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1. Introduction

The relativistic Toda lattice was introduced by S. N. Ruijsenaars [13] and
was investigated in [1], [11], [12], [2] and [9]. In terms of canonical coordinates
the relativistic Toda lattice is defined by the Hamiltonian

H(q1, . . . , qN , p1, . . . , pN ) =
N
∑

j=1

epjf(qj−1 − qj)f(qj − qj+1) , (1)

where f(x) =
√

1 + g2ex and, by convention, q0 = −∞, qN+1 = ∞. The
number g is a coupling constant. To see the connection with the non-
relativistic Toda lattice one writes the equation in Newtonian form

q̈j = g2q̇j

(

q̇j−1 e(qj−1−qj)

1 + g2e(qj−1−qj)
− q̇j+1 e(qj−qj+1)

1 + g2e(qj−qj+1)

)

, (2)

j = 1, 2, . . . , N . Setting q̇j = Q̇j + c and letting c → ∞ and g → 0 in such a
way that gc = 1, one obtains the equations of motion for the classical Toda
lattice

Q̈j = eQj−1−Qj − eQj−Qj+1 . (3)
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In the classical case one uses a change of variables to prove integrability. We
follow the same technique. Combining the changes of variables from [13], [1],
we set

aj = g2eqj−qj+1+pjf(qj−1 − qj)/f(qj − qj+1)
bj = q̇j − aj

(4)

In these variables the Hamiltonian is homogeneous quadratic and the equa-
tions of motion become

{

ȧi = ai(bi+1 − bi + ai+1 − ai−1)

ḃi = bi(ai − ai−1),
(5)

where i = 1, . . . , N and, by convention, a0 = aN = 0.
Following [2] we write these equations in Lax pair form (L, M) where

L =



















a1 + b1 a1 0 · · · · · · 0
a2 + b2 a2 + b2 a2 0 · · · 0
a3 + b3 a3 + b3 a3 + b3 a3 · · · 0

... . . . . . . ...

aN−1 + bN−1 · · · . . . aN−1 + bN−1 aN−1

bN bN · · · · · · bN



















(6)

and

M =



















0 a1 0 · · · · · · 0

0 −a1 a2 · · ·
...

0 0 −a2 a3 · · ·
... . . . . . . . . . ...
... . . . . . . aN−1

0 · · · · · · 0 −aN−1



















. (7)

This shows that the functions H̄n−1 = 1
n
Tr Ln are constants of motion and

therefore the system is integrable.

In the new coordinates aj, bj the symplectic bracket is transformed into a
new quadratic Poisson bracket defined as follows:
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{ai, ai+1} = −aiai+1

{ai, bi} = aibi

{ai, bi+1} = −aibi+1 .
(8)

All other brackets are zero. This bracket has detL =
∏N

i=1 bi as Casimir, and
the eigenvalues of L are in involution. We denote this bracket by π1. We
next define a linear bracket π0 as follows:

{ai, bi} = ai

{ai, bi+1} = −ai

{bi, bi+1} = ai .
(9)

All other brackets are zero. In this bracket Tr L is the Casimir and H̄1 =
1
2Tr L2 is the Hamiltonian. Therefore we have a bi-Hamiltonian system, a sit-
uation similar to the classical case. The bi-Hamiltonian formulation and the
complete integrability of this system were established using different methods
such as the Lax representation [2], master symmetries [11], [2] and recursion
operators [1], [11]. Another approach to obtain the multi-Hamiltonian for-
mulation for the relativistic Toda lattice, using Oevel’s theorem [10] and
based on a method introduced by Das and Okubo [5] and Fernandes [6], was
adopted in [9]. In that work a recursion operator is defined in the (q, p)
space, the resulting sequence of Poisson tensors, master symmetries and in-
variants are then projected in the space of (a, b) variables to construct the
usual multi–Hamiltonian hierarchies. The initial brackets of the hierarchy
are π0 and π1 constructed above.

In this paper we extend to negative values of the index the usual hierar-
chies of Poisson tensors, master symmetries and Hamiltonians, for the finite
nonperiodic relativistic Toda lattice. The extension is obtained in natural
(p, q) coordinates and also in (a, b) Flaschka coordinates. This procedure
was already adopted in [3] for the finite non–periodic Toda lattice and we
mimic the techniques of that paper. As was pointed out in [3] the negative
hierarchy was proven useful, for example, in establishing the bi–Hamiltonian
formulation of the Bogoyavlensky–Toda systems [4].

