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Universidade de Coimbra
Preprint Number 03–20

DIRAC STRUCTURES FOR GENERALIZED LIE
BIALGEBROIDS

J. M. NUNES DA COSTA AND J. CLEMENTE-GALLARDO

Abstract: We introduce the notion of Dirac structure for a generalized Courant
algebroid. We show that the double of a generalized Lie bialgebroid is a generalized
Courant algebroid. We present some examples and we obtain, as a particular case
of our definition, the notion of E1(M)-Dirac structure introduced by Wade.

Keywords: Dirac structures, generalized Courant algebroids, generalized Lie bial-
gebroids, Jacobi manifolds.
AMS Subject Classification (2000): 17B62, 53D10, 53D17.

1. Introduction
Dirac structures on manifolds were introduced by Courant and Weinstein

[3] and studied in detail in [2]. Dirac structures include closed 2-forms, Pois-
son structures and foliations. Dorfman [4] developed an algebraic treatment
of these structures and used them for the study of completely integrable
systems, in the context of the calculus of variations.

The notion of Dirac structure on a manifold M , investigated by Courant
in [2], is defined using a subbundle L of TM ⊕ T ∗M , which is maximally
isotropic under the natural symmetric pairing on TM ⊕T ∗M , and a bracket
on the space of sections of TM ⊕ T ∗M , called the Courant bracket. The
existence of a Dirac structure corresponds to the closedness of that bracket
on the space Γ(L) of sections of L.

In order to understand the meaning of this bracket, which is not a Lie
bracket on Γ(TM ⊕ T ∗M), Liu et al [16] introduced the notion of Courant
algebroid on a vector bundle whose definition includes a skew-symmetric
bracket on the space of sections of that bundle. The first example of Courant
algebroid is the Whitney sum bundle A⊕A∗, where the pair (A,A∗) is a Lie
bialgebroid [18]. The Courant algebroid A ⊕ A∗ is called the double of the
Lie bialgebroid (A,A∗).

For the case of the Lie bialgebroid (TM,T ∗M), where TM is the Lie al-
gebroid whose space of sections is endowed with the usual Lie bracket of
vector fields and T ∗M is the null Lie algebroid, the bracket on the Courant
algebroid TM ⊕ T ∗M is the one introduced in [2], i.e. the Courant bracket.
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It is well known that there exists a close relation between Lie bialgebroids
and Poisson structures on manifolds. However, if we pass from the Poisson
to the Jacobi setting, we have to replace Lie bialgebroids by generalized Lie
bialgebroids [6] or Jacobi bialgebroids [5]. In fact, in opposite to the Poisson
case, the pair (TM,T ∗M) is not, in general, a Lie bialgebroid if M is a
Jacobi manifold. Canonically associated with a Jacobi manifold M , there
is a generalized Lie bialgebroid structure on (TM × IR, T ∗M × IR). In [23],
Wade considered the Whitney sum bundle E1(M) = (TM×IR)⊕(T ∗M×IR)
and introduced the notion of E1(M)-Dirac structure, extending the Courant
bracket to the space of sections of E1(M). But this extended bracket in not
a Courant bracket.

The motivation for this paper was a tentative to understand the exact
meaning of the extended bracket introduced by Wade, and to see how it
is related with the Courant algebroid structure. For that, we introduce the
notion of a generalized Courant algebroid, and we show that this includes the
double of a generalized Lie bialgebroid. We then conclude that the bracket
introduced by Wade is the bracket of a generalized Courant algebroid, defined
on E1(M), for the case where T ∗M×IR is endowed with the null Lie algebroid
structure.

The paper is organized as follows. In section 2 we recall some definitions
and results concerning generalized Lie bialgebroids and Jacobi manifolds. In
section 3 we present the definitions of generalized Courant algebroid and
Dirac structure for a generalized Courant algebroid. We prove that the dou-
ble of a generalized Lie bialgebroid is a generalized Courant algebroid and
we recover, as an example, the E1(M)-Dirac structure introduced by Wade
in [23]. Sections 4 and 5 are devoted to the presentation of some examples
of Dirac structures for generalized Lie bialgebroids ((A, φ), (A∗,W )). In sec-
tion 4 we study the graph of a bivector field on A, i.e. a section of

∧2A,
and we investigate the case of a Jacobi structure (Λ, E) ∈ Γ(

∧2(TM × IR))
on M . In section 5 we consider a subbundle D ⊂ A of A and we establish
the conditions that ensure the existence of a Dirac structure on the vector
bundle D ⊕ D⊥, where D⊥ is the conormal bundle of D. Using the notion
of characteristic pair [15] of a subbundle A, we obtain another example of a
Dirac structure. Finally, in section 6 we consider the Dirac structure for a
triangular generalized Lie bialgebroid.
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2. Generalized Lie bialgebroids and Jacobi structures
A Lie algebroid (A, [., .], ρ) over a manifold M is a vector bundle A over

M together with a bundle map ρ : A → TM , called the anchor and a Lie
algebra structure [., .] on the space Γ(A) of the global cross sections such that

i) the induced map ρ : Γ(A) → X(M) is a Lie algebra homomorphism;
ii) for any f ∈ C∞(M, IR) and X,Y ∈ Γ(A), then

[X, fY ] = f [X,Y ] + (ρ(X)f)Y.

Example 2.1. IfM is a differentiable manifold, then the triple (TM, [., .], IdTM )
is a Lie algebroid over M , where [., .] is the usual Lie bracket of vector fields.

Notation: Throughout this paper, we will use δ to denote the usual differen-
tial of de Rham.

Example 2.2. Let (M,Λ) be a Poisson manifold and Λ# : T ∗M → TM the
vector bundle morphism associated with the Poisson tensor Λ given, for any
sections α, β of T ∗M, by

〈β,Λ#(α)〉 = Λ(α, β).

Then the triple (T ∗M, [., .]Λ,Λ
#) is a Lie algebroid over M , where [., .]Λ is

the Lie bracket of 1-forms given by

[α, β]Λ = LΛ#(α)β − LΛ#(β)α− δ(Λ(α, β)). (1)

We recall that a Jacobi structure on a manifold M is a pair (Λ, E), where
Λ is a bivector and E is a vector field such that [Λ,Λ] = −2E ∧ Λ and
[E,Λ] = 0, [14].

Example 2.3. Let (M,Λ, E) be a Jacobi manifold. We denote by (Λ, E)# :
T ∗M × IR → TM × IR the vector bundle morphism given by

(Λ, E)#(α, f) = (Λ#(α) + fE,−〈α,E〉), (2)

for any section α of T ∗M and f ∈ C∞(M, IR). In opposition to the case of a
Poisson manifold, in general one cannot define a Lie algebroid structure on
the cotangent bundle of a Jacobi manifold. However, if (M,Λ, E) is a Jacobi
manifold, then (T ∗M × IR, [., .](Λ,E), π ◦ (Λ, E)#) is a Lie algebroid over M
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[9], where π : TM × IR → TM is the projection over the first factor and
[., .](Λ,E) is the bracket given by

[(α, f), (β, g)](Λ,E) := (γ, r), (3)

with

γ := LΛ#(α)β − LΛ#(β)α− δ(Λ(α, β)) + fLEβ − gLEα − iE(α ∧ β),

r := −Λ(α, β) + Λ(α, δg) − Λ(β, δf) + 〈fδg − gδf,E〉.

