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1. The S,C-Tracial Range and the S,C-Determinantal
Range

Let A ∈ Mn, the algebra of n × n complex matrices, and S ∈ Mn be a
Hermitian matrix. The S-numerical range of A is denoted and defined by

VS(A) =

{

x∗Ax

x∗Sx
: x ∈ C

n, x∗Sx 6= 0

}

.

For convenience, consider the sets

V ±
S (A) = {x∗Ax : x ∈ C

n, x∗Sx = ±1},

which have been studied by other researchers [6, 12]. It is easy to verify that

V +
−S(A) = V −

S (A) and VS(A) = V +
S (A) ∪ −V +

−S(A).

If S is the identity matrix In, then V −
S (A) is the empty set and the S-

numerical range VS(A) = V +
S (A) reduces to the classical numerical range,

usually denoted by W (A).

The sets WS(A) = VS(SA) and W±
S (A) = V ±

S (SA) have also been investi-
gated. When S is a nonsingular indefinite Hermitian matrix, some authors
use WS(A) or W+

S (A) as the definition for a numerical range of A associ-
ated with the indefinite inner product 〈x, y〉S = y∗Sx. In [12, 13, 14], these
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sets were investigated in connection with the cone generated by the joint
numerical range of three Hermitian matrices (H,G, S):

W (H,G, S) = {(x∗Hx, x∗Gx, x∗Sx) : x ∈ C
n, x∗x = 1},

where SA = H + iG. Our study does not follow such an approach. Instead,
we focus directly on the concepts under investigation.

We list some basic properties of the S-numerical range that follow easily
from the definition:

P1. VS(A) = VS(U∗AU), for any matrix U ∈ Mn and any nonsingular
Hermitian S such that U ∗SU = S.

P2. VS(αS + βA) = α+ βVS(A), for any α, β ∈ C.

P3. VS(A∗) = VS(A).
P4. VS(A+B) ⊂ VS(A) + VS(B).
P5. VS(A) = {λ} if and only if S 6= 0 and A = λS, for λ ∈ C, that is, A

is a S-scalar matrix.
P6. VS(A) ⊆ R if and only if A is Hermitian.

The same properties are valid when VS is replaced by V ±
S , except P2 and

P5. For these sets, the following properties hold:

P2’. V ±
S (αS + βA) = ±α+ βV ±

S (A), for any α, β ∈ C.
P5’. V ±

S (A) = {λ} if and only if A = ±λS, for λ ∈ C, and S has at least
one positive (or negative) eigenvalue.

Denote by σS(A) the set of the eigenvalues of A that have S-anisotropic
eigenvectors, that is, vectors x for which x∗Sx 6= 0. For S invertible, we
obtain:

P7. σS(S−1A) ⊂ VS(A).

If S = In, then σS(S−1A) = σ(A), the spectrum of A, and the previous
property reduces to the spectral inclusion of the classical numerical range.

The classical numerical range W (A) is a compact set. In contrast with
the classical case, when S is nonsingular indefinite and A is not a S-scalar
matrix, the set VS(A) is unbounded and may not be closed [12, 13].

By the celebrated Toeplitz-Hausdorff theorem, W (A) is a convex set [8].
The sets V ±

S (A) are also convex; however VS(A) may not be convex. Nev-
ertheless, VS(A) is p-convex [12]; that is, for any pair of distinct points
x, y ∈ VS(A), either VS(A) contains the closed line segment joining x and
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y, or VS(A) contains the line defined by x and y, except the open line seg-
ment joining x and y.

Motivated by theory and applications, there are several generalizations of
the classical numerical range, such as the C-numerical range of A denoted
by WC(A). For A,C ∈Mn, WC(A) is defined by

WC(A) = {Tr(CU ∗AU) : U ∈Mn, U
∗U = I} .

This concept motivates the definition of the S,C-tracial range of A for A,C ∈
Mn:

VS,C(A) = {Tr(CU ∗AU) : U ∈Mn, U
∗SU = S} . (1)

The following properties of the S,C-tracial range are easily deduced:

Q1. VS,C(A) = VS,C(U∗AU), for any matrix U ∈ Mn and any nonsingular
Hermitian S such that U ∗SU = S.

Q2. VS,C(αS + βA) = αTr(SC) + βVS,C(A), for any α, β ∈ C.

Q3. VS,C∗(A∗) = VS,C(A).
Q4. VS,C(A) = VS−1,A(C), for S nonsingular Hermitian.

As a variation of (1), for A,C ∈Mn we define the S,C-determinantal range
of A:

DS,C(A) = {det(C + U ∗AU) : U ∈Mn, U
∗SU = S} .

When S = In, this concept reduces to the C-determinantal range 4C(A) [2].

The following properties of the S,C-determinantal range can be easily ver-
ified:

R1. DS,C(A) = DS,C(U∗AU), for any matrix U ∈Mn and any nonsingular
Hermitian S such that U ∗SU = S.

R2. DS,C∗(A∗) = DS,C(A).
R3. DS,C(A) = DS,A(C), for S nonsingular Hermitian, that is, the roles of

A and C are symmetric.

When C = diag(γ1, . . . , γn), WC(A) and 4C(A) are usually denoted by
Wc(A) and 4c(A), respectively, where c = (γ1, . . . , γn) ∈ C

n. The notations
VS,c(A) and 4S,c(A) will be used in a similar way.

A matrix U ∈Mn is pseudo-unitary of signature (r, n− r), with 0 ≤ r ≤ n,
if the corresponding linear transformation preserves the quadratic Hermitian
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form
q(x) = |x1|2 + · · · + |xr|2 − |xr+1|2 − · · · − |xn|2.

The group of pseudo-unitary matrices of signature (r, n− r) will be denoted
by Ur,n−r.

Let J = P (Ir ⊕ −In−r)P
T , where P is a permutation matrix. It can be

easily seen that U = [x1 · · · xn], where xj denotes the jth column of U, is a
matrix in the pseudo-unitary group Ur,n−r if and only if U ∗JU = J , that is,

x∗iJxk = 0, i 6= k, and x∗iJxi = ji, i, k = 1, . . . , n, (2)

where ji denotes the (i, i) entry of the matrix J .

If c = (γ1, . . . , γn) ∈ C
n, then we obtain directly from the definition of the

J, c-tracial range

VJ,c(A) =

{

n
∑

i=1

γi x
∗
iAxi : xi ∈ C

n satisfying (2)

}

.

If c = ei denotes the ith vector of the standard basis of C
n, it follows that

VJ,ei
(A) reduces to V ±

J (A), according to ji = ±1.

Since the pseudo-unitary group Ur,n−r is connected and VJ,C(A) (DJ,C(A))
is the range of the continuous mapping from Ur,n−r to C defined by U 7→
Tr(CU∗AU) (U 7→ det(C + U ∗AU)), VJ,C(A) (DJ,C(A)) is a connected set,
for any A,C ∈Mn.

In this paper, we assume that the Hermitian matrix S is nonsingular and
we observe that, in this case, it is not a restriction to consider the matrix
J instead of S in the definition of the S-numerical range. In fact, recalling
Sylvester’s law of inertia [7], we can always choose a nonsingular matrix R,
such that R∗SR = Ir⊕−In−r, the inertia matrix of S. Considering y = R−1x
and AR = R∗AR, we have

x∗Ax

x∗S x
=
y∗AR y

y∗J y

and this means that
VS(A) = VJ(AR), (3)

for J the inertia matrix of S. With respect to the S,C-tracial range and
the S,C-determinantal range, using again Sylvester’s law of inertia, we can
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easily check that the following relations hold:

VS,C(A) = VJ,C(R∗)−1(AR) and DS,C(A) = | detR|−2DJ,CR
(AR),

where CR = R∗CR.

The paper is organized as follows. In section 2, the equation in line co-
ordinates of the boundary generating curve of VS(A) is obtained. This is a
generalization of a result due to Murnaghan and Kippenhahn [11, 16] con-
cerning the classical numerical range. Using a theorem of Tarski, we prove
that the boundaries of VS,C(A) and DS,C(A) are a finite union of algebraic
arcs. In section 3, the hyperbolical range theorem is revisited and alternative
proofs to the one in [13] are given. In section 4, the J, c-tracial range and the
J, c-determinantal range of arbitrary 2× 2 matrices are described. In section
5, the matrices A for which VJ,c(A) is a singleton or a subset of a line are
characterized. In section 6, an analogous study is done for DJ,c(A), for diag-
onal matrices A. In section 7, some special boundary points (the corners) of
VJ,c(A) and DJ,c(A) are investigated. Finally, in section 8, a Matlab program
is developed to generate VJ(A).

2. The Boundary Generating Curve of VS(A)
Let z ∈ VS(A) be a boundary point of VS(A). A line containing z and

defining two half planes, such that one of them does not contain V +
S (A) or

−V −
S (A) will be called a support line of VS(A).

