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1. Introduction
Ternary Malcev algebras are a particular case of n−ary Malcev alge-

bras, first defined in [7], and these naturally arise from the classification
of n−ary vector cross product algebras [2]. Indeed, the classification
theorem for these asserts that, in the case n = 2, the only possible
algebras are the simple 3−dimensional Lie algebra sl(2) and the simple
7−dimensional Malcev algebra C7; in the case n ≥ 3, those are the
simple (n + 1)−dimensional n−Lie algebras (which are a natural gen-
eralization of Lie algebras to the case of an n−ary multiplication [4],
and nowadays these algebras are called Filippov algebras) with vector
cross product, being analogues of sl(2), and also some exclusive ternary
algebras arising on composition algebras.

It has been proved [7] that the latter ones are ternary central sim-
ple Malcev algebras, which are not 3−Lie algebras if the characteristic
of the ground field is different from 2 and 3 (more generally, the re-
sult states that every n−ary vector cross product algebra is an n−ary
central simple Malcev algebra).

The class of n−ary Malcev algebras has also the following interesting
properties:
1. It is an extension of the class of n−Lie algebras, i.e., every n−Lie
algebra is an n−ary Malcev algebra (generalizing the fact that every
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Lie algebra is a Malcev algebra);
2. Fixing an arbitrary component in the multiplication (i.e., defining
a new reduced operation on the vector space A of the n−ary Malcev
algebra by the rule [x1, . . . , xn−1]a = [a, x1, . . . , xn−1], (reduced algebra)),
we obtain an (n− 1)-ary Malcev algebra.

Really, at the moment, the only known example of a simple n−ary
Malcev algebra which is not an n−Lie algebra is the above mentioned
ternary central simple Malcev algebra arising on an 8-dimensional com-
position algebra.

In this article we continue investigating the properties of this ternary
simple Malcev algebra. We obtain some results on its derivation and in-
nerderivation algebras over a field of characteristic 0 (namely, conclud-
ing that these coincide) and its associative and Lie algebras of multipli-
cations. These results are necessary to classify the faithful irreducible
finite-dimensional representations of this ternary algebra. Further, we
describe the algebra of quasi-derivations of the ternary Malcev algebra
mentioned above.

We start recalling some definitions. Let Φ be an associative, com-
mutative ring with unity. An Ω−algebra over Φ is a unital module
over Φ, on which we define a system of multilinear algebraic operations
Ω = {ωi : |ωi| = ni ∈ N, i ∈ I}, where |ωi| denotes the arity of ωi.
Henceforth, an Ω−algebra is sometimes briefly called an algebra.

An n−Lie algebra (n ≥ 3) is an Ω−algebra L with one n−ary oper-
ation [x1, . . . , xn] satisfying the identities

[x1, . . . , xn] = sgn(σ)[xσ(1), . . . , xσ(n)], (1.1)

[[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn], (1.2)

where σ is a permutation in the symmetric group Sn, with sign denoted
by sgn(σ). The relation (1.1) is called the anticommutativity identity
and (1.2) is the generalized Jacobi identity (or Filippov identity).
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By an n−ary Jacobian, we mean the following function defined on an
n−ary algebra:

J(x1, . . . , xn; y2, . . . , yn) =

[ [x1, . . . , xn], y2, . . . , yn]−
n∑

i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn].

Note that, in an n−Lie algebra, J(x1, . . . , xn; y2, . . . , yn) is skew-symme-
tric on each of the sets x1, . . . , xn and y2, . . . , yn, but not on their to-
tality. It follows from the definition that if A is an n−Lie algebra then

J(x1, . . . , xn; y2, . . . , yn) = 0

for all x1, . . . , xn, y2, . . . , yn ∈ A.
An n−ary Malcev algebra (n ≥ 3) is an Ω−algebra L with one anti-

commutative n−ary operation [x1, . . . , xn] satisfying the identity
n∑

i=2

[[z, x2, . . . , xn], x2, . . . , [xi, y2, . . . , yn], . . . , xn] (1.3)

+
n∑

i=2

[[z, x2, . . . , [xi, y2, . . . , yn], . . . , xn], x2, . . . , xn]

= [[[z, x2, . . . , xn], x2, . . . , xn], y2, . . . , yn]

−[[[z, y2, . . . , yn], x2, . . . , xn], x2, . . . , xn] .

In terms of right multiplications, this identity is equivalent to:

Rx(
n∑

i=2

Rx2,...,xiRy ,...,xn
) + (

n∑
i=2

Rx2,...,xiRy,...,xn
)Rx = R2

xRy − RyR
2
x,

where Rx = Rx2,...,xn
and Ry = Ry2,...,yn

are right multiplication opera-
tors: zRx = [z, x2, . . . , xn]. Note also that we can rewrite (1.3) as

−J(zRx, x2, . . . , xn; y2, . . . , yn) = J(z, x2, . . . , xn; y2, . . . , yn)Rx

A version of the ternary case of (1.3) can be written as follows:

[[x, y, z], [y, u, v], z] + [[x, y, z], y, [z, u, v]]

+[[x, [y, u, v], z], y, z] + [[x, y, [z, u, v]], y, z]

= [[[x, y, z], y, z], u, v] − [[[x, u, v], y, z], y, z].
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Henceforth, we assume that Φ is a field of characteristic 0 and denote
by A a composition algebra over Φ with an involution − : a �→ ā and
unity 1. The symmetric, bilinear form 〈x, y〉 = 1

2(xȳ + yx̄) defined on
A is supposed to be nonsingular and we can define the norm of each
a ∈ A by the rule n(a) = 〈a, a〉. Equip A with a ternary multiplication
[·, ·, ·] by the rule

[x, y, z] = xȳz − 〈y, z〉 x+ 〈x, z〉 y − 〈x, y〉 z.
Then A becomes a ternary Malcev algebra with respect to this opera-
tion which will be denoted by M(A). If dimA = 8 then M(A) is not a
3−Lie algebra and we denote it by M8 or simply by M .

2. Algebras of multiplications of M
Let M be the simple 8-dimensional ternary Malcev algebra over a

field Φ of characteristic 0 and R the vector space generated by the
right multiplications of M . Let Ass(R) and Lie(R) be, respectively,
the associative and Lie algebras generated by R. Let Der(M) and
Innder(M) be, respectively, the derivation and inner derivation alge-
bras of M . Remind that a derivation is called inner if it belongs to the
Lie algebra Lie(R) of transformations.

Lemma 2.1. We have:
1. Ass(R) = M8,8(Φ);
2. Ass(R) =< R2 >;
3. Lie(R) ∼= D4;
4. Lie(R) = R as vector spaces;
5. Der(M) ∼= B3;
6. Der(M) = Innder(M).

Proof : Being 1, a, b, c orthonormal vectors of A, let us choose the fol-
lowing basis

{e1 = 1, e2 = a, e3 = b, e4 = ab, e5 = c, e6 = ac, e7 = bc, e8 = abc},
denoted by ε and called the canonical basis of M . For each i ∈
{2, . . . , 8}, it is possible to choose j, k, l,m, s, t, all depending on i such
that

ei = e1ei = ejek = elem = eset
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Let Rij = Rei,ej
and

S = {Rij : i, j = 1, . . . , 8, i < j}.
We claim that S is linearly independent, that is,∑

i<j

αijRij = 0 (2.1)

implies αij = 0 for all i, j = 1, . . . , 8, i < j. Consider the following
partition of S:

S =

8⋃
i=2

Si,

where for each i ∈ {2, . . . , 8}, Si = {R1i, Rjk, Rlm, Rst}. Fixing i in
{2, . . . , 8} and applying the left part of (2.1) to e1, we have:

−αjk − αlm − αst = 0. (2.2)

Indeed, it is easy to see that

e1R1i = 0 and e1Rjk = −ei = e1Rlm = e1Rst.

Further, if i′ 	= i and we apply the right multiplications of Si′ to e1, we
never obtain a element of 〈ei〉 (except 0, of course) as a consequence of
the above partition. Therefore, from

e1

∑
i<j

αijRij = 0

we obtain (2.2). Analogously, applying the left side (2.1) to ej, we
obtain

−α1i − αlm − αst = 0, (2.3)

since

ejRjk = 0 and ejR1i = −ek = ejRlm = ejRst

and because no other right multiplication of S produces a vector of
〈ek〉 when applied to ej. Analogously proceeding, when we apply the
left side of (2.1), respectively, to el and to es we obtain

−α1i − αjk − αst = 0 (2.4)

and

−α1i − αjk − αlm = 0, (2.5)
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respectively. So, from (2.2)-(2.5) we conclude that

α1i = αjk = αlm = αst = 0

and thus Si is linearly independent. Since the same can be applied for
all i ∈ {2, . . . , 8}, we conclude that S is linearly independent.

Consider Rjk as a linear transformation of the space M with basis ε.
It is easy to see that

Rjk = ∆i1 + ∆ml + ∆ts, (2.6)

where ∆ij = eij − eji and eij are the usual matrix units. Note that
dim ∆ = 28, where

∆ = 〈∆ij : i, j = 1, . . . , 8〉Φ .