It is well known that with each Lie algebroid (A, [., .], ρ) a differential d on

the graded space of sections of
∧
A∗ = ⊕k∈ZZ

∧k A∗ is associated, where A∗

is the dual vector bundle of A. More precisely, d is a derivation of degree 1
and of square 0 of the associative graded commutative algebra (Γ(

∧
A∗),∧).

Also the Lie bracket on Γ(A) can be extended to the algebra of sections of∧
A, Γ(

∧
A) = ⊕k∈ZZΓ(

∧k A). The result is a graded Lie bracket [., .] which
is called the Schouten bracket of the Lie algebroid. 1 For more details, see
[17] and [10].

Let (A, [., .], ρ) be a Lie algebroid over M and φ ∈ Γ(A∗) a 1-cocycle for
the Lie algebroid cohomology complex with trivial coefficients (see [17] and
[6] ), i.e. for all X,Y ∈ Γ(A),

〈φ, [X,Y ]〉 = ρ(X)(〈φ, Y 〉) − ρ(Y )(〈φ,X〉). (4)

Using the 1-cocycle φ, we can define a new representation ρφ of the Lie
algebra (Γ(A), [., .]) on C∞(M, IR), by setting

ρφ : Γ(A) × C∞(M, IR) → C∞(M, IR), (X, f) �→ ρφ(X, f) = ρ(X)f + 〈φ,X〉f.
(5)

Therefore, we obtain a new cohomology complex, whose differential coho-
mology operator is given by

dφ : Γ(
∧k

A∗) → Γ(
∧k+1

A∗), β �→ dφ(β) = dβ + φ ∧ β. (6)

Also, for any X ∈ Γ(A), the Lie derivative operator with respect to X is
given by

Lφ
X : Γ(

∧k
A∗) → Γ(

∧k
A∗), β �→ Lφ

X(β) = LXβ + 〈φ,X〉β. (7)

1Some differences in signs with [6] and [14] come from different conventions for the Schouten
bracket.
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It is also possible to consider a φ-Schouten bracket on the graded algebra
Γ(

∧
A), denoted by [., .]φ, which is defined as follows:

[., .]φ : Γ(
∧p

A) × Γ(
∧q

A) → Γ(
∧p+q−1

A)

(P,Q) �→ [P,Q]φ = [P,Q] + (p− 1)P ∧ (iφQ) + (−1)p(q − 1)(iφP ) ∧Q,
(8)

where iφQ can be interpreted as the usual contraction of a multivector field
by a 1-form. We observe that when p = q = 1, [P,Q]φ = [P,Q]. That is, the
brackets [., .]φ and [., .] coincide on Γ(A).

We can develop a differential calculus using ρφ, dφ, Lφ and [., .]φ. The
formulae obtained are similar, but adapted, to the case of a Lie algebroid
(see [6] and [5]).

Suppose that the vector bundle (A, [., .], ρ) and its dual vector bundle
(A∗, [., .]∗, ρ∗) are both Lie algebroids over a manifold M . Let d (resp. d∗)
denote the differential of A (resp. A∗). Let φ ∈ Γ(A∗) (resp. W ∈ Γ(A))
be a 1-cocycle in the Lie algebroid cohomology complex of (A, [., .], ρ) (resp.
(A∗, [., .]∗, ρ∗)).

Definition 2.4. ([6]) The pair ((A, φ), (A∗,W )) is a generalized Lie bial-
gebroid if for all X,Y ∈ Γ(A) and P ∈ Γ(

∧pA), the following conditions
hold:

dW
∗ [X,Y ] = [dW

∗ X,Y ]φ + [X, dW
∗ Y ]φ; (9)

LW
∗φP + Lφ

WP = 0. (10)

Under the name of Jacobi bialgebroid, this notion was presented in [5], with
the following definition:

Definition 2.5. ([5]) The pair ((A, φ), (A∗,W )) is a Jacobi bialgebroid if
for all P ∈ Γ(

∧pA) and Q ∈ Γ(
∧
A),

dW
∗ [P,Q]φ = [dW

∗ P,Q]φ + (−1)p+1[P, dW
∗ Q]φ. (11)

The equivalence of Definitions 2.4 and 2.5 was proved in [5].
When φ = 0 andW = 0, we recover the notion of Lie bialgebroid: Definition

2.4 generalizes the original definition introduced in [18] by K. Mackenzie
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and P. Xu, while Definition 2.5 generalizes the equivalent one given by Y.
Kosmann-Schwarzbach [10].

The important property of duality of a Lie bialgebroid is also verified in
the case of a generalized Lie bialgebroid: if ((A, φ), (A∗,W )) is a generalized
Lie bialgebroid, so is ((A∗,W ), (A, φ)) (see [6] and [5]). As a consequence,
both Definitions 2.4 and 2.5 can be given using the dual versions of (9)-(10)
and (11), respectively.

Example 2.6. Let (M,Λ, E) be a Jacobi manifold. Consider the associated
Lie algebroid (T ∗M × IR, [., .](Λ,E), π ◦ (Λ, E)#) over M . Its differential d∗ is

given for all (P,Q) ∈ Γ(
∧k(TM)) ⊕ Γ(

∧k−1(TM)), by ([13])

d∗(P,Q) = ([Λ, P ] + kE ∧ P + Λ ∧Q,−[Λ, Q] + (1 − k)E ∧Q+ [E,P ]).
(12)

On the other hand, if M is a differentiable manifold, then the triple (TM×
IR, [., .], π) is a Lie algebroid over M , where π is the projection over the first
factor and [., .] is given by

[(X, f), (Y, g)] = ([X,Y ], X(g) − Y (f)), (X, f), (Y, g) ∈ X(M) × C∞(M, IR).
(13)

The associated differential is d = (δ,−δ), δ being the de Rham differential.
In [6] it was proved that φ = (0, 1) (resp. W = (−E, 0)) is a 1-cocycle of

TM × IR (resp. T ∗M × IR) and the pair ((TM × IR, φ), (T ∗M × IR,W )) is a
Jacobi bialgebroid.

Another interesting example of generalized Lie bialgebroid is the one pro-
vided by strict Jacobi-Nijenhuis manifolds (see [21] and [8]).

3. Generalized Courant algebroids
In this section we introduce the notion of generalized Courant algebroid

and we show that the double of a generalized Lie bialgebroid is a generalized
Courant algebroid.

Definition 3.1. A generalized Courant algebroid is a pair (A, θ), where A
is a vector bundle A→M equipped with a nondegenerate symmetric bilinear
form (., .) on the bundle, a skew-symmetric bracket [., .] on Γ(A) and a bundle
map ρ : A → TM , and θ ∈ Γ(A∗) is such that, for any X,Y ∈ Γ(A),
〈θ, [X,Y ]〉 = ρ(X)〈θ, Y 〉 − ρ(Y )〈θ,X〉, verifying the following properties:
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(1) for any X1, X2, X3 ∈ Γ(A),

[[X1, X2], X3] + c.p. = DθT (X1, X2, X3); (14)

(2) for any X1, X2 ∈ Γ(A),

ρ([X1, X2]) = [ρ(X1), ρ(X2)]; (15)

(3) for any X1, X2 ∈ Γ(A) and f ∈ C∞(M, IR),

[X1, fX2] = f [X1, X2] + (ρ(X1)f)X2 − (X1, X2)Df ; (16)

(4) for any f, g ∈ C∞(M, IR),

(Dθf,Dθg); (17)

(5) for any Y,X1, X2 ∈ Γ(A),

ρ(Y )(X1, X2) + 〈θ, Y 〉(X1, X2) = ([Y,X1] + Dθ(Y,X1), X2) (18)

+(X1, [Y,X2] + Dθ(Y,X2)),

where T (X1, X2, X3) is the function defined by

T (X1, X2, X3) =
1

3
([X1, X2], X3) + c.p. (19)

and D,Dθ : C∞(M, IR) → Γ(A) are given, for any X ∈ Γ(A), respectively by

(Dθf,X) =
1

2
(ρ(X)f + 〈θ,X〉f) and (Df,X) =

1

2
ρ(X)f. (20)

When θ = 0, we recover the definition of Courant algebroid, introduced in
[16], or the equivalent version presented in [22].

