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Role of the EEG Theta Network During Software
Production: A Connectivity Study

A. Calcagno , S. Coelli , C. Amendola, I. Pirovano , R. Re , J. Medeiros , P. Carvalho ,
H. Madeira , and A. M. Bianchi , Senior Member, IEEE

Abstract— Software programming is an acquired evo-
lutionary skill originating from consolidated cognitive
functions (i.e., attentive, logical, coordination, mathematic
calculation, and language comprehension), but the under-
lying neurophysiological processes are still not com-
pletely known. In the present study, we investigated
and compared the brain activities supporting realistic
programming, text and code reading tasks, analyzing Elec-
troencephalographic (EEG) signals acquired from 11 expe-
rienced programmers. Multichannel spectral analysis and a
phase-based effective connectivity study were carried out.
Our results highlighted that both realistic programming and
reading tasks are supported by modulations of the Theta
fronto-parietal network, in which parietal areas behave
as sources of information, while frontal areas behave as
receivers. Nevertheless, during realistic programming, both
an increase in Theta power and changes in network topol-
ogy emerged, suggesting a task-related adaptation of the
supporting network system. This reorganization mainly
regarded the parietal area, which assumes a prominent role,
increasing its hub functioning and its connectivity in the
network in terms of centrality and degree.
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I. INTRODUCTION

EVERYDAY life and work activities require the brain to
perform complex functions, such as paying attention,

acquire and process complex information, design targeted
responses, plan and execute actions. Neuroergonomics is a
branch of the cognitive neuroscience research that focuses on
the study of the human brain in everyday-life scenarios. One of
its goals is the implementation of new technologies to optimize
the efficiency and productivity of workers by continuously
monitoring their physiological responses and mental state
[1], [2]. A popular application lies in the context of software

engineering, in which, nowadays, industries worldwide are
investing [3], [4], [5].

The idea is that by understanding the neural mechanisms
supporting software development processes, it could be pos-
sible to recognize error-prone scenarios and, consequently,
to provide code optimization strategies and minimize the
cost of software faults (bugs) [5]. It is worth noting that
software development represents one of the largest industrial
sectors in the world, not only because software development
companies are among the biggest companies, but also due
to the transversal nature of software, which makes soft-
ware a necessary element in many other activity sectors.
Even a modest improvement in the efficiency and quality
of software production will have a huge impact in society.
Nevertheless, poor and scattered literature exist about this
specific topic [6]. Software programming is a cognitive skill
recently learned by humans and its neural basis are still not
completely explored and understood. Most of the existing
studies are based on functional magnetic resonance (fMRI) and
investigate the brain areas involved in software development.
Usually, a single activity is studied, such as code inspection
and comprehension [6]. A common finding is the involvement
of fronto-parietal areas during programming tasks, but some
differences in activation patterns are reported depending on
the specific task and experiment performed [7], [8], [9], [10].
Siegmund and colleagues showed, for example, that code
comprehension tasks, contrasted with syntax tasks, recruit the
same fronto-parietal and left lateralized areas associated to
working memory and language system, respectively [11], [12].
Krueger and colleagues [7] investigated the differences in
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brain mechanisms supporting prose and code writing, con-
cluding that this latter is associated to a right lateralization,
while prose production elicits a prominent activation of left
brain areas associated to the language system. Accordingly,
Ivanova et al. [8] suggested a distinction between networks
supporting software programming and the ones sustaining
language processing. Specifically, the authors observed that
code comprehension does not involve the language system
but elicits a bilateral activation of fronto-parietal domain-
general network, supporting working memory and cognitive
control. Hence, the most acknowledged hypothesis is that pro-
gramming abilities rely on pre-existing networks, historically
activated for more ancient cognitive tasks, and specialized
over the years. Software programming, indeed, involves dif-
ferent functions, such as working memory, problem-solving,
language (natural or code) comprehension and production,
mathematic calculation, and logic reasoning. Therefore, the
recruitment of the same or partially overlapping networks
supporting all these cognitive skills could be expected [9].
Nevertheless, trying to describe the brain mechanisms under-
lying the software programming process considering distinct
assignments, as done in the recent literature [6], could lead to
an oversimplification. Indeed, software programming in real
settings includes different tasks i.e., instructions reading and
comprehension, problem solving strategies, code writing and
debugging. It is therefore reasonable to expect a dynamic
recruitment of different brain networks [8].