By (2.6), 〈S〉 = R is a subspace of ∆, with dimR = 28. Hence, R = ∆.
The items 1. to 4. of the lemma easily follow from here.

To prove that Der(M) ∼= B3, let D be a derivation of M . Then D is
an operator of M such that:

[x, y, z]D = [xD, y, z] + [x, yD, z] + [x, y, zD] , (2.7)

for all x, y, z ∈ M . Applying this identity to every x, y, z ∈ ε (it
is sufficient to do it for every ei, ej, ek, with i < j < k), and being
D = [aij]i,j=1,...,8, we may conclude that:




aij = −aji, i < j;
aii = 0, i = 1, ..., 8;
a18 − a27 + a36 + a45 = 0;
a28 + a17 + a35 − a46 = 0;
a38 − a16 − a25 − a47 = 0;
a48 − a15 + a26 + a37 = 0;
a58 + a14 + a23 − a67 = 0;
a68 + a13 − a24 + a57 = 0;
a78 − a12 − a34 − a56 = 0.

(2.8)
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Replacing, for instance, the elements a1i and ai1 for i = 2, ..., 8, and
using the operators ∆ij, we may deduce, after (2.8) that

D = a23 (∆23 −∆14) + a24 (∆24 + ∆13) + a25 (∆25 −∆16)

+a26 (∆26 + ∆15) + a27 (∆27 + ∆18) + a28 (∆28 −∆17)

+a34 (∆34 −∆12) + a35 (∆35 −∆17) + a36 (∆36 −∆18)

+a37 (∆37 + ∆15) + a38 (∆38 + ∆16) + a45 (∆45 −∆18)

+a46 (∆46 + ∆17) + a47 (∆47 −∆16) + a48 (∆48 + ∆15)

+a56 (∆56 −∆12) + a57 (∆57 −∆13) + a58 (∆58 −∆14)

+a67 (∆67 + ∆14) + a68 (∆68 −∆13) + a78 (∆78 + ∆12) .

It is easy to conclude now that

Der(M) =
〈

∆23 −∆14; ...; ∆78 + ∆12
〉

Φ

and Der(M) is a simple 21-dimensional Lie algebra. Therefore,

Der(M) ∼= B3 ,

and the item 5. holds.
By (2.6) and the item 4 of the lemma, it is easy to compute that

every D ∈ Der(M) is such that D ∈ Lie(R) and thus D is an inner
derivation of M . �

Lemma 2.2. Let L be a ternary Malcev algebra and V =< Rx,yRx,y :
x, y ∈ L >. Then V is a module over the Lie algebra Lie(L) of trans-
formations under the action v◦R = vR−Rv, where v ∈ V, R ∈ Lie(L).
In the case L ∼= M the module V is of dimension 36 and it contains
an irreducible submodule of codimension 1. Moreover, Ass(R)(−) =
Lie(R)⊕ V is a Z2-graded Lie algebra.

Proof : Define the action of Lie(L) on End(M) by the rule: v ◦ R =
vR − Rv, where v ∈ End(M), R ∈ Lie(L). Then

(v ◦ R1) ◦ R2 − (v ◦ R2) ◦ R1 = v(R1R2 − R2R1)− (R1R2 − R2R1)v =

v[R1, R2]− [R1, R2]v = v ◦ [R1, R2].

Thus, End(M) is a module over the Lie algebra Lie(L).
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Since the right side of the generalized Malcev identity is equal to
R2

x,y ◦ Ru,v and the left side is a linear combination of elements of V ,
then V is a Lie submodule over Lie(L).

The knowledge of R and Lie(R) allows us to observe that we can
choose the following basis of V : {eii, eij + eji : i, j = 1, . . . , 8}. The
subspace

W = 〈eii − ejj, eij + eji : i, j = 1, . . . , 8〉
is an irreducible submodule in V . �

Let us remind that by a ternary Jacobian we mean the following
function defined on a ternary algebra L:

J(x1, x2, x3; y2, y3) =

[[x1, x2, x3], y2, y3]− [[x1, y2, y3], x2, x3]− [x1, [x2, y2, y3], x3]

−[x1, x2, [x3, y2, y3]].

Let JL denote the vector space generated by J(x1, x2, x3; y2, y3), xi, yi ∈
L. As we know, in the case of a simple Malcev algebra L we have
JL = J(L,L, L) = L. In the case of the ternary Malcev algebra M , we
too have:

Lemma 2.3. JM = M .

Proof : Consider the orthonormal basis ε of M . Then, by direct com-
putations, we have

J (e4, e1, e2; e3, e5) = [[e4, e1, e2], e3, e5]− [[e4, e3, e5], e1, e2]

−[e4, [e1, e3, e5], e2]− [e4, e1, [e2, e3, e5]]

= [e3, e3, e5]− [e6, e1, e2] + [e4, e7, e2] + [e4, e1, e8] = −3e5,

and, analogously,

J (e6, e1, e2; e3, e5) = 3e3, J (e4, e1, e2; e3, e6) = −3e6,

J (e4, e1, e2; e3, e7) = −3e7, J (e4, e1, e2; e3, e8) = −3e8,

J (e6, e1, e2; e4, e5) = 3e4, J (e7, e4, e5; e1, e2) = −3e1,

J (e8, e4, e5; e1, e2) = −3e2.

Therefore, JM = J (M,M,M,M,M) and the result is proved. �
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Lemma 2.4. Let ε be the standard basis of M . Then, for any x, y, z ∈
ε,

[[Rx,y, Rx,z], Ry,z] = 0. (2.9)

Proof : In order to prove that (2.9) is true it is enough to show that

t[[Rx,y, Rx,z], Ry,z] = 0

for all x, y, z, t ∈ ε. This identity is equivalent to

[[[t, x, y] , x, z] , y, z]− [[[t, x, z] , x, y] , y, z] (2.10)

− [[[t, y, z] , x, y] , x, z] + [[[t, y, z] , x, z] , x, y] = 0.

Denoting the left hand side of (2.10) by f(t, x, y, z), it is clear that
f is symmetric on y, z. On the other hand, it is simple to observe that
this identity is verified whenever three of the arguments are equal. If
just two of the arguments are equal, then (2.10) is too satisfied. Indeed,
the cases x = y, x = z and y = z are trivial. Suppose now that t = x.
If we also have y = z it is trivial that f (t, t, y, y) = 0. Otherwise,

f (t, t, y, z) = − [[[t, y, z] , t, y] , t, z] + [[[t, y, z] , t, z] , t, y]

= [z, t, z] + [y, t, y] = 0.

If t = y, then

f (t, x, t, z) = − [[[t, x, z] , x, t] , t, z] .

It is clear that, if we also have x = z , then f (t, x, t, x) = 0. If x 	= z,
since [[t, x, z] , x, t] = t, we conclude that

f (t, x, t, z) = − [z, y, z] = 0.

By the symmetry of f on y, z, the case t = z follows from this.
Finally, admit that all arguments of f are pairwise different in ε.

Each summand of f(t, x, y, z) is easily computable, and we obtain:

[[[t, x, y] , x, z] , y, z] = t− 〈t, [x, y, z]〉 [x, y, z] = [[[t, y, z] , x, y] , x, z] ;

[[[t, x, z] , x, y] , y, z] = −t+ 〈t, [x, y, z]〉 [x, y, z] = [[[t, y, z] , x, z] , x, y] .

Replacing in (2.10), we conclude that f(t, x, y, z) = 0, which concludes
the proof. �

Let L be a ternary algebra, a ∈ L and D ∈ Der(L) such that D(a) =
0. It is easy to see that D is a derivation of the reduced algebra La.
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It is also easy to observe that, even in the case when L = M , there
exists D ∈ Der(M) such that D(a) 	= 0 for all a ∈M, a 	= 0. Take for
instance D = (∆14 −∆23) + (∆56 + ∆78).

Note also that, if V is a module over a ternary Malcev algebra L
and ρ is a corresponding representation, then V is a module over the
Malcev algebra La for any a ∈ L, simply by putting x · v = ρ(a, x)(v).

Let L = M and a ∈ M such that Ma/ < a > is a simple Malcev
algebra (we know [8] that this happens when a is an element of the
canonical basis, for example). Let D ∈ Der(M) and D(a) 	= 0. Since
D is a derivation of reduced simple Malcev algebra, and every derivation
of such algebra is inner (i.e. it belongs to 〈[Rx, Ry] +Rxy〉), we have

D =
∑

i

([Ra,xi
1
, Ra,xi

2
] + Ra,[xi

1,a,xi
2]).

We know [8], that in the general case a derivation of the type〈
[Rx, Ry] +Rx◦Ry

〉
,

where x = (x2, . . . , xn) ∈ L×(n−1), y = (y2, . . . , yn) ∈ L×(n−1) and

x ◦Ry =
n−1∑
i=1

(x2, . . . , xiRy, . . . , xn) ∈ L×(n−1),

is not a derivation of an n−ary Malcev algebra L. Therefore, a natural
question arises: is the operator [Rz,x, Rz,y]+Rz,[x,z,y] a derivation of the
ternary Malcev algebra M?

