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Overdamped dynamics of a falling inextensible network:
Existence of solutions

Ayk Telciyan and Dmitry Vorotnikov

Abstract. We study the equations of overdamped motion of an inextensible triod with three fixed
ends and a free junction under the action of gravity. The problem can be expressed as a system of
PDEs that involves unknown Lagrange multipliers and non-standard boundary conditions related to
the freely moving junction. It can also be formally interpreted as a gradient flow of the potential
energy on a certain submanifold of the Otto–Wasserstein space of probability measures. We prove
global existence of generalized solutions to this problem.

1. Introduction

An inextensible network is a union of several inextensible strings that meet at some of
their endpoints called junctions. The study of inextensible networks from the mathemat-
ical perspective began a long time ago with Chebyshev [20] and Rivlin [44], aiming at
modeling textile fabrics. However, aside from [34], we are not aware of any investiga-
tion of evolutionary behavior of inextensible networks. Our paper thus seems to be one
of the first contributions to this particular field. On the other hand, there has been major
recent activity on well-posedness of geometric flows describing time-evolving extens-
ible networks—see [15, 16, 18, 19, 23, 27, 28] and the survey [29]—whereas the authors
of [23,27,28] deal with variants of the mean curvature flow for networks, and [34] and the
other mentioned articles consider elastic flows (interpolations between the mean curvature
flow and the Willmore flow).

The main technical difficulties that appear in the study of networks in contrast with
the evolution of single strings are due to the rather non-standard boundary conditions at
the junction points. Accordingly, to fix the ideas, we decided to restrict ourselves to the
simplest possible network with only one junction, the so-called triod (cf. [15, 28]). Our
triod consists of three inextensible strings (the arms of the triod) that meet at a common
point (the junction), and the remaining ends are fixed at three distinct points of Rd , d 2N,
d > 1 (the physically relevant cases are d D 3 and to a lesser extent d D 2). Note that
the junction is moving in an unknown way and thus constitutes a kind of a free boundary.
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The evolving triod is allowed to self-intersect, and the subtle issue of whether the embed-
dedness of the network is preserved (which might be particularly challenging for d D 2)
lies beyond the scope of the paper.

The literature on flows of networks cited above is concerned with variational evolution
driven by “intrinsic” energies (related to the length or curvature). In this paper we invest-
igate the gradient flow of an “extrinsic” energy, namely, the potential energy determined
by an external force (gravity) with respect to a suitable geometry (cf. [48]). As we explain
below, this models the overdamped motion of a falling inextensible network (triod).

It is impossible to discuss evolution of inextensible networks without referring to the
state of the art for single inextensible cords (we will not touch upon the extensible cords
because the literature on them is too vast). Various elastic flows of inextensible strings
were studied in [22, 25, 35–39, 54]. The presence of elastic forces contributes to non-
degenerate parabolicity of the flows and helps to overcome the difficulties caused by the
Lagrange multipliers related to the inextensibility constraint; in our situation, such forces
and hence such an advantage are missing. Our paper has been influenced in particular
by [48] (that studied the overdamped dynamics of a falling whip) and [49] (that dealt with
the “uniformly compressing”1 counterpart of the mean curvature flow).

The full dynamical equations (Hamiltonian systems) governing the motion of inex-
tensible strings (with or without elastic forces) are very tricky. The literature about the
solvability of the corresponding initial-boundary value problems is scarce and includes
the studies near the equilibrium [43], locally in time [41], and globally in time in various
severely relaxed senses [21, 46].

The equations of motion of an inextensible triod in the ambient space Rd subject to
gravity force can be derived from the least action principle by following the road map
from [46, Section 2.6]. Assuming for simplicity that the length of each arm of the triod is
equal to 1, the initial-boundary value problem reads´

@t t�
i D @s.�

i@s�
i /C g;

j@s�
i j D 1;

(1)

subject to the boundary conditions8̂̂<̂
:̂
�1.t; 0/ D �2.t; 0/ D �3.t; 0/;

�i .t; 1/ D ˛i .1/;

�1@s�
1 C �2@s�

2 C �3@s�
3 D 0 at s D 0 for all t;

(2)

1The uniformly compressing mean curvature flow is, roughly speaking, the closest flow to the classical
mean curvature flow among the flows that uniformly contract the volume of the evolving manifold; see [49]
for the rigorous definition. In the case of evolving loops, after a suitable change of variables it becomes
quite similar to the case of overdamped flow in [48].
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and the initial conditions

�i .0; s/ D ˛i .s/; (3)

@t�
i .0; s/ D ˇi .s/: (4)

Here, �i D �i .t; s/ 2Rd , i D 1; 2; 3, is the position vector at time t � 0 of the particle that
is labeled by the arc length parameter s and belongs to the i th arm of the triod. For each i ,
the scalar function � i D � i .t; s/ is the Lagrange multiplier (that is often referred to as the
tension) coming from the inextensibility of the i th arm. Finally, g is a constant gravity
vector for which we assume, without loss of generality, that jgj D 1 and that ˛i .s/; ˇi .s/
determine the initial dynamical configuration of the triod. Note that s D 1 corresponds to
the fixed ends, and s D 0 corresponds to the (moving) junction.

From the geometrical point of view, a natural infinite-dimensional configuration man-
ifold for the evolving triods is

A D
®
� D .�1; �2; �3/ j �i 2 H 2.0; 1IRd /; �1.0/ D �2.0/ D �3.0/;

�i .1/ D ˛i .1/; j@s�
i .s/j D 18s 2 Œ0; 1�

¯
;

viewed as a submanifold of L2.0; 1IR3d / (and hence equipped with a weak Riemannian
metric). Observe that the tangent space at a “point” � is

T�A D
®
v D .v1; v2; v3/ j vi 2 H 2.0; 1IRd /; v1.0/ D v2.0/ D v3.0/;

vi .1/ D 0; @s�
i .s/ � @sv

i .s/ D 0
¯
: (5)

Here and below, the dot stands for the Euclidean product in Rd . Note that we never employ
Einstein’s summation convention. Then, ((1), (2)) is, at least formally, equivalent to New-
ton’s equation

r P� P� D �rAE.�/: (6)

Here,

E.�/ WD

3X
iD1

Z 1

0

�g � �i .s/ ds

is the potential energy of a triod.
The Riemannian manifold A (as well as its counterparts for single strings; see

[42, 48, 49]) has some interesting features. It can be viewed (cf. [49]) as a submanifold
of the Otto–Wasserstein space of probability measures [40,52,53] from the optimal trans-
port theory (this in particular implies that the geodesic distance on A does not vanish,
being bounded from below by the Wasserstein distance, which is in stark contrast with the
underlying geometry of the mean curvature, Willmore, and similar flows; cf. [6,7,30–32]).
It can also be regarded as a particular case (m D 1) of the manifolds of m-dimensional
incompressible membranes, that is, of volume-preserving immersions (cf. [8, 33]). The
opposite borderline case m D d tallies with Arnold’s formalism [3, 4] for ideal incom-
pressible fluids or rather, even more specifically, with the motion of fluid patches in Rd ,
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which has recently been studied from a similar perspective [26]. However, in Arnold’s
case (mD d ) the manifold has a Lie group structure, which allows one to work in the cor-
responding Lie algebra (i.e., in the mechanical language, to use the Eulerian coordinates).
In our case,mD 1, there is no Lie algebra structure, and the Lagrangian description given
by ((1), (4)) seems to be unavoidable.

If the fall of the triod is overdamped by a heavily dense environment, equations of
motion (1) become ´

@t�
i D @s.�

i@s�
i /C g;

j@s�
i j D 1:

(7)

Note that the velocity @s.� i@s�i /C g acts not only in the direction normal to the curves
constituting the network, but there is a tangential motion as well.

