partnership Agreement
PT2020.

References

Ahmad, I.A. (1994), ‘A Class of Statistics Useful in Testing Increasing Failure Rate Average and New
Better Than Used Life Distributions’, Journal of Statistical Planning and Inference, 41(2), 141–149.
doi:10.2307/2335571

Barlow, R., Bartholomew, D., Bremner, J., and Brunk, H (1971), Statistical Inference Under Order
Restrictions, Wiley.

Barlow, R.E., and Proschan, F. (1969), ‘A Note on Tests for Monotone Failure Rate Based on Incom-
plete Data’, The Annals of Mathematical Statistics, 40(2), 595–600. doi:10.1214/aoms/1177697727

Barlow, R.E., and Van Zwet, W.R. (1969), ‘Asymptotic Properties of Isotonic Estimators for the
Generalized Failure Rate Function. Part 1: Strong Consistency’. Technical Report. California
University Berkeley Operations Research Center.

Bickel, P. (1969), ‘Tests for Monotone Failure Rate II’, The Annals of Mathematical Statistics, 40(4),
1250–1260. www.jstor.org/stable/2239590.

Bickel, P.J., and Doksum, K.A. (1969), ‘Tests for Monotone Failure Rate Based on Normalized Spac-
ings’, The Annals of Mathematical Statistics, 40(4), 1216–1235. doi:10.1214/aoms/1177697498

https://doi.org/10.2307/2335571
https://doi.org/10.1214/aoms/1177697727
https://doi.org/10.1214/aoms/1177697498


JOURNAL OF NONPARAMETRIC STATISTICS 19

Deshpande, J.V. (1983), ‘A Class of Tests for Exponentiality Against Increasing Failure Rate Average
Alternatives’, Biometrika, 70(2), 514–518. doi:10.2307/2335571

Dümbgen, L., and Rufibach, K. (2009), ‘Maximum Likelihood Estimation of a Log-Concave Den-
sity and its Distribution Function: Basic Properties and Uniform Consistency’, Bernoulli, 15(1),
40–68. doi:10.3150/08-BEJ141

Dümbgen, L., and Rufibach, K. (2016), Package ‘logcondens’.
Durot, C. (2008), ‘Testing Convexity Or Concavity of a Cumulated Hazard Rate’, IEEE Transactions

on Reliability, 57(3), 465–473. doi:10.1109/TR.2008.928181
El Barmi, H., Malla, G., and Mukerjee, H. (2021), ‘Estimation of a Distribution Function with

Increasing Failure Rate Average’, Journal of Statistical Planning and Inference, 213, 179–192.
doi:10.1016/j.jspi.2020.09.002

Galambos, J., and Kotz, S. (2006),Characterizations of Probability Distributions.: A Unified Approach
with An Emphasis on Exponential and Related Models (Vol. 675), Springer.

Gijbels, I., and Heckman, N. (2004), ‘Nonparametric Testing for a Monotone Hazard Function
Via Normalized Spacings’, Journal of Nonparametric Statistics, 16(3–4), 463–477. doi:10.1080/
10485250310001622668

Glaser, R.E. (1980), ‘Bathtub and Related Failure Rate Characterizations’, Journal of the American
Statistical Association, 75(371), 667–672. doi:10.1080/01621459.1980.10477530

Grenander, U. (1956), ‘On the Theory of Mortality Measurement: Part II’, Scandinavian Actuarial
Journal, 1956(2), 125–153. doi:10.1080/03461238.1956.10414944

Groeneboom, P., and Jongbloed, G. (2012), ‘Isotonic L2-projection Test for Local Monotonic-
ity of a Hazard’, Journal of Statistical Planning and Inference, 142(7), 1644–1658. doi:10.1016/
j.jspi.2012.02.004

Groeneboom, P., and Jongbloed, G. (2014),Nonparametric Estimation Under Shape Constraints (Vol.
38), Cambridge University Press.

Hall, P., and Van Keilegom, I. (2005), ‘Testing for Monotone Increasing Hazard Rate’, Annals of
Statistics, 33, 1109–1137. doi:10.1214/009053605000000039

Haupt, E., and Schäbe, H. (1997), ‘The TTT Transformation and a New Bathtub Distribution
Model’, Journal of Statistical Planning and Inference, 60(2), 229–240. doi:10.1016/S0378-3758(97)
89710-8

Hjorth, U. (1980), ‘A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-
shaped Failure Rates’, Technometrics, 22(1), 99–107. doi:10.2307/1268388

Kochar, S.C. (1985), ‘Testing Exponentiality Against Monotone Failure Rate Average’, Communica-
tions in Statistics – Theory and Methods, 14(2), 381–392. doi:10.1080/03610928508828919

Lando, T. (2022), ‘Testing Departures From the Increasing Hazard Rate Property’, Statistics &
Probability Letters, 173, 109736. doi:10.1016/j.spl.2022.109736

Lando, T., Arab, I., and Oliveira, P.E. (2022a), ‘Properties of Increasing Odds Rate Distribu-
tions with a Statistical Application’, Journal of Statistical Planning and Inference, 221, 313–325.
doi:10.1016/j.jspi.2022.05.004

Lando, T., Arab, I., and Oliveira, P.E. (2022b), ‘Transform Orders and Stochastic Monotonicity of
Statistical Functionals’. Scandinavian Journal of Statistics (to appear).