For any matrix A, ReA will denote the Hermitian matrix (A + A∗)/2.
Throughout the paper, the following result will be used.

Proposition 2.1. Let A ∈ Mn and θ ∈ R. If the eigenvalues of JRe(eiθA)
are not all real, then VJ(A) has not a support line in the direction θ.

Proof : For simplicity, denote Re(eiθA) by A′. It can be easily seen that if
λ is a complex eigenvalue of JA′, then λ̄ also is. Now, we assume that the
eigenvalues of JA′ are all simple. Under this hypothesis, there exists a full
eigenbasis of JA′, say f1, . . . , fn.

Denote by D ∈ Mn the matrix whose jth column is fj. It can be shown
that if f, f ′ are vectors of this eigenbasis, A′f = λJ f , and A′f ′ = λ′J f ′, with
0 6= f, f ′ ∈ Cn and λ 6= λ̄′, then f ∗Jf ′ = 0. Let λ ∈ C and let 0 6= u, v ∈ Cn

be vectors of this eigenbasis such that A′u = λJ u, A′v = λ̄J v and u∗Jv = γ.
Hence, the matrix D∗JD is a diagonal block matrix of 2×2 and 1×1 blocks.
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The 2 × 2 blocks correspond to complex eigenvalues and have zero diagonal
entries while the 1 × 1 blocks correspond to real eingenvalues. Obviously,
det(D∗JD) 6= 0 and this implies that γ 6= 0.

For the above u, v, it is clear that u∗A′u = v∗A′v = 0, u∗A′v = λ̄γ and
v∗A′u = λγ̄. Consider the subset Tu,v of VJ(A′) defined by

Tu,v =

{

(u+ veiφ)∗A′(u+ veiφ)

(u+ veiφ)∗J(u+ veiφ)
: φ ∈ R, (u+ veiφ)∗J(u+ veiφ) 6= 0

}

.

By straightforward computations, it can be seen that Tu,v = R and so VJ(A)
has not a support line in the direction θ. If the eigenvalues of JA′ are not
all simple, by a perturbation we can ensure that they become all simple and
the result follows by a continuity argument.

We observe that the converse of Proposition 2.1 does not hold, in general,
as shown in Example 3 (Section 8). However, the converse is true in the 2×2
case, as will be seen in the proof of Theorem 3.2.

A boundary point µ of a subset K in C is a corner of K if there exists a
sufficiently small ε > 0 such that the intersection of K and the circular disc
D = {υ ∈ C : |υ−µ| < ε} is contained in a sector of D of degree less than π.

The connection between the corners of VS(A) and the eigenvalues of S−1A
is described in the next result, which will be used in the proof of Theorem
2.2.

Theorem 2.1. (Li and Rodman [14]) Let A ∈Mn. If z ∈ VS(A) is a corner
of VS(A), then z is an eigenvalue of S−1A and there exists an eigenvector x
associated to z, such that Ax = z Sx, A∗ x = z̄ S x and x∗Sx = ±1.

Murnaghan [16] and Kippenhahn [11], independently, showed that the
boundary of the classical numerical range of a matrix A ∈ Mn is the set
of real points of the algebraic curve (of class n) with equation in line coordi-
nates

det(uH + vG + wIn) = 0,

where H and G are Hermitian matrices satisfying A = H + iG. The real
part of this algebraic curve is denoted by C(A) and the n real foci of C(A)
are the eigenvalues of A.

Now, we obtain a generalization of this result for the S-numerical range,
where S is a nonsingular Hermitian matrix.
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Theorem 2.2. Let ux+vy+w = 0 be the equation of a support line of VS(A)
and let A = H + iG, where H and G are Hermitian matrices. Then

det(uH + vG + wS) = 0.

Proof. For A ∈ Mn and ϕ ∈ R, Re (e−i ϕA) is a Hermitian matrix and its
S-numerical range is the projection of VS(e−i ϕA) on the real line.

Consider the set Ω of angles ϕ ∈ R for which VS( Re(e−i ϕA)) is either a
line segment or the union of two disjoint closed half lines and denote their
endpoints by zj(e

−i ϕA), j = 1, 2. Clearly,

x = zj(e
−i ϕA), j = 1, 2, (4)

are support lines of VS(e−i ϕA). Performing a rotation of angle ϕ on the lines
(4), we find that

cosϕ x+ sinϕ y = zj(e
−i ϕA), j = 1, 2,

are support lines of ei ϕ VS(e−i ϕA) = VS(A). As ϕ varies in Ω, all the support
lines of the S-numerical range of A are obtained. That is, given the support
line of VS(A) of equation ux + vy + w = 0, there exist an angle ϕ0 ∈ Ω, a
non-zero real scalar λ and j = 1, 2 such that

u = λ cosϕ0, v = λ sinϕ0 and w = −λ zj(e
−i ϕ0A). (5)

For A = H + i G, where H and G are Hermitian matrices, we have

S−1 Re(e−i ϕA) = cosϕS−1H + sinϕS−1G.

If µ is an eigenvalue of this matrix, then it satisfies the equation

det (cosϕS−1H + sinϕS−1G − µ In) = 0.

Taking into account that detS 6= 0, we get

det (cosϕH + sinϕG− µS) = 0. (6)

Since zj(e
−i ϕA) is a corner of VS( Re(e−i ϕA)), by Theorem 2.1, it is an

eigenvalue of the matrix S−1Re(e−i ϕA) and therefore it satisfies (6). Taking
ϕ = ϕ0 and recalling (5), we obtain

det(uH + vG + wS) = 0. �

Remark 1) If the eigenvalues of S−1 Re(e−i ϕA) are all real only if ϕ =
ϕ0 +nπ, n ∈ Z, VS(A) is the whole complex plane, the complex plane except
the line (or a subset of the line) cosϕ0 x + sinϕ0 y = zϕ0

, where zϕ0
is the

minimum or the maximum of the eigenvalues of S−1 Re(e−i ϕ0A).
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2) Since det(uH+ vG+wS) is a homogeneous polynomial of degree n, we
showed that the equation

det(uH + vG + wS) = 0, (7)

with u, v, w viewed as homogeneous line coordinates, defines an algebraic
curve of class n, whose real part, in the sequel denoted by CS(A), forms the
boundary of VS(A). This curve has class n and has real coefficients, thus it
has n real foci [18, 19], corresponding to the eigenvalues of the matrix S−1A.

3)The dual curve of a conic is again a conic. Hence, if A is a 2× 2 matrix,
the equation (7) defines a conic and so its real part is a hyperbola, a parabola
or an ellipse, possibly degenerate. If A is a S-scalar matrix, then by property
P5, VS(A) is a singleton. Otherwise, if S is nonsingular indefinite, then VS(A)
is unbounded and p-convex, hence CS(A) must be an hyperbola, whose foci
are the eigenvalues of S−1A. Obviously, VS(A) consists of the hyperbola and
its interior. If S is definite, then VS(A) is bounded and convex, therefore the
convex hull of CS(A) is an elliptical disc, with the eigenvalues of S−1A as
foci.

4) If the inertia matrix of S is In, Theorem 2.2 reduces to the Murnaghan-
Kippenhahn theorem.

Using a theorem of Tarski, it was shown in [4] that the boundaries ofWC(A)
and 4C(A) are finite unions of algebraic arcs (see also [17]). We now apply
this result to prove that the boundaries of VS,C(A) and DS,C(A) are also finite
unions of algebraic arcs.

Consider Z[t1, . . . , tr; x1, . . . , xs] the polynomial ring over the integers of
the polynomials f(t1, . . . , tr; x1, . . . , xs) in the variables x1, . . . , xs and with
coefficients in Z[t1, . . . , tr]. Tarski proved the following theorem [9]:

Theorem 2.3. (Tarski Theorem) Let f1, . . . , fm and g1, . . . , gn be polyno-
mials in Z[t1, . . . , tr; x1, . . . , xs]. It is possible to find, in a finite number of
steps, a finite collection ψ1, . . . , ψp, where each ψl is a set of polynomials

ψl = {Fl1, . . . , Flpl
;Gl1, . . . , Glql

},
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with Fli, Glj ∈ Z[t1, . . . , tr], 1 ≤ i ≤ pl, 1 ≤ j ≤ ql, such that for any real
closed field R and (c1, . . . , cr) ∈ R,

f1(c1, . . . , cr; x1, . . . , xs) = 0, . . . , fm(c1, . . . , cr; x1, . . . , xs) = 0,

g1(c1, . . . , cr; x1, . . . , xs) > 0, . . . , gn(c1, . . . , cr; x1, . . . , xs) > 0

have a solution if and only if there exists at least one l, 1 ≤ l ≤ p, such that

Fli(c1, . . . , cr) = 0, 1 ≤ i ≤ pl, Glj(c1, . . . , cr) > 0, 1 ≤ j ≤ ql,

also have a solution.