To verify this hypothesis, we propose the use of Electroen-
cephalography (EEG) to monitor programmers’ brain activity
during a realistic programming assignment, while program-
mers are effectively developing code in a usual software
development setup (i.e., not just reading/ comprehending code
as in most studies in the literature [6]).

The majority of the few existing works investigating EEG
signals during code writing tasks are based on the extrac-
tion of standard pre-existing features for the classification
of outcome measures, such as task difficulty, programmers’
proficiency and cognitive workload [13], [14], [15], [16]. The
main EEG-based findings revealed that both Theta rhythms
and fronto-parietal networks are involved during programming
tasks, suggesting the recruitment of the working memory
(WM) system [17], [18].

Therefore, for the first time, to the best of our knowledge,
we present the exploration of brain connectivity reorganization
in the Theta band in function of different cognitive tasks:
natural language text reading, code reading and programming
(i.e., code writing). In order to obtain an experimental experi-
ence as similar as possible to real-life programming scenarios,
in the present study EEG traces were acquired during an
event-free realistic programming task.

In literature, a plethora of methodologies for the study
of EEG based brain connectivity exist, which are based on
different models and mathematical assumptions [19]. A first
distinction is between functional, which measures the strength
of the reciprocal connection among brain areas, and effective
connectivity, which also adds an information of direction-
ality. Effective connectivity can be explored by means of
either a multivariate or pairwise approach. The former can

better reconstruct complex connectivity pattern, but it implies
an increased model complexity [20] and difficult interpreta-
tion. Therefore, when a large number of network nodes are
recruited, the latter approach can be preferred. Even focusing
on a pairwise effective connectivity approach, the literature
offers a large variety of methods to choose from [21]. For
example, some information theory based metrics, such as the
Transfer Entropy [22], offer the possibility to explore nonlinear
brain directional couplings. Concerning linear methods, the
Granger causality (GC) is an example of widely used method
to explore pairwise effective connectivity [19], despite its vul-
nerability to volume conduction (VC) artifacts. For the present
study, the Phase Slope Index (PSI) [23] was chosen among all
the available possibilities. It is a pairwise effective connectivity
measure that has been proven robust against VC. PSI, indeed,
is computed starting from the imagery part of coherence, with
the aim of isolating only time-lagged interactions between
two time series. Therefore, the instantaneous synchronizations
mainly due to VC are neglected.

The present paper is divided in the following sections.
Section II, Materials and Methods, describes the considered
population, the experimental protocol adopted, and the meth-
ods used for the spectral and connectivity analysis. Section IV,
Results, summarizes the outcomes of the statistical analysis
performed on spectral and connectivity metrics. Section V,
Discussion, provides an interpretation of obtained results.
Finally, conclusions, remarks and future developments are
presented in Section V.

II. MATERIALS AND METHODS

A. Subjects
Electroencephalographic traces were collected from

11 healthy subjects with experience in software programming.
Participants were selected among researchers and students at
Politecnico di Milano and Università Statale di Milano. Their
eligibility and proficiency level were determined by means
of an ad-hoc designed screening questionnaire. This latter
consisted of multiple-choice questions about the functioning
of ten code snippets written in C language. To be part of the
study, volunteers had to correctly solve at least four questions
out of ten. Specifically, three females and eight males, with
mean age 27.72±6.06, were enrolled, 10 of them of native
Italian language, 1 of native Chinese language, but all of
them were fluent in English. All subjects signed an informed
consent, and their data were anonymized. The study was
approved by the Ethics Committee of Politecnico di Milano.

As a reward for participation, all subjects received a voucher
of 40 euros for online purchases at the end of the experiment.

B. Experimental Setup and Protocol
Physiological signal acquisitions were performed with the

SD LTM 64 express polygraph recording system (Micromed,
Mogliano Veneto, Italy), which uses an elastic EEG cap with
61 electrodes placed according an extension of the 10-20
international system [24]. EEG traces were acquired with a
sampling frequency of 256 Hz in monopolar configuration,
with the reference electrode placed between CPz and Pz.
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Twenty-nine electrodes were recorded in this study: Fp1,
Fpz, Fp2, AF3, AF7, AF4, AF8, F1, F2, F3, F4, F5, F6, F7,
F8, Fz, T3, T5, T4, T6, C3, C4, Cz, P3, Pz, P4, O1, Oz and O2.