Link,W.A. (1989), ‘Testing for Exponentiality Against Monotone Failure Rate Average Alternatives’,
Communications in Statistics – Theory andMethods, 18(8), 3009–3017. doi:10.1080/03610928908
830073

Marshall, A.W., and Olkin, I. (2007), Life Distributions (Vol. 13), Springer.
Marshall, A.W., and Proschan, F. (1965), ‘Maximum Likelihood Estimation for Distributions

with Monotone Failure Rate’, The Annals of Mathematical Statistics, 36(1), 69–77. doi:10.1214/
aoms/1177700271

Nelson, W.B. (2003), Applied Life Data Analysis (Vol. 521), John Wiley & Sons.
Prakasa Rao, B. (1970), ‘Estimation for Distributions with Monotone Failure Rate’, The Annals of

Mathematical Statistics, 41(2), 507–519. doi:10.1214/aoms/1177697091
Proschan, F., and Pyke, R. (1967), ‘Tests forMonotone Failure Rate’, in: Fifth Berkley Symposium, pp.

293–313.
Robertson, T., Wright, F.T., and Dykstra, R.L. (1988), Order Restricted Statistical Inference, Wiley.

https://doi.org/10.2307/2335571
https://doi.org/10.3150/08-BEJ141
https://doi.org/10.1109/TR.2008.928181
https://doi.org/10.1016/j.jspi.2020.09.002
https://doi.org/10.1080/10485250310001622668
https://doi.org/10.1080/01621459.1980.10477530
https://doi.org/10.1080/03461238.1956.10414944
https://doi.org/10.1016/j.jspi.2012.02.004
https://doi.org/10.1214/009053605000000039
https://doi.org/10.1016/S0378-3758(97)89710-8
https://doi.org/10.2307/1268388
https://doi.org/10.1080/03610928508828919
https://doi.org/10.1016/j.spl.2022.109736
https://doi.org/10.1016/j.jspi.2022.05.004
https://doi.org/10.1080/03610928908830073
https://doi.org/10.1214/aoms/1177700271
https://doi.org/10.1214/aoms/1177697091


20 T. LANDO ET AL.

Rojo, J., and Samaniego, F.J. (1994), ‘Uniform Strong Consistent Estimation of an Ifra Distribution
Function’, Journal of Multivariate Analysis, 49(1), 150–163. doi:10.1006/jmva.1994.1019

Schäbe, H. (1994), ‘Constructing Lifetime Distributions with Bathtub Shaped Failure Rate From
DFR Distributions’,Microelectronics Reliability, 34(9), 1501–1508. doi:10.1016/0026-2714(94)90
458-8

Shaked, M., and Shanthikumar, J.G. (2007), Stochastic orders. Springer Series in Statistics.
Tenga, R., and Santner, T.J. (1984), ‘Testing Goodness of Fit to the Increasing Failure Rate Family’,

Naval Research Logistics Quarterly, 31(4), 617–630. doi:10.1002/nav.3800310411
Topp, C.W., and Leone, F.C. (1955), ‘A Family of J-shaped Frequency Functions’, Journal of the

American Statistical Association, 50(269), 209–219. doi:10.2307/2281107
Van Zwet, W.R. (1964), Convex Transformations of Random Variables, MC Tracts.
Wang, J.L. (1987), ‘Estimating IFRA and NBU Survival Curves Based on Censored Data’, Scandina-

vian Journal of Statistics, 14, 199–210. www.jstor.org/stable/4616063
Wells, M.T., and Tiwari, R.C. (1991), ‘A Class of Tests for Testing an Increasing Failure-Rate-

Average Distribution with Randomly Right-Censored Data’, IEEE Transactions on Reliability,
40(2), 152–156. doi:10.1109/24.87116

https://doi.org/10.1006/jmva.1994.1019
https://doi.org/10.1016/0026-2714(94)90458-8
https://doi.org/10.1002/nav.3800310411
https://doi.org/10.2307/2281107
https://doi.org/10.1109/24.87116

	1. Introduction
	2. The IOR property
	3. An IOR estimator
	3.1. Simulations
	3.2. Smoothed estimators

	4. Tests for the IOR property
	4.1. A test based on the convexity of T
	4.2. A test based on F"0365Fn
	4.3. Simulations
	4.4. An example

	Acknowledgements
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