Theorem 2.4. Let c = (γ1, . . . , γn) ∈ Cn and A = diag(α1, . . . , αn) ∈ Mn.
The boundary of VS,c(A) is a finite union of algebraic arcs and so a curve of
class C

∞, except for a finite number of points.

Proof : Firstly, we show that the conditions of Tarski theorem are satisfied.
By definition, z ∈ VS,c(A) if and only if there exists U ∈ Mn such that
U∗SU = S and

z = Tr(diag(γ1, . . . , γn)U
∗diag(α1, . . . , αn)U).

Let U= [xkj + iykj], S= [akj + ibkj], and z = z1 + iz2, where xkj, ykj, akj , bkj,
z1, z2 ∈ R. The points of VS,c(A) satisfy the following conditions on the
variables xkj and ykj:

z1 + iz2 − Tr(diag(γ1, . . . , γn) [xkj + iykj]
∗ diag(α1, . . . , αn) [xkj + iykj]) = 0,

n
∑

k,l=1

(xkm − i ykm)(akl + i bkl)(xlr + i ylr)− (amr + i bmr) = 0, 1 ≤ m, r ≤ n.

The left hand sides of these equations are polynomials on the parameters
Reαh, Re γh, Imαh, Im γh, z1, z2, akj, bkj and on the variables xkj and ykj.
Considering the real and the imaginary parts of the left hand sides of the
previous equations and equating them to 0, we obtain a set of polynomial
equations with integer coefficients on the same parameters and variables. Let

w = ((Reαh, Re γh, Imαh, Im γh, h = 1, . . . , n), (akj , bkj , k, j = 1, . . . , n), (z1, z2)).

Due to Tarski Theorem, we can conclude that there exists a finite collection
ψ1, . . . , ψp, where each ψl is a set of polynomials

ψl = {Fl1, . . . , Flnl
;Gl1, . . . , Glml

}
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with Fls, Glq ∈ Z[t1, . . . , tn2+4n+2], 1 ≤ s ≤ nl, 1 ≤ q ≤ ml, such that for all
αh, γh, akj + i bkj, xkj + i ykj, z ∈ C, the initial equations have a solution if
and only if there exists at least one l, 1 ≤ l ≤ p, such that

Fls(w) = 0, 1 ≤ s ≤ nl, Glq(w) > 0, 1 ≤ q ≤ ml, (8)

have a solution. A point for which only the inequalities in (8) are satisfied
(and no equality) does not belong to the boundary of VS,c(A). The boundary
is formed by a finite number of algebraic arcs. The boundary points are
of class C

∞, unless they satisfy equations (8), for at least two values of
l. (Observe that the number of points for which this happens is finite [9,
p.325].)

In an analogous way, the following result can be obtained for the S, c-
determinantal range.

Theorem 2.5. Let c = (γ1, . . . , γn) ∈ Cn and A = diag(α1, . . . , αn) ∈ Mn.
The boundary of DS,c(A) is a finite union of algebraic arcs and so it is a
curve of class C

∞, except for a finite number of points.

Notice that the previous results can be easily generalized for arbitrary
matrices A ∈ Mn. They are also generalizable for VS,C(A) and DS,C(A),
where A,C ∈Mn.

3. The Hyperbolical Range Theorem
In the theory of classical numerical ranges and its generalizations, the re-

duction of problems to its bidimensional case is a very useful technique. For
instance, convexity results can be proved using such a reduction. In this the-
ory, the elliptical range theorem is a particularly important result. It asserts
that the classical numerical range of a 2 × 2 matrix A is an elliptical disc,
possibly degenerate, with the eigenvalues λ1 and λ2 of A as foci and minor
axis of length

√

Tr(A∗A) − |λ1|2 − |λ2|2.
In this section, we consider J = Ir ⊕ −I2−r, with 0 ≤ r ≤ 2, and give

a detailed geometric description of the J-numerical range of A (see [13] for
an alternative approach). Only r = 1 is considered, since for r = 0 and
r = 2, VJ(A) = ±W (A) is characterized by the elliptical range theorem. In
particular, for r = 1, a hyperbolical range theorem is explicitly obtained. In
the degenerate cases, VJ(A) is a subset of a line, the whole complex plane or
the complex plane except a line.
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Firstly, we prove the hyperbolical range theorem for a certain class of ma-
trices.

Theorem 3.1. Let

M1 =

[

1 a e i θ

b e i θ 1

]

,

with a, b ≥ 0, a 6= b and θ ∈ R, and let

β = 2
√

1 − 2abcos(2θ) + a2b2 + 2 − a2 − b2.

(i) If β < 0, then VJ(M1) is the whole complex plane.
(ii) If β = 0, then VJ(M1) is the whole complex plane except a line.
(iii) If β > 0, then VJ(M1) is bounded by a hyperbola centered at the origin

with transverse axis of length
√
β.

Proof : For ϕ ∈ R, consider the matrix J Re(ei ϕM1). The eigenvalues of this
matrix are

λi(ϕ) = ±1

2

√

2 − a2 − b2 + 2 cos(2ϕ) − 2ab cos(2θ + 2ϕ), i = 1, 2,

and the eigenvectors associated with λi(ϕ) are given by

ui(ϕ) = (−2 cosϕ− 2λi(ϕ), (a + b) cos(θ + ϕ) − i(a− b) sin(θ + ϕ)).

These eigenvectors satisfy the following relation

ui(ϕ)∗J ui(ϕ) = 4 (λi(ϕ) + cosϕ)(λi(ϕ) + cosϕ)− a2 − b2 − 2ab cos(2θ+ 2ϕ),

i = 1, 2.
Observe that 1 − 2ab cos(2θ) + a2b2 = 0 if and only if ab = 1 and θ =

nπ, n ∈ Z. Then a 6= 1 (otherwise a = b, contradicting the hypothesis).
Hence

β = −(1 − a2)2

a2
< 0 and λi(ϕ) = ±

√
β

2
, i = 1, 2,

for all ϕ ∈ R, that is, the eigenvalues of J Re(ei ϕM1) are pure imaginary
complex numbers. Thus, there does not exist any support line of VJ(M1)
in any direction and so the J-numerical range of M1 is the whole complex
plane.

Now, suppose that ab 6= 1 or θ 6= nπ, n ∈ Z. Consider the function
µ : R → R defined by

µ(ϕ) = 2 − a2 − b2 + 2 cos(2ϕ) − 2ab cos(2θ + 2ϕ).
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We easily check that

µ(ϕ) = 2 − a2 − b2 + 2|1 − ab e2iθ| cos(2ϕ+ γ)

≤ 2 − a2 − b2 + 2|1 − ab e2iθ| = β, ϕ ∈ R,

where

tan γ =
ab sin(2θ)

ab cos(2θ) − 1
.

Therefore, β is the maximum of µ and is attained at ϕ0 = kπ − γ/2, k ∈ Z.

We prove (i). If β < 0, it is clear that µ(ϕ) < 0. It follows that

λi(ϕ) = ±1

2

√

µ(ϕ), i = 1, 2,

are pure imaginary complex numbers, for all ϕ ∈ R. Hence VJ(M1) = C.
Now, we prove (ii). If β = 0, then µ(ϕ) < 0, for all ϕ ∈ R different

from ϕ0. Recalling that µ(ϕ0) = 0, we find that λ1(ϕ0) = λ2(ϕ0) = 0. The
corresponding eigenvectors satisfy the condition

ui(ϕ0)
∗J ui(ϕ0) = 0, i = 1, 2.

For ϕ ∈ R different from ϕ0, the eigenvalues of J Re(ei ϕM1) are pure imagi-
nary complex numbers and so VJ(M1) is the whole complex plane except the
line cosϕ0 x+ sinϕ0 y = 0.

Finally, we prove (iii). If β > 0, then µ(ϕ) > 0, for any ϕ in an interval
containing ϕ0, say (ξ, η), with µ(ξ) = µ(η) = 0. In that interval, since a 6= b,
we have

0 < µ(ϕ) ≤ 4 cos2 ϕ− (a− b)2 < 4 cos2 ϕ

and the eigenvalues of J Re(ei ϕM1) are non-zero real numbers. It can be
easily checked that

u∗i (ϕ)M1ui(ϕ) = −2(λi(ϕ)+cosϕ)
(

eiθ(a+ b)2 cos(θ + ϕ) − ieiθ(a− b)2 sin(θ + ϕ) − 4 cosϕ
)

and

ui(ϕ)∗J ui(ϕ) = 8λi(ϕ)(λi(ϕ) + cosϕ) 6= 0, i = 1, 2.