During the whole experiment subjects were sit in front of a
PC screen, in a relaxed, dimly lit and silent environment [17].

The experimental protocol was organized in two runs, and
in each of them, participants performed three tasks: (1) natural
text reading, (2) code reading and (3) realistic programming.
These three tasks were presented in random order and inter-
spersed with a resting phase of 30 seconds, during which
a screen with a cross in the middle was presented to the
volunteer. The scheme of the described protocol is shown
in Fig. 1.

Specifically, during the natural text reading task, volunteers
had to read a text written in English language for 60 seconds.
The code reading task lasted 5 minutes and consisted in
the reading and comprehension of a code snippet written in
C language.

During the programming phase, volunteers had to develop
a code in C language following the instructions provided at
the beginning of the assignment. This task had a minimum
duration of 5 minutes, after which volunteers were allowed
to end the exercise any time before the maximum duration of
20 minutes.

At the end of each run, volunteers compiled an evaluation
form in which they were asked to rate the programming task
in terms of mental effort, task fulfillment, pressure over time
and discomfort.

The experiment was managed by means of a code in-house
written in MATLAB, while volunteers used the Eclipse IDE
for the programming tasks.

C. EEG Pre-Processing
The whole pre-processing pipeline was performed by means

of the EEGLab toolbox [25] and in-house MATLAB scripts.
Raw EEG signals were filtered with a zero-phase band-pass

FIR filter in the frequency range 1-45 Hz and then down-
sampled at 128 Hz. The order of the FIR filter was set to
ensure a suppression of - 6 dB at the cut-off frequencies. After
a visual inspection, noisy segments and bad channels were
removed from EEG traces. Then, Independent Component
Analysis (ICA) through Infomax algorithm [26] was executed.
The EEGLab plug-in ICLABEL [27] was used to support
the identification of artifactual sources [28]. Specifically, this
plug-in attributes to each component the probability of belong-
ing to seven main source classes: i) Brain, ii) Muscle, iii) Eye,
iv) Heart, v) Line Noise, vi) Channel Noise, and vii) Other.

After the removal of artifactual components, bad channels
interpolation was performed.

As a final step, a modified Common Average Reference
(CAR) was applied: the average signal was computed on
the 19 electrodes of the International 10/20 System and then
removed from all the 29 acquired traces to avoid possible
unbalancing due to the frontal lobe spatial oversampling.

D. Spectral Analysis
Thirty-second-long artifact free EEG segments were

extracted from the fixation phase (FIX), the natural text

reading and (NTR), code reading (CR) tasks, while three
different segments of equal length were extracted from the
programming task. Precisely, EEG segments at the start (P1),
in the middle (P2) and at the end (P3) of the task were consid-
ered. The stationarity of the considered segments was tested
performing the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test, using a p-value of 0.01 [29], [30].

The power spectral density of each segment was estimated
using the Welch’s method, with 1-second-length windows
hamming tapering and 50% overlap. EEG signals in each
window were normalized to zero mean and unitary variance.
Then, the relative power in the standard Theta frequency
bands (4-8 Hz) was computed for each electrode. Finally,
the percentage power variation with respect to the resting
condition (i.e., FIX) was computed for each task according
to equation (1):

1Ptask =
Ptask − P̄F I X

P̄F I X
× 100 (1)

where, Ptask is the power in the Theta band during the consid-
ered segment (i.e., NTR, CR, P1, P2 or P3), while P̄F I X is the
average power in the Theta band during FIX. Nine brain areas
were defined as clusters of EEG channels (TABLE I): Frontal
Right (FR), Frontal Left (FL), Fronto-Polar (FP), Frontal
Midline (FM), Temporal Right (TR), Temporal Left (TL),
Central (C), Parietal (P) and Occipital (O). For each brain area
the mean power value was computed averaging the values of
the associated channels.

E. Connectivity Analysis
Pairwise effective connectivity (EC) relations between each

couple of EEG channels were estimated using the Phase Slope
Index (PSI) [23].