We refer to [48] for the details of the derivation of (7) in the case of a single cord. It is
also possible to directly obtain the overdamped flow given in (7) from the full dynamical
equation (see (1)) by employing the quadratic change of time (cf. [9]). Finally, prob-
lem ((7), (2)) can be realized as the gradient flow of the potential energy E on the mani-
fold A, that is,

P� D �rAE.�/: (8)

In light of the previous discussion (see also [41, 42, 46, 51]), equation (1) has much
in common with the Euler equation of ideal incompressible fluids. In the same spirit, the
overdamped equation (see (7)) is comparable to the Muskat problem (also known as the
incompressible porous medium equation) that received a lot of attention during the last
decade; see [12–14, 50] and the references therein.

In this article, we are interested in constructing global in time solutions to problem
((7), (2), (3)). We deal with generalized solutions, which allows us to consider not neces-
sarily smooth but merely rectifiable triods.

In what follows, we denote � WD .0; 1/, Qt WD .0; t/ �� for t 2 .0;1�, and g.s/ WD
.g; g; g/ 2 L2.�IR3d /, d 2 N, d > 1.

Remark 1.1 (Initial data). We fix once and for all Lipschitz initial data ˛i 2 W 1;1.�/d ,
i D 1; 2; 3, satisfying the compatibility conditions

˛1.0/ D ˛2.0/ D ˛3.0/ D 0 (9)

and
j@s˛

i .s/j D 1 a.e. in �: (10)

Since (10) is only required to hold almost everywhere, the arms of the triod can have the
shape of any rectifiable curve at the initial moment. Note that we also have, without loss
of generality, assumed that the junction is located at the origin at the initial moment. We
will moreover assume that the arms of the triod are not fully straight at the initial moment,
which means that j˛i .1/j < 1 (since the length of each arm is equal to 1), i D 1; 2; 3.
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Our goal is to prove the following main result:

Theorem 1.2 (Global existence of generalized solutions). For every initial configuration
˛i .s/ 2 W 1;1.�/d , i D 1; 2; 3, meeting the assumptions of Remark 1.1, there exists a
generalized solution to ((7), (2), (3)) in Q1. Moreover, those solutions satisfy � i .t; s/� 0
for almost every .t; s/ 2Q1.

Note that the precise definition of a generalized solution is lengthy and will be intro-
duced in Definition 5.1.

Observe that A, being a formal submanifold of the Otto–Wasserstein space, is a metric
space with a non-degenerate (Riemannian) distance. Nevertheless, A is neither a complete
metric space nor a geodesic space. Accordingly, the theory of gradient flows in metric
spaces (see [2, 53]) does not sound applicable to well-posedness of our flow in (8).

To achieve our goal, we will follow the strategy suggested by Shi and the second
author [48] for the evolution of a single string. It basically consists in approximation of the
original gradient flow on A by suitable gradient flows on the ambient space L2.�IR3d /.
The idea is to derive uniform estimates for the approximating problem that would allow
us to pass to the limit and to show that the limiting functions are solutions to prob-
lem ((7), (2), (3)). However, because of the complicated boundary conditions (see (2)),
many of the estimates that were used in [48, Section 3] fail to be generalizable to our
setting. This in particular applies to the crucial L1 estimate [48, Proposition 3.3] in the
spirit of Ladyzhenskaya, Solonnikov, and Ural’ceva [24]. We will manage to overcome
these difficulties and prove novel and more refined estimates by leveraging the gradient
flow structure of the approximating problem much more thoroughly than in [48]. This
will be combined with careful observations involving geometric properties of triods, the
behavior of the curvature, and some convexity arguments (see Lemmas 4.6 and 4.7 below).

Apart from that, in [48] the existence of C1-smooth solutions to the approximating
problem was immediate from Amann’s theory (cf. [1]). It is not applicable here anymore
(again due to the boundary conditions), so we will solve our approximate problem (see
Corollary 3.13) by the theory of abstract evolution equations with pseudomonotone maps
(cf. [45]).

The paper is organized as follows: In Section 2, we heuristically motivate and then
introduce the approximating problem. In Section 3, we prove its solvability. The main
technical work is done in Section 4, where we establish various uniform estimates for
the approximating problem. A highlight of that section is the crucial and ingenious L1

bound for the tension (Lemma 4.7). In Section 5, based on the results of Section 4, we
will be able to pass to the limit and to prove Theorem 1.2. Our results still hold for the
overdamped dynamics of a falling single cord with two fixed ends; see Remark 5.7 and
Proposition 5.8. In Appendix A we provide a formal computation of the gradient of the
potential energy rAE.



A. Telciyan and D. Vorotnikov 348

2. Approximating problem

Let us describe the method of approximation of our gradient flow that we plan to employ
in order to prove Theorem 1.2. Here, we follow the road map of [48].

We begin with some heuristics. Consider the extra variables  i D � i@s�i , i D 1; 2; 3.
Then, our system (see (7)) can, at least formally, be rewritten as8̂̂<̂

:̂
@t�

i D @s 
i C g;

 i D � i@s�
i ;

� i D  i � @s�
i :

(11)

More precisely, the constraints j@s�i j D 1 yield j i j D j� i j and  i D sgn.� i /j i j@s�i .
We make the ansatz � i � 0 (that will be a posteriori justified by Theorem 1.2) and infer
 i � @s�

i D � i (see also Remark 5.2 below for a related discussion). Note that we formally
have @s�i D

 i

j i j
, thus the map  i 7! @s�

i is not a diffeomorphism. To overcome this
issue, we fix " 2 .0; 1/ and introduce the auxiliary functions

F" W R
d
! Rd ; F". / WD " C

 p
"C j j2

(12)

and
G".�/ WD .F"/

�1.�/:

Approximating the relations  i 7! @s�
i and @s�i 7!  i by F" and G", respectively, leads

from ((7), (2), (3)) to the problem

@t�
i
" D @s.G".@s�

i
"//C g; i D 1; 2; 3; (13)

with the following initial and boundary conditions:

�i".0; s/ D ˛
i .s/;

�i".t; 1/ D ˛
i .1/;

�1".t; 0/ D �
2
".t; 0/ D �

3
".t; 0/;

3X
iD1

G".@s�
i
"/ D 0 at s D 0 for all t:

(14)

Remark 2.1. Let us make an elementary observation that is very important in the rest of
the paper. The Euclidean norm jF". /j depends only on j j and is an increasing function
of j j. If j j D 1, then by simple calculation jF". /j > 1. Consequently, if j� j � 1, then
jG".�/j< 1.

By explicit computation, rG" is positive-definite and

�".�/j�j
2
� rG".�/� � � � ƒ".�/j�j

2; 8� 2 Rd ; � 2 Rd ;
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where ƒ" and �" satisfy

1

"C "�1=2
� �".�/ D

1

"C ."C jG".�/j2/�1=2
;

ƒ".�/ D
"�1

1C ."C jG".�/j2/�3=2
� "�1:

(15)

Motivated by the original system (see (11)), given a solution �" to approximating
problem ((13), (14)), we define

 i" WD G".@s�
i
"/; � i" WD G".@s�

i
"/ � @s�

i
": (16)

Observe from the definition of G" that there exists a bounded smooth positive scalar
function " such that G".�/ D ".j�2j/� , � 2 Rd . In particular, this implies that

� i" � 0: (17)

Moreover, " is bounded away from 0 and1 (not uniformly with respect to "). Let �" be
the primitive of " with �".0/ D 0. Set

Q".�/ WD
1

2
�".j� j

2/:

Observe that
rQ".�/ D G".�/: (18)

Moreover, Q" can be computed explicitly:

Q".�/ D "
�
jG".�/j

2

2
�

1p
"C jG".�/j2

�
C
p
": (19)

By Remark 2.1, Q.�/� 1 if j� j � 1.
We define the associated “total energy” of approximating problem ((13), (14)) by

E".�/ WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

P3
iD1.