The paper is divided into 2 parts. In the first part (section 2) we recall
the main results on the finite, nonperiodic relativistic Toda lattice, including
the well-known positive hierarchies of Poisson tensors, master symmetries
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and Hamiltonians. In section 3 we introduce the negative relativistic Toda
hierarchy, in (p, q) and (a, b) coordinates, and show that the relations between
master symmetries, Poisson tensors and Hamiltonians, known for the positive
hierarchies, hold for all integers values of the index, in both coordinates. We
close with some additional results and give, for small dimensions, examples
of the rational brackets and master symmetries.

2. The Relativistic Toda Lattice

We recall a theorem due to Oevel [10] that gives a method of generating
master symmetries for non-degenerate bi-Hamiltonian systems.

Let (M, Λ0, Λ1) be a non-degenerate bi-Hamiltonian manifold with a recur-
sion operator R = Λ1Λ

−1
0 and let Y1 = Λ0∇H1 = Λ1∇H0 be a bi-Hamiltonian

vector field on M , where Λi denotes also the matrix of the Poisson tensor Λi.
We denote by Yi the Hamiltonian vector field Λi∇H0.

Theorem 2.1. Suppose that the vector field X0 is a conformal symmetry for
both Λ0, Λ1 and H0. i.e., for some scalars α, β, and γ we have

LX0
Λ0 = αΛ0, LX0

Λ1 = βΛ1, X0(H0) = γH0 . (10)

Then the vector fields Xi = RiX0 are master symmetries, the tensors Λi =
RiΛ0 are Poisson and we have, for i, j = 0, 1, 2, . . .

(a) [Xi, Xj] = (β − α)(j − i)Xi+j;

(b) [Xi, Yj] = (β + γ + (β − α)(j − 1))Yi+j;

(c) LXi
Λj = (β + (β − α)(j − i − 1))Λi+j;

(d) Xi(Hj) = (λ + (β − α)(j + i))Hi+j.

Let us now briefly recall some results on the relativistic Toda lattice follow-
ing [2], [9], [12]. We consider IR2N with coordinates (q1, . . . , qN , p1, . . . , pN ).
Let Λ0 be the Poisson tensor given by

Λ0 =
N
∑

i=1

e−pi
∂

∂qi
∧

(

∂

∂pi

+
N
∑

j=i+1

∂

∂qj

)

+
N−1
∑

i=1

eqi−qi+1−pi+1

((

∂

∂pi

+
∂

∂qi+1

)

∧

(

∂

∂pi+1
+

N
∑

j=i+2

∂

∂qj

)

−
∂

∂pi+1
∧

N
∑

j=i+2

∂

∂qj

)

, (11)
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and Λ1 be the canonical Poisson tensor,

Λ1 =
N
∑

i=1

∂

∂qi
∧

∂

∂pi

. (12)

In [9] it was proved that these Poisson tensors are compatible and also that
X = Λ0∇H1 = Λ1∇H0 is a bi-Hamiltonian vector field, with

H0 =
N
∑

i=1

(

eqi−qi+1+pi + epi

)

, (13)

and

H1 =
N
∑

i=1

(

1

2

(

eqi−qi+1+pi + epi

)2

+ eqi−1−qi+pi−1

(

eqi−qi+1+pi + epi

)

)

. (14)

By convention, q0 = −∞ and qN+1 = +∞.
Consider the Flaschka-type transformation F : IR2N → IR2N−1 [12], [9],

F : (q1, . . . , qN , p1, . . . , pN) 7→ (a1, . . . , aN−1, b1, . . . , bN), (15)

where ai = eqi−qi+1+pi and bi = epi. These are new coordinates in IR2N−1.
The Poisson tensors Λ0 and Λ1 project by F onto bivectors on IR2N−1,

π0 =
N−1
∑

i=1

ai

(

∂

∂ai

∧

(

∂

∂bi

−
∂

∂bi+1

)

+
∂

∂bi

∧
∂

∂bi+1

)