The PSI is derived from the imaginary part of the complex
coherence and estimates the strength and the direction of infor-
mation flux between two time series i and j as in equation (2)

ψ̃i j = ℑ(
∑

f ∈F
C∗

i j ( f )Ci j ( f + δ f )) (2)

where Ci j is the complex coherence between electrodes i
and j , i as reference, C∗

i j its complex conjugate, ℑ (·) is the
operator that isolates the imagery part, δ f is the frequency
resolution, and F is the frequency band considered.

The coherence between pairs of EEG signals was computed
according to equation (3).

Ci j =
Si j ( f )

(Si i ( f )S j j ( f ))1/2
(3)

where Si j is the cross-spectrum between i and j, while Si i and
S j j are their auto-spectra. These were computed according
to the procedure described in paragraph II-D, i.e., by the
application of the Welch’s method using windows of 1 s
with 50% overlap, leading to a frequency resolution of 1 Hz.
Such window length allows to properly study brain mecha-
nisms in the Theta band, since assures the detection of at
least 4 cycles of the considered frequencies (a fundamental
frequency of 4 Hz is, indeed, associated to a period of
0.25 s). Moreover, it also allows to meet an acceptable
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Fig. 1. Scheme of the experimental protocol.

tradeoff among frequency resolution, variance associated to
spectral estimation, robustness of phase difference estimation
and the number of values averaged to compute the final PSI
in the frequency range F . The obtained connectivity matrix
is antisymmetric (i.e., ψ̃i j = −ψ̃i j ): positive values of PSI
indicate an information flow that goes from i to j (i.e., rows to
columns), while negative values are associated to the opposite
direction.

Moreover, the net flux index was computed for each node
starting from the PSI matrix as in equation (4):

ψnet (i, f ) =

∑
j
ψ̃i j ( f ) (4)

This metric considers all the inward and outward connections
of each node and indicates, on average, if it behaves as a
source (i.e., positive net flux) or as a sink (i.e., negative net
flux) of the network.

F. Network and Graph Analysis
As a first step, transformed connectivity matrices were

obtained setting at zero non-significant (Fig. 2B) and negative
values (Fig. 2C) and applying a final binarization (Fig. 2D)
Specifically, negative PSI values were set at zero in order to
remove redundant information. In this way, an antisymmet-
ric matrix of positive values is finally obtained, where the
directional information is maintained (i.e., information flux
directed from rows to columns). Significant connections (PSI
values between pairs of signals) were assessed performing a
surrogation test. For each couple of channels, 100 couples
of surrogates were obtained through the well-known phase
randomization method [31] and, for each of them, the PSI was
computed. Specifically, the Fourier Transform (FT) method
was used: i) the power spectra of each time series were com-
puted by means of the FT, ii) the modulus of the power spectra
was maintained, while the phases were randomized with values
in the range [−π; +π ] 100 times, iii) the 100 surrogates
were obtained by means of the inverse FT. For each pair of
channels, a null distribution of 100 PSI values was generated
by computing the index at each iteration of the surrogation

TABLE I
LIST OF THE NINE BRAIN REGIONS OF INTEREST IDENTIFIED FOR THE

ANALYSIS OF EEG METRICS AND THE ASSOCIATED CHANNELS

procedure. Then, the 95th percentile of such distribution was
used as significance threshold: all the connectivity measures
that were, in absolute value, lower than this threshold, were
set to zero. In the end, matrices of significant PSI values were
binarized, that is, each significant ψi j (connection directed
from i to j) were set to 1, the non-significant ones were set
to 0. Since the final matrix is positive and asymmetric, the
information of directionality is still maintained, i.e., a value
equal to 1 in correspondence of row i and column j identifies
a significant connection that goes from i to j. Finally, the
obtained transformed matrices were used for the computation
of reduced networks (RN) and the performance of Graph
theoretical analysis.