A subbundle L ⊂ A of the generalized Courant algebroid (A, θ) is said to
be integrable if Γ(L) is closed under the bracket [., .].

Definition 3.2. A Dirac structure for the generalized Courant algebroid
(A, θ) is an integrable subbundle L of A which is maximally isotropic with
respect to the symmetric bilinear form (., .).

An immediate consequence of the previous definition is the following.

Proposition 3.3. If L is a Dirac structure for the generalized Courant alge-
broid (A, θ) and θ ∈ Γ(L∗), then (L, ρ|L, [., .]|L) is a Lie algebroid and θ is a
1-cocycle for the Lie algebroid cohomology complex with trivial coefficients.
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Suppose now that the vector bundle A→M and its dual A∗ →M are both
equipped with Lie algebroid structures ([., .], a) and ([., .]∗, a∗), respectively.
Let d (resp. d∗) denote the differential of A (resp. A∗) and let φ ∈ Γ(A∗)
(resp. W ∈ Γ(A)) be a 1-cocycle in the Lie algebroid cohomology complex
of (A, [., .], a) (resp. (A∗, [., .]∗, a∗)). Moreover, let dφ, Lφ and [., .]φ (resp.
dW∗ , LW∗ and [., .]W∗ ) be the differential, the Lie derivative and the bracket
modified by the 1-cocycle φ of A (resp. W of A∗) given by (6), (7) and (8),
respectively.

On the Whitney sum bundle A⊕A∗ we can define two nondegenerate bilin-
ear forms, one symmetric, denoted by (., .)+, and the other skew-symmetric,
denoted by (., .)−, by setting, for any X1 + α1, X2 + α2 ∈ A⊕ A∗,

(X1 + α1, X2 + α2)+ =
1

2
(〈α1, X2〉 + 〈α2, X1〉) (21)

and

(X1 + α1, X2 + α2)− =
1

2
(〈α1, X2〉 − 〈α2, X1〉), (22)

respectively.
On the space Γ(A ⊕ A∗) of the global cross sections of A ⊕ A∗, which is

identified with Γ(A) ⊕ Γ(A∗), we introduce the following bracket:

[[X1 + α1, X2 + α2]] =
(
[X1, X2]

φ + LW
∗α1
X2 − LW

∗α2
X1 − dW

∗ (e1, e2)−
)

+
(
[α1, α2]

W
∗ + Lφ

X1
α2 −Lφ

X2
α1 + dφ(e1, e2)−

)
,(23)

where e1 = X1 + α1 and e2 = X2 + α2.
Using the anchor maps a and a∗, we define a vector bundle map ρ : A ⊕

A∗ → TM which is given, for any section X + α of A⊕A∗, by

ρ(X + α) = a(X) + a∗(α). (24)

We have now all the ingredients for establishing the main result of this
section.

Theorem 3.4. If ((A, φ), (A∗,W )) is a generalized Lie bialgebroid over M ,
then the pair (A⊕A∗, θ), with θ = φ+W is a generalized Courant algebroid
with the Lie bracket [[., .]] on Γ(A⊕A∗) given by (23), the symmetric bilinear
form given by (21), the vector bundle map ρ given by (24)and the operators
D,Dθ given respectively by D = (d+d∗)|C∞(M,IR) and Dθ = (dφ +dW

∗ )|C∞(M,IR).
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Before proving this theorem, we need some technical lemmas.

Lemma 3.5. Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid over M .
Then,

i) 〈φ,W 〉 = 0, a(W ) + a∗(φ) = 0 and, for any X ∈ Γ(A), α ∈ Γ(A∗),

L∗φX + [W,X] = 0, LWα + [φ, α]∗ = 0; (25)

ii) for any X ∈ Γ(A), α ∈ Γ(A∗) and f ∈ C∞(M, IR),

[dW
∗ f,X]φ + LW

∗dφfX = 0, [dφf, α]W∗ + Lφ
dW∗ fα = 0; (26)

iii) for any f ∈ C∞(M, IR),

(a ◦ dW
∗ + a∗ ◦ dφ)f = 0; (27)

iv) for any f, g ∈ C∞(M, IR),

〈dφf, dW
∗ g〉 + 〈dφg, dW

∗ f〉 = 0. (28)

Proof : i) The first three equalities follow from (10) of Definition 2.4 with
P = f ∈ C∞(M, IR) and P = X ∈ Γ(A), respectively [6]. The last
equality is the dual of the third and holds as a consequence of the
duality property for generalized Lie bialgebroids.

ii) The first equality was proved in [6] and the second also holds since it
is the dual of the first.

iii) For any f, g ∈ C∞(M, IR) and X ∈ Γ(A) we have

LdW∗ f(gX) + LW
∗dφf(gX) = g(LdW∗ fX + LW

∗dφfX) + (LdW∗ f(g) + L∗dφf(g))(X).

By ii), LdW∗ f (gX)+LW
∗dφf(gX) = 0 and also LdW∗ fX+LW

∗dφfX = 0. So,
we obtain

LdW∗ f (g) + L∗dφf(g) = 0,

that is,

〈dg, dW
∗ f〉 + 〈dφf, d∗g〉 = 0, (29)

or, equivalently,

a(dW
∗ f)g + a∗(dφf)g = 0.

Then, we conclude that

(a ◦ dW
∗ + a∗ ◦ dφ)f = 0.
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iv) For any f, g ∈ C∞(M, IR),

〈dφf, dW
∗ g〉 + 〈dφg, dW

∗ f〉 = 〈dφf, d∗g〉 + 〈dg, dW
∗ f〉

+2fg〈φ,W 〉 + g(a∗(φ)f + a(W )f).

From i) and (29), we obtain 〈dφf, dW∗ g〉 + 〈dφg, dW∗ f〉 = 0.

Lemma 3.6. Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid over M .
Then, for any X ∈ Γ(A) and α ∈ Γ(A∗)

[a(X), a∗(α)] = a∗(Lφ
Xα) − a(LW

∗αX) + a(dW
∗ (〈α,X〉)).

Proof : For any f ∈ C∞(M, IR), we have

[a(X), a∗(α)](f) − a∗(Lφ
Xα)f + a(LW

∗αX)f =

= a(X)(〈α, d∗f〉) − 〈Lφ
Xα, d∗f〉 − a∗(α)〈df,X〉 + 〈df,LW

∗αX〉
= 〈α, [X, d∗f ]〉 − 〈φ,X〉(a∗(α)f) − 〈[α, df ]∗, X〉 + 〈α,X〉(a(X)f)

= 〈α, [X, dW
∗ f ]〉 − f〈α, [X,W ]〉 + 〈L∗dfα,X〉 − 〈φ,X〉(a∗(α)f)

(26)
= 〈α,LW

∗dφfX〉 − f〈α, [X,W ]〉 + 〈L∗dfα,X〉 − 〈φ,X〉(a∗(α)f)

= L∗df(〈α,X〉) + 〈α,X〉(a(X)f) + f〈α,L∗φX − [X,W ]︸ ︷︷ ︸
=0

〉

= LW
∗df(〈α,X〉) = a(dW

∗ 〈α,X〉)f.