R 1
0
Q".@s�

i /ds C
R 1
0
.�g/ � �ids/ for � 2 AC 2.�IR3d /

satisfying �.1/ D ˛.1/;

�1.0/ D �2.0/ D �3.0/I

C1 for any � 2 L2.�IR3d /

except those above:

(20)

Then, ((13), (14)) can, at least formally, be interpreted as a gradient flow, with respect
to the flat Hilbertian structure of L2.�IR3d /, that is driven by this functional, that is,

P� D �rL2.�IR3d /E".�/; �.0/ D ˛:

We will return to this issue in the next section.
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3. Evolution by pseudomonotone maps and solvability of the
approximating problem

For the existence of the solution to the approximating problem, we use the theory of
abstract evolution equations involving pseudomonotone maps. We prefer this approach
(instead of directly employing the theory of gradient flows in Hilbert spaces; cf. [5, 11])
because it automatically gives us the regularity of solution that is required for the manip-
ulations of Section 4.

Let us start by introducing some concepts and definitions, mainly following book [45].
Let V be a separable reflexive Banach space, and V � be the dual space of V . We use the
bracket notation for the duality. Assume that there is a continuous embedding operator
i W V ! H , and i.V / is dense in H , where H is a Hilbert space. This generates the
Gelfand triple V � H � V � by the following well-known observation: The adjoint oper-
ator i� W H� ! V � is continuous and, since i.V / is dense in H , one-to-one. Since i is
one-to-one, i�.H�/ is dense in V �, and one may identify H� with a dense subspace
of V �. Due to the Riesz representation theorem, one may also identify H with H�.
Moreover, the H -scalar product of f 2 H; u 2 V coincides with the value of the func-
tional f from V � on the element u 2 V , that is,

.f; u/H D hf; ui:

Definition 3.1. A mappingA W V ! V � is called monotone if 8u;v 2 V we have hA.u/�
A.v/; u � vi � 0.

Definition 3.2. A mapping A W V ! V � is called radially continuous if 8u; v 2 V W t 7!
hA.uC vt/; vi is continuous.

Definition 3.3. A mapping A W V ! V � is called pseudomonotone provided

(1) A is bounded (i.e., the image of any bounded set is bounded),

(2) for any sequence uk * u weakly with

lim sup
k!1

hA.uk/; uk � ui � 0

and for every v 2 V , it is true that

hA.u/; u � vi � lim inf
k!1

hA.uk/; uk � vi:

We will need the following useful criterion of pseudomonotonicity from [10]:

Lemma 3.4. A bounded, radially continuous and monotone mapping is pseudomonotone.

Assume there is a seminorm j�jV on V that satisfies the “abstract Poincaré inequality”

kukV . kukH C jujV ; 8u 2 V;

where k�kH is the Euclidean norm in H .
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Definition 3.5. A mapping A W V ! V � is called semicoercive if for u 2 V we have

hA.u/; ui � c0juj
2
V � c1jujV � c2kuk

2
H ;

where c0; c1, and c2 are non-negative constants.

Consider the following abstract initial value problem on the time interval .0; T /:

d

dt
uC A.u.t// D f .t/; u.0/ D u0: (21)

The following result can be found in [45, Theorem 8.18]:

Theorem 3.6. Let A W V ! V � be a pseudomonotone and semicoercive mapping with

(1) f 2 AC 2.Œ0; T �; V �/,

(2) u0 2 V is such that A.u0/ � f .0/ 2 H ,

(3) hA.u1/ � A.u2/; u1 � u2i � c0ju1 � u2j2V � c2ku1 � u2k
2
H for u1; u2 2 V with

some constants c0; c2 > 0.

Then, there exists u 2 W 1;1.0; T IH/ \ AC 2.Œ0; T �IV / that solves the Cauchy problem
given by (21) (the first equality in (21) holds in the space V � for a.e. t in .0; T /, whereas
the second one holds in the space V ).

Our next goal is to apply this theorem to show the existence and regularity of solutions
to the approximating problem. It will be convenient to rewrite approximating problem
((13), (14)) with the help of the transformation

� i .t; s/ WD �i".t; s/ � ˛
i .s/;

that is, we simply subtract the initial data, arriving at8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t�
i � @s.G".@s.�

i C ˛i /// D g; i D 1; 2; 3;

�1.t; 0/ D �2.t; 0/ D �3.t; 0/;

� i .t; 1/ D 0;

� i .0; s/ D 0;P3
iD1G".@s.�

i C ˛i //.t; 0/ D 0:

(22)

In order to recast this system in the form of the Cauchy problem given in (21), we let

H D L2.�IR3d /

be the Hilbert space of triples with the natural scalar product. Also let

V WD
®
u D ¹uiº 2 AC 2.�IR3d / j ui .1/ D 0 and u1.0/ D u2.0/ D u3.0/

¯
and V � be the corresponding dual space.
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It is a separable reflexive Banach space with the norm inherited from H 1. Define a
seminorm on V by j¹uiºjV WD k¹@suiºkH . The required Poincaré inequality obviously
holds. Let A W V ! V � be the mapping that is defined by duality as follows:

hA.�/; �i D

3X
iD1

Z 1

0

G".@s.�
i
C ˛i // � @s�

ids: (23)

Then, (22) rewrites as
d

dt
� CA.�.t// D g; �.0/ D 0: (24)

Note that the last equality of (22) is hidden in the duality in (23).
In order to check that Theorem 3.6 is applicable to (24), we need to prove several

auxiliary statements. For the sake of readability, we will omit the subscript " coming from
the approximating problem.

Lemma 3.7. The mapping A satisfies the inequality

hA.�1/ �A.�2/; �1 � �2i � c0j�1 � �2j
2
V

for some constant c0 > 0 (depending on ") and any �1; �2 2 V .

Proof. Define Ai W H 1.�IRd /! .H 1.�IRd //� by

hAi .� i /; �i D

Z 1

0

G".@s.�
i
C ˛i // � @s�

ids:

Throughout the rest of the proof, we omit the index i to avoid heavy notation in Ai , � i1, � i2,
and ˛i . With this convention, it suffices to prove that

hA.�1/ � A.�2/; �1 � �2i � c0k@s.�1 � �2/k
2
L2
:

We compute

hA.�1/ � A.�2/; �1 � �2i

D

Z
�

ŒG.@s.�1 C ˛// �G.@s.�2 C ˛//� � @s..�1 C ˛/ � .�2 C ˛//ds: (25)

Let us denote � WD G.@s.�1 C ˛// and  WD G.@s.�2 C ˛//. Now, we use the relation
between F and G and conclude that F.�/D @s.�1 C ˛/ and F./D @s.�2 C ˛/. We can
rewrite the right-hand side of (25) asZ

�

.� � / � .F.�/ � F.//ds

D

Z
�

.� � / �
�
".� � /C

�p
"C j�j2

�
p

"C j j2

�
ds

�

Z
�

"j� �  j2ds;
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because the map r 7! rp
"Cr2

is a gradient of a convex function. Observe that

jF.�/ � F./j � ."C "�1=2/j� �  j

by the mean value theorem and the Cauchy–Schwarz inequality, since the operator norm
of the matrix rF.r/ is bounded from above by "C "�1=2 (see (15)).