The answer is given by the following result.

Theorem 2.5. Let M(A) be a ternary Malcev algebra. For any z, x, y ∈
A

[Rz,x, Rz,y] +Rz,[x,z,y] ∈ Der(M(A)). (2.11)

Proof: The proof for this assertion, based on exhaustive but easy
computations, is rather long. By this reason, we shall only give a
sketch of it.

In the first part of the proof, we consider any ei, ej, ek arbitrary ele-
ments on ε, the standard basis of M(A), and prove that (2.11) holds
for these, that is,[

Rei,ej
, Rei,ek

]
+Rei,[ej ,ei,ek] ∈ Der(M(A)). (2.12)
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Let us denote the operator
[
Rei,ej

, Rei,ek

]
+Rei,[ej ,ei,ek] by D (ei, ej , ek)

or simply by D (i, j, k). It is an easy task to see that D is skew-
symmetric on j, k and that

eiD (i, j, k) = 0, ejD (i, j, k) = −2ek, ekD (i, j, k) = 2ej, (2.13)

whenever ei, ej, ek are different. Clearly, to show that D (i, j, k) is a
derivation of M(A) for each ei, ej, ek ∈ ε, it is sufficient to prove that

[x, y, z]D (i, j, k) = [xD (i, j, k) , y, z] (2.14)

+ [x, yD (i, j, k) , z] + [x, y, zD (i, j, k)]

for all x, y, z ∈ ε.
Hereinafter we admit that x, y, z are pairwise different in ε (due to the

anticommutativity of [., ., .], it is clear that (2.14) is satisfied whenever
two or even three elements among x, y, z are equal). Further, we will
divide the proof in four main cases:

Case 1: x, y, z ∈ {ei, ej, ek} .
Case 2: One of the elements x, y, z is not in {ei, ej, ek} . Without loss

of generality, we will admit that x /∈ {ei, ej, ek} , being y, z ∈ {ei, ej, ek}.
Three subcases must be considered:

2.1) y = ej, z = ek; 2.2) y = ei, z = ej; 2.3) y = ei, z = ek.

It is clear, by the skew-symmetry of D (i, j, k) on j, k, that 2.3) is a
consequence of 2.2), so only the first two subcases must be analyzed.

Case 3: Just one of the elements x, y, z is in {ei, ej , ek} . We can ad-
mit, without loss of generality, that z ∈ {ei, ej, ek} and x, y /∈ {ei, ej , ek}.
Again, since D (i, j, k) is skew-symmetric on j, k, among the following
three subcases,

3.1) z = ei; 3.2) z = ej; 3.3) z = ek,

the first two will be sufficient.
Case 4: x, y, z, ei, ej, ek are pairwise different.
Now, the only cases which appeal to a deeper analysis are 3.2) and 4.

since these lead, after the computation of each side of (2.14), to expres-
sions which have not exactly the same shape (although we prove that
those are identical for all elements satisfying the respective hypothe-
sis). Moreover, we can add that this analysis can be done recalling
that x, y, z, ei, ej , ek can be considered as points in the Fano’s plane (of
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course, the possibility of any of these being equal to the identity 1 must
also be studied).

At this point, for each z, x, y ∈ A, let

D(z, x, y) = [Rz,x;Rz,y] + Rz,[x,z,y]. (2.15)

Observe that the operator D is linear and skew-symmetric on x, y.
Thus, in order to show thatD(z, x, y) is a derivation for all z, x, y ∈ A, it
suffices to prove that D(z, x, y) is a derivation, for any z =

∑8
i=1 αiei ∈

A,αi ∈ Φ and x, y ∈ ε. Now, using (2.15), it is easy to see that

D(z, x, y) = D(
8∑

i=1

αiei, x, y) =
8∑

i=1

α2
iD(ei, x, y)

+
8∑

i,j=1,i<j

αiαj

([
Rei,x;Rej ,y

]
+

[
Rej ,x;Rei,y

]
+Rei,[x,ej ,y] +Rej ,[x,ei,y]

)
.

Observing that D(ei, x, y) is, by (2.12), a derivation (and thus the same
happens with

∑8
i=1 α

2
iD(ei, x, y) ), we deduce that D(z, x, y) is a deriva-

tion if [
Rei,x;Rej ,y

]
+

[
Rej ,x;Rei,y

]
+Rei,[x,ej ,y] +Rej ,[x,ei,y]

is a derivation, i.e., if

[w1, w2, w3]
[
Rei,x;Rej ,y

]
+ [w1, w2, w3]

[
Rej ,x;Rei,y

]
(2.16)

+ [w1, w2, w3]Rei,[x,ej ,y] + [w1, w2, w3]Rej ,[x,ei,y]

=
[
w1

[
Rei,x;Rej ,y

]
, w2, w3

]
+

[
w1

[
Rej ,x;Rei,y

]
, w2, w3

]
+

[
w1Rei,[x,ej ,y], w2, w3

]
+

[
w1Rej ,[x,ei,y], w2, w3

]
+

[
w1, w2

[
Rei,x;Rej ,y

]
, w3

]
+

[
w1, w2

[
Rej ,x;Rei,y

]
, w3

]
+

[
w1, w2Rei,[x,ej ,y], w3

]
+

[
w1, w2Rej ,[x,ei,y], w3

]
+

[
w1, w2, w3

[
Rei,x;Rej ,y

]]
+

[
w1, w2, w3

[
Rej ,x;Rei,y

]]
+

[
w1, w2, w3Rei,[x,ej ,y]

]
+

[
w1, w2, w3Rej ,[x,ei,y]

]
for every w1, w2, w3, ei, ej , x, y ∈ ε.

Analogously to the proof of (2.12), the proof of (2.16) is too long to
include in this paper. Thus, we briefly give a sketch of it.
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To simplify, g1 (w1, w2, w3, ei, ej, x, y) and g2 (w1, w2, w3, ei, ej, x, y)
stand, respectively, for the left and right hand sides of the above iden-
tity. Further, each summand will be denoted by gk,l where k = 1, 2 and
stands for the left or right hand side, respectively, and l stands for the
order of the summand which is being considered.

Observe that the operator[
Rei,x;Rej ,y

]
+

[
Rej ,x;Rei,y

]
+Rei,[x,ej ,y] +Rej ,[x,ei,y],

which we want to prove that is a derivation, is skew-symmetric on
the pairs x, y and symmetric on ei, ej. Thus, this properties still hold
concerning g1 and g2. Further, these are skew-symmetric on the pairs
w1, w2;w2, w3 and w1, w3. We will consider that w1, w2, w3, are pairwise
different and also that ei 	= ej and x 	= y, because otherwise we obtain
trivial cases. Further, denote {w1, w2, w3} by ε1 and {ei, ej, x, y} by ε2.
By the properties of g1 and g2, in order to prove that

g1 (w1, w2, w3, ei, ej , x, y) = g2 (w1, w2, w3, ei, ej , x, y) ,

we have to consider two main cases concerning the elements ei, ej, x, y:

I: x = ei; II: ei, ej , x, y pairwise different.

CASE I: x = ei This means that ε2 reduces to {ei, x, y}.
Case 1: ε1 ∩ ε2 = ∅.
1.1. 1 ∈ ε1 ∪ ε2. Since it is possible to show that

gk (w1, w2, w3, x, ej, x, y) = −gk (w1, w2, w3, x, y, x, ej) , k = 1, 2,

we just have to analyze three subcases:

1.1.1. x = 1; 1.1.2. y = 1; 1.1.3. w1 = 1.

1.2. 1 /∈ {w1, w2, w3, x, ej , y}.
Case 2: ε1 ∩ ε2 	= ∅.
2.1. ε1 and ε2 have three elements in common.
2.2. ε1 and ε2 have two elements in common. By the properties of

g1 and g2, the following subcases are enough:

2.2.1. w1 = x,w2 = y; 2.2.2. w1 = x,w2 = ej; 2.2.3. w1 = y, w2 = ej .

2.3. The sets ε1 and ε2 have only one element in common. Again taking
in consideration the properties of g1 and g2, we just have to analyze the
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following subcases:

2.3.1. w1 = x; 2.3.2. w1 = y; 2.3.3. w1 = ej.

CASE II: x, y, ei, ej are pairwise different.
1. ε1 ∩ ε2 = ∅.
1.1. 1 ∈ ε1 ∪ ε2.
According to the properties of g1 and g2, we have to analyze three

main cases:

1.1.1. x = 1; 1.1.2. ei = 1; 1.1.3. w1 = 1.

1.2. 1 /∈ {x, y, ei, ej, w1, w2, w3}.
2. ε1 ∩ ε2 	= ∅.
Admit that there are three common elements. Due to the properties

of (2.16), we just have to analyze two cases:

2.1. w1 = x;w2 = y;w3 = ei and 2.2. w1 = x;w2 = ei;w3 = ej.