(16)

and

π1 =

N−1
∑

i=1

ai

∂

∂ai

∧

(

−ai+1
∂

∂ai+1
+ bi

∂

∂bi

− bi+1
∂

∂bi+1

)

. (17)

These are the Poisson tensors that we defined earlier and they provide a
bi-Hamiltonian structure for the relativistic Toda lattice, with Hamiltonians
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H̄0 =
N
∑

i=1

(ai + bi) and H̄1 =
N
∑

i=1

(ai−1(ai + bi) +
1

2
(ai + bi)

2), (18)

where, by convention, a0 = aN = 0. For i ≥ 0, H̄i = 1
i+1trL

i+1 are constants
of motion. The Poisson bracket associated with π0, which is linear, is the
one given by (9), while the Poisson bracket corresponding to π1 is quadratic
and is given by (8).

Coming back to the natural (p, q) coordinates, since Λ0 (and also Λ1) is
non-degenerate, we can define a recursion operator R = Λ1(Λ0)

−1. Once
we have a recursion operator R, an infinite sequence of pairwise compatible
Poisson tensors on IR2N , Λi = RiΛ0, and an infinite sequence of Hamiltonians
Hi, given by dHi = tR(dHi−1) are obtained.

We take

X0 =
N
∑

i=1

∂

∂pi

, (19)

and compute

L(X0)Λ0 = −Λ0, L(X0)Λ1 = 0 and X0(H0) = H0.

So Oevel’s theorem can be applied with α = −1, β = 0 and γ = 1 [9].
We quote the results for RTL, in natural (p, q) coordinates, in the following
theorem.

Theorem 2.2. i) Λi = RiΛ0 are Poisson tensors, i ≥ 0;
ii) the functions Hi, i ≥ 0, are in involution with respect to all Λj;
iii) Xi(Hj) = (1 + i + j)Hi+j , i, j ≥ 0;
iv) LXi

Λj = (j − i − 1)Λi+j , i, j ≥ 0;
v) [Xi, Xj] = (j − i)Xi+j , i, j ≥ 0;
vi) Λj∇Hi = Λj−1∇Hi+1 , i ≥ 0, j ≥ 1.

The infinite sequence (Λi), i ∈ IN0, of higher order Poisson tensors on IR2N

reduce, by F , to an infinite sequence (πi), i ∈ IN0, of pairwise compatible
Poisson tensors on IR2N−1. Moreover, the master symmetries Xi = RiX0,
i ∈ IN, are projectable vector fields [9]. We denote by X̄i the projected
vector fields. A new version of theorem 2.2 in (a, b) coordinates holds:
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Theorem 2.3. i) πi are Poisson tensors, i ≥ 0;
ii) the functions H̄i, i ≥ 0, are in involution with respect to all πj;
iii) X̄i(H̄j) = (1 + i + j)H̄i+j , i, j ≥ 0;
iv) LX̄i

πj = (j − i − 1)πi+j , i, j ≥ 0;
v) [X̄i, X̄j] = (j − i)X̄i+j , i, j ≥ 0;
vi) πj∇H̄i = πj−1∇H̄i+1 , i ≥ 0, j ≥ 1.

We call the hierarchies of Poisson tensors, master symmetries and Hamil-
tonians given by theorems 2.2 and 2.3, in (p, q) and (a, b) coordinates respec-
tively, the positive relativistic Toda hierarchies.

3. The Negative RTL Hierarchy

Our aim is to show that the relations of theorems 2.2 and 2.3 hold for any
integer value of the index. For this purpose we define the negative relativistic
Toda hierarchy. When the tensors are projected into the (a, b) space we
obtain rational Poisson brackets. We imitate the techniques of [3].

Let N be the inverse of the positive recursion operator R,

N = R−1 = Λ0(Λ1)
−1,

which is given in matrix form by N =

(

A B
C AT

)

, where AT stands for the

transpose of A and the matrices A = (aij), B = (bij) and C = (cij), with
1 ≤ i, j ≤ N , are defined by















aij = 0, j < i

aii = e−pi + eqi−1−qi−pi

ai+1,i = eqi−1−qi−pi

ai+2,i = ai+3,i = · · · = aN,i = eqi−1−qi−pi − eq−qi+1−pi+1,
{

bij = −bji

bi+1,i = bi+2,i = · · · = bN,i = e−pi + eqi−1−qi−pi,

ci,i+1 = ci+1,i = eqi−qi+1−pi+1

and all the others entries cij are zero.
Let us denote by K0 the conformal symmetry X0,

K0 =
N
∑

i=1

∂

∂pi

= X0,
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and by Ki the vector fields Ki = N iK0, i = 0, 1, 2, . . . . These vector fields
are master symmetries.