1) Reduced Networks: The transformed matrices were fur-
ther manipulated to obtain reduced networks (RNs): starting
from the 29 × 29 binarized matrix, 9 brain regions of interest
were identified and the significant connections among them
were further considered. Connections within each region were
discarded. Precisely, the nine regions are the ones listed in
TABLE I. The final result is a 9 × 9 connectivity matrix,
in which each node of the network is associated to a brain
region, while the links among them are obtained by averaging
the significant (1) and non-significant (0) connection values
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Fig. 2. Generation of the transformed connectivity matrix starting from the original adjacency matrix (A) by means of removal of non-significant
values (B), removal of negative values (C) and binarization (D). Adjacency matrices in panels A, B and C contain original PSI values in arbitrary
units, while the matrix in panel D contains binary values, i.e., 0 if no significant positive connection exists between I and j, 1 otherwise.

between the nodes belonging to each pair of regions. In this
way, the connectivity links were normalized between 0 and 1.
Moreover, in the computation of such matrices, the links
between couples of frontal regions and between the parietal
and the occipital regions were neglected because of their
spatial proximity. Reduced networks of run 1 and run 2 were
averaged for each subject.

2) Graph Analysis: The graph analysis was carried out
on the binarized 29 × 29 connectivity matrices. Specifically,
each connectivity matrix was associated to a graph, where the
nodes and the links were represented by the electrodes and
the connectivity measures, respectively. Then, different metrics
describing the network topology were computed by means of
the Brain Connectivity Toolbox (BCT) [32].

Betweenness centrality (BC), Clustering Coefficient (CC),
In Degree (ID) and Out Degree (OD) are the graph measures
computed for each node and connectivity matrix. Moreover,
the Global Efficiency index (GE) was computed as a whole
network measure of integration [33]. BC measures the ten-
dency of each node to behave as a hub of the network and is
computed according to the following formula (5):

BC i =
1

(n − 1)(n − 2)

∑
l, j,l ̸=i, j ̸=i,l ̸= j

pl, j (i)
pl, j

(5)

where n is the number of nodes of the network, pl, j (i)
represents the shortest path between node l and node j passing
through node i and pl, j is the number of shortest paths
between nodes i and j.

CC indicates of how much the vertices of the graph are
organized in functional subnetworks and it is computed as in
equation (6).

CC i =
1
n

∑
i

2ti
ki (ki − 1)

(6)

where ti is the number of triangles around node i, and ki is
the degree of the node. i.e., the number of links to which i is
connected to.

ID and OD count the amount of inward and outward
connections for each node and are defined as in (7) and (8),
respectively:

I Di =

∑
j, j ̸=i

a j i (7)

O Di =

∑
j, j ̸=i

ai j (8)

where a j i and ai j are the binary values associated to the link
that goes from node j to node i and to the link that goes from
node i to j, respectively. Finally, GE was computed according
to (9):

G E =
1
n

∑
i

d−1
i j

n − 1
(9)

where di j is the shortest path between node i and node j.
Graph measures obtained for run 1 and run 2 were averaged.

Consequently, average graph measures for FIX, NTR, CR, P1,
P2 and P3 were obtained for each subject.

Node-based graph measures were then averaged on the brain
areas listed in TABLE I.

G. Statistical Analysis
Non-parametric statistical tests were performed given the

small sample size (i.e., 11 subjects).
The statistical significance of the Theta power variation was

assessed channel-by-channel for each task (i.e., NTR, CR, P1,
P2 and P3) with respect to the baseline condition (i.e., FIX)
through a Wilcoxon’s test. The FDR method was adopted to
correct p-values for multiple testing.

Moreover, statistical difference in the Theta 1P among the
five conditions considered (i.e., NTR, CR, P1, P2 and P3) was
also investigated by means of a repeated measures Friedman’s
test, for each brain area listed in TABLE I. The same test was
performed to compare graph measures in five conditions (i.e.,
FIX, NTR, CR, P1, P2 and P3) for each brain area.

When opportune, Bonferroni’s correction was applied to
correct the post-hoc analysis for multiple comparisons (k = 6).

Results were considered significant when p<0.05.