Thus, we conclude that

hA.�1/ � A.�2/; �1 � �2i � "

Z
�

j� �  j2ds

� c0

Z
�

jF.�/ � F./j2ds

D c0k@s.�1 � �2/k
2
L2
:

Corollary 3.8. The mapping A is monotone.

Proof. It is clear from Lemma 3.7.

Corollary 3.9. The mapping A is semicoercive.

Proof. Employing Lemma 3.7 and the Cauchy–Schwarz inequality, we see that

hA.�/; �i D hA.�/ �A.0/; �i C hA.0/; �i

� j�j2V C hA.0/; �i

D j�j2V C

3X
iD1

Z 1

0

G.@s˛
i / � @s�

ids

� j�j2V � k¹G.@s˛
i /ºkH j�jV

� j�j2V � c2j�jV ;

where c2 is a positive constant depending on ˛.

Lemma 3.10. The mapping A is bounded.

Proof. Indeed,

hA.�/; �i D

3X
iD1

Z 1

0

G.@s.�
i
C ˛i // � @s�

ids

� k¹G.@s.�
i
C ˛i //ºkH j�jV

. k¹@s.� i C ˛i /ºkH j�jV
� j� C ˛jV k�kV :

(We have used sublinearity of G). Since j˛jV is finite, this implies that kA.�/kV � is
bounded provided k�kV is bounded.
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Lemma 3.11. The mapping A is radially continuous.

Proof. Fix �; � 2 V and let �n ! � be a sequence. Then, it is easy to see that

3X
iD1

G.@s.�
i
C �n�

i
C ˛i //.x/ � @s�

i .x/!

3X
iD1

G.@s.�
i
C ��i C ˛i //.x/ � @s�

i .x/

a.e. in�. The claim will follow from Lebesgue’s dominated convergence theorem if there
is a function in L1.�/ that dominates the left-hand side. This is indeed the case for us,
since we can leverage sublinearity of G to estimateˇ̌̌ 3X

iD1

G.@s.�
i
C �n�

i
C ˛i // � @s�

i
ˇ̌̌

� C j@s.� C �n� C ˛/j � j@s�j � C.j@s�j
2
C j@s�j

2
C j@s˛j

2/;

and the right-hand side is L1 by the assumption.

We can now legitimately use Theorem 3.6 in order to solve (24).

Corollary 3.12. Given ˛ as in Remark 1.1, system (24) has a solution � D ¹� iº 2

W 1;1.0;T IH/\AC 2.Œ0;T �IV / that is understood in the same sense as in Theorem 3.6.

Returning back to the variable � and leveraging elementary properties ofG" and rG",
we get the existence of approximate solutions.

Corollary 3.13. Given ˛ as in Remark 1.1, there exists a solution � D �" to ((13), (14))
in QT that belongs to the following regularity class:

�i 2 W 1;1.0; T IL2.�//d \ AC 2.Œ0; T �IAC 2.�//d ;

@s�
i
2 AC 2.Œ0; T �IL2.�//d ;

 i WD G".@s�
i / 2 L1.0; T IL2.�//d ;

rG".@s�
i / 2 L1.0; T IL1.�//d ;

@t�
i
2 L1.0; T IL2.�//d \ L2.0; T IH 1.�//d ;

@s 
i
D @s.G".@s�

i // 2 L1.0; T IL2.�//d \ L2.0; T IH 1.�//d ;

@ss�
i
2 L1.0; T IL2.�//d :

Note that the norms of the solution � D �" in the corresponding spaces above may
depend on ". At this stage we cannot infer an L1 estimate on @s� (even "-dependent)
because we do not control @s�i on @�. Anyway, we will manage to establish a related
bound in Corollary 4.8.
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It is straightforward to see that � D �" from Corollary 3.13 coincides with the unique
solution of the gradient flow

P� 2 �@L2.�IR3d /E".�/

in the sense of [5, Theorem 17.2.3], where the driving functional E" was defined in (20).
This in particular implies that t 7! E".�.t// is a continuous and non-increasing function.

4. Uniform estimates of the approximate solutions

In this section we derive various uniform (in ") estimates for the approximating solu-
tions �i" obtained in Corollary 3.13. These bounds are crucial for passing to the limit in
Section 5. In the remainder of the paper, C will always stand for a constant independent
of ". For the sake of readability, we drop the dependence on " in the subscripts and write
�i D �i", G D G", ˛

i D ˛i", and so on, until the proof of Lemma 4.7.

Lemma 4.1 (Energy estimate). Let � D ¹�iº be a solution of approximating prob-
lem ((13), (14)) in QT as constructed in Corollary 3.13. Then,

E.˛/C

3X
iD1

�Z
QT

j@t�
i
j
2
C jrG.@s�

i /@ss�
i
j
2 dsdt

�
C k�k2

L1.0;T IL1.�//
� C: (26)

Here, the constant may only depend on ˛ and T , but not on ".

Proof. We first establish a uniform bound (with respect to ") on the initial energies.
Indeed, since j@s˛i .s/j D 1, Remark 2.1 implies that jG.@s˛i .s//j<1, and using the expli-
cit definition of Q given in (19), we get that the first terms (for each i ) in the expansion

E.˛/ D

3X
iD1

�Z 1

0

Q.@s˛
i .s//ds C

Z 1

0

.�g/ � ˛i .s/ds
�

are uniformly bounded. The second terms are obviously uniformly bounded.
We now prove (26). Take the L2.�/-inner product of (13) and @t�i and integrate

over Qt, t 2 .0; T �. We obtain

3X
iD1

Z
Qt

j@t�
i
j
2 dsdt D

3X
iD1

Z
Qt

@sG.@s�
i / � @t�

i dsdt C

3X
iD1

Z
Qt

g � @t�
i dsdt:

Now we perform an integration by parts in space in the first term, integrate the second
term over time and use the initial conditions, ending up with

3X
iD1

Z
Qt

j@t�
i
j
2 dsdt D �

3X
iD1

Z
Qt

G.@s�
i / � @st�

i dsdt C

3X
iD1

Z
�

g � �i
ˇ̌
tDt

ds
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�

3X
iD1

Z
�

g � �i
ˇ̌
tD0

ds C

3X
iD1

Z t

0

G.@s�
i / � @t�

i„ ƒ‚ …
at sD1

dt

�

3X
iD1

Z t

0

G.@s�
i / � @t�

i„ ƒ‚ …
at sD0

dt

D �

3X
iD1

Z
Qt

G.@s�
i / � @st�

i dsdt C

3X
iD1

Z
�

g � �i .t/ ds

�

3X
iD1

Z
�

g � ˛i ds

C

3X
iD1

Z t

0

G.@s�
i .1// � @t˛

i .1/„ ƒ‚ …
@t˛iD0„ ƒ‚ …
D0

dt �

3X
iD1

Z t

0

G.@s�
i .0// � @tx�„ ƒ‚ …P3

iD1G.@s�
i .0//D0„ ƒ‚ …

D0

dt:

Here, x�.t/ WD �1.t; 0/ D �2.t; 0/ D �3.t; 0/ denotes the spatial position of the junction.
Consequently,

3X
iD1

Z
Qt

j@t�
i
j
2 dsdt D �

3X
iD1

Z
Qt

G.@s�
i / � @st�

i dsdt C

3X
iD1

Z
�

g � �i .t/ ds

�

3X
iD1

Z
�

g � ˛i ds: (27)

For the first term on the right-hand side, we observe that

G.@s�
i / � @st�

i
D @tQ.@s�

i /; (28)