Let

x+ iy =
u∗i (ϕ)M1 ui(ϕ)

u∗i (ϕ)J ui(ϕ)
,
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where

x =
−1

4λi(ϕ)

(

(a+ b)2 cos(θ + ϕ) cos θ + (a − b)2 sin(θ + ϕ) sin θ − 4 cosϕ
)

, (9)

y =
−1

4λi(ϕ)

(

(a+ b)2 cos(θ + ϕ) sin θ − (a− b)2 sin(θ + ϕ) cos θ
)

.(10)

Obviously, (x, y) belongs to the boundary of VJ(M1).
After some computations, from (9) and (10), we get

{

A1 cos(2ϕ) +B1 sin(2ϕ) = C1

A2 cos(2ϕ) +B2 sin(2ϕ) = C2
, (11)

where

A1 = C2 −B2 − 8Dx2, B1 = 2B(C + 4x2), C1 = 8Ex2 −B2 − C2,
A2 = B2 − A2 − 8Dy2, B2 = 2B(A+ 4y2), C2 = 8Ey2 − A2 −B2

and

A = a2 + b2 − 2ab cos(2θ),

B = −2ab sin(2θ),

C = a2 + b2 + 2ab cos(2θ) − 4,

D = 2 − 2ab cos(2θ),

E = 2 − a2 − b2.

Eliminating ϕ in (11), we get the quadratic equation

Ax2 + 2Bxy + Cy2 + F = 0, (12)

with F = (a2 − b2)2/4 − A. Reducing the conic in (12) to its main axis, we
get

X2

β
− Y 2

α
=

1

4
, (13)

where

α = 2
√

1 − 2ab cos(2θ) + a2b2 − 2 + a2 + b2.

It can be easily seen that α is nonnegative. Moreover, α = 0 if and only if
either a = b = 0 or a = b ≤ 1 and θ = nπ, n ∈ Z. In this case, α > 0.
Hence, the equation (13) describing the boundary of VJ(M1) is a hyperbola
centered at the origin, with transverse axis of length

√
β and non-transverse

axis of length
√
α.
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We observe that the complete characterization of the hyperbola in Theorem
3.1 (iii) is discussed in Theorem 3.2.

The following two lemmas are used in the proof of Theorem 3.2.

Lemma 3.1. Let a, b ≥ 0, a 6= b. The envelope of the family of curves over
the parameter r ∈ R, r2 ≥ 1,

((x− r) sin θ − y cos θ)2

(a− b)2
+

((x− r) cos θ + y sin θ)2

(a+ b)2
=
r2 − 1

4
, (14)

in an adequate coordinate system is given by

αX2 − β Y 2 =
αβ

4
,

where

α = 2
√

1 − 2ab cos(2θ) + a2b2 − 2 + a2 + b2,

β = 2
√

1 − 2ab cos(2θ) + a2b2 + 2 − a2 − b2.

Proof : Evaluating the envelope of the family of curves (14), we obtain

Ax2 + 2Bxy + Cy2 + F = 0, (15)

where

A = a2 + b2 − 2ab cos(2θ),

B = −2ab sin(2θ),

C = a2 + b2 + 2ab cos(2θ) − 4,

F = (a2 − b2)2/4 − A.

Reducing the conic in (15) to its main axis, we get

αX2 − β Y 2 =
αβ

4
,

where α and −β are the eigenvalues of the real symmetric matrix associated
with the quadratic form Ax2 + 2Bxy + Cy2,

S =

[

A B
B C

]

. (16)

It is now straightforward to complete the proof.
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Lemma 3.2. For A = (aij) ∈ M2, there exists a pseudo-unitary matrix U
such that

U∗AU =

[

a11 |a12| e i ϑ

|a21| e i ϑ a22

]

,

where 2ϑ is the sum of the arguments of a12 and a21.

Proof : The diagonal matrix U = diag(e i η, e i µ), such that 2(η−µ) = arg a12−
arg a21, is pseudo-unitary and satisfies the asserted property.

Theorem 3.2. (Hyperbolical Range Theorem) The J-numerical range
of a matrix A ∈M2 is bounded by a (possibly degenerate) hyperbola, with the
eigenvalues λ1 and λ2 of JA as foci and with non-transverse axis of length

√

|λ1|2 + |λ2|2 − Tr(A∗JAJ).

For the degenerate cases, VJ(A) is a singleton, a line, a subset of a line, the
whole complex plane, or the complex plane except a line.

Proof : Let A = (aij) be a zero trace matrix in M2. By Lemma 3.2, there
exists a pseudo-unitary matrix U such that

U∗AU =
1

2
Tr(AJ) J +

[

0 a e i θ

b e i θ 0

]

, (17)

where a and b are the moduli of a12 and a21, respectively, and 2θ = arg a12 +
arg a21.

Now, let A = (aij) be a non-zero trace matrix in M2. By Lemma 3.2, there
exists a pseudo-unitary matrix U such that

2

Tr(A)
U∗AU − Tr(AJ)

Tr(A)
J =

[

1 a e i θ

b e i θ 1

]

, (18)

where a and b are the moduli of 2a12/Tr(A) and 2a21/Tr(A), respectively,
and

2θ = arg a12 + arg a21 − 2 arg Tr(A).

Without loss of generality, we may concentrate on the study of the J-
numerical range of the matrices

Mk =

[

k a e i θ

b e i θ k

]

, k = 0, 1.

The eigenvalues of JMk are of the form ±
√
k2 − a b e 2 i θ.
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Using properties P1 and P2, the J-numerical range of the matrix A can be
easily obtained from

VJ(Mk) =

{

k|x1|2 + k|x2|2 + (a x1x2 + b x1x2)e
i θ

|x1|2 − |x2|2
: x1, x2 ∈ C, |x1| 6= |x2|

}

,

(19)
where k = 0, if A is a zero trace matrix and k = 1, otherwise. Taking

r =
|x1|2 + |x2|2
|x1|2 − |x2|2

, φ = arg x2 − arg x1,

(19) can be written in the form

VJ(Mk) =

{

r k +
1

2

√

r2 − 1 (a e iφ + b e−iφ) e i θ : r2 − 1 ≥ 0, φ ∈ R

}

.

Consider, firstly, k = 0. If a = b = 0, then clearly VJ(M0) = {0}. If
a = b 6= 0, the eigenvalues of JM0 are ± a i e i θ and so VJ(M0) = e i θ

R, the
line passing through 0 and perpendicular to the line segment joining these
eigenvalues. For a 6= b, e i θ(x+ i y) ∈ VJ(M0) if and only if

x2

(a+ b)2
+

y2

(a − b)2
=
r2 − 1

4
,

with r2 − 1 ≥ 0, and so VJ(M0) = C.

Now, let k = 1. Two cases are possible: I) a 6= b; II) a = b.

I) Clearly x+ i y ∈ VJ(M1) if and only if

x = r +
1

2

√

r2 − 1 ((a+ b) cos θ cosφ− (a− b) sin θ sinφ),

y =
1

2

√

r2 − 1 ((a+ b) sin θ cosφ+ (a− b) cos θ sinφ).

Since a 6= b, after some computations, we obtain

((x− r) sin θ − y cos θ)2

(a− b)2
+

((x− r) cos θ + y sin θ)2

(a+ b)2
=
r2 − 1

4
,

where the parameter r is such that r2 − 1 ≥ 0. By Lemma 3.1, the envelope
of this family of curves is given by

αX2 − β Y 2 =
αβ

4
, (20)
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where

α = 2
√

1 − 2ab cos(2θ) + a2b2 − 2 + a2 + b2,

β = 2
√

1 − 2ab cos(2θ) + a2b2 + 2 − a2 − b2.

As already seen in the proof of Theorem 3.1 (iii), since a 6= b, α is positive.
Obviously,

Tr(M1JM
∗
1J) = 2 − a2 − b2.

Since the eigenvalues λ′1 and λ′2 of JM1 are of the form ±
√

1 − ab e2 i θ, we
have

α = |λ′1|2 + |λ′2|2 − Tr(M1JM
∗
1J),

β = |λ′1|2 + |λ′2|2 + Tr(M1JM
∗
1J).

The eigenvectors of the matrix S in (16), associated with α, have the direction
of the vector in R

2

u = (|λ′1|2 − 1 + ab cos(2θ), ab sin(2θ)).

Identifying vectors in R
2 with complex numbers, the following condition for

complexes is satisfied

u2 = 2(1 − ab cos(2θ) − |λ′1|2)λ′1
2
.

