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1. Introduction

The classical sampling theorem asserts that every function f in the Paley-
Wiener space defined by

PW =

{

f ∈ L2 (R) : f(x) =
1√
2π

∫ π

−π

eixtu (t) dt, u ∈ L2 (0, 1)

}

can be represented by the interpolation series

f (x) =
∞

∑

n=−∞
f (n)

sin π (x − n)

π (x − n)

Hardy´s proof of this fact [4] used properties from the kernel of the Fourier
transform. Relying on properties of the Hankel´s transform kernel, Hig-
gins [5] used the theory of reproducing kernels to obtain a sampling theo-
rem where the sampling points are the zeros of the Bessel function. In this
note, a q−Bessel analogue of the sampling theorem is derived by considering
the kernel of the q−Hankel transform, Hν

q , introduced by Koornwinder and
Swarttouw [8]

(

Hν
q f

)

(x) =

∫ ∞

0

(xt)
1
2 J (3)

ν

(

xt; q2
)

f (t) dqt
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where J
(3)
ν denotes the third Jackson q−Bessel function defined by the power

series

J (3)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

xν

∞
∑

n=0

(−1)n q
n(n+1)

2

(qν+1; q)n(q; q)n

x2n (1.1)

with 0 < q < 1 , (a; q)n = (1 − a) (1 − aq) ...
(

1 − aqn−1
)

and (a; q)∞ =
lim
n→∞

(a; q)n. We are using the definition of the q−integral. The q−integral in

the interval (0, 1) is defined as
∫ 1

0

f (t) dqt = (1 − q)
∞

∑

n=0

f (qn) qn (1.2)

and in the interval (0,∞) as
∫ ∞

0

f (t) dqt = (1 − q)
∞

∑

n=−∞
f (qn) qn (1.3)

The sampling points will turn out to be qjnν

(

q2
)

, where jnν

(

q2
)

is the nth

zero of J
(3)
ν

(

x; q2
)

. In [2] it was proved that jnν

(

q2
)

= q−n+εn , 0 < εn < 1.
This shows how big is the spacing between the sampling points.

2. Preliminaries on reproducing kernels

Let H be a class of complex valued functions, defined in a set X ⊂ C, such
that X is a Hilbert space with the norm of L2 (X, µ). g (s, x) is a reproducing

kernel to H if
i) g (t, x) ∈ H for every x ∈ X;
ii) f (x) = 〈f (t) , g (t, x)〉 for every f ∈ H, x ∈ X.
The next result lists the properties of Hilbert spaces with reproducing ker-

nel that will be used in the remainder. Properties (a), (c) and (d) are proved
in [5]. Property (b) is a well known property of the reproducing kernels, of
primary importance, because it relates two different kinds of convergence. A
proof of (b) can be found in [10], together with an introduction to the general
theory.

Proposition 1. In the Hilbert space L2 [(a, b) , µ], an operator is defined by

Ku = 〈K (x, t) , u (t)〉L2[(a,b),µ]

The following properties hold:
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(a) If K−1 is bounded, the range of K, denoted by N , is a Hilbert space

with reproducing kernel.

(b) If the sequence {fn} converges strongly to f in the norm of H, with

reproducing kernel g, then {fn} converges pointwise in X to f . The conver-

gence is uniform in every set of X where g (x, x) is bounded.

(c) If K is an isometry, then g (s, x) = 〈K (s, t) , K (x, t)〉L2[(a,b),µ].

(d) Let {fn} be a complete ortogonal sequence in H and (xn) such that

fn (xm) = δnm. Then

fn (t) =
g (t, xn)

g (xn, xn)

We will suppose N ⊂ L2 (X, µ), and this implies K bounded. K−1 is a
transformation of N over L2 [(a, b) , µ], also bounded.

3. A q-sampling theorem

We introduce a q−Bessel version of the Paley-Wiener space, and call it
PW ν

q :

PW ν
q =

{

f ∈ L2
q (0,∞) : f (x) =

∫ 1

0

(tx)
1
2 J (3)

ν

(

xt; q2
)

u (t) dqt, u ∈ L2
q (0, 1)

}

(3.1)
The notation L2

q (0, 1) stands for the Hilbert space associated to the measure
of the q−integral in (0, 1). In [8] it was proved the inversion formula

f (t) =

∫ ∞

0

(xt)
1
2
(

Hν
q f

)

(x) J (3)
ν

(

xt; q2
)

dqx =
(

Hν
q

(

Hν
q f

))

(t) (3.2)

Let f ∈ L2
q (0,∞) such that

(

Hν
q f

)

(q−n) = 0 , n = 1, 2, .... Then f ∈ PW ν
q .

To see this use the formula (3.2) and compare (1.2) and (1.3) to write f as
an element of PW ν

q .
Now, in the language of the preceding section, consider X = (0,∞),

(a, b) = (0, 1) and the kernel K (x, t) = (xt)
1
2 J

(3)
ν

(

xt; q2
)

. The corresponding
operator K is

(Ku) (x) = 〈K (x, t) , u (t)〉L2
q(0,1)

=

∫ 1

0

(xt)
1
2 J (3)

ν

(

xt; q2
)

u (t) dqt

By (3.2), Hν
q is a self-inverse operator and consequently, an isometry. Thus,

K is also an isometry. The range of K, N , is the set of functions f ∈ L2
q (0,∞)
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such that f = Ku for some u ∈ L2
q (0, 1). By (3.1), N = PW ν

q . In the next
Lemma, the reproducing kernel of the space PW ν

q is evaluated.