Next, we analyze what happens when ε1 and ε2 have only two elements
in common. Again recalling the properties of (2.16), we just have to
observe the cases

2.3. w1 = x,w2 = y ; 2.4. w1 = x,w2 = ei ; 2.5. w1 = ei, w2 = ej .

Finally, we analyze what happens when ε1 and ε2 have only one element
in common. It is easy to see that we just have to check the cases

2.6. w1 = x; 2.7. w1 = ei.

We recall again that a deeper analysis of all of these cases and sub-
cases is made by considering w1, w2, w3, x, y, ei, ej as elements on the
Fano’s plane. �

Another family of multiplication algebras that might be interesting
to study is the algebra of quasi-derivations. According to R. E. Block
[1], a linear operator D : A −→ A is called quasi-derivation of a ring
A, if it satisfies

[D,T ] ∈ T (A), for all T ∈ T (A),

where T (A) stands for the Lie ring generated by the right and left
multiplications by elements of A.
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In the case of n−ary algebras we have the following.
Let A be an n−ary anticommutative algebra with multiplication

[·, ..., ·]. Consider the vector space R generated by the right multi-
plications Ra = Ra2,...,an

, a2, ..., an ∈ A, Ass (R) and Lie (R), respec-
tively, the associative and Lie algebra generated by R. Every operator
D : A −→ A such that

[D,Ra] ∈ Lie (R) , for all Ra ∈ Lie (R) , (2.17)

is said to be a quasi-derivation of A.
Consider M the simple 8-dimensional ternary Malcev algebra over a

field Φ of characteristic zero and let R, Ass (R) and Lie (R) stand with
the above described meaning (with M instead of A). As it has been
proved, on lemma 1.1.,

Lie (R) ∼= D4 = {X ∈M8×8 (Φ) : X ′ = −X} ,
and

Lie (R) = 〈∆ij = eij − eji, i, j = 1, ..., 8, i < j〉Φ .
Thus, by (2.17), in order to find the quasi-derivations of M , we have
to find

D = (dkl) ∈M8×8 (Φ) : [D,∆ij ] ∈ Lie (R) .

It is possible to observe, by direct computations, that

[D,∆ij] =

↓ i ↓ j


0 · · · −d1j 0 d1i · · · 0
... . . . ...

...
...

−dj1 · · · −dij − dji · · · dii − djj · · · −dj8

0
... . . . ... 0

di1 · · · −djj + dii · · · dji + dij · · · di8
...

...
... . . . ...

0 · · · −d8j 0 d8i · · · 0



← i

← j

.

Therefore,

[D,∆ij ] ∈ Lie (R)⇔




dkj = −djk , k = 1, . . . , ı̂, . . . , ̂, . . . , 8
dki = −dik , k = 1, . . . , ı̂, . . . , ̂, . . . , 8
dji + dij = 0
dii − djj = − (dii − djj)

.
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Since char Φ = 0, the last identity implies dii = djj. Finally, recalling
that i, j = 1, ..., 8, i < j, we may state the following result.

Theorem 2.6. If D is a quasi-derivation of the ternary Malcev algebra
M over a field of characteristic zero, then

D = αId8 +X, with X ′ = −X .

3. On some nonassociative algebras arising on a
ternary Malcev algebra

Following to the general ideas of S. Eilenberg [3], we may introduce
the notion of an n-ary Malcev module. Admit that A is an n-ary
Malcev algebra over a field Φ. A vector space V over Φ is said to be
an n-Malcev module if the direct sum of vector spaces

B = V ⊕ A
has the structure of n-ary Malcev algebra, such that A is an n-ary Mal-
cev subalgebra of B and V is an abelian ideal (i.e., [V, V,B, . . . , B] = 0).
In this case, to any set of elements a1, . . . , an−1 ∈ A it corresponds a
linear transformation ρ(a1,...,an−1) of V , acting by the rule

vρ(a1,...,an−1) = [v, a1, . . . , an−1] ,

and we say that ρ is a representation of the n-ary Malcev algebra A in
the space V .

We must point that, an analogous definition was earlier given by Sh.
Kasymov and E. Kuz’min concerning Filippov algebras [6].

Let’s define on A = AM = ∧2M an operation

(y ∧ z)(u ∧ v) = [y, u, v] ∧ z + y ∧ [z, u, v]. (3.1)

Let V be a module over M and ρ0 a corresponding representation. We
can define an action ρ of the algebra A on V by means of

ρ(y ∧ z)(v) = ρ0(y, z)(v).

Then, for any x = u1 ∧ u2, y = u3 ∧ u4, where ui ∈M , we have

[ρ2
x, ρy] = ρxyρx + ρxρxy,

where ρx = ρ(x). This equality is very near to one of the equalities
concerning the representations of Malcev algebras.
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Note that if the action ρ0 is irreducible, then the action ρ of the
algebra A on V is also irreducible.

At this point, we arrive to the question of studying the algebra A,
which is nor commutative neither anticommutative. By these reasons,
it will be also interesting to study its commutator algebra, A(−), i.e.,
A with the operation:

[y ∧ z, u ∧ v] = [y, u, v] ∧ z + y ∧ [z, u, v]− [u, y, z] ∧ v − u ∧ [v, y, z].

Note also that if φ is an isomorphism of ternary Malcev algebras L1
and L2 then ψ : x∧ y �→ φ(x)∧φ(y) is an isomorphism of AL1

and AL2
.

It is possible to observe that there exists a basis of A whose elements
have zero squares. It is easy to construct an example showing that A
is not a power associative algebra. E.g., taking x = e2 ∧ e3 + e4 ∧ e5,
it is enough to consider the coefficient at e6 ∧ e3 on the elements x2 · x
and x · x2 to conclude that x2 · x 	= x · x2.

Prior to the question of knowing if A(−) is a Lie or a Malcev algebra,
we put a more general question. Let F be a free anticommutative
ternary algebra. Define on A = ∧2F an operation by the rule (3.1)
and consider its commutator algebra. The problem is to find a minimal
ideal I such that (A/I, [., .]) is a Lie (or Malcev) algebra.

Theorem 3.1. Let I be a nonzero minimal ideal of A with the property
that (A/I, [., .]) is a Lie algebra. Then

I = id < [[x1, x2, x3], x4, x5]− [[x1, x4, x5], x2, x3] > .

Further, let I1 be a nonzero minimal ideal of A such that (A/I1, [., .]) is
a Malcev algebra. Then I = I1 and (A/I1, [., .]) is a Lie algebra.

Proof : Using direct computations it is possible to see that the elements
of the type

−[[x1, x2, x3], x4, x5]− [[x5, x1, x2], x3, x4] (3.2)

+[[x4, x5, x1], x2, x3] + [[x3, x4, x5], x1, x2]

+[[x2, x4, x5], x3, x1]− [[x1, x2, x4], x5, x3]

belong to the ideal. Denote an element of the type (3.2) by
g(x1, x2, x3, x4, x5). Then we have

g(x1, x2, x3, x4, x5) + g(x4, x5, x1, x2, x3)
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= −[[x5, x1, x2], x3, x4]− [[x1, x2, x4], x5, x3]

+[[x2, x3, x4], x5, x1] + [[x5, x2, x3], x1, x4] = 0.

We can rewrite it as

[[x2, x1, x5], x3, x4]− [[x2, x4, x1], x5, x3] (3.3)

[[x2, x3, x4], x1, x5] + [[x2, x5, x3], x4, x1] = 0.

Put x2 = x5 in (3.3). We have

−[[x2, x4, x1], x2, x3]− [[x2, x3, x4], x1, x2] = 0.

Linearizing and interchanging variables, we will obtain the identity
which is analogous to (3.3), but having all coefficients equal to 1.
Adding this identity with (3.3), we obtain what’s required. �
Corollary 3.2. Let L be a solvable anticommutative ternary algebra of
derived length 2. Then (∧2L, [, ]) is a Lie algebra.

Corollary 3.3. Let L be an anticommutative ternary algebra with an
identity

[[x1, x2, x3], x4, x5] = [[x1, x4, x5], x2, x3].

Then (∧2L, [, ]) is a Lie algebra.

Let D be an endomorphism of a ternary algebra A over a field Φ.
Then, following to V.T.Filippov [5], we call D a δ-derivation, where
δ = (α, β) ∈ Φ2, if, for any x, y, z ∈ A, we have

[x, y, z]D = [xD, y, z] + α[x, yD, z] + β[x, y, zD]. (3.4)

Corollary 3.4. Let L be an anticommutative ternary algebra whose
right multiplication operators are (2, 2)-derivations. Then (∧2L, [, ]) is
a Lie algebra.

Lemma 3.5. There are no identities of degrees 2 for A and degree 3 for
A(−). All identities of degree 2 for A(−) follow from anticommutativity.
Further, there are no identities of degree 3 in A, neither of degree 4 in
A(−).