Thus, the line defined by the eigenvalues λ′1 and λ′2 has the direction of the
vector u. We now classify the conic describing the boundary of VJ(M1),
according to the sign of αβ, which depends only on the sign of β, due to the
positivity of α.

i) If β > 0, (20) is just

X2

β
− Y 2

α
=

1

4
,

the equation of a hyperbola centered at the origin, with transverse and non-
transverse axis of length

√
β and

√
α, respectively, and semi-focal distance

given by |λ′1| = |λ′2|. The direction of the transverse axis of the hyperbola is
that of the vector u. This means that the foci of the hyperbola are precisely
the eigenvalues λ′1 and λ′2 of JM1.

ii) If β = 0, then equation (20) reduces to X = 0, that is, the line through
the origin perpendicular to the line segment defined by the eigenvalues λ′

1 and
λ′2 of the matrix JM1. By Theorem 3.1 (ii), VJ(M1) is the whole complex



18 N. BEBIANO, R. LEMOS, J. DA PROVIDÊNCIA AND G. SOARES

plane except this line. (This line is the boundary of the open half plane
representing V +

J (M1).)

iii) If β < 0, due to Theorem 3.1 (i), VJ(M1) = C.

This finishes the proof of I).

II) If a = b = 0, then obviously VJ(M1) = R \ ]−1, 1[. Now, let a = b 6= 0.

If θ = nπ, n ∈ Z, it is clear that VJ(M1) is a subset of the real line. We
observe that the elements in V +

J (M1) (−V −
J (M1)) are given by the ranges of

the family of functions fφ : [1,+∞) → R (fφ : (−∞,−1] → R) defined by

fφ(r) = r +
√

r2 − 1 cosφ a, φ ∈ R.

We observe that f0(−r) = −fπ(r) and fπ(−r) = −f0(r). Since fπ ≤ fφ ≤ f0,
we just evaluate the extreme values of the functions fπ and f0. For a < 1,
we conclude that

√
1 − a2 is the minimum of fπ |[1,+∞), while f0 |[1,+∞) does

not have a maximum, and so V +
J (M1) = [

√
1 − a2,+∞). Thus,

VJ(M1) = R \ ] −
√

1 − a2,
√

1 − a2[.

This is just the line defined by the eigenvalues of JM1, except the open
line segment with these eigenvalues as endpoints. For a ≥ 1, neither fπ

admits minimum nor f0 maximum. In particular, when a = 1, we have
VJ(M1) = R \ {0}. (In fact, if 0 ∈ V +

J (M1), there exist r ≥ 1 and φ ∈ R such
that

0 = r +
√

r2 − 1 cosφ ≥ r −
√

r2 − 1 > 0,

a contradiction. In an analogous way, if 0 ∈ −V −
J (M1), we get a contra-

diction.) If a > 1, then VJ(M1) = R. (We observe that, in this case, the
eigenvalues of JM1 are pure imaginary complex numbers.)

If θ 6= nπ, n ∈ Z, then the elements in VJ(M1) are characterized by the
family of line segments contained in y cos θ = (x− r) sin θ, where r2 − 1 ≥ 0
and with endpoints at y = ±

√
r2 − 1 a sin θ. Eliminating the parameter r

between these two equations, we get

(x− cotg θ y)2 −
( y

a sin θ

)2

= 1.
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It is straightforward to verify that this equation describes a hyperbola, which
is the equation (15) in the case a = b. Since β > 0, VJ(M1) is a hyperbola
like the one in I) i).

We have finished the description of the J-numerical range of the matrices
Mk, for k = 0, 1. Now, we give a detailed description of VJ(A). Before that,
we observe that the eigenvalues λ1 and λ2 of JA are given by

1

2
Tr(AJ) ± 1

2

√

(Tr(A))2 − 4 a12 a21.

If A is a zero trace matrix, having in mind (17) and properties P1 and P2,
we get

VJ(A) =
1

2
Tr(AJ) + VJ(M0).

From the above discussion, we conclude that VJ(A) is a point, Tr(AJ)/2, if
A is a J-scalar matrix; the line passing through Tr(AJ)/2 and perpendicular
to the line segment joining the eigenvalues of JA, if |a12| = |a21| 6= 0; and
the whole complex plane, otherwise.

Now, if A is a non-zero trace matrix, from (18) and properties P1 and P2,
it follows that

VJ(A) =
1

2
Tr(AJ) +

1

2
Tr(A)VJ(M1).

Let λ1 and λ2 be the eigenvalues of JA. Taking into account (18) and the
fact that U is pseudo-unitary, the following relation holds

λi =
1

2
Tr(AJ) +

1

2
Tr(A)λ′i, i = 1, 2.

If VJ(M1) contains the eigenvalues λ′1 and λ′2 of JM1, then VJ(A) contains
λ1 and λ2. Therefore, it follows that

1

4
|Tr(A)|2 (|λ′1|2 + |λ′2|2) = |λ1|2 + |λ2|2 −

1

2
|Tr(AJ)|2. (21)

On the other hand, it can be easily checked that

Tr(AJA∗J) =
1

4
|Tr(A)|2 Tr(M1JM

∗
1J) +

1

2
|Tr(AJ)|2. (22)

From (21) and (22), we obtain

M =
1

4
|Tr(A)|2 α = |λ1|2 + |λ2|2 − Tr(AJA∗J),
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N =
1

4
|Tr(A)|2 β = |λ1|2 + |λ2|2 + Tr(AJA∗J) − |Tr(AJ)|2

= Tr(AJA∗J) − 2Re(λ̄1λ2).

If |a12| 6= |a21|, having in mind the discussion in I), we have:

a) If N > 0, VJ(A) is bounded by a hyperbola centered at Tr(AJ)/2,
with the eigenvalues λ1 and λ2 of JA as foci and with transverse and
non-transverse axis of length

√
N and

√
M , respectively.

b) If N = 0, VJ(A) is the complex plane, except the line passing through
the point Tr(AJ)/2 and perpendicular to the line segment joining λ1

and λ2. (In particular, V +
J (A) is one of the open half planes defined

by that line.)
c) If N < 0, VJ(A) is the whole complex plane.

If |a12|= |a21| 6=0, either arg a12 + arg a21 6=2 arg Tr(A) and VJ(A) is bounded
by a hyperbola like the one described in a), or arg a12 + arg a21 =2 arg Tr(A)
and VJ(A) is a subset of the line defined by

a11 =
1

2
Tr(A(J + I)) and − a22 =

1

2
Tr(A(J − I)),

which are the diagonal elements of JA. More precisely:

d) VJ(A) is the whole line, if 2|a12| > |Tr(A)|. (In this case, this line is
perpendicular to the line segment joining λ1 and λ2);

e) VJ(A) is the whole line except the middle point Tr(AJ)/2, if 2|a12| =
|Tr(A)|. (In this case, the eigenvalues of JA are just this middle
point);

f) VJ(A) is the line defined by the eigenvalues of JA, except the open
line segment with these eigenvalues as endpoints, if 2|a12| < |Tr(A)|.

Finally, if A is a diagonal matrix of non-zero trace, then VJ(A) is, as in f),
the line through the eigenvalues of JA, except the open line segment whose
endpoints are these eigenvalues.

For the sake of completeness, we restate the hyperbolical range theorem
for VS(A), when the inertia matrix of S is J = diag(1,−1). For that pur-
pose, recall the relation (3) between the S-numerical range of A and the
J-numerical range of AR = R∗AR, where R∗SR = J . We observe that
the eigenvalues of JAR coincide with the eigenvalues of S−1A and that
Tr(A∗

RJARJ) = Tr(A∗S−1AS−1). Then VS(A), for A ∈ M2, is bounded by a
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(possibly degenerate) hyperbola, with the eigenvalues λ1 and λ2 of S−1A as
foci and with the length of non-transverse axis equal to

√

|λ1|2 + |λ2|2 − Tr(A∗S−1AS−1).

4. VJ,c(A) and DJ,c(A) for 2 × 2 Matrices
The elliptical range theorems concerningWc(A) and 4c(A), for c = (γ1, γ2) ∈

C
2 and A ∈ M2, are well known (see [5] and [2]). Supposing that λ1 and

λ2 are the eigenvalues of A, Wc(A) is an elliptical disc (possibly degenerate)
with foci γ1λ1+γ2λ2 and γ1λ2+γ2λ1, and 4c(A) is an elliptical disc (possibly
degenerate) with foci (γ1 + λ1)(γ2 + λ2) and (γ1 + λ2)(γ2 + λ1). Both discs
have minor axis of length

|γ1 − γ2|
√

Tr(A∗A) − |λ1|2 − |λ2|2.
Now, we characterize the J, c-tracial range and the J, c-determinantal range

of 2 × 2 arbitrary matrices, for J = diag(1,−1).

Theorem 4.1. Let c = (γ1, γ2) ∈ C
2, A ∈ M2 and let λ1 and λ2 be the

eigenvalues of JA. Then

i) the J, c-tracial range of A is bounded by a branch of a (possibly degenerate)
hyperbola, with foci γ1λ1 − γ2λ2 and γ1λ2 − γ2λ1;

ii) the J, c-determinantal range of A is bounded by a branch of a (possibly
degenerate) hyperbola, with foci (γ1 + λ1)(γ2 − λ2) and (γ1 + λ2)(γ2 − λ1).