Proof of Theorem 3.4.
First we notice that, since φ ∈ Γ(A∗) andW ∈ Γ(A) are 1-cocycles of A and

A∗ respectively, and using i) of Lemma 3.5, a straightforward computation
shows that, with θ = φ+W and ρ = a+ a∗,

〈θ, [[X1 + α1, X2 + α2]]〉 = ρ(X1 + α1)〈θ,X2 + α2〉 − ρ(X2 + α2)〈θ,X1 + α1〉
holds for all X1 + α1, X2 + α2 ∈ Γ(A⊕ A∗).

Next, we show that the five conditions of Definition 3.1 hold.
1. The proof of condition 1 of Definition 3.1 involves a very long computation.
We only give a short schedule, following the ideas of [16]. Let ei = Xi + αi,
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i = 1, 2, 3, be any sections of A⊕ A∗ . Then,

([[e1, e2]], e3)+ = [
1

2
(〈α3, [X1, X2]〉 + 〈[α1, α2]∗, X3〉 + a(X3)(e1, e2)−

− a∗(α3)(e1, e2)− + (〈φ,X3〉 − 〈α3,W 〉)(e1, e2)−) + c.p.]

+
1

2
(a(e1) + a∗(e1))(e2, e3)+ − 1

2
(a(e2) + a∗(e2))(e3, e1)+

+
1

2
(〈φ,X1〉 + 〈α1,W 〉)(e2, e3)+

− 1

2
(〈φ,X2〉 + 〈α2,W 〉)(e3, e1)+

= T (e1, e2, e3) +
1

2
ρ(e1)(e2, e3)+ − 1

2
ρ(e2)(e3, e1)+

+
1

2
〈θ, e1〉(e2, e3)+ − 1

2
〈θ, e2〉(e3, e1)+. (30)

Furthermore, we can prove the following equality:

([[e1, e2]], e3)− + c.p. = T (e1, e2, e3) + [(a(X3)(e1, e2)− + 2a∗(α3)(e1, e2)−
−〈[α1, α2]∗, X3〉 + (〈φ,X3〉 + 2〈α3,W 〉)(e1, e2)−) + c.p.]. (31)

Let us set

[[[[e1, e2]], e3]] + c.p. = Y + β,

where Y (resp. β) stands for the part of [[[[e1, e2]], e3]] + c.p. that belongs to
Γ(A) (resp. Γ(A∗)). Using the formula ([5])

Lφ
X ◦ Lφ

Y = Lφ
[X,Y ], ∀X,Y ∈ Γ(A), (32)

we deduce

β = {[Lφ
X1
α2 −Lφ

X2
α1, α3]∗ + [dφ(e1, e2)−, α3]∗ + Lφ

LW∗α1
X2−LW∗α2

X1
α3

−Lφ
dW∗ (e1,e2)−

α3 − Lφ
X3

[α1, α2]∗ + dφ([[e1, e2]], e3)−

−dφ(a(X3)(e1, e2)−) − dφ(〈φ,X3〉(e1, e2)−)} + c.p.

= {dφ[([[e1, e2]], e3)− − (a(X3)(e1, e2)−) − 2(a∗(α3)(e1, e2)−)

+〈[α1, α2]∗, X3〉 − (〈φ,X3〉 + 2〈α3,W 〉)(e1, e2)−)]

−iX3
(dφ[α1, α2]∗ − LW

∗α1
dφα2 + LW

∗α2
dφα1) − [dφ(e1, e2)−, α3]∗

−Lφ
dW∗ (e1,e2)−

α3} + c.p.. (33)
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By Lemma 3.5 ii),

[dφ(e1, e2)−, α3]∗ + Lφ
dW∗ (e1,e2)−

α3 = 0.

Moreover,

dφ[α1, α2]∗ − LW
∗α1
dφα2 + LW

∗α2
dφα1 = dφ[α1, α2]

W
∗ − [α1, d

φα2]
W
∗ + [α2, d

φα1]
W
∗

= 0,

by definition of generalized Lie bialgebroid.
So, we obtain

β = dφ[([[e1, e2]], e3)− − (a(X3)(e1, e2)−) − 2(a∗(α3)(e1, e2)−) + 〈[α1, α2]∗, X3〉
−(〈φ,X3〉 + 2〈α3,W 〉)(e1, e2)−)] + c.p.

(31)
= dφ(T (e1, e2, e3)). (34)

Similarly, one has

Y = dW
∗ (T (e1, e2, e3)). (35)

From (34) and (35), we conclude that

[[[[e1, e2]], e3]] + c.p. = DθT (e1, e2, e3).

2. For any e1 = X1 + α1, e2 = X2 + α2 ∈ Γ(A⊕ A∗), we compute

ρ([[X1 + α1, X2 + α2]]) = a([X1, X2] + LW
∗α1
X2 − LW

∗α2
X1 − dW

∗ (e1, e2)−)

+a∗([α1, α2]∗ + Lφ
X1
α2 −Lφ

X2
α1 + dφ(e1, e2)−)

= [a(X1), a(X2)] + [a∗(α1), a∗(α2)]

+{a(LW
∗α1
X2) − a∗(Lφ

X2
α1) − 1

2
a(dW

∗ 〈α1, X2〉) +
1

2
a∗(dφ〈α1, X2〉)}

−{a(LW
∗α2
X1) − a∗(Lφ

X1
α2) − 1

2
a(dW

∗ 〈α2, X1〉) +
1

2
a∗(dφ〈α2, X1〉)}

(27)
= [a(X1), a(X2)] + [a∗(α1), a∗(α2)]

+{a(LW
∗α1
X2) − a∗(Lφ

X2
α1) − a(dW

∗ 〈α1, X2〉)}
−{a(LW

∗α2
X1) − a∗(Lφ

X1
α2) − a(dW

∗ 〈α2, X1〉)}.
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On the other hand,

[ρ(X1 + α1), ρ(X2 + α2)] = [a(X1), a(X2)] + [a∗(α1), a∗(α2)]

+[a(X1), a∗(α2)] − [a(X2), a∗(α1)]

and, by Lemma 3.6, we conclude that [ρ(X1 + α1), ρ(X2 + α2)] = [ρ(X1 +
α1), ρ(X2 + α2)].
3. For any e1 = X1 + α1, e2 = X2 + α2 ∈ Γ(A⊕A∗) and f ∈ C∞(M, IR), we
have

[[X1 + α1, f(X2 + α2)]] =(
[X1, fX2]

φ + LW
∗α1

(fX2) −LW
∗(fα2)X1 − dW

∗ (f(e1, e2)−)
)

+
(
[α1, fα2]

W
∗ + Lφ

X1
(fα2) − Lφ

fX2
α1 + dφ(f(e1, e2)−)

)
= {f (

[X1, X2] + LW
∗α1
X2 −LW

∗α2
X1 − dW

∗ (e1, e2)−
)

+(a(X1)f)X2 + (a∗(α1)f)X2 − (〈α2, X1〉 + (e1, e2)−)d∗f}
+{f

(
[α1, α2]

W
∗ + Lφ

X1
α2 −Lφ

X2
α1 + dφ(e1, e2)−

)
+(a(X1)f)α2 + (a∗(α1)f)α2 + ((e1, e2)− − 〈α1, X2〉)df}

= f [[X1 + α1, X2 + α2]]

+((a(X1) + a∗(α1))f)(X2 + α2) − (e1, e2)+(d∗f + df).