III. RESULTS

A. Spectral Analysis
The frequency analysis was specifically focused on the

Theta band power. Fig. 3A depicts the median topographical
maps of the relative Theta power during the five analyzed
conditions (i.e., NTR, CR, P1, P2 and P3) with respect to the
segment of fixation (baseline). These maps highlight a Theta
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Fig. 3. A: median topographical maps of Pvar in the Theta band during FIX, NTR, CR, P1, P2 and P3. B: topographical representation of adjusted
p-values for the comparison between each phase of the protocol and FIX. Electrodes associated to a significant p-value are highlighted in red C:
Red color identifies a power increase, while blue is associated to a power decrease. C: median topographical maps of the net flux in the Theta band
during FIX, NTR, CR, P1, P2 and P3. Blue areas identify the nodes of the network that behave as sinks, while yellow color identifies the sources.

power increase in the frontal and parieto-occipital regions
during both the reading (NTR, CR) and the programming
(P1-3) tasks with respect to the resting condition (FIX).
Moreover, it can be also observed a Theta power increase
in the frontal and parietal regions during programming with
respect to NTR and CR.

Channel-by-channel statistical analysis revealed a signifi-
cant increase in Theta power with respect to FIX during P1
on channels belonging to the frontal right, central, temporal
left, parietal and occipital regions, and during P2 on channels
in the frontal right and occipital regions (Fig. 3B).

Moreover, the Friedman’s test applied on the 1P on a
region base, revealed a significant difference among the tasks
in the FR (χ2

= 14, 18, p <0.01) and FM (χ2
= 12, 44,

p <0.05) regions. Specifically, the post-hoc multiple compar-
ison analysis detected a significantly higher increase of Theta
1P during P1 with respect to CR in the FR region (p=0.03).
In the FM region, instead, a theta increased significantly more
during P1 with respect to NTR (p=0.04).

B. PSI and Net Flux
The median maps of the net flux measured in the Theta

band are depicted in Fig. 3C.
Differently from what happens during the resting phase

(i.e., FIX), during NTR, CR, P1, P2 and P3 a clear net-flux
pattern can be observed: the parieto-occipital areas assume
a source role while frontal areas behave as a sink of the
network. Qualitatively, net flux patterns are very similar for
all the task-related windows.

Since the net-flux provides an averaged information about
how each node behaves in the network, it is not possible to
infer that the direction of the information flux goes directly
from the parieto-occipital regions to the frontal ones from the
observation of the topographical maps.

Such information can be extracted by means of the median
behavior of the PSI index depicted in Fig. 4. This repre-
sentation shows that parietal nodes send information both
towards frontal and occipital nodes during all tasks. Moreover,
occipital nodes, in addition to receiving information from
the parietal area, also send information towards the frontal
nodes.

C. Network and Graph Analysis
1) Reduced Networks: The flux direction was also analyzed

by means of the RNs (Paragraph II.F.I) showed in Fig. 5. The
hypothesis that the information flows from the parietal to the
frontal areas was confirmed by their median trends.

The presence of a significant difference in the median
connectivity between the parietal region and the frontal ones
(i.e., P→F) among the five conditions was revealed by a
Friedman’s test (χ2

= 19, 86, p<0.05).
A successive post-hoc test for multiple comparison with

Bonferroni’s correction revealed a significant increase of P->F
between the FIX segment and P1 (p=0.01).

2) Betweenness of Centrality: The BC of the FM region
decreased passing from the resting condition (FIX) to the
cognitive tasks (i.e., NTR, CR, P1, P2 and P3). This decrease
was particularly enhanced during the programming windows.
In the P region, instead, an increased BC was observed during
programming with respect to the other tasks (Fig. 6).

Friedman’s test revealed significant differences of BC
among the protocol conditions only in region FM (χ2

= 33.5,
p≪0.001). Concerning the FM area, post-hoc comparisons
detected a significant decrease of BC from the FIX segment
to P1, P2 and P3 (p = 0.02, p = 9.9e-4 and p = 9.9e-4,
respectively).

3) In and Out Degree: ID trends showed a general
increase in the frontal and central areas during reading and
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Fig. 4. Median head-in-head plot computed for FIX, NTR, CR, P1, P2 and P3. A connectivity map is associated to each electrode: yellow color
indicates the regions towards which the electrode sends information, while the blue color identifies the regions from which it receives information.

Fig. 5. Reduced networks averaged across subjects computed for FIX, NTR, CR, P1, P2 and P3. Couples of regions presenting significant
connection are connected with arrows.