(cf. (18)), where Q is defined as in (19). In view of (28), (27) becomes

3X
iD1

Z
Qt

j@t�
i
j
2 dsdt C

3X
iD1

Z
�

Q.@s�
i /.t; �/C

Z
�

.�g/ � �.t; �/ds

D

3X
iD1

Z
�

Q.@s˛
i .s//ds C

Z
�

.�g/ � ˛.s/ds;

whence2

3X
iD1

Z
Qt

j@t�
i
j
2 dsdt C E.�.t// D E.˛/: (29)

2Of course, equality (29) is a generic property of gradient flows and at least the fact that its right-hand
side is greater than or equal to the left-hand one follows from the general theory (see [5]). We decided to
present a direct and explicit proof here in order to help the reader to perceive the non-standard boundary
conditions of the problem “by touching”.
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Using Q � 0 and the definition of E , we derive that

E.�.t// � �k�.t/kL1.�/kgkL1.�/: (30)

Hence, employing Jensen’s inequality, we can estimate

1

3
k�.t/k2

L1.�/
�

3X
iD1

k�i .t/k2
L1.�/

D

3X
iD1

�Z
�

j�i .t/j ds
�2

D

3X
iD1

�Z
�

j˛i .s/j ds C

Z
Qt

@t j�
i
j dsdt

�2
� 2k˛k2

L2.�/
C 2

3X
iD1

�Z
Qt

j@t�
i
j dsdt

�2
� 2k˛k2

L2.�/
C 2t

3X
iD1

Z
Qt

j@t�
i
j
2 dsdt

� 2k˛k2
L2.�/

C 2T E.˛/C 2T k�.t/kL1.�/kgkL1.�/:

Simple algebra implies that k�.t/kL1.�/ is uniformly bounded. Consequently, we have
that

P3
iD1

R
QT
j@t�

i j2 dsdt is uniformly bounded. On the other hand, from the equality
@s.G.@s�

i // D @t�
i � g, we deduce

3X
iD1

Z
QT

jrG.@s�
i /@ss�

i
j
2 dsdt D

3X
iD1

Z
QT

j@s.G.@s�
i //j2 dsdt

� 2

3X
iD1

Z
QT

j@t�
i
j
2 dsdt C 6

Z
QT

jgj2 dsdt � C:

Here, we have used Jensen’s inequality and the fact that g D .g; g; g/.

In view of (30), we simultaneously proved the following:

Corollary 4.2. The energy of the approximating problem E.�.t// is bounded from below
for all t 2 Œ0; T � uniformly in ".

Since �i .0/ D ˛i does not depend on ", the uniform regularity can immediately be
improved by the Poincaré inequality.

Corollary 4.3. The norm k�ikL1.0;T IL2.�// is uniformly bounded with respect to ".

For the subsequent family of estimates, we need to bound the time away from zero by
some constant ı > 0.

Lemma 4.4. Given ı > 0, the norm k@t�kL1.ı;T IL2.�// is bounded uniformly in ".



A. Telciyan and D. Vorotnikov 358

Proof. By [5, Theorem 17.2.3], the right derivative @Ct � exists for all times, and the
expression k@Ct �.t/k

2
L2.�/

is non-increasing in time. Using [5, (17.79)], we obtain

E.˛/ � E.�.ı// � lim sup
h&0

E.�.h// � E.�.ı//

D

Z ı

0

k@t�.t/k
2
L2.�/

dt �

Z ı

0

k@Ct �.ı/k
2
L2.�/

D ık@Ct �.ı/k
2
L2.�/

:

By (26) and Corollary 4.2, the left-hand side is bounded from above uniformly in ". Hence,
k@Ct �

i .ı/kL2.�/ � C=ı.
Since k@Ct �.t/kL2.�/ is non-increasing in time, we infer that k@t�ikL1.ı;T IL2.�//

D k@Ct �
ikL1.ı;T IL2.�// is bounded uniformly in ".

We now derive uniform bounds for  i that were defined in (16). We start with the
following lemma:

Lemma 4.5. For fixed ı > 0, @s i and the product j ik@ss�i � "@s i j are bounded in
L1.ı; T IL2.�// uniformly with respect to ", for i D 1; 2; 3.

Proof. By Lemma 4.4, we know that k@t�ikL1.ı;T IL2.�//�C . Due to the fact that @t�i D
@s 

i C g, we infer that @s i is bounded in L1.ı; T IL2.�// uniformly with respect to ".
We differentiate both sides of the equality

@s�
i
D F". 

i / D " i C
 ip

"C j i j2

with respect to s to get

@ss�
i
D "@s 

i
C

@s 
ip

"C j i j2
�
 i .@s 

i �  i /

."C j i j2/3=2
:

We multiply this equality by
p
"C j i j2 and deduce

@ss�
i
q
"C j i j2 D "@s 

i
q
"C j i j2 C @s 

i
�
 i .@s 

i �  i /

"C j i j2
:

We reorganize the equality above to obtain

.@ss�
i
� "@s 

i /

q
"C j i j2 D @s 

i
�
 i .@s 

i �  i /

"C j i j2
:

The right-hand side is bounded in L1.ı; T IL2.�// uniformly with respect to ", and
hence, so is the left-hand side. Consequently, j ik@ss�i � "@s i j is bounded in L1.ı; T I
L2.�// uniformly with respect to ".
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�1 �2

s D 1 �3

s D 0 s D 1s D 1

Figure 1. Symbolic depiction of the first scenario in Lemma 4.7: two arms of the triod tend to the
straight position

Lemma 4.6. Let ‡ be a finite set in Rd . Assume that there exists a point in the convex
hull of ‡ such that the distance between it and ‡ is greater than or equal to 1. Then, the
radius of the smallest enclosing ball for ‡ is greater than or equal to 1.

Proof. Translating the origin if necessary, we may assume that the origin belongs to the
convex hull of‡ , and‡ does not intersect with the open unit ball centered in the origin. It
suffices to prove that there is no p 2 Rd with jy � pj< 1 for any y 2 ‡ . Indeed, if such p
exists, then y � p � 1

2
jyj2�1

2
jy � pj2> 0. Since the origin belongs to the convex hull of

‡ , we infer 0 > 0, a contradiction.

Now we assemble all the ingredients to get the crucial L1 bounds for  and @s�.

Lemma 4.7. Given ı > 0, the norm k ikL1.ı;T IL1.�// is uniformly bounded with respect
to ".

Proof. From now on, we do not omit the subscript ". However, in this proof we decided
to swap the sub- and superindices for the sake of convenience and readability.

Step 1. We argue by contradiction. Assume that there is a sequence "n ! 0 such that

k "
n

1 kL1.ı;T IL1.�// !C1:

Here, without loss of generality, we have chosen the generic i to be equal to 1. By the reg-
ularity of @s "

n
and @ss�"

n
, there exists a set Tn of full measure in Œı; T � such that  "

n

i .t/

and �"
n

i .t/ are C 1-smooth in�, whereas @ss�"
n

i .t/ 2 L
2.�/ for every i and every t 2Tn.

Furthermore, by Lemma 4.5, without loss of generality we can assume that @s "
n

i .t/ and
j "

n

i .t; �/k@ss�
"n

i .t; �/ � "
n@s 

"n

i .t; �/j are bounded in L2.�/ uniformly with respect to n
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�1 �2

�3

s D 0

s D 1s D 1

s D 1

Figure 2. Symbolic depiction of the 2nd scenario in Lemma 4.7: all the arms of the triod tend to the
straight position

and t 2 Tn. Let T WD \n2NTn. Then, there is a sequence .tn; sn/ 2 T � � such that
j "

n

1 .t
n; sn/j ! C1 as n!1. Thus,

 "
n

1 .t
n; s/ D  "

n

1 .t
n; sn/„ ƒ‚ …

!C1

C

Z s

sn
@� 

"n

1 .t
n; �/@�„ ƒ‚ …

�C

when n!1. Accordingly, j "
n

1 .t
n/j ! C1 uniformly in s.