We next apply Oevel’s theorem to the RTL, using the negative recursion
operator N and the conformal symmetry K0. Since

LK0
Λ1 = 0, LK0

Λ0 = −Λ0, K0(H1) = 2H1,

the constants are, in this case,

αN = 0, βN = −1, γN = 2.

We remark that, obviously, αN = β and βN = α.
Using the convention X−i = Ki, for i ≥ 0, we compute

[X−i, X−j] = [Ki, Kj] = (βN − αN )(j − i)Ki+j = (i − j)X−i−j ,

and letting m = −i and n = −j, we obtain

[Xm, Xn] = (n − m)Xm+n, m, n ∈ ZZ−. (20)

The same relation holds in (a, b)-coordinates:

[X̄m, X̄n] = (n − m)X̄m+n, m, n ∈ ZZ−. (21)

Consider the following equalities (see [10]) which involve the recursion op-
erator R and its inverse N ,

LX0
R = LX0

(Λ1Λ
−1
0 ) = (β − α)R, (22)

LX0
N = LX0

R−1 = (α − β)R−1 = (α − β)N . (23)

Using these relations we obtain, for j ∈ IN,

LX0
Rj = j(β − α)Rj and LX0

N j = j(α − β)N j. (24)

Also, taking into account that R and N are torsionless tensors, we have, for
any vector field X,

LN iXR
j = N i(LXR

j), i, j ∈ IN. (25)
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Relations (22)-(25) allow us to compute the bracket of two master symmetries
Ki = X−i and Xj, one in the negative hierarchy and the second in the positive
one [3]. The result is

[X−i, Xj] = [N iX0,R
jX0] = (j + i)(β − α)Xj−i. (26)

In the case of the RTL, with α = 1 and β = 0, (26) turns to

[X−i, Xj] = (j + i)Xj−i. (27)

This relation also holds in (a, b)-coordinates and we conclude that (20) and
(21) hold for any integer value of the index.

We can establish the following theorem.

Theorem 3.1. The conclusions of Theorems 2.2 and 2.3 hold for any integer
value of the index.

Proof : The conditions i) and ii) of theorem 2.2 are a direct consequence of
Oevel’s theorem and the properties of the recursion operators R and N [8].
The map F being a Poisson morphism, i) of theorem 2.3 follows from i) of
theorem 2.2. The proof of ii) of theorem 2.3 is the same as the corresponding
in the case of Toda system [3].

Regarding condition iii) of theorem 2.2, the only case we have to verify is
X−j(Hi), with i, j > 0. Consider i ≥ j (the other case is similar),

X−j(Hi) = 〈tRi(dH0),N
jX0〉 = 〈dH0,R

i−j〉

= Xi−j(H0) = (1 + i − j)Hi−j.

To prove condition iii) of theorem 2.3, involving the master symmetries
X̄i, the arguments used in [3] in the case of the (classical) Toda lattice, can
be applied for the RTL to prove that if λ is an eigenvalue of the matrix L, the
equation X̄n(λ) = λn+1 holds for n ∈ ZZ. With H̄j = 1

j+1trL
j+1, we obtain,

for n < 0, j ≥ 0 and j 6= −1 − n,

X̄n(H̄j) =
1

j + 1

N
∑

k=1

X̄n(λ
j+1
k )

= (1 + n + j)H̄n+j ;
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we conclude that

X̄n(H̄m) = (1 + m + n)H̄n+m (28)

holds for any n, m ∈ ZZ.
Let us now show that conditions iv) of theorems 2.2 and 2.3 hold for

negative indices. We set Wj = Λ1−j and for i, j ≥ 0, we compute, using
Oevel’s theorem,

LX
−i

Λ−j = LKi
W1+j = (βN + (βN − αN )(j − i))W1+j+i

which gives,

LX
−i

Λ−j = (−1 + i − j)Λ−i−j .

