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1. Introduction

The classical sampling theorem asserts that every function f in the Paley-
Wiener space defined by

1 L
PW = e L>(R): :):——/ ey (t)dt,u € L? (),1}
{rev®: - [ e 0.1

can be represented by the interpolation series

o) = Z £ (n) sinm (z —n)

n=—00 & ([E a n)

Hardy s proof of this fact [4] used properties from the kernel of the Fourier
transform. Relying on properties of the Hankel’s transform kernel, Hig-
gins [5] used the theory of reproducing kernels to obtain a sampling theo-
rem where the sampling points are the zeros of the Bessel function. In this
note, a ¢g—Bessel analogue of the sampling theorem is derived by considering
the kernel of the g—Hankel transform, H}, introduced by Koornwinder and
Swarttouw [§]

() @) = [ Tt IO (et ?) £ () dyt
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where Jﬁg) denotes the third Jackson g—Bessel function defined by the power

series
v+l 00 n(n;+1)
q

(3) T :( ;Q)chu _1\" q 2 2n
7 (@) (4 9)0 2 (1) (@5 @)n(q; O (L)

with 0 < ¢ < 1, (a;9), = (1—a) (1 —aq)...(1—ag"™") and (a;¢)s =
lim (a;q)n. We are using the definition of the g—integral. The ¢g—integral in

the interval (0,1) is defined as

n=0

/0 FOdt=1-93 F @) " (1.2)

n=0

and in the interval (0, 00) as

/Uocf(t) dt=(1—-q) > f(@")q" (1.3)

n=-—0oo

The sampling points will turn out to be ¢j,., (q2), where j,, (qz) is the n'"

zero of J5 (J:; q2). In [2] it was proved that j,, (q2) =q¢ " 0<e <1
This shows how big is the spacing between the sampling points.

2. Preliminaries on reproducing kernels

Let H be a class of complex valued functions, defined in a set X C C, such
that X is a Hilbert space with the norm of L? (X, ). g (s, ) is a reproducing
kernel to H if

i) g (t,z) € H for every = € X;

it) f(x)={(f(t),g(t,x)) forevery f € H, z € X.

The next result lists the properties of Hilbert spaces with reproducing ker-
nel that will be used in the remainder. Properties (a), (¢) and (d) are proved
in [5]. Property (b) is a well known property of the reproducing kernels, of
primary importance, because it relates two different kinds of convergence. A
proof of (b) can be found in [10], together with an introduction to the general
theory.

Proposition 1. In the Hilbert space L?[(a,b), ], an operator is defined by

Ku = <K (ZL‘, t) , U (t)>L2[(a,b),u]
The following properties hold:
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(a) If K=' is bounded, the range of K, denoted by N, is a Hilbert space
with reproducing kernel.

(b) If the sequence {f,} converges strongly to f in the norm of H, with
reproducing kernel g, then {f,} converges pointwise in X to f. The conver-
gence is uniform in every set of X where g (x,x) is bounded.

(c) If K is an isometry, then g (s,z) = (K (s,1) , K (2,)) r21(0p) -

(d) Let {f,} be a complete ortogonal sequence in H and (x,) such that
fn (xm) = 5'”771,- Then

g (t7 l’n)
f’n l)=—""=
) 9 (Tn, )

We will suppose N C L2 (X, u), and this implies K bounded. K~! is a

transformation of N over L?[(a,b), ], also bounded.

3. A g-sampling theorem

We introduce a g—Bessel version of the Paley-Wiener space, and call it
PwWY.
q

PW/ = {f € L;(0,00): f(x) = /0 (tm)% AS (t;¢°) u(t) dgt,u € L (0, 1)}
(3.1)

The notation Lg (0,1) stands for the Hilbert space associated to the measure
of the g—integral in (0,1). In [8] it was proved the inversion formula

£t = /0 (o) (HYS) (0) T (e ) dye = (HY (HU)) () (32)

Let f € L2(0,00) such that (H/f) (¢™") =0, n=1,2,.... Then f € PW/.
To see this use the formula (3.2) and compare (1.2) and (1.3) to write f as
an element of PIW.