Step 2. By the boundary conditions,

3X
iD1

 "
n

i .t
n; 0/ D 0: (31)

By the previous step, j "
n

1 .t
n; 0/j ! C1. Hence, we have two possible scenarios sym-

bolically pictured in Figures 1 and 2, respectively. The first option is j "
n

2 .t
n; 0/j ! C1

and j "
n

3 .t
n; 0/j � C as n! C1 (up to swapping the second and the third arms). The

second one is j "
n

2 .t
n; 0/j ! C1 and j "

n

3 .t
n; 0/j ! C1 as n!C1.

Step 3. We start by examining the second scenario. An argument similar to the one of
Step 1 shows that j "

n

i .t
n/j ! C1 uniformly in s, i D 1; 2; 3. Since tn 2 T , we know

that
j "

n

i .t
n; �/k@ss�

"n

i .t
n; �/ � "@s 

"n

i .t
n; �/j

is uniformly bounded in L2.�/. Hence,

j@ss�
"n

i .t
n; �/ � "n@s 

"n

i .t
n; �/j ! 0
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in L2.�/ as n! C1. On the other hand, @s "
n

i .t
n/ is uniformly bounded in L2.�/,

whence
j"n@s 

"n

i .t
n/j ! 0

in L2.�/. We conclude that j@ss�"
n

i .t
n; �/j ! 0 in L2.�/ as n! C1. By Remark 2.1,

j "
n

i .t
n; �/j � 1 implies j@s�"

n

i .t
n; �/j � 1 (assuming n to be large enough).

Step 4. The idea now is to compare the triangle formed by the points pni WD �
"n

i .t
n; 0/

C @s�
"n

i .t
n; 0/ with the fixed triangle3 formed by �"

n

i .t
n; 1/ D ˛i .1/, i D 1; 2; 3. Observe

that

j@s�
"n

i .t
n; 0/ � @s�

"n

i .t
n; �/j D

ˇ̌̌Z �

0

@ss�
"n

i .t
n/ ds

ˇ̌̌
�

Z �

0

j@ss�
"n

i .t
n/j ds

�

sZ 1

0

j@ss�
"n

i .t
n/j2 ds ! 0 uniformly in � as n!1:

Hence,

jpni � ˛i .1/j D j�
"n

i .t
n; 0/ � �"

n

i .t
n; 1/C @s�

"n

i .t
n; 0/j

D

ˇ̌̌Z 1

0

@s�
"n

i .t
n; 0/ � @s�

"n

i .t
n; s/ ds

ˇ̌̌
! 0 as n!1:

It follows from our assumptions (Remark 1.1) that the radius of the smallest enclosing ball
of the three points ˛i .1/ is less than 1. Since the radius of the smallest enclosing ball is a
continuous function of the points of a set, it follows that the radius of the smallest enclos-
ing ball of the three points pni is less than 1 for n sufficiently large. Since the junction
point �"

n

i .t
n; 0/ does not depend on i , the radius of the smallest enclosing ball of the three

points zpni WD @s�
"n

i .t
n; 0/ is the same as the previous one. By Step 3, j zpni j� 1: Moreover,

since
P3
iD1  

"n

i .t
n; 0/ D 0 and zpni D F"n. 

"n

i .t
n; 0//, we conclude that the convex hull

of ¹ zpni º contains the origin. We arrive at a contradiction because by Lemma 4.6, the radius
of the smallest enclosing ball of ¹ zpni º must be greater than or equal to 1.

Step 5. We now study the first scenario. Define pni and zpni as in Step 4. The plan
is to look at the angle �n between the position vectors of zpn1 and zpn2 and to obtain a
contradiction from that.

We first show that �n cannot tend to � . Indeed, mimicking the arguments of Steps 3
and 4, we can prove that for i D 1; 2 one has j@s�"

n

i .t
n; �/j � 1 with n large enough,

j@ss�
"n

i .t
n; �/j ! 0 in L2.�/, and

jpni � ˛i .1/j ! 0 as n!1:

3Both triangles can be degenerate.
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Hence,
j zpn1 � zp

n
2 j D jp

n
1 � p

n
2 j ! j˛1.1/ � ˛2.1/j < 2:

Since we have j zpn1 j � 1; j zp
n
2 j � 1, the angle �n cannot converge to � .

Now take the wedge product of relation (31) with the vector

1

j@s�
"n

1 .t
n; 0/k "

n

2 .t
n; 0/j

@s�
"n

1 .t
n; 0/

to obtain

 "
n

2 .t
n; 0/

j "
n

2 .t
n; 0/j

^
@s�

"n

1 .t
n; 0/

j@s�
"n

1 .t
n; 0/j

C
 "

n

3 .t
n; 0/

j "
n

2 .t
n; 0/j

^
@s�

"n

1 .t
n; 0/

j@s�
"n

1 .t
n; 0/j

D 0:

Since j "
n

2 .t
n; 0/j ! C1 and j "

n

3 .t
n; 0/j � C , the second term converges to 0. Con-

sequently,

jsin �nj D
ˇ̌̌ @s�"n2 .tn; 0/
j@s�

"n

2 .t
n; 0/j

^
@s�

"n

1 .t
n; 0/

j@s�
"n

1 .t
n; 0/j

ˇ̌̌
D

ˇ̌̌  "n2 .tn; 0/
j "

n

2 .t
n; 0/j

^
@s�

"n

1 .t
n; 0/

j@s�
"n

1 .t
n; 0/j

ˇ̌̌
! 0

as n!1.
To obtain a contradiction, it remains to observe that �n cannot tend to 0. Indeed, taking

the scalar product of relation (31) with

1

j@s�
"n

1 .t
n; 0/jj "

n

2 .t
n; 0/j

@s�
"n

1 .t
n; 0/;

we get

 "
n

1 .t
n; 0/

j "
n

2 .t
n; 0/j

�
@s�

"n

1 .t
n; 0/

j@s�
"n

1 .t
n; 0/j

C
 "

n

2 .t
n; 0/

j "
n

2 .t
n; 0/j

�
@s�

"n

1 .t
n; 0/

j@s�
"n

1 .t
n; 0/j

C
 "

n

3 .t
n; 0/

j "
n

2 .t
n; 0/j

�
@s�

"n

1 .t
n; 0/

j@s�
"n

1 .t
n; 0/j

D 0:

The first term is equal to
�"

n

1

j "
n

2 .t
n; 0/k@s�

"n

1 .t
n; 0/j

� 0

by (16) and (17). The third term converges to 0. Accordingly, the second term, which is
equal to cos �n, cannot tend to 1.

Corollary 4.8. Given ı > 0, the norm k�i"nkL1.ı;T IW 1;1.�// is uniformly bounded with
respect to ".

Proof. Since @s�i"n D F"n. 
i
"n/ and the sequence ¹"nº is bounded, Lemma 4.7 yields a

uniformL1 bound for @s�i . By Lemma 4.1, k�ikL1.ı;T IL1.�// is also uniformly bounded
with respect to ", and the claim follows by the mean value theorem.



Falling Network 363

Lemma 4.9. Given ı > 0, the norm k� i"nkL1.ı;T IH1.�// is bounded uniformly in ".