Lemma 1. The set PW ν
q is a Hilbert space with reproducing kernel given by

g (s, x) = (1 − q) qv
(xs)

1
2

[

xJ
(3)
ν+1

(

x; q2
)

J
(3)
ν

(

sq−1; q2
)

− sJ
(3)
ν+1

(

s; q2
)

J
(3)
ν

(

xq−1; q2
)

]

x2 − s2

(3.3)

Proof : By Proposition 1 (a), PW ν
q is a space with reproducing kernel g (s, x).

From Proposition 1 (c), since K is an isometry,

g (s, x) = 〈K (s, t) , K (x, t)〉L2
q(0,1)

=

∫ 1

0

t (xs)
1
2 J (3)

ν

(

xt; q2
)

J (3)
ν

(

st; q2
)

dqt

In [7], the following formula was proved

(

a2 − b2
)

∫ z

0

tJ (3)
ν

(

aqt; q2
)

J (3)
ν

(

bqt; q2
)

dqt (3.4)

= (1 − q) qν−1z
[

aJ
(3)
ν+1

(

aqz; q2
)

J (3)
ν

(

bz; q2
)

− bJ
(3)
ν+1

(

bqz; q2
)

J (3)
ν

(

az; q2
)

]

Setting z = 1, a = xq−1 and b = sq−1 in (3.4), (3.3) follows.

The q−sampling theorem can now be stated and proved.

Theorem 1. If f ∈ PW ν
q then f has the unique representation

f (x) =
∞

∑

n=1

f
(

qjnν

(

q2
)) 2

(

xqjnν

(

q2
))

1
2 J

(3)
ν

(

x; q2
)

d
dx

[

J
(3)
ν (x; q2)

]

x=qjnν(q2)
(x2 − q2j2

nν (q2))
(3.5)

where
(

jnν

(

q2
))

denotes the sequence of positive zeros of J
(3)
ν

(

x; q2
)

. The

series converges uniformly in compact subsets of (0,∞).

Proof : Consider the sequence {fn (x)} defined by

fn (x) =
(

xqjnν

(

q2
))

1
2 J (3)

ν

(

qxjnν

(

q2
)

; q2
)

It was proved in [1] that {fn (x)} is a complete orthogonal sequence in
L2

q (0, 1). Taking into account that K is an isometry, the sequence (Kfn) (x)
is also orthogonal and complete in PW ν

q . Now set

Fn (x) =
(Kfn) (x)

(Kfn) (qjnν (q2))
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The orthogonality of {fn (x)} implies

Fn

(

qjmν

(

q2
))

= δnm (3.6)

Proposition 1 (d) allows to write

Fn (x) =
g

(

x, qjnν

(

q2
))

g (qjnν (q2) , qjnν (q2))

Substituting in (3.3) yields

Fn (x) =
2
(

xqjnν(q
2)

)
1
2 J

(3)
ν

(

x; q2
)

d
dx

[

J
(3)
ν (x; q2)

]

x=qjnν(q2)
(x2 − q2j2

nν(q
2))

Fn (x) is an orthonormal complete sequence in N . Thus, every f ∈ PW ν
q has

a unique series expansion in the form

f (x) =
∞

∑

n=1

anFn (x) (3.7)

where an are the Fourier coefficients of f in {Fn (x)}. The series in (3.7) is
convergent in the norm of L2

q (0, 1) and also in the norm of PW ν
q . The real-

valued function g (x, x) is continuous, thus bounded in every compact subset
of (0,∞) . It follows from Proposition 1 (b) that (3.7) converges uniformly
in compact subsets of (0,∞). Finally, setting x = qjnν

(

q2
)

in (3.7), (3.6)

implies f
(

qjmν

(

q2
))

= am and thus, (3.7) can be written in the form (3.5).

4. Application

The following formula is a consequence of the product representation for
the classical Bessel function

d
dx

Jν (x)

Jν (x)
= 2x

∞
∑

n=1

1

j2
nν − x2

+
ν

x
(4.1)

Using the recurrence x d
dx

Jν (x) − νJν (x) = −xJν+1 (x), (4.1) becomes

Jν+1 (x)

Jν (x)
= −2x

∞
∑

n=1

1

j2
nν − x2

(4.2)

where jnν stands for the zeros of Jν (x). In the case of the q-analogues of
the Bessel function, this analysis cannot be done, for there are no formulas



6 L. D. ABREU

to establish a simple relation between a q-Bessel function and its derivative.
While the q−analogue of (4.1) is very simple to derive from the Hadamard
factorization theorem or using residues, the q-analogue of (4.2) is harder to

obtain. In [6], Ismail studied the second Jackson q-Bessel function, J
(2)
ν (x; q),

and found such q−analogue using the orthogonality measure of the modified

q-Lommel polynomials associated to J
(2)
ν (x; q). Kvitsinsky [9] found a recur-

rence relation for the coefficients hn in the identity

J
(3)
ν+1 (x; q)

J
(3)
ν (x; q)

=
∞

∑

n=1

hnx
2n−1 (4.3)

In this section an explicit formula for the coefficients hn will be obtained as
a special case of the expansion of a particular function as a sampling series.
Preliminary to this expansion, a q−integral formula connecting two q−Bessel
functions of different order is established .