Both hyperbolas have non-transverse axis of length

|γ1 + γ2|
√

|λ1|2 + |λ2|2 − Tr(A∗JAJ). (23)

For the degenerate cases, we may have a singleton, a line, a subset of a line,
an open half plane or the whole complex plane.

Proof : i) Let C = diag(γ1, γ2). For any A ∈M2, we have VJ,E11
(A) = V +

J (A).
Since C = (γ1 + γ2)E11 − γ2 J, by properties Q2 and Q4, we get

VJ,c(A) = (γ1 + γ2)V
+
J (A) − γ2 Tr(AJ).

If C is a J-scalar matrix, it has trace zero and Tr(CJ) = −2γ2. Hence

VJ,c(A) = {Tr(AJ)Tr(CJ)/2} .
If C is not a J-scalar matrix, the result follows from Theorem 3.2.
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ii) For C = diag(γ1, γ2), A ∈M2, U a pseudo-unitary matrix in U1,1 and

Z =

[

0 −1
1 0

]

,

the following expansion for the determinant of the sum of two 2× 2 matrices
holds:

det(C + U∗AU) = det(C) + det(U ∗AU) + Tr(ZTCZU∗AU).

Using this expansion, since det(A) = − det(JA) and ZTCZ = diag(γ2, γ1),
we have

DJ,c(A) = γ1γ2 − λ1λ2 + VJ,c′(A),

where c′ = (γ2, γ1). That is, the J, c-determinantal range of A is obtained
from the J, c′-tracial range by a translation. From i), it follows that this set
is bounded by a branch of a (possibly degenerate) hyperbola, with foci

γ1γ2 − λ1λ2 + γ2λ1 − γ1λ2 = (γ1 + λ1)(γ2 − λ2),

γ1γ2 − λ1λ2 + γ2λ2 − γ1λ1 = (γ1 + λ2)(γ2 − λ1)

and non-transverse axis of length given in (23).

5. J, c-Tracial Ranges with Special Shapes
It is well known that the classical numerical range W (A) of a matrix is a

singleton if and only if A is a scalar matrix. Moreover, W (A) ⊆ R if and only
if A is Hermitian. Similar studies have been carried out for the J-numerical
range [12]. In this section, analogous results are obtained for the J, c-tracial
range, for J = P (Ir ⊕ −In−r)P

t, with 0 ≤ r ≤ n. For simplicity, we will
consider in the next sections P = In, since the other cases are obtained in an
analogous way.

In the sequel, we adopt the following notation. Let A ∈ Mn and α ⊂
{1, . . . , n}. We denote by A[α] the principal submatrix of A that lies in the
rows and columns indexed by α.

Lemma 5.1. Let c = (γ1, . . . , γn) ∈ C
n and A = (aij) ∈ Mn. Then VJ,c(A)

contains the sets

VJ2,c′(A11) +
∑

i6=k,l

γiaii,

where c′ = (γk, γl), J2 = J [kl] and A11 = A[kl], for 1 ≤ k < l ≤ n.
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Proof : Let C = diag(γ1, . . . , γn). For 1 ≤ k < l ≤ n, consider the principal
submatrices of J , C and A that lie in rows and columns k and l: respectively,
J2 = J [kl], C11 = C[kl] and A11 = A[kl]. Let M be a matrix in M2 satisfying
M∗J2M=J2. Now, consider the matrices

A′ =

[

A11 A12

A21 A22

]

and C ′ =

[

C11 0
0 C22

]

obtained from A and C, respectively, by permuting rows and columns 1 and
2 by rows and columns k and l. Let z be an element of the form

z = Tr(C11M
∗A11M) +

∑

i6=k,l

γiaii.

We observe that

(M ⊕ In−2)
∗A′(M ⊕ In−2) =

[

M∗A11M M∗A12

A21M A22

]

.

Consider the matrix UM obtained from M ⊕ In−2 by permuting rows and
columns 1 and 2 by rows and columns k and l, respectively. Easy computa-
tions show that

z = Tr(C11M
∗A11M) + Tr(C22A22)

= Tr(C ′(M ⊕ In−2)
∗A′(M ⊕ In−2)) = Tr(C U∗

MAUM).

Since UM is a unitary, or a pseudo-unitary, matrix satisfying the condition
U∗

MJUM = J , we conclude that z ∈ VJ,c(A).

Theorem 5.1. Let ji denote the ith diagonal element of J, and let c =
(γ1, . . . , γn) ∈ Cn, where the γiji are pairwise distinct, for i = 1, . . . , n. For
A ∈Mn, VJ,c(A) is a singleton if and only if A is J-scalar.

Proof : (⇐) Let C = diag(γ1, . . . , γn). If A is J-scalar, then JA = ξIn, for
some ξ ∈ C and

VJ,c(A) = {ξ Tr(JC)} = {Tr(JA)Tr(JC)/n} .
(⇒) Now, suppose A = [aij] is not J-scalar. It is possible to find a principal
submatrix A11 = A[kl] of A, with 1 ≤ k < l ≤ n, such that A11 is not
J2-scalar, for J2 = J [kl]. By Lemma 5.1, VJ,c(A) contains the subset

Γ = VJ2,c′(A11) +
∑

i6=k,l

γiaii,
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where c′ = (γk, γl). Since γkjk 6= γljl, the matrix diag(γk, γl) is not J2-scalar.
By the elliptical range theorem concerning Wc′(A11), the subset Γ of VJ,c(A)
is an elliptical disc (possibly degenerate) or, by Theorem 4.1 i), a branch of
a hyperbola (possibly degenerate) with interior, but never a point. In any
case, VJ,c(A) is not a singleton.

Theorem 5.2. Let A ∈Mn and c = (γ1, . . . , γn) ∈ Rn, with the γiji pairwise
distinct, for i = 1, . . . , n. Then VJ,c(A) ⊆ R if and only if A is Hermitian.

Proof : (⇐) Let C = diag(γ1, . . . , γn) ∈ Mn(R). If A is a Hermitian matrix,
then every z ∈ VJ,c(A) satisfies

z = Tr(CU∗AU) = Tr(CU∗A∗U) = Tr(CU∗AU) = z,

where U ∈ Mn is such that U ∗JU = J . Therefore, VJ,c(A) is a subset of the
real line.

(⇒) Suppose that A is not a Hermitian matrix. Then A contains a non-
Hermitian principal submatrix, say A11 = A[kl], for 1 ≤ k < l ≤ n. Using
Lemma 5.1 and a similar argument to the one used in the proof of Theorem
5.1, we find a subset of VJ,c(A) that is not contained in the real line, a
contradiction.

A matrix A ∈ Mn is said to be essentially J-Hermitian if µA + υJ is
Hermitian for some 0 6= µ ∈ C and υ ∈ C.

Theorem 5.3. Let c = (γ1, . . . , γn) ∈ R
n, with the γiji pairwise distinct, for

i = 1, . . . , n, and A ∈ Mn. Then VJ,c(A) is a subset of a straight line if and
only if A is essentially J-Hermitian.

Proof : (⇐) By definition, A is essentially J-Hermitian if and only if µA+υJ
is a Hermitian matrix for some 0 6= µ ∈ C and υ ∈ C. By property Q2 and
Theorem 5.2, the result follows.

(⇒) Now, suppose that VJ,c(A) is a subset of a straight line. By property
Q2, we may rotate and translate VJ,c(A), so it becomes a subset of the real
line, that is, VJ,c(µA+υJ) ⊆ R, for some 0 6= µ ∈ C and υ ∈ C. By Theorem
5.2, µA+ υJ is Hermitian and so A is essentially J-Hermitian.

6. J, c-Determinantal Ranges with Special Shapes
Since 4C(A) may be seen as the range of a function from Un to C, 4C(A)

may be considered a variation on the concept of WC(A). In fact, these two
sets have many common properties. As will be seen in the next results as well
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as in their proofs, a certain parallelism still exists between the sets VJ,c(A)
and DJ,c(A).

Lemma 6.1. Let c = (γ1, . . . , γn) ∈ C
n and A = diag(α1, . . . , αn) ∈ Mn.

Then DJ,c(A) contains the sets

DJ2,c′(A1)
∏

i6=k,l

(γi + αi),

where c′ = (γk, γl), J2 = diag(jk, jl) and A1 = diag(αk, αl), for 1 ≤ k < l ≤ n.

Proof : Let C = diag(γ1, . . . , γn). For 1 ≤ k < l ≤ n, consider C1 =
diag(γk, γl) and

z = det(C1 +M∗A1M)
∏

i6=k,l

(γi + αi),

with M a matrix in M2 satisfying M ∗J2M = J2. The matrix UM , obtained
from the identity In by replacing its principal submatrix lying in rows and
columns k and l by M , satisfies the condition U ∗

MJUM = J . Now, let A2 and
C2 be the submatrices obtained from A and C, respectively, by deleting rows
and columns k and l. We easily verify that

z = det(C1 +M∗A1M) det(C2 + A2) = det(C + U ∗
MAUM) ∈ DJ,c(A)

and this completes the proof.