4. For any f, g ∈ C∞(M, IR), we have

(Dθf,Dθg)+ =
1

2
(〈dφf, dW

∗ g〉 + 〈dφg, dW
∗ f〉)

(28)
= 0.

5. For any sections e1 = X1 + α1, e2 = X2 + α2 and h = Y + β of A ⊕ A∗,
we compute

ρ(h)(e1, e2)+ =
1

2
a(Y )(〈α1, X2〉 + 〈α2, X1〉) +

1

2
a∗(β)(〈α1, X2〉 + 〈α2, X1〉)

(36)

and, taking account that

(h, e1)+ + (h, e1)− = 〈β,X1〉 and (h, e1)+ − (h, e1)− = 〈α1, Y 〉,
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(
[[h, e1]] + Dθ(h, e1)+, e2

)
+ =

1

2

(
〈[β, α1]

W
∗ + Lφ

Y α1 −Lφ
X1
β + dφ(〈β,X1〉), X2〉

+ 〈α2, [Y,X1]
φ + LW

∗βX1 −LW
∗α1
Y + dW

∗ (〈α1, Y 〉)〉) .
(37)

Similarly,

(
e1, [[h, e2]] + Dθ(h, e2)+

)
+ =

1

2

(
〈[β, α2]

W
∗ + Lφ

Y α2 −Lφ
X2
β + dφ(〈β,X2〉), X1〉

+ 〈α1, [Y,X2]
φ + LW

∗βX2 −LW
∗α2
Y + dW

∗ (〈α2, Y 〉)〉) .
(38)

Adding up (37) and (38) we obtain, using the equality 〈Lφ
X1
β,X2〉 =

iX2
(iX1

dφβ + dφiX1
β) and its dual version,

([[h, e1]] + Dθ(h, e1)+, e2)+ + (e1, [[h, e2]] + Dθ(h, e2)+)+ =

=
1

2
{Lφ

Y (〈α1, X2〉) − iX2
(iX1

dφβ) + LW
∗β(〈α2, X1〉) − iα2

(iα1
dW
∗ Y )

+Lφ
Y (〈α2, X1〉) − iX1

(iX2
dφβ) + LW

∗β(〈α1, X2〉) − iα1
(iα2

dW
∗ Y )}

=
1

2
{a(Y )(〈α1, X2〉 + 〈α2, X1〉) + 〈φ, Y 〉(〈α1, X2〉 + 〈α2, X1〉)

+a∗(β)(〈α1, X2〉 + 〈α2, X1〉) + 〈β,W 〉(〈α1, X2〉 + 〈α2, X1〉)}
= ρ(h)(e1, e2)+ + 〈θ, h〉(e1, e2)+. (39)

�
The first example of a generalized Courant algebroid which is a double

of a generalized Lie bialgebroid, comes from the Jacobi manifolds. As it
is illustrated by Example 2.6, we can associate with each Jacobi manifold
(M,Λ, E) a generalized Lie bialgebroid((

(T ∗M × IR, [., .](Λ,E), π ◦ (Λ, E)#), (−E, 0)
)
, ((TM × IR, [., .], π), (0, 1))

)
.

Let us denote by E1(M) the vector bundle over M , (TM × IR) ⊕ (T ∗M ×
IR) → M . The next proposition is an immediate consequence of Theorem
3.4.
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Proposition 3.7. If (M,Λ, E) is a Jacobi manifold, then the pair (E1(M), θ),
with θ = (0, 1) + (−E, 0) ∈ Γ((E1(M))∗) is a generalized Courant algebroid.

For this generalized Courant algebroid (E1(M), θ), the bracket (23) is given,
for any sections e1 = (X1, f1)+(α1, g1) and e2 = (X2, f2)+(α2, g2) of E1(M),
by:

[[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]] =

=
(
[(X1, f1), (X2, f2)]

(0,1) + L(−E,0)
∗(α1,g1)

(X2, f2) − L(−E,0)
∗(α2,g2)

(X1, f1)

−d(−E,0)
∗ (e1, e2)−

)
+

(
[(α1, g1), (α2, g2)](Λ,E) + L(0,1)

(X1,f1)
(α2, g2) − L(0,1)

(X2,f2)
(α1, g1)

+d(0,1)(e1, e2)−
)
, (40)

where

(e1, e2)− =
1

2
{〈(α1, g1), (X2, f2)〉 − 〈(α2, g2), (X1, f1)〉}

=
1

2
{〈α1, X2〉 − 〈α2, X1〉 + f2g1 − f1g2}. (41)

Besides the skew-symmetric bilinear form (., .)− in Γ(E1(M)) given by (41),
there exists a symmetric bilinear form in Γ(E1(M)):

(e1, e2)+ =
1

2
{〈α1, X2〉 + 〈α2, X1〉 + f2g1 + f1g2}. (42)

Let us now consider the Lie algebroid (TM × IR, [., .], π) and its 1-cocycle
φ = (0, 1) ∈ Γ(T ∗M × IR) (see (13)). Its dual vector bundle T ∗M × IR is
also a Lie algebroid if we endow the space of sections with an abelian Lie
algebra structure and take the null anchor map; that is [., .]∗ = 0 and ρ∗ = 0.
Moreover, the section W = (0, 0) of TM × IR is obviously a 1-cocycle for the
Lie algebroid T ∗M × IR and, from Definitions 2.4 or 2.5, it is easy immediate
to see that the pair ((TM × IR, (0, 1)), (T ∗M × IR, (0, 0))) is a generalized Lie
bialgebroid. Therefore, by Theorem 3.4, we conclude:

Corollary 3.8. The pair (E1(M), ψ), with ψ = ((0, 1)+(0, 0)) ∈ Γ((E1(M))∗),
is a generalized Courant algebroid.
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The explicit expression of the bracket (23) on the space of sections of the
generalized Courant algebroid of Corollary 3.8 is the following:

[[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]] = [(X1, f1), (X2, f2)]
(0,1)

+
(
L(0,1)

(X1,f1)
(α2, g2) −L(0,1)

(X2,f2)
(α1, g1) + d(0,1)(e1, e2)−

)
, (43)

with ei = (Xi, fi) + (αi, gi), i = 1, 2, any sections of E1(M).