Proof : First, since the field Φ is a field of characteristic 0, we know
(see [9], for example) that all identities of the algebra A follow from
multilinear identities. It is easy to see that there are no identities of
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degree 2 for A and that all identities of degree 2 for A(−) follow from
anticommutativity.

Let f be an identity of degree 3 for A(−). Then

f(x, y, z) = [[x, y], z] + α[[z, x], y] + β[[y, z], x] = 0,

for all x, y, z ∈ A(−). It is easy to see that f(x, y, y) = (1− α)[[x, y], y].
Taking x = e1 ∧ e2, y = e2 ∧ e5, we have

[x, y] = 2e2 ∧ e6, and [[x, y], y] = 4e2 ∧ e1,

whence α = 1. Analogously, from f(x, y, x) = (1−β)[[x, y], x] we obtain
β = 1. Putting z = e2 ∧ e7, we have

[[x, y], z] = −4e2 ∧ e3 = [[z, x], y] = [[y, z], x],

from where everything follows.
An identity of degree 3 forA has the following expression: f(x, y, z) =

0, where

f (x, y, z) = (xy) z + α2(yz)x+ α3(zx)y + α4(yx)z (3.5)

+α5(zy)x+ α6(xz)y + α7z(xy) + α8x(yz)

+α9y(zx) + α10z(yx) + α11x(zy) + α12y(xz),

with αi ∈ Φ.
Considering x = y = z in (3.5), we have

f (x, x, x) = (1 + α2 + α3 + α4 + α5 + α6)x
2x (3.6)

+ (α7 + α8 + α9 + α10 + α11 + α12)xx
2.

Thus, taking for instance x = e2 ∧ e3 + e4 ∧ e5, it is possible to see that
x2x and xx2 are linearly independents. Therefore, if f (x, x, x) = 0,
then {

1 + α2 + α3 + α4 + α5 + α6 = 0
α7 + α8 + α9 + α10 + α11 + α12 = 0

. (3.7)

Admit that x = y in (3.5). Then

f (x, x, z) = (1 + α4)x
2z + (α2 + α6) (xz)x+ (α3 + α5) (zx)x (3.8)

+ (α7 + α10) zx
2 + (α8 + α12)x(xz) + (α9 + α11)x(zx).
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Taking x = e1 ∧ e2, z = e1 ∧ e3 and replacing in (3.8), the equality
f (x, x, z) = 0 implies that

(α2 + α6) + (α9 + α11) = (α3 + α5) + (α8 + α12) . (3.9)

On the other hand, doing the same but now with x = e2 ∧ e3 + e4 ∧ e5,
z = e1 ∧ e2, we obtain the set of equalities:


(α2 + α6)− 3 (α3 + α5)− (α8 + α12) + (α9 + α11) = 0
− (1 + α4)− (α2 + α6)− (α3 + α5) + 3 (α7 + α10) = 0

− (1 + α4) + (α3 + α5) + 3 (α7 + α10)− (α8 + α12)− 2 (α9 + α11) = 0
(α2 + α6)− (α8 + α12)− 2 (α9 + α11) = 0

−2 (1 + α4)− (α2 + α6) + 2 (α8 + α12) + (α9 + α11) = 0
2 (1 + α4)− 2 (α3 + α5)− (α8 + α12) + (α9 + α11) = 0

2 (α3 + α5) = 0.
(3.10)

The conjugation of (3.7), (3.9) and (3.10), leads to:

α4 = −1, α5 = −α3, α6 = −α2, α10 = −α7, α11 = −α9, α12 = −α8.

Thus,

f (x, y, z) = (xy) z + α2(yz)x+ α3(zx)y − (yx)z − α3(zy)x

−α2(xz)y + α7z(xy) + α8x(yz) + α9y(zx)

−α7z(yx)− α9x(zy)− α8y(xz). (3.11)

Consider the case x = z in (3.5). Then, from (3.11), we get

f (x, y, x) = (α3 − α2)x
2y + (1− α3) (xy)x (3.12)

+ (α2 − 1) (yx)x+ (α9 − α8) yx
2

+ (α7 − α9)x(xy) + (α8 − α7)x(yx).

Proceeding as above, considering x = e1 ∧ e2, y = e1 ∧ e3 in (3.12), we
obtain from f (x, y, x) = 0 the equality:

2− α2 − α3 − 2α7 + α8 + α9 = 0.

Further, the consideration of x = e2 ∧ e3 + e4 ∧ e5, y = e1 ∧ e2 again in
(3.12) leads to {

α7 = α8 = α9,
α2 = α3 = 1.
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Thus,

f (x, y, z) = (xy) z + (yz)x+ (zx)y − (yx)z − (zy)x− (xz)y (3.13)

+α7 (z(xy) + x(yz) + y(zx)− z(yx)− x(zy)− y(xz)) .
Consider x = e1 ∧ e2, y = e2 ∧ e3 + e4 ∧ e5 and z = e1 ∧ e6 in (3.13).

Then,

f (x, y, z) = (1− α7)w,

where w = 2 (e1 ∧ e4)− (e2 ∧ e3)− 3 (e2 ∧ e7) + 2 (e5 ∧ e8) + (e6 ∧ e7)−
3 (e1 ∧ e8). Thus, f (x, y, z) = 0, leads to α7 = 1. Whence,

f (x, y, z) = (xy) z + (yz)x+ (zx)y − (yx)z − (zy)x− (xz)y

+z(xy) + x(yz) + y(zx)− z(yx)− x(zy)− y(xz).
Finally, if we now take

x = e1 ∧ e2, y = e1 ∧ e3 + e4 ∧ e5 and z = e6 ∧ e2 + e7 ∧ e8,

we obtain

f (x, y, z) = −e1 ∧ e3 + e1 ∧ e4 + e2 ∧ e3− e2 ∧ e4 + e5 ∧ e8− e6 ∧ e7 	= 0.

This way, there are no identities of degree 3 for A.
The identities of fourth degree in A(−) are of the type f (x, y, z, w) =

0, where

f (x, y, z, w) = [[[x, y] , z] , w] (3.14)

+α1 [[[x, y] , w] , z] + α2 [[[x, z] , y] , w]

+α3 [[[x, z] , w] , y] + α4 [[[x,w] , y] , z] + α5 [[[x,w] , z] , y]

+α6 [[[y, z] , x] , w] + α7 [[[y, z] , w] , x] + α8 [[[y, w] , x] , z]

+α9 [[[y, w] , z] , x] + α10 [[[z, w] , x] , y] + α11 [[[z, w] , y] , x]

+α12 [[x, y] , [z, w]] + α13 [[x, z] , [y, w]] + α14 [[x,w] , [y, z]] ,

with x, y, z, w ∈ A(−).
Considering x = y = z in the above formula, we have:

f (x, y, z, w) = (α4 + α5 + α8 + α9 + α10 + α11) [[[x,w] , x] , x] .

Taking x = e1 ∧ e2, w = e1 ∧ e3, we have [[[x,w] , x] , x] = −8 (e1 ∧ e4).
Therefore, f (x, y, z, w) = 0 leads to

α4 + α5 + α8 + α9 + α10 + α11 = 0. (3.15)
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The consideration of the analogous cases x = y = w, x = z = w and
y = z = w allows us to obtain, respectively, the identities:

α2 + α3 + α6 + α7 − α10 − α11 = 0; (3.16)

1 + α1 − α6 − α7 − α8 − α9 = 0;

1 + α1 + α2 + α3 + α4 + α5 = 0.

By the conjugation of (3.15) and (3.16), we have:




α1 = −1 + α6 + α7 + α8 + α9
α2 = −α3 − α6 − α7 + α10 + α11
α4 = −α5 − α8 − α9 − α10 − α11

.

After replacing in (3.14), we have:

f (x, y, z, w) = [[[x, y] , z] , w] (3.17)

+ (−1 + α6 + α7 + α8 + α9) [[[x, y] , w] , z]

+ (−α3 − α6 − α7 + α10 + α11) [[[x, z] , y] , w]

+ (−α5 − α8 − α9 − α10 − α11) [[[x,w] , y] , z]

+α3 [[[x, z] , w] , y] + α5 [[[x,w] , z] , y]

+α6 [[[y, z] , x] , w] + α7 [[[y, z] , w] , x] + α8 [[[y, w] , x] , z]

+α9 [[[y, w] , z] , x] + α10 [[[z, w] , x] , y] + α11 [[[z, w] , y] , x]

+α12 [[x, y] , [z, w]] + α13 [[x, z] , [y, w]] + α14 [[x,w] , [y, z]] .