Fig. 6. Betweenness Centrality distributions computed during FIX,
NTR, CR, P1, P2 and P3 for the FM brain region (A) and the P region
(B). Asterisks indicate significant difference between tasks.

programming with respect to FIX, while OD mainly decreased
during programming in the parietal region. Specifically, sta-
tistical analysis revealed significant differences for the ID
in the regions FM (χ2

= 16.8, p<0.01), and TR (χ2
=

18.39, p<0.01). A significant increase was detected in FM

during P1 with respect to FIX (p = 0.003), despite NTR and
CR showed a trend comparable to P1 (Fig. 7A). Moreover,
ID increased significantly in P1 and P3 with respect to FIX
(p = 0.01 and p = 0.02, respectively. Significant results in the
FR (χ2

= 19.64, p<0.01) and P (χ2
= 15.06, p<0.01) areas

were obtained for the OD.
In region FR, OD increases significantly during P1, P2 and

P3 with respect to FIX (p = 0.02, p = 0.01, p = 0.009). In the
P area a significant (p = 0.01) increase in P1 with respect to
FIX was detected (Fig. 7B).

4) Clustering Coefficient: No significant differences were
observed in terms of CC among the five conditions considered.

5) Global Efficiency: Neither significant nor qualitative dif-
ferences were observed in terms of GE among the five
conditions considered.

IV. DISCUSSION

The main goal of the present study was to shed lights on
the brain mechanisms that support software programming by
investigating the modulation in power and functional con-
nectivity patterns of cortical Theta rhythm. Indeed, Theta
oscillations have been shown to support complex cogni-
tive processing and, in accordance with previous studies
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Fig. 7. In Degree distributions for the FM brain region (A) and Out
Degree distributions for the P brain region (B) computed during FIX,
NTR, CR, P1, P2 and P3. Asterisks indicate significant difference
between tasks.

[17], [18], the contribution of the Theta rhythm to the total
EEG power increased both during reading tasks (NTR and CR)
and during programming tasks (P1, P2 and P3), while for the
first time, we also described changes in network topology, sug-
gesting a task-related adaptation of the supporting functional
system.

A. Modulation of Theta Spectral Power and Network
Arrangement

Theta power increase was particularly enhanced in the
frontal and posterior areas during coding. These results suggest
the involvement of WM processes during programming tasks.

Theta activity, indeed, seems to support WM, which is
a brain system involved in the manipulation of verbal and
visual inputs temporary stored in the short-term memory [34].
WM processes are involved in several cognitive tasks, such as
language processing and mathematical calculation. Therefore,
the dominant role of Theta oscillations, observed in this
study, may confirm the involvement of such processes also in
software programming. Moreover, the major enhancement of
Theta power that occurred during programming, with respect
to the reading segments, could be associated to an increased
task demand and allocation of WM resources [35]. Software
programming, indeed, is a very complex task, which foresees
both language comprehension, logic and symbol manipulation
processes. In line with the spectral analysis results, the PSI,
computed in the Theta band, highlighted the main role of
frontal and posterior regions in cognitive tasks. WM pro-
cesses, indeed, result from the dynamic interplay of specific
and distributed fronto-parietal brain regions, responsible for
information encoding, data retrieval and sensory input pro-
cessing [34]. As suggested by Ratcliffe and colleagues, frontal
regions are supposed to be involved in executive functions,
while the posterior ones seem to be responsible for information
processing and maintenance [35]. Moreover, a modulation of
parietal-frontal integration in the Theta band was observed
during a letter-based sustained attention task [36]. Indeed,
our results showed that the preferential directionality of the

information flux goes from posterior brain regions to frontal
ones (Fig. 5).

Specifically, parietal nodes seem to assume a prominent role
in the Theta network, sending information both to frontal and
to occipital regions. Interestingly, as shown by the RNs, during
the first and final windows of the coding assignment (i.e.,
P1 and P3) the strength of the normalized connection from
parietal electrodes to frontal ones increased with respect to
all the other considered segments of the protocol (i.e., FIX,
NTR, CR and P2). This behavior could be again associated
to an increase in cognitive demand. Indeed, programming
involves tasks like NTR and CR, but also problem-solving and
code generation. For this reason, the amount of information
to be processed and the need of memory retrieval may be
magnified. Interestingly, the increase of PSI links directed
from the parietal region to frontal ones was significant only
between FIX and P1. In fact, during the first window of
coding all subjects were reading instructions and retrieving
their knowledge to comprehend and solve the assignment.
Therefore, the higher degree of parietal to frontal connection
observed during P1 could be due to the occurrence of both lan-
guage comprehension and exercise planning. Though spectral
analysis and PSI results showed that both reading segments
and programming involve Theta brain fronto-parietal net-
works, graph analysis enhanced some task and time dependent
differences in their topology.