Or, a simple computation gives

L(0,1)
(X1,f1)

(α2, g2) = 〈(0, 1), (X1, f1)〉(α2, g2) + i(X1,f1)d(α2, g2) + d(i(X1,f1)(α2, g2))

= (f1α2, f1g2) + i(X1,f1)(δα2,−δg2) + d(iX1
α2 + f1g2, 0)

= (f1α2 + LX1
α2 + g2δf1, f1g2 +X1(g2)) (44)

and, analogously,

L(0,1)
(X2,f2)

(α1, g1) = (f2α1 + LX2
α1 + g1δf2, f2g1 +X2(g1)). (45)

We also compute

d(0,1)(e1, e2)− = d(e1, e2)− + (0, (e1, e2)−)

=

(
1

2
δ(〈α1, X2〉 − 〈α2, X1〉 + f2g1 − f1g2),

1

2
(〈α1, X2〉 − 〈α2, X1〉 + f2g1 − f1g2)

)
. (46)

So, by (44), (45) and (46), we obtain

[[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]] =

= ([X1, X2], X1(f2) −X2(f1)) +

+

(
f1α2 − f2α1 + LX1

α2 −LX2
α1 +

1

2
δ(〈α1, X2〉 − 〈α2, X1〉)

+
1

2
(f2δg1 − g1δf2 + g2δf1 − f1δg2),

X1(g2) −X2(g1) +
1

2
(〈α1, X2〉 − 〈α2, X1〉) +

1

2
(f1g2 − f2g1)

)
. (47)
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This is exactly the bracket introduced in the space of sections of E1(M) by
A. Wade in [23]. Moreover, as it was expected, contents of Proposition 3.3 in
[23] expresses conditions 1 and 3 of our Definition 3.1 of generalized Courant
algebroid, for the particular case of (E1(M), (0, 1)+(0, 0)). If L ⊂ E1(M) is a
Dirac structure for the generalized Courant algebroid (E1(M), (0, 1)+(0, 0)),
then by Proposition 3.3, (L, ρ|L, [., .]|L) is a Lie algebroid over M ; and this is
the contents of Theorem 3.4 in [23]. Finally, also by Proposition 3.3, we have
that (0, 1)+ (0, 0) ∈ Γ(L∗) is a 1-cocycle for the Lie algebroid (L, ρ|L, [., .]|L).
This fact was pointed out in [7].

At this point we can make the following analogy: likewise the bracket
introduced by Courant in [2] is obtained from the bracket in the double TM⊕
T ∗M of the Lie bialgebroid (TM,T ∗M) ([18]) in the particular case where
T ∗M is endowed with the null Lie algebroid structure, the bracket introduced
by Wade in [23] is obtained from the bracket (23) in the double E1(M)
of the generalized Lie bialgebroid ((TM × IR, (0, 1)), (T ∗M × IR, (0, 0))), in
the particular case where T ∗M × IR is endowed with the null Lie algebroid
structure.

4. Dirac structures for generalized Courant algebroids
In this section we present some examples of Dirac structures for generalized

Courant algebroids which are graphs of bivector fields.

Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid over M and Ω a A-
bivector field, i.e. Ω ∈ Γ(

∧2A). Let us denote by Ω# the associated vector
bundle map, Ω# : A∗ → A, and by L the graph of Ω#, considered as a
subbundle of A⊕ A∗,

L = {Ω#α+ α, α ∈ A∗}.

Proposition 4.1. The graph of Ω# is a Dirac structure for the generalized
Courant algebroid (A ⊕ A∗, φ + W ) if and only if the Maurer-Cartan type
equation

dW
∗ Ω +

1

2
[Ω,Ω]φ = 0 (48)

holds.
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Proof : If Ω#α+α, Ω#β+β ∈ L = graph Ω# then, since Ω is skew-symmetric,
we have

(Ω#α+ α,Ω#β + β)+ =
1

2
(〈α,Ω#β〉 + 〈β,Ω#α〉) = 0, (49)

and L is a maximal isotropic subbundle of A⊕ A∗.
It remains to show that L is integrable. Or the bracket (23) expresses, in

this case, for any sections Ω#α+ α and Ω#β + β of L, as follows:

[[Ω#α + α,Ω#β + β]] =
(
[Ω#α,Ω#β] + LW

∗α(Ω#β) − LW
∗β(Ω#α) + dW

∗ (Ω(α, β))
)

+
(
[α, β]W∗ + Lφ

Ω#α
β − Lφ

Ω#β
α− dφ(Ω(α, β))

)
. (50)

If we denote by [α, β]Ω the last three terms of (50),

[α, β]Ω = Lφ
Ω#αβ − Lφ

Ω#βα − dφ(Ω(α, β)), (51)

then, L is integrable if and only if

[Ω#α,Ω#β] + LW
∗α(Ω#β) − LW

∗β(Ω
#α) + dW

∗ (Ω(α, β)) = Ω#([α, β]∗ + [α, β]Ω).
(52)

For any α, β ∈ Γ(A∗), a straightforward computation leads to

(dW
∗ Ω)(α, β) = LW

∗α(Ω#β) −LW
∗β(Ω#α) + dW

∗ (Ω(α, β)) − Ω#([α, β]∗); (53)

and so (52) is equivalent to

[Ω#α,Ω#β] + (dW
∗ Ω)(α, β) = Ω#([α, β]Ω). (54)

On the other hand, for any A-bivector field Ω, the following formula holds
(see [12]):

[Ω#α,Ω#β] = Ω#(LΩ#αβ − LΩ#βα− d(Ω(α, β))) +
1

2
[Ω,Ω](α, β) (55)

and from (8),

1

2
[Ω,Ω]φ(α, β) =

1

2
[Ω,Ω](α, β) + (Ω#φ ∧ Ω)(α, β). (56)

Using (55) and (56) in (54), we conclude that L is integrable if and only if
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Ω#(LΩ#αβ −LΩ#βα− d(Ω(α, β))) +
1

2
[Ω,Ω]φ(α, β)

−((Ω#φ) ∧ Ω)(α, β) + (dW
∗ Ω)(α, β) = Ω#([α, β]Ω) (57)

that is, if and only if,

(dW
∗ Ω)(α, β) +

1

2
[Ω,Ω]φ(α, β) =

= Ω#([α, β]Ω) − Ω#(LΩ#αβ − LΩ#βα− d(Ω(α, β))) + ((Ω#φ) ∧ Ω)(α, β)︸ ︷︷ ︸
=Ω#([α,β]Ω)

= 0. (58)

Let us now consider the generalized Courant algebroid (E1(M), ψ), with
ψ = ((0, 1) + (0, 0)), treated in Corollary 3.8. A section of

∧2(TM × IR) is,
in this case, a pair (Λ, E) where Λ and E are, respectively, a bivector field
and a vector field on M . The graph of (Λ, E)# is a subbundle L of E1(M)
whose space of sections is

Γ(L) = {(Λ, E)#(α, g) + (α, g), (α, g) ∈ Ω1(M) × C∞(M, IR)}
(2)
= {(Λ#α + gE,−〈α,E〉) + (α, g), (α, g) ∈ Ω1(M) × C∞(M, IR)}.

(59)

By Proposition 4.1, L is a Dirac structure for the generalized Courant
algebroid (E1(M), ψ) if and only if

d(0,0)
∗ (Λ, E)︸ ︷︷ ︸

=0

+
1

2
[(Λ, E), (Λ, E)](0,1) = 0 ⇔ [(Λ, E), (Λ, E)](0,1) = 0.

But [(Λ, E), (Λ, E)](0,1) = 0 if and only if (M,Λ, E) is a Jacobi manifold
(see [6]). So, we obtain a characterization of Jacobi manifolds in terms of
Dirac structures and we recover a result from [23]: The graph of (Λ, E) is a
Dirac structure for (E1(M), ψ) if and only if (Λ, E) is a Jacobi structure on
M .