Lemma 2. For y > 0, ν > −1
2 and x ∈ R, the following relation holds

(q; q)∞
(qy; q)∞

x−yJ
(3)
ν+y(x; q) =

∫ 1

0

t
ν
2

(tq; q)∞
(tqy; q)∞

J (3)
ν (xt

1
2 ; q)dqt (4.4)

Proof : The q−analogues of the gamma and the beta function will be critical
in the proof. According to [3, 1.10], the q − gama function, Γq(x), is defined
by

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x (4.5)

and the q−beta function, βq(x, y) by

βq(x, y) =
Γq(x)Γq(y)

Γq(x + y)
(4.6)

The q−beta function has the q-integral representation

βq(x, y) =

∫ 1

0

tx−1 (tq; q)∞
(tqy; q)∞

dqt, Re(x) > 0, y 6= 0,−1,−2, ... (4.7)

Using the series representation (1.1) and the q−integral representation (4.7)
it is easy to see that, if ν > −1

2 and y > 0,
∫ 1

0

t
ν
2

(tq; q)∞
(tqy; q)∞

J (3)
ν (xt

1
2 ; q)dqt = xν

∞
∑

k=0

(−1)k q
k(k+1)

2

(q; q)k(qν+1; q)k

x2kβq(k+ν+1, y)

(4.8)
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Now use (4.5) and (4.6) to express βq(k + ν + 1, y) as a quotient of infinite
products. Then, some algebraic manipulations using the formula (a; q)∞ =
(a; q)n (aqn; q)∞ allow us to see that the right hand member of (4.8) is equal
to the left hand member of identity (4.4).

Before moving to the next Theorem, it is convenient to point out that,
from the definition (1.2), one can verify the relation:

∫ 1

0

f(t
1
2 )dq2t = (1 + q)

∫ 1

0

tf (t) dqt (4.9)

Theorem 2. If u > ν > −1
2, the following identity holds

xν−u
J

(3)
u

(

x; q2
)

J
(3)
ν (x; q2)

= −2
∞

∑

n=1

(

qjnν

(

q2
))ν−u+1

J
(3)
u

(

qjnν

(

q2
)

; q2
)

d
dx

[

J
(3)
ν (x; q2)

]

x=qjnν(q2)
(q2j2

nν (q2) − x2)
(4.10)

Proof : Setting y = u−ν in (4.4) and replacing q by q2, the result is, if u > ν,

(q2; q2)∞
(q2u−2ν ; q2)∞

xν−uJ (3)
u (x; q2) =

∫ 1

0

t
ν
2

(tq2; q2)∞
(tq2u−2ν ; q2)∞

J (3)
ν (xt

1
2 ; q2)dq2t

Taking (4.9) into account, this can be rewritten as

(q2; q2)∞
(q2u−2ν ; q2)∞

xν−uJ (3)
u (x; q2) = (1 + q)

∫ 1

0

tν+1 (t2q2; q2)∞
(t2q2u−2ν ; q2)∞

J (3)
ν (xt; q2)dqt

(4.11)
Considering

u (t) = tν+1
2
(1 + q)

(

q2u−2ν ; q2
)

∞
(

t2q2; q2
)

∞
(q2; q2)∞ (t2q2u−2ν ; q2)∞

relation (4.11) yields

xν−u+1
2J (3)

u

(

x; q2
)

=

∫ 1

0

(tx)
1
2 J (3)

ν (xt; q2)u (t) dq2t

Thus,

f (x) = xν−u+1
2J (3)

u

(

x; q2
)

∈ PW ν
q

And it is possible to apply Theorem 1 to f . The result of this application is
(4.10).



8 L. D. ABREU

Taking u = ν +1 in (4.10) and replacing q2 by q, the result is the analogue
of (4.2) previously mentioned:

J
(3)
ν+1 (x; q)

J
(3)
ν (x; q)

= −2x
∞

∑

n=1

J
(3)
ν+1

(

q
1
2 jnν (q) ; q

)

d
dx

[

J
(3)
ν (x; q)

]

x=q
1
2 jnν(q)

1

qj2
nν (q) − x2

(4.12)

Expanding 1/
(

j2
nν (q) − x2

)

in power series of x and substituting in (4.12),
the coefficients hn in (4.3) can be seen to be

hn =
∞

∑

k=1

J
(3)
ν+1

(

q
1
2jkν (q) ; q

)

d
dx

[

J
(3)
ν (x; q)

]

x=q
1
2 jnν(q)

(

1

qj2
kν (q)

)2n
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