Theorem 6.1. Let c = (γ1, . . . , γn) ∈ C
n, where the γiji are pairwise distinct,

for i = 1, . . . , n, and A = diag(α1, . . . , αn) ∈Mn. Then DJ,c(A) is a singleton
if and only if A is J-scalar.

Proof : (⇐) Let C = diag(γ1, . . . , γn). If A is J-scalar, then A = ξJ, for some
ξ ∈ C and

DJ,c(A) = {det(A+ C)}.
(⇒) Now, suppose that A is not J-scalar. It is possible to find two entries of

the matrix A, say αk and αl, with 1 ≤ k < l ≤ n, such that A1 = diag(αk, αl)
is not J2-scalar, where J2 = diag(jk, jl). By Lemma 6.1, DJ,c(A) contains the
subset

Σ = DJ2,c′(A1)
∏

i6=k,l

(γi + αi),

where c′ = (γk, γl). The subset Σ of DJ,c(A) is either an elliptical disc, by
the elliptical range theorem for 4c′(A1), or a branch of a hyperbola with
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interior, by Theorem 4.1 ii). As diag(γk, γl) is not J2-scalar, both sets are
possibly degenerate, but they are never a point. In any case, DJ,c(A) is not
a singleton, contradicting the hypothesis.

Theorem 6.2. Let c = (γ1, . . . , γn)∈R
n, where the γiji are pairwise distinct,

for i = 1, . . . , n, and A = diag(α1, . . . , αn). Then DJ,c(A) ⊆ R if and only if
A ∈Mn(R).

Proof : (⇐) If A is a diagonal matrix in Mn(R), then it is clear that DJ,c(A)
is a subset of the real line.

(⇒) Suppose that A is a diagonal matrix with at least one non-real prin-
cipal entry, say αk. Then A contains a non-Hermitian principal submatrix,
say A1 = diag(αk, αl). Using Lemma 6.1 and similar arguments to the proof
of the previous theorem, we obtain a subset of DJ,c(A) that is not contained
in the real line, a contradiction. Thus, A ∈Mn(R).

7. Special Boundary Points
Some special boundary points of the numerical ranges have interesting

properties. For instance, every non-differentiable boundary point of W (A) is
an eigenvalue of A [3, 11]. Moreover, every corner of VS(A) is an eigenvalue
of S−1A (see Theorem 2.1).

In [1] and [2], the corners of Wc(A) and 4c(A) were investigated. Similar
results will be obtained for VJ,c(A) and DJ,c(A).

Theorem 7.1. Let A and C be matrices in Mn, such that

CJ = γ1In1
⊕ · · · ⊕ γpInp

, n1 + · · · + np = n,

where the γi are pairwise distinct, for i = 1, . . . , p, and let U be a pseudo-
unitary matrix in Ur,n−r. If z = Tr(CU∗AU) is a corner of VJ,C(A), then
U∗AU is a direct sum A1 ⊕ · · · ⊕ Ap, where Ai ∈Mni

, i = 1, . . . , p, and

z =

p
∑

i=1

γi Tr(JiAi),

where Ji ∈Mni
, i = 1, . . . , p, are such that J = J1 ⊕ · · · ⊕ Jp.

Proof. For simplicity of notation, write AU = U∗AU. Since J = Ir ⊕ −In−r,
we have J1/2 = Ir ⊕ i In−r. For any Hermitian matrix S, and for any t ∈ R

in a neighborhood of zero, the matrix

e i t J1/2SJ1/2

= I + i t J1/2SJ1/2 +O(t2)
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is a pseudo-unitary matrix in Ur,n−r. Consider the differentiable function

f(t) = Tr(C e−i t J1/2∗SJ1/2∗

AUe
i t J1/2SJ1/2

),

where J1/2∗ = JJ1/2. Since z = Tr(CAU) is a corner, the derivative of f with
respect to t at t = 0, that is,

f ′(0) = iTr(CAUJ
1/2SJ1/2 − CJ1/2∗SJ1/2∗AU)

= iTr(J1/2SJ1/2(CAU − JAUCJ))

is zero. Since S is arbitrary, we conclude that

J1/2(CAU − JAUCJ) J1/2 = 0

and so CAU = JAUCJ. Therefore CJ commutes with JAU , or using the
usual notation for the commutator of two matrices

[CJ, JAU ] = 0, (24)

Since CJ is a direct sum of p scalar matrices γiIni
, with all the γi distinct,

for i = 1, . . . , p, from (24) it follows that AU is a direct sum, A1 ⊕ · · · ⊕ Ap,
where Ai ∈ Mni

, i = 1, . . . , p. Now, let Ji ∈ Mni
, i = 1, . . . , p, be such that

J = J1 ⊕ · · · ⊕ Jp. We easily see that

z = Tr(CJJAU) =

p
∑

i=1

γi Tr(JiAi). �

The following corollary is a straightforward consequence of Theorem 7.1.

Corollary 7.1. Let CJ = Ik ⊕ 0n−k, 1 ≤ k ≤ n, and A ∈ Mn. If z ∈
VJ,C(A) is a corner of VJ,C(A), then there exists a pseudo-unitary matrix
U ∈ Ur,n−r such that U ∗AU is a direct sum Ak ⊕ An−k and z = Tr(JkAk),
where Jk = J [1 · · · k] and Ak ∈Mk.

We observe that Corollary 7.1 is a generalization of Theorem 2.1 on the
corners of VJ(A). In fact, if z ∈ VJ(A) is a corner of VJ(A), by Corollary
7.1 with k = 1, there exists a pseudo-unitary matrix U ∈ Ur,n−r, such that
U∗AU = [zj1]⊕An−1, where An−1∈Mn−1. Therefore, U ∗A∗U = [z̄j1]⊕A∗

n−1.
Then U∗AUe1 = zJe1 and U∗A∗Ue1 = z̄Je1, where e∗1Je1 = ±1. Since
(U∗)−1 =JUJ and J2 =In, we have AUe1=zJUe1 and A∗Ue1 = z̄JUe1, that
is, z is an eigenvalue of JA and x = Ue1 is an eigenvector of JA associated
to z, such that x∗Jx = ±1.
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Theorem 7.2. Let A and C be matrices in Mn, such that

CJ = γ1In1
⊕ · · · ⊕ γpInp

, n1 + · · · + np = n,

where the γi are pairwise distinct, for i = 1, . . . , p, and let U be a pseudo-
unitary matrix in Ur,n−r. If 0 6= z = det(C + U ∗AU) is a corner of DJ,C(A),
then U∗AU is a direct sum of matrices A1 ⊕ · · · ⊕ Ap, where Ai ∈ Mni

,
i = 1, . . . , p, and

z =

p
∏

i=1

det(γiJi + Ai),

where Ji ∈Mni
, i = 1, . . . , p, are such that J = J1 ⊕ · · · ⊕ Jp.

Proof : For simplicity of notation, write AU = U∗AU. For any Hermitian S,
consider the differentiable function

f(t) = det(AU + e i t J1/2SJ1/2

Ce−i t J1/2∗SJ1/2∗

),

where J1/2∗ = JJ1/2. The following expansion can be easily obtained

f(t) = det(AU + C + i t (J1/2SJ1/2C − CJ1/2∗SJ1/2∗) + O(t2))

= det(AU + C)[1 + i tTr((AU + C)−1(J1/2S J1/2C − CJ1/2∗SJ1/2∗))] + O(t2),

for real t sufficiently close to zero. Since 0 6= z = det(C + AU) is a corner,
the derivative of f(t) with respect to t at t = 0 vanishes, that is,

Tr (J1/2SJ1/2(C(AU + C)−1 − J(AU + C)−1CJ)) = 0.

Since S is arbitrary, we obtain

JC(AU + C)−1 = (AU + C)−1CJ.

This last equation implies

(AU + C)JCJ = CJ(AU + C)J

and so CJ commutes with AUJ and the result follows.

The analysis of the J, c-tracial range for 2 × 2 matrices leads to the char-
acterization of those matrices A ∈ Mn for which VJ,c(A) is a singleton or a
subset of a straight line. The analysis of the 2 × 2 case is also useful in the
study of some special boundary points of the J, c-tracial range.