We recall that two Jacobi structures (Λ, E) and (Λ′, E′) on a manifold M
are said to be compatible if their sum is still a Jacobi structure on M , [20].
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Proposition 4.2. Let (M,Λ, E) be a Jacobi manifold and (E1(M), θ), with
θ = (0, 1) + (−E, 0) ∈ Γ((E1(M))∗) the generalized Courant algebroid asso-
ciated, as in Proposition 3.7, and let (Λ′, E′) be a section of

∧2(TM × IR).
Then, the pair (Λ + Λ′, E + E′) = (Λ, E) + (Λ′, E′) determines a Jacobi
structure on M if and only if

d(−E,0)
∗ (Λ′, E′) +

1

2
[(Λ′, E′), (Λ′, E′)](0,1) = 0. (60)

Moreover, (Λ′, E′) is a Jacobi structure on M , compatible with (Λ, E), if and
only if

d(−E,0)
∗ (Λ′, E′) = 0 and [(Λ′, E′), (Λ′, E′)](0,1) = 0.

Proof : As we have already remarked, (Λ, E) + (Λ′, E′) determines a Jacobi
structure on M if and only if

[(Λ, E) + (Λ′, E′), (Λ, E) + (Λ′, E′)](0,1) = 0,

or equivalently, if and only if

2[(Λ, E), (Λ′, E′)](0,1) + [(Λ′, E′), (Λ′, E′)](0,1) = 0. (61)

But, since d
(−E,0)
∗ (Λ′, E′) = [(Λ, E), (Λ′, E′)](0,1) (see [6]), the equation (61)

turns to

d(−E,0)
∗ (Λ′, E′) +

1

2
[(Λ′, E′), (Λ′, E′)](0,1) = 0.

For the last assertion, we have that (Λ′, E′) is a Jacobi structure on M if
and only if [(Λ′, E′), (Λ′, E′)](0,1) = 0. Moreover,

d(−E,0)
∗ (Λ′, E′) = 0 ⇐⇒ [Λ,Λ′]+E∧Λ′+E′∧Λ = 0 ; [E′,Λ]+[E,Λ′] = 0,

and these are the conditions that assure the compatibility of the Jacobi struc-
tures (Λ, E) and (Λ′, E′) (see [20]).

5. Null Dirac structures and characteristic pairs
Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid and D ⊂ A a sub-

bundle of A. We denote by D⊥ ⊂ A∗ the conormal bundle of D,

D⊥ = {α ∈ A∗ : 〈α,X〉 = 0, ∀X ∈ D}.
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Proposition 5.1. The subbundle L = D⊕D⊥ of A⊕A∗ is a Dirac structure
for the generalized Courant algebroid (A ⊕ A∗, φ +W ) if and only if D and
D⊥ are Lie subalgebroids of A and A∗, respectively. In this case, L is said to
be a null Dirac structure.

Proof : For any X1 + α1, X2 + α2 ∈ L = D ⊕D⊥,

(X1 + α1, X2 + α2)± =
1

2
(〈α1, X2〉 ± 〈α2, X1〉) = 0

and L is a maximal isotropic subbundle of A⊕ A∗.
If L is a Dirac structure for (A ⊕ A∗, φ + W ), then L is integrable, i.e. L

is closed with respect to the bracket [[., .]] given by (23).
For any sections X1 and X2 of D ⊂ L, we compute

[[X1 + 0, X2 + 0]] = [X1, X2] + 0 ∈ Γ(L).

Therefore, [X1, X2] ∈ Γ(D) and D is a Lie subalgebroid of A ([17]). An
analogous reasoning shows that D⊥ is a Lie subalgebroid of A∗.

Conversely, let us suppose that D and D⊥ are Lie subalgebroids of A and
A∗, respectively. Since we have, for any sections X1 + α1, X2 + α2 of L,

[[X1 + α1, X2 + α2]] =
(
[X1, X2] + LW

∗α1
X2 − LW

∗α2
X1

)
+

(
[α1, α2]∗ + Lφ

X1
α2 −Lφ

X2
α1

)
, (62)

for concluding that L is integrable, we only have to verify that LW∗α1
X2 and

LW∗α2
X1 (resp. Lφ

X1
α2 and Lφ

X2
α1) are sections of D (resp. D⊥). Or, if β is a

section of D⊥,

〈β,LW
∗α1
X2〉 = 〈β,L∗α1

X2〉 + 〈α1,W 〉 〈β,X2〉︸ ︷︷ ︸
=0

= a⊥∗ (α1)(〈β,X2〉) − 〈[β, α1]∗, X2〉
= 0,

where a⊥∗ stands for the anchor of the Lie algebroid D⊥. Therefore, LW
∗α1
X2 ∈

Γ(D) and, in the same way, one has LW
∗α2
X1 ∈ Γ(D). Similarly, one can show

that Lφ
X1
α2 and Lφ

X2
α1 are sections of D⊥.
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Let us now recall the notion of characteristic pair, introduced in [15], which
provides Dirac structures generalizing both the case of a graph of a bivector
field (treated in the previous section) and that of a null Dirac structure. See
also [1] where the authors detailed some issues on characteristic pairs.

Let A be a vector bundle, D ⊂ A a subbundle of A and Ω a bivector field,
Ω ∈ Γ(

∧2A). Consider the subbundle L of A⊕A∗, given by

L = {X + Ω#α+ α, X ∈ D,α ∈ D⊥} = D ⊕ graph(Ω#|D⊥). (63)

Clearly L ⊂ A ⊕ A∗ is maximally isotropic with respect to the symmetric
bilinear form (21). In what follows, we will assume that D = L ∩ A is of
constant rank.

Definition 5.2 ([15]). The pair (D,Ω) is called the characteristic pair of
the subbundle L of A ⊕ A∗ given by (63), while D = L ∩ A is called the
characteristic subbundle of L.

As it is remarked in [15], the restricted bundle map Ω#|D⊥ is equivalent to
a bivector field on the quotient bundle A/D. Thus, two characteristic pairs
(D1,Ω1) and (D2,Ω2) determine the same subbundle L defined by (63) if and
only if

D1 = D2 and Ω1 − Ω2 = 0 (modD),

where by Ω1 − Ω2 = 0 (modD) we mean (Ω#
1 α− Ω#

2 α) ∈ D, ∀α ∈ D⊥.

We are interested in characteristic pairs for the case where ((A, φ), (A∗,W ))
is a generalized Lie bialgebroid.

Theorem 5.3. Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid and L ⊂
A⊕ A∗ a maximal isotropic subbundle of A⊕ A∗ defined by a characterisitc
pair (D,Ω), i.e

L = {X + Ω#α+ α, X ∈ D,α ∈ D⊥} = D ⊕ graph(Ω#|D⊥).

Then L is a Dirac structure for the generalized Courant algebroid (A ⊕
A∗, φ+W ) if and only if:

i) D is a Lie subalgebroid of A;

ii) dW∗ Ω +
1

2
[Ω,Ω]φ = 0 (modD);

iii) for any α, β ∈ Γ(D⊥), [α, β]∗ + [α, β]Ω ∈ Γ(D⊥), where [., .]Ω is the
bracket (51).
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Proof : We only have to verify that the closedness of L is equivalent to con-
ditions i), ii) and iii).

If X+Ω#α+α and Y +Ω#β+β are any sections of L = D⊕graph(Ω#|D⊥),
then

[[X + Ω#α + α, Y + Ω#β + β]] =

= [[X,Y ]] + [[X,Ω#β + β]] + [[Ω#α + α, Y ]] + [[Ω#α + α,Ω#β + β]].(64)

Concerning the first term of the second member of equation (64), [[X,Y ]] =
[X,Y ] ∈ Γ(D) if and only if D is a Lie subalgebroid of A (condition i)). The
second and third terms of second member of (64) are of the same type.