Proof. In view of Lemma 4.7 and Corollary 4.8, theL1.ı;T IL1.�// bound for � imme-
diately follows from the equality � i D @s�i � i . Differentiating this equality with respect
to s, we obtain

@s�
i
D @s 

i
� @s�

i
C  i � @ss�

i :

We estimate the two terms on the right-hand side separately. Firstly, from Lemma 4.5,
a uniform L1.ı; T IL2.�// bound for @s i has already been established. This together
with Corollary 4.8 implies the uniform boundedness of @s i � @s�i in L1.ı; T IL2.�//.

Now, we estimate  i � @ss�i . From the explicit expression of �"n in (15), for � 2 Rd

we have

�"n.�/ D

p
"n C jG"n.�/j2

"n
p
"n C jG"n.�/j2 C 1

�
jG"n.�/j

"njG"n.�/j C 1
:

Thus,

jG"n.@s�
i /k@ss�

i
j � ."njG"n.@s�

i /j C 1/j�"n@ss�
i
j

� ."nj i j C 1/jrG"n.@s�
i /@ss�

i
j:

By Lemma 4.7, j i j is uniformly bounded in L1.ı; T IL1.�//, whence

j i � @ss�
i
j � jG"n.@s�

i /k@ss�
i
j � C jrG"n.@s�

i /@ss�
i
j D C j@s 

i
j:

Since the right-hand side is uniformly bounded in L1.ı; T IL2.�//, so is the left-hand
side and, consequently, the spatial derivative @s� i itself.

5. Existence of generalized solutions

We are finally in the position to define generalized solutions to the original problem given
by ((7), (2), (3)) and to prove their existence.

Definition 5.1 (Generalized solution). Given initial data ˛i .s/ 2 W 1;1.�/d as in Rem-
ark 1.1, we call a pair .�i ; � i / a generalized solution to ((7), (2), (3)) in Q1 if

(i) We have

�i 2 L1loc..0;1IW
1;1.�//d \ Cloc..0;1/IC.�//

d

\ AC 2loc.Œ0;1/IL
2.�//d ;

@t�
i
2 L1loc..0;1/IL

2.�//d \ L2loc.Œ0;1/IL
2.�//d ;

� i 2 L1loc..0;1/IAC
2.�//;

� i@s�
i
2 L1loc..0;1/IAC

2.�//d :
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(ii) Each pair .�i ; � i / satisfies for a.e. .t; s/ 2Q1

@t�
i .t; s/ D @s.�

i .t; s/@s�
i .t; s//C g; (32)

� i .t; s/.j@s�
i .t; s/j2 � 1/ D 0; (33)

j@s�
i .t; s/j � 1; (34)

as well as the initial conditions

�i .0; s/ D ˛i .s/

and the boundary conditions

�1.t; 0/ D �2.t; 0/ D �3.t; 0/;

�i .t; 1/ D ˛i .1/;

3X
iD1

� i .t; 0/@s�
i .t; 0/ D 0:

(iii) The solutions �i satisfy the energy dissipation inequality

3X
iD1

Z
�

j@t�
i .t; s/j2 ds �

3X
iD1

Z
�

g � @t�
i .t; s/ ds (35)

for a.e. t 2 .0;1/.

Remark 5.2 (Discussion of Definition 5.1). Note that ((33), (34)) is a minor relaxation of
the non-convex constraint

j@s�
i .t; s/j D 1: (36)

However, this is not a banal convexification of the constraint, since (33) is still not con-
vex. The new constraints ((33), (34)) naturally appear from the .�; �;  /-formulation
in (11) (cf. (37)) in the proof below. They were also advocated in [47], together with the
non-negativity of the tension. Moreover, if a generalized (in the sense of Definition 5.1)
solution .�;�/ isC 2-smooth, then it automatically satisfies the strong constraint (see (36)).
This claim can be shown by following the lines of [48, Remark 4.2] and [49, Remark 3.20].
As in [48], our generalized solutions are, generally speaking, not unique. Yet, this has
nothing to do with the fact that we slightly relaxed constraint (36). As a matter of fact,
non-uniqueness can persist even if the strong constraint in (36) is imposed (cf. [48, Rem-
ark 6.5]). Finally, we emphasize that (35) is not a direct consequence of ((32), (34)).

For convenience, we first pass to the limit on finite time intervals. In what follows, we
use the shortcut Q�T WD .ı; T / ��:

Proposition 5.3. Fix T > 0 and a small ı > 0. Let �" be a solution to (13) in QT with
initial/boundary conditions (14) as constructed in Section 3. Let . i ; � i / be defined as
in (16). Then (up to selecting a subsequence "n), there exists a limit .�i ; � i ;  i / such that
as "! 0 we have
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(1) �i" ! �i weakly� in L1.ı; T IW 1;1.�//d , strongly in C.Q�T /
d and weakly in

L2.QT /
d ,

(2) @t�i" ! @t�
i weakly-� in L1.ı; T IL2.�//d and weakly in L2.QT /

d ,

(3) � i" ! � i weakly-* in L1.ı; T IH 1.�//,

(4)  i" !  i weakly-* in L1.ı; T IH 1.�//.

The limit satisfies the relation

 i D � i@s�
i
2 L1.ı; T IH 1.�//

and solves ((7), (2)) in Q�T in the sense that

@t�
i
D @s.�

i@s�
i /C g a.e. in Q�T ;

� i .j@s�
i
j
2
� 1/ D 0 a.e. in Q�T ;

�i .t; 1/ D ˛i .1/;

�1.t; 0/ D �2.t; 0/ D �3.t; 0/;

3X
iD1

 i D 0 at s D 0 for a.e. t 2 .ı; T /:

Remark 5.4. At this stage we do not discuss the validity of the initial condition
�i .0; s/ D ˛i .s that is postponed until Remark 5.5.

Proof. The weak compactness results for �i", �
i
" , and  i" follow immediately from the

estimates above. By the Aubin–Lions–Simon theorem,

L1.ı; T IW 1;1.�// \W 1;1.ı; T IL2.�// � C.Œı; T �IC.�//

and the embedding is compact, implying strong compactness of �i" in C.Œı; T �IC.�//.
Let us show that

 i D � i@s�
i ; � i D  i � @s�

i (37)

a.e. in Q�T . Since both sides of the equalities in (37) are integrable on Q�T , it suffices to
prove (37) in the sense of the distributions, that is, that for any �i 2 L2.ı; T IH 1

0 .�//,

3X
iD1

Z
Q�T

 i�idsdt D �

3X
iD1

Z
Q�T

� i�i@s�
idsdt �

3X
iD1

Z
Q�T

@s�
i�i�idsdt; (38)

and

3X
iD1

Z
Q�T

� i�idsdt D �

3X
iD1

Z
Q�T

 i � �i@s�
idsdt �

3X
iD1

Z
Q�T

@s 
i
� �i�idsdt: (39)
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Firstly, applying integration by parts to the equality � i" D  
i
" � @s�

i
", we obtain

3X
iD1

Z
Q�T

� i"�
i
D �

3X
iD1

Z
Q�T

 i" � �
i
"@s�

idsdt �

3X
iD1

Z
Q�T

@s 
i
" � �

i
"�
idsdt

and due to the strong compactness property of ¹�"º given above, we can pass to the limit
to get (39). We now claim

lim
"!0
j i" jjj@s�

i
"j
2
� 1j D 0 (40)

uniformly in Q�T . Before proving the claim, we show how (38) follows from (40). Indeed,
with (40) in hand and noting that i" j@s�

i
"j
2 D . i" � @s�

i
"/@s�

i
" D �

i
"@s�

i
", we have for each

i D 1; 2; 3

lim
"!0
k� i"@s�

i
" �  

i
"kL1.Q�T /

D 0:

In particular, for any �i 2 L2.ı; T IH 1
0 .�//,

lim
"!0

3X
iD1

Z
Q�T

 i"�
idsdt D lim

"!0

3X
iD1

Z
Q�T

� i"@s�
i
"�
idsdt:

An integration by parts applied to the integral on the right-hand side gives

lim
"!0

3X
iD1

Z
Q�T

 i"�
idsdt D lim

"!0

3X
iD1

Z
Q�T

.�� i"�
i
"@s�

i
" � @s�

i
"�
i
"�
i /dsdt:

This together with the compactness properties established above yields (38).
We now provide a proof of (40). By the definition of F" in (12),

j@s�
i
"j�1 D jF". 

i
"/j � 1

D "j i" j C
j i" jp
"C j i" j

2
� 1

D "j i" j �
"p

"C j i" j
2.
p
"C j i" j

2 C j i" j/
:

Thus,

j i" jjj@s�
i
"j
2
� 1j D jj@s�

i
"j C 1j

ˇ̌̌
"j i" j

2
�

"j i" jp
"C j i" j

2.
p
"C j i" j

2 C j i" j/

ˇ̌̌
� jj@s�

i
"j C 1j."j 

i
" j
2
C
p
"/:

This together with uniform L1 bounds on @s�i" and  i" yields (40).
Passing to the limit in L2.Q�T / in @t�i" D @s 

i
" C g and using (37), we obtain @t�i D

@s.�
i@s�

i /C g. Moreover, by (37),

� i .j@s�
i
j
2
� 1/ D  i � @s�

i
� � i D 0:
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Due to the strong uniform convergence of �i", we have ˛i .1/ D �i".t; 1/! �i .t; 1/,
whence �i .t; 1/ D ˛i .1/ for all t 2 Œı; T �. The condition �1".t; 0/ D �2".t; 0/ D �3".t; 0/

similarly passes to the limit. To check the validity of the boundary condition at s D 0

for  , we swap the variables t and s, noting that  i" are uniformly bounded and weakly-*
converging in H 1.0; 1IL1.ı; T //. Employing, for instance, [55, Corollary 2.2.1], we get

H 1.0; 1IL1.ı; T // D AC 2.Œ0; 1�IL1.ı; T //: (41)

Hence, by the Aubin–Lions–Simon theorem, the embedding

H 1.0; 1IL1.ı; T // � C.Œ0; 1�IH�1.ı; T //

is compact, whence we may assume that  i"!  i strongly in C.Œ0; 1�IH�1.ı;T //. Thus,

0 D

3X
iD1

 i".�; 0/!

3X
iD1

 i .�; 0/

in H�1.ı; T /. Due to (41),
P3
iD1  

i .�; 0/ D 0 in L1.ı; T /.

Remark 5.5 (Initial conditions). By the Aubin–Lions–Simon theorem, the embedding

H 1.0; T IL2.�// � C.Œ0; T �IH�1.�//

is compact. Since �i" converge weakly in H 1.0; T IL2.�// we can pass to the limit in the
initial conditions to obtain �i .0; �/ D ˛i in H�1.�/. However, since H 1.0; T IL2.�// D

AC 2.0; T IL2.�//, the initial conditions actually hold in L2.�/.

Proposition 5.6. Let .�i ; � i / be the limiting solution obtained in Proposition 5.3. Then,

(i) j@s�
i .t; s/j � 1 for a.e. .t; s/ 2Q�T ;

(ii) � i � 0 for a.e. .t; s/ 2Q�T ;

(iii) inequality (35) holds for a.a. t 2 .ı; T /.

We omit the proof since it follows the same lines as the proofs of [48, Proposition 3.6
and Theorem 3].

Employing a diagonal argument and taking into account Proposition 5.6 and Rem-
ark 5.5, it is easy to deduce Theorem 1.2 from Proposition 5.3.

Remark 5.7 (Single cord with two fixed ends). The results of the paper, mutatis mutandis,
are valid for the overdamped fall of a single inextensible string with the ends fixed at two
distinct spatial points (it suffices to observe that such a string can be viewed as a degenerate
“triod” with one arm having zero length); remember that [48] studied the case of one free
and one fixed end (i.e., a “whip”). More precisely, we have the following result:
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Proposition 5.8. Given ˛.s/ 2W 1;1.�/d satisfying j˛.0/� ˛.1/j< 1, j@s˛.s/j D 1 a.e.
in �, there exists a generalized solution to8̂̂̂̂

<̂
ˆ̂̂:
@t� D @s.�@s�/C g;

j@s�j D 1;

�.t; 0/ D ˛.0/; �.t; 1/ D ˛.1/;

�.0; s/ D ˛.s/:

(42)

in Q1. Moreover, �.t; s/ � 0 for almost every .t; s/ 2Q1.

Remark 5.9 (Exponential decay). Employing energy methods, the authors of [48] estab-
lished exponential decay of the generalized solution towards the equilibrium state (the
whip hanging downwards) in the case of one free and one fixed end. The proof was
heavily relying on Hardy’s inequality. That strategy cannot be easily adapted even to the
string with two fixed ends (the corresponding steady state is the catenary) since that would
require the substitution of Hardy’s inequality with a troublesome non-standard variant of
the Poincaré inequality. Moreover, to the best of our knowledge, the explicit characteriza-
tion of the steady state with the least potential energy is not available for the triod.

A. The gradient of the potential energy

Here, we present a formal computation of �rAE. Fix a reference network � 2A. Firstly,
it is clear that �rL2E.�/ D g. Hence, by some basic Riemannian geometry [17],

�rAE.�/ D P�g;

where P�g is the orthogonal projection of g onto the tangent space T�A that was defined
in (5). Assume that the following system of ODEs

@ss�
i
� j@ss�

i
j� i D 0

with the initial/terminal conditions

3X
iD1

� i@s�
i
D 0 at s D 0; (43)

@s�
i@s�

i
C � i@ss�

i
C g does not depend on i at s D 0; (44)

@s�
i@s�

i
C � i@ss�

i
D �g at s D 1; (45)

is solvable for � i , i D 1; 2; 3. We claim that

P�g WD .g C @s.�
1@s�

1/; g C @s.�
2@s�

2/; g C @s.�
3@s�

3//
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fulfills the relevant conditions for the image of g under the orthogonal projection, namely,
P�g 2 T�g and that g � P�g is L2-orthogonal to any � i 2 T�A. Indeed, differentiating
the constraints j@s�i j2 D 1, we find

@s�
i
� @ss�

i
D 0;

@s�
i
� @sss�

i
D �j@ss�

i
j
2:

Hence,
@s.P�g/

i
� @s�

i
D @ss�

i
� j@ss�

i
j
2� i D 0:

It is easy to see that we have P�g.1/ D 0 by (45) componentwise. Moreover, by (44),
.P�g/

i .0/ does not depend on i . We have proved that P�g 2 T�A. Finally, for any
� i 2 T�A, we obtain after summing the terms and integration by parts

3X
iD1

Z 1

0

.g � .P�g/
i / � � ids D

3X
iD1

Z 1

0

�@s.�
i@s�

i / � � ids

D

3X
iD1

Z 1

0

� i@s�
i
� @s�

ids �

3X
iD1

� i@s�
i
� � i

ˇ̌̌sD1
sD0

:

It follows from the definition of T�A in (5) and equality (43) that both terms vanish.
This formally justifies that the PDE form of the gradient flow (8) is ((7), (2)). A similar

but slightly amended argument formally implies that (6) is equivalent to ((1), (2)).
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