Theorem 7.3. Let c = (γ1, . . . , γn) ∈ C
n and A=(akl) be an upper triangular

matrix in Mn, with diagonal elements α1, . . . , αn. If
∑n

i=1 γiαi is a boundary
point of VJ,c(A) and γkjk 6= γljl, then akl = 0, for 1 ≤ k < l ≤ n.
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Proof : Let 1 ≤ k < l ≤ n, such that γkjk 6= γljl. Consider the following 2×2
principal submatrix of A,

A11 =

[

αk akl

0 αl

]

,

where akl 6= 0. By Lemma 5.1, VJ,c(A) contains the subset

Γ = VJ2,c′(A11) +
∑

i6=k,l

γiαi,

where c′ = (γk, γl) and J2 = J [kl]. If jk = jl, then VJ2,c′(A11) is an elliptical
disc, by the elliptical range theorem for Wc′(A11). If jk = −jl, then by
Theorem 4.1 i) VJ2,c′(A11) is a branch of a hyperbola with interior. Since A11

is not Hermitian and diag(γk, γl) is not J2-scalar, these conics have a focus
at γkαk + γlαl and may degenerate either into a circular disc, a half plane
or the whole complex plane; in any event, the focus is an interior point. In
any case, the subset Γ of VJ,c(A) has an interior point at

∑n
i=1 γiαi, which

contradicts the assumption of this point being on the boundary of VJ,c(A),
unless akl vanishes.

The following two corollaries are obvious consequences of this theorem.

Corollary 7.2. Let A be an upper triangular matrix in Mn, and let

CJ = γ1In1
⊕ · · · ⊕ γpInp

, n1 + · · · + np = n,

where the γiji are pairwise distinct, for i = 1, . . . , p. If Tr(CA) is a boundary
point of VJ,C(A), then A = A1 ⊕ · · · ⊕ Ap, where each block Ai is an upper
triangular matrix in Mni

, i = 1, . . . , p.

Corollary 7.3. Let c = (γ1, . . . , γn) ∈ C
n, with the γiji pairwise distinct, for

i = 1, . . . , p, and let A be an upper triangular matrix in Mn with diagonal
elements α1, . . . , αn. If

∑n
i=1 γiαi is a boundary point of VJ,c(A), then A is

a diagonal matrix.

8. Algorithm and Examples
The classical numerical range and its generalizations have been extensively

studied and many algorithms and computer programs for generating these
sets have been presented [10, 15]. In this section, we describe an algorithm
that will be used to plot an approximation for the J-numerical range.
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In [13], a Matlab program for generating the S-numerical range W +
S (A),

for S a Hermitian matrix, has been developed. After generating the joint
numerical range of the Hermitian matrix triple (H,G, S), with SA = H +
iG, the points (x/z, y/z), where (x, y, z) ∈ W (H,G, S) and z > 0, were
plotted. From such a collection of points, an approximation for W +

S (A) was
easily obtained. Now, we generate the J-numerical range, using a different
approach.

Basically, the idea of the algorithm is to compute the eigenvalues of Bs =
JRe(eiθsA), where θs varies on a specified subset of [0, 2π]. If there exist
directions eiθs, for which not all the eigenvalues ofBs are real, then no support
lines exist in those directions. Therefore, we search for those directions eiθs for
which all the eigenvalues of Bs are real. We also make sure that the J-norm
of the corresponding eigenvectors is different from 0. In these circumstances,
the boundary generating curves of VJ(A) exist. By the p-convexity of the J-
numerical range, the representation of VJ(A) is readily obtained. Otherwise,
this set is a line (in certain cases a subset of a line), or the whole complex
plane (in some cases, without a line).

Firstly, we present an algorithm providing the boundary generating curve
of the J-numerical range. Matlab programs have been written to plot this
curve and to draw an approximation for VJ(A).

Figure 1

Step 1: Consider the directions eiθs, where

θs =
π(s− 1)

2m
, s = 1, . . . , 4m+ 1,

for some positive integer m ≥ 20. For A ∈ Mn and for each choice of s,
compute the eigenvalues of Bs = JRe(eiθsA). If these eigenvalues are all real
and the J-norm of the corresponding eigenvectors is not 0, put the value
s in a vector denoted by direc = (t1, . . . , tk). Observe that the number of
eigenvectors with positive J-norm is fixed by the inertia of J , independently
of θs.

Step 2: If the vector direc is empty, the following cases are possible:

(i) If A is Hermitian, then VJ(A) = R;
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(ii) If A is essentially J-Hermitian, that is, A = αS + βJ, for some Her-
mitian matrix S ∈ Mn, 0 6= α ∈ C and β ∈ C, then VJ(A) is a line
passing through β and with direction argα;

(iii) Otherwise, VJ(A) is the whole complex plane, possibly without a line.

Figure 2
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Step 3: If the situations referred to in the previous step do not occur, then
for each entry tj of the vector direc, compute n linearly independent eigenvec-
tors associated with the eigenvalues of Btj . (The linear independence of the
eigenvectors ensures that all the generating boundary curves are considered.)
Denote these eigenvectors by ui(tj), for i = 1, . . . , n, and evaluate

u∗i (tj)Aui(tj)

u∗i (tj)J ui(tj)
,

for u∗i (tj)J ui(tj) > 0 and u∗i (tj)J ui(tj) < 0. Suppose that r of these eigen-
vectors have positive J-norm while n−r have negative J-norm. Then r points
in V +

J (A) and n−r points in −V −
J (A) are generated. Thus, for all the tj,

j = 1, . . . , k, rk points in V +
J (A) (possibly coincident) and (n− r)k points in

−V −
J (A) (possibly coincident) are represented.

To generate an approximation of VJ(A) we proceed as follows.

Step 4: For any distinct points x, y ∈ V +
J (A), compute αx + (1 − α)y, for

0 ≤ α ≤ 1. Repeat this step for −V −
J (A). The algorithm draws

(

rk
2

)

line

segments connecting points in V +
J (A) and

(

nk−rk
2

)

line segments between

points in −V −
J (A).

Step 5: For any distinct points x ∈ V +
J (A) and y ∈ −V −

J (A), compute
αx+ (1 − α)y, for α ≤ 0 or α ≥ 1. Here, the number of lines is r(n− r)k2.

The set obtained in Step 4 and Step 5 is the pseudo-convex hull of the
boundary generating curves of VJ(A).

In some cases, the Matlab program, instead of plotting VJ(A), may present
a message describing the shape of the set. This is the case when A is es-
sentially J-Hermitian and the boundary generating curve of VJ(A) does not
exist; nevertheless, for all the other cases of essentially J-Hermitian matrices
a plot is always given (see Figure 2).

When VJ(A) is the whole complex plane an approximation for VJ(A) is
plotted, being clearly seen that this set is C (see Figure 3).

Now, some examples are considered.
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Figure 3
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Example 1: Let J = diag(1,−1, 1) and

A =





1 0 a
0 b 0
0 0 1



 ,

with a, b ∈ R. We easily check that if 1 − 1
2 |a| ≤ −b ≤ 1 + 1

2 |a|, VJ(A) is the
whole complex plane. Otherwise, the boundary generating curves of VJ(A)
are the singleton {−b} and the circle

(x− 1)2 + y2 =
a2

4
(more precisely, two superimposed circles). Hence, VJ(A) is the pseudo-
convex hull of these curves.

Example 2: Consider J = diag(−1, 1, 1) and the same matrix A of the

previous example. It can be easily seen that if either a2

4 ≥ 1 or −1 + a2

4 ≥ b,
then VJ(A) reduces to the whole complex plane. Otherwise, the singleton
{b} and the two branches of the hyperbola

x2

1 − a2

4

− y2

a2

4

= 1

are the boundary generating curves of VJ(A), which is the pseudo-convex
hull of these curves.
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Figure 4

−2 −1 0 1 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Curve that Generates the Boundary of V
J
(A)

J+Numerical Range 
J− Numerical Range

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5
The J−Numerical Range

Figure 1 and Figure 4 represent VJ(A) for the matrices in the Examples 2
and 1, respectively, in the particular case a = 1 and b = 2.

Example 3: Consider, now, J = diag(1,−1,−1) and

A =





1 0 0
0 −1 b
0 0 −1



 ,

with b ∈ R. The boundary generating curves of VJ(A) are the singleton {1}
and the circle

(x− 1)2 + y2 =
b2

4
.

For the particular case b = 2, see Figure 3. In this example, the pseudo-
convex hull of these curves gives the whole complex plane.

The eigenvalues of JRe (eiθA), θ ∈ R, when b = 2, are the real numbers
cos θ and cos θ ± 1. Nevertheless, VJ(A) does not have support lines in any
direction, and so the converse of Proposition 2.1 does not hold.

Example 4: Let J = diag(1,−1) and A be the following essentially J-
Hermitian matrix:

A = (1 + i)

[

1 a
a 1

]

,
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with a > 0. If a > 1, then VJ(A) = eiπ/4
R and if a = 1, then VJ(A) =

eiπ/4
R \ {0}. If 0 < a < 1, the boundary generating curve of VJ(A) is formed

by the points ±eiπ/4
√

1 − a2. For the particular case a = 1/2, VJ(A) is the
line defined by ±eiπ/4

√
3/2, except the open line segment joining these points

(see Figure 2).
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