Or,

[[X,Ω#β + β]]
(23)
= ([X,Ω#β] − LW

∗βX) + Lφ
Xβ

=
(
[X,Ω#β] −LW

∗βX − Ω#(Lφ
Xβ)

)
+ Ω#(Lφ

Xβ) + Lφ
Xβ.

(65)

Moreover, for any Z ∈ Γ(D),

〈Lφ
Xβ, Z〉 = 〈LXβ, Z〉 + 〈φ,X〉 〈β, Z〉︸ ︷︷ ︸

=0

= a(X)(〈β, Z〉) − 〈β, [X,Z]〉
= −〈β, [X,Z]〉

and so, Lφ
Xβ ∈ Γ(D⊥) if and only if D is a Lie subalgebroid of A (condition

i)).
In this case, from (65) we deduce that

[[X,Ω#β + β]] ∈ Γ(L) if and only if [X,Ω#β] − LW
∗βX − Ω#(Lφ

Xβ) ∈ Γ(D).
(66)

With α ∈ Γ(D⊥), we compute
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〈α, [X,Ω#β] − LW
∗βX − Ω#(Lφ

Xβ)〉 =

= −〈α, [Ω#β,X]〉 − a∗(β)(〈α,X〉) + 〈[β, α]∗, X〉 + a(X)(〈β,Ω#α〉)
−〈β, [X,Ω#α]〉 + 〈φ,X〉Ω(α, β)

= 〈[β, α]∗, X〉 − 〈α, [Ω#β,X]〉 − 〈β, [X,Ω#α]〉 + 〈dφ(Ω(α, β)), X〉
= 〈[β, α]∗ + LΩ#βα −LΩ#αβ + dφ(Ω(α, β)), X〉
= −〈[α, β]∗ + [α, β]Ω, X〉. (67)

So (66) is equivalent to

[[X,Ω#β + β]] ∈ Γ(L) if and only if [α, β]∗ + [α, β]Ω ∈ Γ(D⊥) (68)

(condition iii)).
For the last term of the second member of equation (64), a straightforward

calculation, using (51), (53), (55) and (56), gives

[[Ω#α+ α,Ω#β + β]] =

(
dW
∗ Ω +

1

2
[Ω,Ω]φ

)
(α, β)

+Ω#([α, β]∗ + [α, β]Ω) + ([α, β]∗ + [α, β]Ω).(69)

So, we conclude that the bracket (64) is a section of L if and only if the
conditions i), ii) and iii) hold.

6. Triangular generalized Lie bialgebroids and Dirac
structures

In this section we present a version of Theorem 5.3 for the case of a tri-
angular generalized Lie bialgebroid. First, let us recall some results from
[6].

Theorem 6.1 ([6]). Let (A, [., .], a) be a Lie algebroid over M , φ ∈ Γ(A∗) a
1-cocycle and P ∈ Γ(

∧2A) a bivector field such that [P, P ]φ = 0. Then,

i) (A∗, [., .]P , a◦P#) is a Lie algebroid over M , where [., .]P is the bracket
(51) associated with P ;

ii) W = −P#(φ) ∈ Γ(A) is a 1-cocycle;
iii) the pair ((A, φ), (A∗,W )) is a generalized Lie bialgebroid.

Definition 6.2 ([6]). A generalized Lie bialgebroid ((A, φ), (A∗,W )) is said
to be a triangular generalized Lie bialgebroid if there exists P ∈ Γ(

∧2A)
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such that [P, P ]φ = 0, the Lie bracket on Γ(A∗) is [., .]P , the anchor on A∗ is
(a ◦ P#) and the 1-cocycle W is given by W = −P#(φ).

We will denote by ((A, φ), (A∗,W ), P ) a triangular generalized Lie bialge-
broid.

Example 6.3 ([6]). Let (M,Λ, E) be a Jacobi manifold. Then ((TM ×
IR, (0, 1)), (T ∗M × IR, (−E, 0)), (Λ, E)) is a triangular generalized Lie bialge-
broid. In fact,

• [(Λ, E), (Λ, E)](0,1) = 0, because (M,Λ, E) is a Jacobi manifold;
• for all sections (α, f) and (β, g) of T ∗M × IR,

[(α, f), (β, h)](Λ,E) = L(0,1)
(Λ,E)#(α,f)(β, g) − L(0,1)

(Λ,E)#(β,g)(α, f)

−d(0,1)((Λ, E)((α, f), (β, g))); (70)

• the anchor is π ◦ (Λ, E)#;

• −(Λ, E)#(0, 1)
(2)
= (−E, 0) = W.

Proposition 6.4. Let ((A, φ), (A∗,W ), P ) be a triangular generalized Lie
bialgebroid and L ⊂ A⊕A∗ a maximal isotropic subbundle of A⊕A∗ defined
by a characteristic pair (D,Ω), i.e. L = D ⊕ graph(Ω#|D⊥). Then L is a
Dirac structure for the generalized Courant algebroid (A⊕A∗, φ+W ) if and
only if

1) D is a Lie subalgebroid of A;
2) [P + Ω, P + Ω]φ = 0 (modD);

3) for any Y ∈ Γ(D), Lφ
Y (P + Ω) = 0 (modD).

Proof : We will show that conditions 2) and 3) are equivalent to ii) and iii)
of Theorem 5.3, respectively. For any bivector field Ω ∈ Γ(

∧2A), we have
dW
∗ Ω = [P,Ω]φ. Moreover,

[P + Ω, P + Ω]φ = 2[P,Ω]φ + [Ω,Ω]φ

and so we have

dW
∗ Ω +

1

2
[Ω,Ω]φ = [P,Ω]φ +

1

2
[Ω,Ω]φ

=
1

2
[P + Ω, P + Ω]φ, (71)

which proves the equivalence of 2) and ii) of Theorem 5.3.
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On the other hand, for any sections α and β of A∗, it is immediate to verify
that

[α, β]P+Ω = [α, β]P + [α, β]Ω,

where [., .]P+Ω and [., .]Ω are the brackets (51) defined by the bivector fields
P + Ω and Ω, respectively, and [., .]P , also given by (51), is the Lie bracket
on Γ(A∗).

If Y is any section of D then, from (67) we deduce

〈[α, β]P + [α, β]Ω, Y 〉 = 〈β, [Y,Ω#α] −LW
∗αY − Ω#(Lφ

Y α)〉, (72)

where [., .]P plays the role of [., .]∗. Taking into account that 〈[α, β]P , Y 〉 =
−〈β,LW

∗αY 〉 we obtain, for any Ω ∈ Γ(
∧2A),

〈[α, β]Ω, Y 〉 = 〈β, [Y,Ω#α] − Ω#(Lφ
Y α)〉. (73)

For P + Ω ∈ Γ(
∧2A), (73) turns to

〈[α, β]P+Ω, Y 〉 = 〈β, [Y, (P + Ω)#α] − (P + Ω)#(Lφ
Y α)〉

or, equivalently,

〈[α, β]P+Ω, Y 〉 = 〈β, (Lφ
Y (P + Ω))#α〉. (74)

Then we conclude that

[α, β]P+Ω = [α, β]P + [α, β]Ω ∈ Γ(D⊥) ⇔ Lφ
Y (P + Ω) = 0 (modD).
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