Consider now, respectively, the cases x = y, x = z, x = w, y = z,
y = w, z = w. From (3.17) we obtain, respectively:

f (x, x, z, w) = (−α3 − α7 + α10 + α11) [[[x, z] , x] , w] (3.18)

+ (α3 + α7) [[[x, z] , w] , x]

+ (−α5 − α9 − α10 − α11) [[[x,w] , x] , z]

+ (α5 + α9) [[[x,w] , z] , x]

+ (α10 + α11) [[[z, w] , x] , x] + (α13 − α14) [[x, z] , [x,w]] ;
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f (x, y, x, w) = (1− α6) [[[x, y] , x] , w] (3.19)

+ (−1 + α6 + α8 + α9) [[[x, y] , w] , x]

+ (α5 + α10) [[[x,w] , x] , y]

+ (−α5 − α8 − α9 − α10) [[[x,w] , y] , x]

+ (α8 + α9) [[[y, w] , x] , x] + (α12 + α14) [[x, y] , [x,w]] ;

f (x, y, z, x) = (−1 + α6 + α7 + α9) [[[x, y] , x] , z] (3.20)

+ (1− α9) [[[x, y] , z] , x] + (α3 − α10) [[[x, z] , x] , y]

+ (−α3 − α6 − α7 + α10) [[[x, z] , y] , x]

+ (α6 + α7) [[[y, z] , x] , x] + (−α12 + α13) [[x, y] , [x, z]] ;

f (x, y, y, w) = (1− α3 − α6 − α7 + α10 + α11) [[[x, y] , y] , w] (3.21)

+ (−1 + α3 + α6 + α7 + α8 + α9) [[[x, y] , w] , y]

+ (−α8 − α9 − α10 − α11) [[[x,w] , y] , y]

+ (α8 + α10) [[[y, w] , x] , y]

+ (α9 + α11) [[[y, w] , y] , x] + (α12 + α13) [[x, y] , [y, w]] ;

f (x, y, z, y) = (1 + α5) [[[x, y] , z] , y] (3.22)

+ (−1− α5 + α6 + α7 − α10 − α11) [[[x, y] , y] , z]

+ (−α6 − α7 + α10 + α11) [[[x, z] , y] , y]

+ (α6 − α10) [[[y, z] , x] , y]

+ (α7 − α11) [[[y, z] , y] , x] + (α12 − α14) [[x, y] , [z, y]] ;

f (x, y, z, z) = (α6 + α7 + α8 + α9) [[[x, y] , z] , z] (3.23)

+ (−α3 − α5 − α6 − α7 − α8 − α9) [[[x, z] , y] , z]

+ (α3 + α5) [[[x, z] , z] , y] + (α6 + α8) [[[y, z] , x] , z]

+ (α7 + α9) [[[y, z] , z] , x] + (α13 + α14) [[x, z] , [y, z]] .

Taking x = e1∧ e2, z = e1 ∧ e3 and w = e2 ∧ e5 in (3.18), the identity
f (x, x, z, w) = 0 implies{ −2α3 + 2α5 − 2α7 + 2α9 + α10 + α11 − α13 + α14 = 0

−α3 + α5 − α7 + α9 + 2α10 + 2α11 + α13 − α14 = 0
. (3.24)
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Further, taking the same elements e1 ∧ e2, e1 ∧ e3 and e2 ∧ e5, mutatis
mutandis, in (3.19)-(3.23), we obtain



−2α5 − 2α6 − 3α8 − 3α9 − 2α10 − α12 − α14 = −2
−α5 − α6 − α10 + α12 + α14 = −1

−2α3 − α6 − α7 + 2α9 + 2α10 + α12 − α13 = 2
−α3 + α6 + α7 + α9 + α10 − α12 + α13 = 1

2α3 + 2α6 + 2α7 + 3α8 + α9 + α10 − α11 + α12 + α13 = 2
α3 + α6 + α7 − α9 − α10 − 2α11 − α12 − α13 = 1

2α5 + α6 − α7 − α10 + α11 − α12 + α14 = −2
α5 − α6 − 2α7 + α10 + 2α11 + α12 − α14 = −1

−2α3 − 2α5 − 3α6 − α7 − 3α8 − α9 − α13 − α14 = 0
−α3 − α5 + α7 + α9 + α13 + α14 = 0

.

(3.25)
The linear system of equations (3.24) and (3.25) is undetermined and
equivalent to: 



α3 = α9 + α14
α5 = α7 + α13
α6 = −α7 + α12 − α13
α8 = −α9 − α12 − α14
α10 = 1 + α14
α11 = −1− α13

with α7, α9, α12, α13, α14 ∈ Φ. After replacing these coefficients in (3.17)
we obtain:

f (x, y, z, w) = [[[x, y] , z] , w] + (−1− α13 − α14) [[[x, y] , w] , z] (3.26)

+ (−α9 − α12) [[[x, z] , y] , w] + (α9 + α14) [[[x, z] , w] , y]

+ (−α7 + α12) [[[x,w] , y] , z] + (α7 + α13) [[[x,w] , z] , y]

+ (−α7 + α12 − α13) [[[y, z] , x] , w] + α7 [[[y, z] , w] , x]

+ (−α9 − α12 − α14) [[[y, w] , x] , z] + α9 [[[y, w] , z] , x]

+ (1 + α14) [[[z, w] , x] , y] + (−1− α13) [[[z, w] , y] , x]

+α12 [[x, y] , [z, w]] + α13 [[x, z] , [y, w]] + α14 [[x,w] , [y, z]] .

Putting z = w in (3.18), from (3.26) we have:

f (x, x, z, z) = (2α7 + 2α9 + α13 + α14) ([[[x, z] , z] , x]− [[[x, z] , x] , z]) .
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Considering x = e1 ∧ e2, z = e1 ∧ e3 + e4 ∧ e6, from f(x, x, z, z) = 0 we
obtain:

2α7 + 2α9 + α13 + α14 = 0. (3.27)

Taking y = w in (3.19), after (3.26) we obtain:

f (x, y, x, y) = (2 + 2α7 − α12 + 2α13 + α14) ([[[x, y] , x] , y]− [[[x, y] , y] , x]) .

Considering x = e1∧e2, y = e1∧e3+e4∧e6, the identity f(x, y, x, y) = 0
implies:

2 + 2α7 − α12 + 2α13 + α14 = 0. (3.28)

Considering y = z in (3.20), by (3.26) we get:

f (x, y, y, x) = (−2 + 2α9 + α12 − α13) ([[[x, y] , x] , y]− [[[x, y] , y] , x]) .

Considering x = e1∧e2, y = e1∧e3+e4∧e6, the identity f(x, y, y, x) = 0
implies:

−2 + 2α9 + α12 − α13 = 0. (3.29)

¿From (3.27)-(3.29) we have{
α12 = 2− 2α9 + α13,

α14 = −2α7 − 2α9 − α13.

Thus:

f (x, y, z, w) = [[[x, y] , z] , w] + (−1 + 2α7 + 2α9) [[[x, y] , w] , z]

+ (−2 + α9 − α13) [[[x, z] , y] , w] (3.30)

+ (−2α7 − α9 − α13) [[[x, z] , w] , y]

+ (2− α7 − 2α9 + α13) [[[x,w] , y] , z]

+ (α7 + α13) [[[x,w] , z] , y]

+ (2− α7 − 2α9) [[[y, z] , x] , w] + α7 [[[y, z] , w] , x]

+ (−2 + 2α7 + 3α9) [[[y, w] , x] , z] + α9 [[[y, w] , z] , x]

+ (1− 2α7 − 2α9 − α13) [[[z, w] , x] , y]

+ (−1− α13) [[[z, w] , y] , x]

+ (2− 2α9 + α13) [[x, y] , [z, w]] + α13 [[x, z] , [y, w]]

+ (−2α7 − 2α9 − α13) [[x,w] , [y, z]]

with α7, α9, α13 ∈ Φ.
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Making x = y in (3.30), we have:

f (x, x, z, w) = (α7 + α9 + α13) (− [[[x, z] , x] , w]− [[[x, z] , w] , x]

+ [[[x,w] , x] , z] + [[[x,w] , z] , x] + 2 [[x, z] , [x,w]]− 2 [[[z, w] , x] , x]).

¿From this, if f (x, x, z, w) = 0 then

α7 + α9 + α13 = 0, (3.31)

by considering x = e1 ∧ e2, y = e1 ∧ e3 + e4 ∧ e6, and w = e2 ∧ e5.
If we put x = z in (3.30), we have:

f (x, y, x, w) = (−1 + α7 + 2α9) ([[[x, y] , x] , w] + [[[x, y] , w] , x]

− [[[x,w] , x] , y]− [[[x,w] , y] , x] + 2 [[[y, w] , x] , x]− 2 [[x, y] , [x,w]]).

After this, the identity f (x, y, x, w) = 0 implies

−1 + α7 + 2α9 = 0, (3.32)

by taking x = e1 ∧ e2, y = e1 ∧ e3 + e4 ∧ e6, and w = e2 ∧ e5.
Analogously, if we have x = w in (3.30), we obtain:

f (x, y, z, x) = (1− α9) ([[[x, y] , x] , z] + [[[x, y] , z] , x]− [[[x, z] , x] , y]

− [[[x, z] , y] , x] + 2 [[[y, z] , x] , x]− 2 [[x, y] , [x, z]]).