Now, in the language of the preceding section, consider X = (0,00),
(a,b) = (0,1) and the kernel K (z,t) = (xt)% I (zt;¢*). The corresponding
operator K is

() ) = (K (o) 0 (0) g0 = | oty

By (3.2), H; is a self-inverse operator and consequently, an isometry. Thus,
K is also an isometry. The range of K, N, is the set of functions f € Lg (0,00)

o=

o=

AS (zt;¢°) u (t) dyt
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such that f = Ku for some u € L?(0,1). By (3.1), N = PW/. In the next
Lemma, the reproducing kernel of the space PW,’ is evaluated.

Lemma 1. The set PW/ is a Hilbert space with reproducing kernel given by

(e)* [2d2 (o2?) I (sq750?) = 502, (s2?) IS (g i)

g(s,2)=(1-q)¢" R

(3.3)

Proof: By Proposition 1 (a), PW/ is a space with reproducing kernel g (s, z).
From Proposition 1 (¢), since K is an isometry,

1 1 b B
g(s,2) = (K (3,0), K (2,1)) 120, —/0 t(ws)? I (at; %) IS (st;q®) dyt

In [7], the following formula was proved

(a2 — b2) / tJ® (aqt; qQ) J3) (bqt; qQ) dgt (3.4)
0
=(1-9q) q”*lz [anl (aqz; qQ) J£3) (bz; qQ) — leﬁ)l (qu; q2) JV(3) (az; qQ)}
Setting z =1, a = x¢" ! and b = sq~! in (3.4), (3.3) follows. ]

The g—sampling theorem can now be stated and proved.

Theorem 1. If f € PW/ then f has the unique representation

=, 2 (2qju (42))* I (2:47)
f (I) = ; f (QJnl/ (q )) di |:J£3) (ZL’ QQ)} (;L’Q _ q2j2 (q2)) (35)
=) "

where (jm, (q2)) denotes the sequence of positive zeros of J,Eg) (J:; q2). The
series converges uniformly in compact subsets of (0, 00).

Proof: Consider the sequence {f, ()} defined by

Lo
Fo (@) = (2@ju (6))* I (9250 () 5 6°)

It was proved in [1] that {f, (z)} is a complete orthogonal sequence in

L2(0,1). Taking into account that K is an isometry, the sequence (K f,,) (x)

is also orthogonal and complete in PW. Now set

(K fn) (2)
(K fn) (qjnw (%))

FE,(z)=
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The orthogonality of {f, ()} implies
F, (Qjml/ (C_IQ)) = 5'”771, (36)
Proposition 1 (d) allows to write
9 (2, qju (¢%))
9 (@i (%) @i (¢%))

F,(z)=
Substituting in (3.3) yields
2 (2¢jun(¢%))* 1) (2562

£ @] @ =P e)
L=q)nv (q2>

B (x) =

F,, (z) is an orthonormal complete sequence in N. Thus, every f € PW7 has

a unique series expansion in the form
f (I) = Z anFy (17) (37)

n=1

where a,, are the Fourier coefficients of f in {F, (x)}. The series in (3.7) is
convergent in the norm of L2 (0,1) and also in the norm of PW/. The real-
valued function ¢ (x, x) is continuous, thus bounded in every compact subset
of (0,00). It follows from Proposition 1 (b) that (3.7) converges uniformly
in compact subsets of (0,00). Finally, setting 2 = gjn, (¢%) in (3.7), (3.6)
implies f (qj,,w (q2)) = a,, and thus, (3.7) can be written in the form (3.5).
|

4. Application

The following formula is a consequence of the product representation for
the classical Bessel function

d 00
= J, (x) 1 v
de 22 =9 = 4.1
o ELEat -y
Using the recurrence z-L J, (z) — vJ, (x) = —2J,41 (), (4.1) becomes
Jl,+1 (I’) > 1
= -2 4.2
THE R Dy 2

where j,, stands for the zeros of J, (z). In the case of the g-analogues of
the Bessel function, this analysis cannot be done, for there are no formulas
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to establish a simple relation between a ¢-Bessel function and its derivative.
While the g—analogue of (4.1) is very simple to derive from the Hadamard
factorization theorem or using residues, the g-analogue of (4.2) is harder to
obtain. In [6], Ismail studied the second Jackson ¢-Bessel function, J? (x;q),
and found such g—analogue using the orthogonality measure of the modified
g-Lommel polynomials associated to g (z; q). Kvitsinsky [9] found a recur-

rence relation for the coefficients h, in the identity

‘]IE?-)&-)I (.T, q) _ i hnl'2n71 (43)
I (w3q)
In this section an explicit formula for the coefficients h,, will be obtained as
a special case of the expansion of a particular function as a sampling series.
Preliminary to this expansion, a ¢g—integral formula connecting two ¢—Bessel
functions of different order is established .