Letting m = −i and n = −j, we obtain

LXm
Λn = (n − m − 1)Λm+n, m, n ∈ ZZ−. (29)

Finally, using the same technique as before, we can compute LX
−i

Λj, i, j ≥
0, and we conclude that (29) holds for all m, n ∈ ZZ.

Switching to (a, b)-coordinates, we obtain

LX̄m
πn = (n − m − 1)πm+n, m, n ∈ ZZ. (30)

The condition v) of both theorems was already proved. Finally, the proofs
of vi) of theorems 2.2 and 2.3 are similar to those in the case of the Toda
system, see [3].

Remark 3.2. As it was remarked in [3], H̄n = 1
n+1trL

n+1 is undefined for

n = −1. We have X̄−1(H̄0) = N and, more generally, X̄−n(H̄n−1) = N . If we
define

X̄m(H̄−1) = lim
n→−1

(X̄m(H̄n)),

then
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X̄m(H̄−1) = lim
n→−1

((1 + m + n)H̄n+m)

= mH̄m−1.

Let us now show that the master symmetries Xn, n ∈ ZZ, can be obtained
once the hierarchy of Poisson tensors is known. In other words, we will show
that all Xn are Hamiltonian vector fields associated with the same function
f , w.r.t. the Poisson tensors of the hierarchy.

Consider the function f =
N
∑

i=1

qi. Then Xn(f) = 0, for all n ∈ ZZ. In fact,

X0(f) =
N
∑

i=1

∂f

∂pi

= 0

and since X1 = RX0 is given by [9]

X1 =
N
∑

i=1

(

(1 − i)
(

eqi−qi+1+pi + epi

)

+
N
∑

j=i+1

(

eqj−qj+1+pj + epj

)) ∂

∂qi

+

N
∑

i=1

(

epi + i eqi−qi+1+pi + (2 − i)eqi−1−qi+pi−1

) ∂

∂pi

,

where, by convention, q0 = −∞ and qn+1 = +∞, we compute

X1(f) =
n
∑

i=1

(

(1 − i)
(

eqi−qi+1+pi + epi

)

+
n
∑

j=i+1

(

eqj−qj+1+pj + epj

))

= 0.

Similarly, one proves that X2(f) = 0. By induction we prove that Xn(f) = 0,
for all n ∈ IN: if Xn−1(f) = 0, then

Xn(f) =
1

n − 2
[X1, Xn−1](f)

=
1

n − 2
(X1(Xn−1(f)) − Xn−1(X1(f)))

= 0.
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For the negative hierarchy of master symmetries, the proof is similar, with
X−n = Kn. The vector field X−1 = K1 is given by

X−1 =
N
∑

i=1

(

i−1
∑

j=1

(e−pj + eqj−1−qj−pj) + (i − N)(e−pi + eqi−1−qi−pi)

)

∂

∂qi

+
N
∑

i=1

(

e−pi + (N + 1 − i)eqi−1−qi−pi + (1 + i − N)eqi−qi+1−pi+1

) ∂

∂pi

,

(31)

and we compute

X−1(f) =
N
∑

i=1

(

i−1
∑

j=1

(e−pj + eqj−1−qj−pj) + (i − N)(e−pi + eqi−1−qi−pi)

)

= 0.

Now, we remark that X0 =

N
∑

i=1

∂

∂pi

is the Hamiltonian vector field of f with

respect to Λ1, i.e. X0 = −[Λ1, f ], where [, ] stands for the Schouten bracket
[7]. Next, we show that every master symmetry Xn is an Hamiltonian vector
field of f .

Proposition 3.3. For any n ∈ ZZ, Xn = −[Λn+1, f ].

Proof : We proceed by induction, starting with the positive hierarchy (n ∈
IN0). For n = 0, we compute

−[Λ1, f ] = −
N
∑

i,j=1

[
∂

∂qi
∧

∂

∂pi

, qj] = X0.

If Xn−1 = −[Λn, f ], then

Xn =
1

n − 2
[X1, Xn−1]

= −
1

n − 2
[X1, [Λn, f ]].

Using the generalized Jacobi identity for the Schouten bracket [7], we obtain
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Xn = −
1

n − 2
[f, [X1, Λn]]

= −
1

n − 2
[LX1

Λn, f ]

= −[Λn+1, f ].

If n < 0, the proof is similar.