Thus, if we take x = e1 ∧ e2, y = e1 ∧ e3 + e4 ∧ e6, and z = e2 ∧ e5, the
identity f (x, y, x, w) = 0 implies

1− α9 = 0. (3.33)

¿From (3.31)-(3.33), we get α9 = 1, α7 = −1 and α13 = 0. Whence,
the only possible identity of fourth degree in A(−) is f (x, y, z, w) = 0,
where

f (x, y, z, w) = [[[x, y] , z] , w]− [[[x, y] , w] , z]− [[[x, z] , y] , w]

+ [[[x, z] , w] , y] + [[[x,w] , y] , z]− [[[x,w] , z] , y]

+ [[[y, z] , x] , w]− [[[y, z] , w] , x]− [[[y, w] , x] , z]

+ [[[y, w] , z] , x] + [[[z, w] , x] , y]− [[[z, w] , y] , x] .
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However, considering x = e1 ∧ e2, y = e1 ∧ e3, z = e2 ∧ e5 + e3 ∧ e5 and
w = e2 ∧ e6 + e3 ∧ e7 in this development, we have

f (x, y, z, w) = 18e1 ∧ e2 − 12e1 ∧ e3 + 12e2 ∧ e4 + 18e3 ∧ e4

+6e5 ∧ e6 − 12e5 ∧ e7 − 12e6 ∧ e8 − 6e7 ∧ e8,

which is nonzero. Therefore, there are no identities of fourth degree in
A(−). �

Definition 3.6. If

f =
∑
σ∈S5

ασ

[[
xσ(1), xσ(2), xσ(3)

]
, xσ(4), xσ(5)

]

is an identity for a ternary algebra A, then we call it identity of degree
2.

Lemma 3.7. There are no identities of degree 2 for M8.

Proof : Let f be such an identity. Then, for some αi ∈ Φ we have:

f(x1, x2, x3, x4, x5) = α1 [[x1, x2, x3] , x4, x5] + α2 [[x1, x2, x4] , x3, x5]

+α3 [[x1, x3, x4] , x2, x5] + α4 [[x2, x3, x4] , x1, x5]

+α5 [[x1, x2, x5] , x3, x4] + α6 [[x1, x3, x5] , x2, x4]

+α7 [[x2, x3, x5] , x1, x4] + α8 [[x1, x4, x5] , x2, x3]

+α9 [[x2, x4, x5] , x1, x3] + α10 [[x3, x4, x5] , x1, x2] .

It is easy to notice the following implications:

f(e1, e2, e3, e4, e5) = 0 ⇒ −α5 + α6 − α7 − α8 + α9 − α10 = 0;

f(e1, e2, e3, e5, e6) = 0 ⇒ −α1 − α3 + α4 + α6 − α7 − α10 = 0;

f(e1, e2, e3, e6, e7) = 0 ⇒ α1 − α2 + α3 + α5 − α6 + α8 = 0;

f(e1, e2, e4, e6, e7) = 0 ⇒ −α1 + α2 + α4 − α5 − α7 + α9 = 0;

f(e1, e3, e5, e6, e7) = 0 ⇒ −α2 + α3 − α4 + α8 − α9 + α10 = 0.

Therefore, for α6, α7, α8, α9, α10 ∈ Φ, we obtain:

α1 = α8 − α9 + α10, α2 = α6 − α7 − α10, α3 = α6 − α8 − α10,

α4 = α7 − α9 + α10, α5 = α6 − α7 − α8 + α9 − α10,
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and thus

f(x1, x2, x3, x4, x5) = (α8 − α9 + α10) [[x1, x2, x3] , x4, x5]

+ (α6 − α7 − α10) [[x1, x2, x4] , x3, x5]

+ (α6 − α8 − α10) [[x1, x3, x4] , x2, x5]

+ (α7 − α9 + α10) [[x2, x3, x4] , x1, x5]

+ (α6 − α7 − α8 + α9 − α10) [[x1, x2, x5] , x3, x4]

+α6 [[x1, x3, x5] , x2, x4]

+α7 [[x2, x3, x5] , x1, x4] + α8 [[x1, x4, x5] , x2, x3]

+α9 [[x2, x4, x5] , x1, x3] + α10 [[x3, x4, x5] , x1, x2] .

¿From this development, it is easy to see that:

f(x1, x1, x3, x3, x5) = (α6 + α7 + α8 + α9) [[x1, x3, x5] , x1, x3] .

Considering x1, x3, x5 ∈ ε, we get [[x1, x3, x5] , x1, x3] = −x5 and thus

f(x1, x1, x3, x3, x5) = − (α6 + α7 + α8 + α9)x5.

This way, e.g., f(e1, e1, e2, e2, e3) = 0 implies

α6 + α7 + α8 + α9 = 0.

Computing f(x1, x1, x3, x4, x3), f(x1, x2, x1, x2, x5), f(x1, x2, x1, x4, x2),
f(x1, x2, x3, x1, x2), and proceeding (mutatis mutandis) as above, we ob-
tain, respectively, the equalities:

α6 + α7 − 2α8 − 2α9 = 0;

α6 − 2α7 − 2α8 + α9 = 0;

α6 − 2α7 + α8 + α9 − 3α10 = 0;

α6 + α7 + α8 − 2α9 + 3α10 = 0.

The linear system consisting on these five equalities has one only trivial
solution. Thus, α6 = α7 = α8 = α9 = α10 = 0 and, consequently, αi = 0
for all i = 1, ..., 10. �

4. On weight spaces of a ternary Malcev algebra
Let L be a ternary Malcev algebra. We call a right multiplication

Rx,y regular, if in the Fitting decomposition of L = L0 ⊕ L1 relative to



TERNARY MALCEV ALGEBRA M8 29

Rx,y the dimension of the zero component, L0, is minimal. In this case,
we call L0 a Cartan subspace of L.

The field Φ is called quadratically closed if, for any α ∈ Φ, there exists√
α ∈ Φ such that (

√
α)2 = α. In what follows, we assume that the

ground field satisfies this property.

Lemma 4.1. Let x, y ∈M . Then Rx,y is regular if and only if nxny 	=
(x, y)2.

Proof : Suppose that Rx,y is non-regular. Then there exists z ∈M such
that dim 〈x, y, z〉Φ = 3 and zRx,y = 0. Observing that

zRx,y = xRy,z = xȳz − (y, z)x+ (x, z)y − (x, y)z,

that identity implies (xȳ − (x, y))z = (y, z)x − (x, z)y. If we have
nxȳ−(x,y) 	= 0 then z ∈ 〈x, y〉Φ, which gives a contradiction. Thus,
nxȳ−(x,y) = nxny − (x, y)2 = 0.

Conversely, suppose that nxny = (x, y)2 (note that in this case nx′ny =
(x′, y)2 for any x′ = αx+ βy).

Consider the case 1 	∈ 〈x, y〉Φ.
Let nx = ny = 0 and (x, y) = 0. If xy = 0 then 1Rx,y = −xR1,y ∈
〈x, y〉Φ and Rx,y is nilpotent on 〈1, x, y〉Φ. If xy 	= 0 and xy = αx+ βy
then αxȳ = 0. If α 	= 0 then

y = γ + y′, γ 	= 0, ȳ = γ − y′, xγ = xy′ and xy = 2γx.

Therefore, 1Rx,y ∈ 〈x, y〉Φ, and Rx,y is nilpotent on 〈1, x, y〉Φ. If xy 	= 0
and xy 	∈ 〈x, y〉Φ then xyRx,y = 0.

Let nx = 0, ny 	= 0 and (x, y) = 0. Note that xy 	= 0. Indeed,
otherwise xR1,y ∈ 〈x, y〉Φ, and Rx,y is nilpotent on 〈1, x, y〉Φ. If xy =
αx + βy then again 1Rx,y ∈ 〈x, y〉Φ. Thus, xy 	∈ 〈x, y〉Φ, xyRx,y ∈
〈x, y〉Φ, and Rx,y is nilpotent on 〈x, y, xy〉Φ.

If nx 	= 0 and ny 	= 0 then, taking x + αy instead of x, for some α,
we come to the case considered above.

Let us consider the case 1 ∈ 〈x, y〉Φ.
In this case we may suppose that R = R1,x, where nx = 0 and

(1, x) = 0. Then there exists z such that zx ∈ 〈x〉Φ and y 	∈ 〈1, x〉Φ.
Therefore, zR1,x ∈ 〈1, x〉Φ, and R1,x is nilpotent on 〈1, x, z〉Φ. �
Lemma 4.2. Let M be the simple 8-dimensional ternary Malcev algebra
over a quadratically closed field Φ. Let Rx,y be a regular element and
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M = M0⊕M1 the Fitting decomposition of M relative to Rx,y. Then M0
is a two-dimensional abelian subalgebra of M , and we have the following
Cartan decomposition of M

M = M0 ⊕Mα ⊕M−α,

where α ∈ Φ such that vRx,y = ±αv for any v ∈M±α.