The most interesting result is associated to the measure of
centrality, which decreased in frontal regions and increased at
the parietal ones during coding. This result is explainable with
an increase in the number of network paths that go through the
parietal nodes and a contemporary drop of the ones passing
through the frontal areas.

Moreover, while the number of frontal inward connections
increased for all tasks with respect to FIX, the number
of outward connections from the parietal region showed a
pronounced increase during the coding windows. Finally,
a significant negative correlation between the P→F and the
perceived mental effort was found (r = −0.5, p = 0.01).

This result confirms the importance of the parietal region
in programming tasks. More in detail, the higher is the
information flow that starts from parietal nodes and arrives
to the frontal one, the lower is the effort perceived by the
subject, suggesting an association between parietal source
activity and the performance of the network. Our hypothesis is
that pre-existing networks historically used for older cognitive
processes specialized over years to accomplish programming
tasks, such as programming and code comprehension. We sug-
gest that this specialization manifests in brain connectivity
dynamics, that is the ability of brain networks to reorganize
their topology in function of the executed task.

B. Limitations of the Study

The small sample size considered (i.e., 11 subjects) obvi-
ously is the main limitation of the present research, despite
this, we obtained promising results. To obtain more robust
results and to further investigate the described findings, the
number of involved programmers should be increased.
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The protocol we adopted, if, in one hand, has the merit
of reproducing conditions similar to a real working scenario
(event-free programming task), the use of sensors for biosig-
nals acquisition, in the other hand, reduced the comfort of
the participants, potentially introducing physical annoyance.
despite their noninvasiveness.

Additionally, this study did not involve a control group (i.e.,
subjects not expert in programming), but only a group of
experienced programmers who were tested during different
conditions, while the baseline was the “control” state. For
this reason, it was not possible to perform the assessment of
proficiency-dependent modulations of brain connectivity. This
is a very interesting aspect which requires the comparison of
groups homogeneous for their proficiency and could be object
of a future study.

Finally, as concern the methodological approach we adopted
in the signal processing, we should point out the partic-
ular way the Phase Slope index computes the directional
information. Indeed, the PSI is an antisymmetric index, thus
it identifies only one direction of the analyzed connection
between two nodes. In this way, PSI does not describe
the existence of bidirectional couplings, which, conversely,
indexes based on the GC can identify (GCxy ̸= GCyx).
Nevertheless, PSI is the index that provides a total and net
information about directionality and was here selected for its
straightforward interpretability and for its robustness against
VC effect.

V. CONCLUSION

The current study presents a step forward in the under-
standing of the neural mechanisms supporting software pro-
gramming tasks in terms of brain rhythms and interactions.
Specifically, our results revealed that tasks of natural text
reading, code reading, and realistic programming all recruit
Theta fronto-parietal networks. This evidence could be rea-
sonably associated to the involvement of working memory
processes. Graph analysis showed that some task dependent
changes occur in the topology of involved networks. The main
finding resides in the ability of the networks to dynamically
adapt to task changes and requirements. Specifically, this
network reorganization mainly involved parietal areas during
programming, which increased their connectivity in terms of
centrality and degree in the network. Moreover, a negative
correlation between the parietal out degree and the mental
effort perceived by the subjects was observed. These results
suggest that the topology of the network in the Theta band,
especially at the parietal level, is promising in the discrimina-
tion of the performed task and of the subjects’ cognitive effort.
Since Theta brain networks seem to modulate their topology
in function of the task requirements, further knowledge in
this field could be reached in the future by a continuous
monitoring of the dynamic interplay of fronto-parietal regions,
with the aim of studying event-related changes in network
topology. This dynamicity of brain networks can be reliably
tracked by means of EEG signals, given their high temporal
resolution [37].

Moreover, further knowledge in the field could be reached
by conducting the same study on groups of programmers with

different levels of proficiency, in order to highlight possible
differences in Theta functional networks organization due to
experience.
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