Remark 3.4. In a similar way, it is easy to prove that the Hamiltonians Hi

are also determined from the knowledge of the Poisson brackets associated
with (Λi), n ∈ ZZ and the function f .

Next we exhibit, in (a, b)-coordinates, some rational Poisson brackets and
master symmetries of the negative relativistic Toda hierarchy. We present
the case N = 3, in order to simplify the notation. The bracket corresponding
to the Poisson tensor π−1 on IR2N−1, which is the projection of Λ−1 (by F ),
is the following:

{a1, a2}−1 =
1

b1b2b3
a1a2(b1 − b2 + b3)

{a1, b1}−1 =
1

b1b2b3
a1(b2b3 + a1b3)

{a1, b2}−1 =
1

b1b2b3
(a1a2(b2 − b1) − a1b3(a1 + b1))

{a1, b3}−1 =
1

b1b2b3
(−a1a2b3)

{a2, b1}−1 =
1

b1b2b3
a1a2b1

{a2, b2}−1 =
1

b1b2b3
(a2b1(a2 + b3) + a1a2(b3 − b2))

{a2, b3}−1 =
1

b1b2b3
a2b1(−a2 − b2)

{b1, b2}−1 =
1

b1b2b3
(a1b1(a2 + b3) + a1b3(a1 + b2))

{b2, b3}−1 =
1

b1b2b3
(a2b1(a2 + b3) + a1a2b3 + a2b1b2).
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The denominator b1b2b3 is equal to det L, where L is the matrix (6) of the
Lax pair (L, M). So the Poisson tensor π−1 is defined on the open dense set
det L 6= 0.

The vector field X−1 in (p, q)-coordinates is given by (31). The expression
of X−2 in the same coordinates is quite complicated. The projections of X−1

and X−2 in (a, b) coordinates, for N = 3, are the following:

X−1 = (−
2a1

b1
+

a1

b2
)

∂

∂a1
−

a2

b2

∂

∂a2
+ (1−

a1

b2
)

∂

∂b1
+ (1 +

2a1

b1
)

∂

∂b2
+ (1 +

a2

b2
)

∂

∂b3

and

X−2 =
2
∑

i=1

ui

∂

∂ai

+
3
∑

i=1

vi

∂

∂bi

with

u1 = −
2a1

b2
1

+
a1

b2
2

−
2a1

b1b2
−

2a2
1

b2
1b2

+
a2

1

b1b2
2

+ (
a1

b3
+

a1a2

b2b3
)(

1

b2
−

1

b1
)

u2 = −
a2

b2
2

+
a2

b1b2
(1 −

a1

b2
) −

a2

b2b3
(2 +

a2

b2
) −

a2

b1b3
(1 +

a1

b2
)

v1 =
1

b1
−

a1

b2
2

−
a2

1

b1b2
2

−
a1

b2b3
−

a1a2

b2
2b3

v2 =
2a1a2

b1b2b3
+

a1 + a2

b1b3
+

a1

b1b2
+

a2

b2b3
+

a2
1

b2
1b2

+
2a1

b2
1

+
1

b2
(1 +

a1

b1
)2

v3 = −
a2

b1b2
+

a1a2

b1b2
2

+
a2

b2
2

+
1

b3
(1 +

a2

b2
)2.

The function detL = b1b2b3 is a Casimir of π1. On the other hand, trL =
H0 is a Casimir of π0. More generally, we can prove:

Proposition 3.5. The function trL1−n is a Casimir of πn, for all n ∈ ZZ\{1}.

Proof : For n = 2, the technique of [2] (p. 5525) can be applied word for
word to show that trL−1 is a Casimir of π2, i.e. π2∇(trL−1) = 0. But
trL−1 = −H−2. So we get π2∇H−2 = 0.

By theorem 2.3,



THE NEGATIVE RELATIVISTIC TODA AND RATIONAL POISSON BRACKETS 15

0 = π2∇H−2 = π3∇H−3 = . . .

and the result is proved for all n > 1. For n = 0, as we already remarked,
trL = H0 is a Casimir of π0. So, π0∇H0 = 0 and using again the Lenard
relations of theorem 2.3, we obtain

0 = π0∇H0 = π−1∇H1 = π−2∇H2 . . .

and the result is proved for n < 1.
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