Proof : Let Rx,y be a regular element, where 1 	∈ 〈x, y〉Φ. We may

assume that nx = ny = 1, and (x, y) = 0. Let z ∈ 〈1, x, y, xy〉⊥Φ and
nz 	= 0. Then

M = M0 ⊕Mi ⊕M−i,

where

M0 = 〈x, y〉Φ , M±i = 〈1± ixy, z ± ixyz, yz ± ixz〉Φ .
Let R = Rx,y be again a regular element but now 1 ∈ 〈x, y〉Φ. We may

assume that R = R1,x, where nx = 1 and (1, x) = 0. Let y ∈ 〈1, x〉⊥Φ,

ny 	= 0, z ∈ 〈1, x, y, xy〉⊥Φ and nz 	= 0. Then

M = M0 ⊕Mi ⊕M−i,

where

M0 = 〈1, x〉Φ , M±i = 〈y ± ixy, z ± ixz, xyz ± iyz〉Φ .
Let R = R1+x,y be a regular element, (1, x) = (1, y) = 0 and ny = 0.

We may assume that nx = 0 and (x, y) = 1. Then

(1− y)R = −(1 + xy) and (1 + xy)R = −(1− y).
Let V = 〈1, x, y, xy〉Φ. It is easy to notice that dim V = 4. Let
Z = V ⊥ and z1 ∈ Z. If z1y = 0 then z1 ∈ M1 (if z1y 	= 0 then
z1yy = 0), z1xy = −2z1 and z1x 	= 0. It is easy to see that z1 and
z1(1 + x) are linearly independent modulo V , and z1(1 + x) ∈ M−1.
Choose z2 ∈ Z such that z2 	∈ 〈z1, z1(1 + x)〉Φ. If z2y = 0 then z2 ∈M1
and z2x 	= 0. Suppose that z2(1 + x) ∈ 〈z1, z1(1 + x), z2〉Φ ⊕ V . Acting
scalarly with (·, x), (·, y), (·, xy), (·, 1) and multiplying on x, we come
to the conclusion that (z2 − αz1)x = 0, contradicting the fact that
(z2 − αz1)y = 0. If z2y 	= 0 then we may consider z2y instead of z2. If
z2y ∈ 〈z1, z1(1 + x)〉Φ ⊕ V then, as above, we obtain z2y = α1z1. Take
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z3 instead of z2 (with the same properties). Then z3y = α2z1, and the
element α2z2 − α1z3 is required. Thus,

M = M0 ⊕M1 ⊕M−1,

where

M0 = 〈1 + x, y〉Φ , M1 = 〈y + xy, z1, z2〉Φ
and

M−1 = 〈2− y + xy, z1(1 + x), z2(1 + x)〉Φ .
Let R = R1+x,y be a regular element, (1, x) = (1, y) = 0 and ny 	= 0.
We may assume that ny = 1, n1+x = α 	= 0 and (x, y) = 0. Let
a = 1− α−1(1 + x) and b = xy. Then

aR = −b, bR = αa and b± i√αa ∈M∓i
√

α.

Let U = 〈1, x, y, xy〉⊥Φ and z ∈ U be an eigenvector for R. Then

zR1+x,y = z(1− x)y = zy − zxy = βz

for some β ∈ Φ∗. Since zxy = −z(xy), this is equivalent to z(−β+ y+
xy) = 0. From the last equality we obtain

n−β+y+xy = β2 + 1 + nx = 0 and β = ±i√α.
Conversely, if z ∈ U satisfies z(−β+ y+xy) = 0 for some β ∈ Φ∗, then
z ∈Mβ. We next show that it is possible to choose linearly independent
u1, u2, u3, u4 ∈ U such that u1, u2 ∈ Mi

√
α and u3, u4 ∈ M−i

√
α. Let

vα = −i√α + y + xy. Take u1 ∈ U such that u1vα = 0. Choose
u2 ∈ U such that u2 	∈ 〈u1〉Φ. If u2vα = 0 then we found the required
elements u1 and u2. If u2vα 	= 0 and u2vα 	∈ 〈u1〉Φ ⊕ V , then we can
take u2vα instead of u2. If u2vα 	= 0 and u2vα ∈ 〈u1〉Φ ⊕ V , then it is
easy to see that u2vα = γ1u1. Consider an element u3 ∈ U such that
u3 	∈ 〈u1, u2〉Φ. If u3vα = 0 then we can take u3 instead of u2. If u3vα 	= 0
and u3vα ∈ 〈u1〉Φ ⊕ V , then it is easy to see that u3vα = γ2u1. Thus,
we can consider γ2u2− γ1u3 instead of u2. We may apply an analogous
procedure to find the elements u3 and u4. Suppose that

∑4
i=1 γiui = 0.

Since

uk(y+xy) = i
√
αuk, k = 1, 2, and uk(y+xy) = −i√αuk, k = 3, 4,
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we conclude that either u1 and u2 are linearly dependent, or u3 and u4
are linearly dependent, which is impossible. Thus, we have

M = M0 ⊕Mi
√

α ⊕M−i
√

α,

where

M0 = 〈1 + x, y〉Φ , Mi
√

α =
〈
xy − i√α + i

√
αα−1(1 + x), u1, u2

〉
Φ

and

M−i
√

α =
〈
xy + i

√
α− i√αα−1(1 + x), u3, u4

〉
Φ .

�
Remark 4.3. According to the proof of the lemma, for any regular el-
ement R, we can construct explicitly the Cartan decomposition of M
relative to R.

Lemma 4.4. Let V = 〈1, x, y, xy〉Φ, U = V ⊥ and M± = M±α ∩ U .
Then

1. (M±M±,M∓) = 0;
2. M±M± ⊆ 〈αx± nxy ∓ xy〉Φ ;
3. M+M− ⊆ 〈−α+ y + xy〉Φ ;
4. M+M+ +M+M− +M−M− ⊆ V.

Proof : 1. Let v = (u1u2, u3), where u1, u2 ∈ M±, u3 ∈ M∓. Since
±αu2 = u2(y + xy), we have

±αv = (u1(u2(y + xy)), u3) = (u1((y + xy)u2), u3)

= −((y + xy)(u1u2), u3) = −(u1u2, (y + xy)u3)

= (u1u2, u3(y + xy)) = ∓α(u1u2, u3).

2. By 1., u1u2 ∈ V . Therefore, u1u2 = α1 + α2x + α3y + α4xy.
Applying (·, 1), (·, x), (·, y), (·, xy) and using ui(∓α + y + xy) = 0, we
obtain the required inclusion.

3. The proof is analogous to the proof of the item 2.
4. It easily follows from 1., 2. and 3. �

Lemma 4.5. Denote M±α by M±1. Then

[Mi,Mj,Mk] ⊆Mi+j+k,

where the sum i+ j + k is considered modulo 3.
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Proof : Consider the decomposition with respect to a regular element
R = R1+x,y, where

(1, x) = (1, y) = 0, ny = 1, n1+x = κ 	= 0 and (x, y) = 0.

Put α = i
√
κ. First, we prove the inclusion [M0,M±1,M±1] ⊆M∓1. In

order to do it, we begin to show that

W = [M0,±nx ∓ x+ αxy,M±1] ⊆M∓1.

Let w ∈W . Then

w = [±nx ∓ x+ αxy, β + βx+ γy, u],

where u(∓α+y+xy) = 0, u ∈M±1. Thus the inclusion w ∈ V ⊥ follows
from

w = [(±nx ∓ x+ αxy)(β − βx− γy)]u (4.1)

= (±β + γ/δ)(αx∓ nxy ± xy)u.
We have the following criterium

v ∈M∓α ⇐⇒ v(±α + y + xy) = 0. (4.2)

It is easy to see that w(±α+y+xy) = 0, i.e., w ∈M∓α. The inclusion

[M0,M±1,M±1] ⊆M∓1

easily follows from the previous conclusion and from Lemma 4.4.
Using 2. of Lemma 4.4, we obtain [M±1,M±1,M±1] ⊆M0.
Using 3. of Lemma 4.4., (4.1) and the standard computations, we

obtain the inclusion [M0,M1,M−1] ⊆M0.
We now show that [M1,M1,M−1] ⊆M1.
1. Let u1, u2 ∈M+, u ∈M−1. We have [u1, u2, u] ⊆ 〈(u1u2)u〉Φ +M1.

By 2 of Lemma 4.4., 〈(u1u2)u〉Φ ⊆ 〈(αx+ nxy − xy)u〉Φ. Using direct
computations (and (4.2) if u ∈M−), we obtain the required inclusion.

2. Let u± ∈M±. Then

[nx − x+ αxy, u+, u−] ⊆ 〈(u+u−)(nx − x+ αxy)〉Φ +M1

and it is enough to apply 3. of Lemma 4.4.
3. [nx − x+ αxy, u+, nx − x− αxy] ⊆ 〈(−α + y + xy)u+〉Φ, and it is

enough to apply (4.2).
The case [M1,M−1,M−1] ⊆M1 can be analyzed analogously.
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Further, concerning the remaining regular elements, we can adopt
analogous procedures. �
Corollary 4.6. The ternary Malcev algebra M8 can be equipped with a
non-trivial Z3-grading.
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