n=1

Lemma 2. Fory >0, v > —% and x € R, the following relation holds

() — /1 s (M Qoo (), 1
———a Y] (x;q) = tZ%Jﬁ)xtQ;th 4.4

e D= [ g 0% (44)
Proof: The g—analogues of the gamma and the beta function will be critical
in the proof. According to [3, 1.10], the ¢ — gama function, I'j(z), is defined
by

(43 9)oo -
My(z)=—"—(1—¢q) " 4.5
and the g—beta function, f,(z,y) by
Ly(2)Ty(y)

By(z,y) = i ASadiall AN A 4.6

The g—beta function has the g-integral representation
By(x y)—/ltwl(tq;iq)oodt Re(z) >0,y #0,—1,-2 (4.7)

q\*» 0 (tqy,q)oo qvs ’ ) 9 )

Using the series representation (1.1) and the g—integral representation (4.7)
it is easy to see that, if v > —% and y > 0,

o0 k(k+1)
2

1 .
/ t%MJ(S)(ﬁ%; gt =2y (=1)" ;
0

2k
v 0 Gy(htr+ly
(t0"; ¢)oo — G )

(4.8)
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Now use (4.5) and (4.6) to express G,(k + v+ 1,y) as a quotient of infinite
products. Then, some algebraic manipulations using the formula (a;q), =
(a;q),, (ag"; q) ., allow us to see that the right hand member of (4.8) is equal
to the left hand member of identity (4.4). ]

Before moving to thc next Theorem, it is convenient to point out that,
from the definition (1.2), one can verify the relation:

/ F(t)dpt = (14 q) /0 (1) dgt (4.9)

Theorem 2. Ifu > v > —5, the following identity holds

W (x q ) = (dgw (qQ))” Y (qu (qQ) )
e _ ; (4.10)

T=qjn,(q%)
Proof: Setting y = u—v in (4.4) and replacing ¢ by ¢?, the result is, if u > v,
2. 2 1 2. .2
. v t .
( gg 23 = )0 V_u‘]’l(tg)(x; ¢*) = / ¢z (t (23—’23 );O) Jig)(l’t%; qz)drﬁt
q 34 0 q 347 )oo
Taking (4.9) into account, this can be rewritten as

2. 2 1 2.2, 2
747 )0 —u 7(3 1°q°: 4" )
wxu qu(Ld)(x;QQ) _ (1 _|_q)/ tl/+1( ( q;4q )
0

_ 4,4 Joo  1(3) L2
(22 @) t2q2u—2y;q2)oo=]y (xt; q°)dgt

(4.11)
Considering

wit(1+9) (%) (%)
(q2’ q2)oc (t? 2u— 21/7 qZ)oc

u(t) =

relation (4.11) yields

" “+2J (z;¢%) = /01 (tx)

o=

I (xt; ¢*)u (t) d gt

Thus,
@) =220 (v;4%) € PWY

And it is possible to apply Theorem 1 to f. The result of this application is
(4.10). ]
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Taking u = v+ 1 in (4.10) and replacing ¢* by ¢, the result is the analogue
of (4.2) previously mentioned:

7®
I8 (z I (qmy (q);q) 1
Aand_ iy G
Jv (*T: n=1 g |: v (xa(J)] 1 QInv (q) -t
v 2=q2 jn(q)

Expanding 1/ (52, (¢) — %) in power series of # and substituting in (4.12),
the coefficients h,, in (4.3) can be seen to be

i 7 (qmy(q),q) ( 1 )2”
)
:1%[ (z; q)] L Wi (@)
=42 jnu(q)
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