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1. Introduction

The convergence rate of the kernel estimator for the density function based
on associated samples has been addressed in some recent articles. Expo-
nential rates were announced in Dewan, Prakasa Rao [2], but their result
assumes a convergence rate on the covariance structure that is unattainable
under association. These authors used an approximation to independence
technique. With this same technique and the blocking decomposition as
in Ioannides, Roussas [9], the above mentioned problem was corrected in
Henriques, Oliveira [7]. The rates that follow from the results in this later
reference are significantly slower than the best known for independent sam-
ples. More recently Masry [11] using a quite different approach obtained
convergence rates that are just slightly slower than those for independent
samples. His method is based on Rosenthal’s inequalities and requires the
absolute continuity of joint distributions of random vectors of all dimensions
with their margins being sample variables. The present article improves the
results in Henriques, Oliveira [7], using the same approximation to indepen-
dence and the blocking decomposition, assuming some particular behaviour
of the the joint distributions of pairs of the sample variables, allowing for
same mass to be concentrated in the diagonal of IR × IR. This assumption
was used in estimation problems in point processes in Jacob, Oliveira [10]
under independence, and extended to the treatment of associated samples in
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2 C. HENRIQUES AND P.E. OLIVEIRA

the same context in Ferrieux [4, 5] and for the study of the kernel density
estimator under association on Oliveira [13].

2. Definitions and assumptions

Let X1, X2, . . . be random variables with the same distribution as X for
which there exists a density function f . Let K be a fixed probability density
and hn a sequence on nonnegative real numbers converging to zero. The
kernel estimator of the density function f is, as usual, defined as

f̂n(x) =
1

nhn

n∑

j=1

K

(
x − Xj

hn

)
,

which is well known to be asymptotically unbiased, if there exists a bounded
and continuous version of the density. Moreover, the convergence of IE[f̂n(x)]
to f(x) is, under these assumptions on f , uniform on compact sets.

The random variables X1, X2, . . . will be supposed associated, which means,
as defined in Esary, Proschan, Walkup [3], that for every n ∈ IN and f, g :
IRn −→ IR coordinatewise increasing

Cov
(
f(X1, . . . , Xn), g(X1, . . . , Xn)

)
≥ 0,

whenever this covariance exists.
A technical problem arises when dealing with f̂n(x) for associated variables.

In fact, association is only preserved under monotone transformations, which

means that, in general, the variables K
(

x−X1

hn

)
, K
(

x−X2

hn

)
, . . . are not asso-

ciated. One way to resolve this problem is supposing the kernel K to be
of bounded variation. We way also control this drawback of the association
structure with a different kind of assumption on the kernel function K as it
was done in Ferrieux [4, 5].

For easier future reference, we introduce now a set of assumptions.

(A1) X1, X2, . . . are strictly stationary and associated random variables
with common bounded and continuous density function f ; let B0 =
supx∈IR |f(x)|;

(A2) The kernel function K is a probability density such that
∫

K2(u)du <
∞; further, either it is of bounded variation and, if K = K1 − K2

where K1 and K2 are nondecreasing functions, the derivatives K ′
1 and

K ′
2 exist and are integrable;
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(A3) Let λ∗ represent the Lebesgue measure on the diagonal ∆ of IR × IR
and λ2 represents the Lebesgue measure on IR2; then
• for each j ∈ IN , the distribution of (X1, Xj) is the sum of a

measure m1,j on IR× IR \∆ with a measure m2,j on ∆, such that
m1,j � λ2 and m2,j � λ∗;

• for each j ∈ IN , there exist a bounded version g1,j of
dm1,j

dλ2 and a

bounded and continuous version g2,j of
dm2,j

dλ∗ ;

• ∑∞
j=1 |g1,j(x, y) − f(x)f(y)| converges uniformly to a bounded

function g1;

• ∑∞
j=1 g2,j converges uniformly to a bounded and continuous func-

tion g2.

In Ferrieux [4], instead of the bounded variation assumption it is supposed
that the kernel function K is bounded and, for each x ∈ IR, the function
λ 7−→ K(λx) is decreasing for λ > 0, and K ′ is integrable. The usual
kernel functions satisfy this assumption. Each of the following results may
be restated under this alternative assumption.

The assumption (A3) allows the random pairs (X1, Xj) to have some mass
concentrated on the diagonal, thus no absolute continuity with respect to
λ2 is required. Distributions satisfying this kind of diagonal decomposition
appear, for example, when using a simple method to construct sequences
of associated variables from an independent sequence: let W1, W2, . . . be
independent and identically distributed absolutely continuous variables, m ∈
IN some fixed integer, and define Xn = min(Wn, . . . , Wn+m). The sequence
of variables X1, X2, . . . is associated and the distribution of random pairs
satisfies a diagonal decomposition as described in the first two items of (A3).

Under (A1), we have that

sup
u,v∈IR

∣∣FX1,Xj
(u, v) − FX1

(u)FX1
(v)
∣∣ ≤ B2 Cov1/3(X1, Xj) (2.1)

where FX1,Xj
and FX1

represent the distribution functions of (X1, Xj) and
X1, respectively, and B2 = max(4/π2, 90B0) (see Lemma 2.6 in Roussas [15]
for details). This inequality provides an upper bound for the covariances

between the variables Kq

(
x−Xj

hn

)
, q = 1, 2, j = 1, 2, . . ..
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Lemma 2.1. Suppose the variables X1, X2, . . . satisfy (A1) and the kernel
function satisfy (A2). Then

Cov

(
Kq

(
x − X1

hn

)
, Kq

(
x − Xj

hn

))
≤

≤ B2 Cov1/3 (X1, Xj)

(∫
H ′(u) du

)2

, q = 1, 2.

and analogously for K2.

Proof : Apply integration by parts and use (2.1).

The next result is the basis of the development used to establish the ex-
ponential inequality as it provides a mean to control the approximation to
independence. It appears under the present form in Dewan, Parkasa Rao
[2] and is a version for generating functions of Newman’s [12] inequality for
characteristic functions.

Lemma 2.2. Let X1, . . . , Xn be associated random variables bounded by a
constant M . Then, for every θ > 0,∣∣∣∣∣IE

(
eθ
∑n

i=1 Xi

)
−

n∏

i=1

IE
(
eθXi

)
∣∣∣∣∣ ≤ θ2enθM

∑

1≤i<j≤n

Cov(Xi, Xj) .

This inequality was used by Dewan, Prakasa Rao [2] to control the distance
between the joint distribution of the variables and what one would find in
case of independence. The way they manipulated the upper bound conducted
them to an assumption that is too strong for associated variables. We refer
the reader to Henriques, Oliveira [7] for details.

Now we introduce the notation that will be used in the sequel. Given (A2)
define

f̂n,1(x) =
1

nhn

n∑

j=1

K1

(
x − Xj

hn

)
, f̂n,2(x) =

1

nhn

n∑

j=1

K2

(
x − Xj

hn

)
,

so that f̂n(x) = f̂n,1(x)− f̂n,2(x). For each n ∈ IN , j = 1, . . . , n, and q = 1, 2,
let

Tn,q,j =
1

hn

(
Kq

(
x − Xj

hn

)
−IE Kq

(
x − Xj

hn

))
. (2.2)

Note that these variables are associated if the X1, X2, . . . are associated, as
they are nonincreasing transformations of these variables.
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Given a natural number p < n
2 , let r be the greatest natural number less

or equal to n
2p and define, for each j = 1, . . . , 2r, and q = 1, 2

Yn,q,j =

jp∑

l=(j−1)p+1

Tn,q,l . (2.3)

Note that, if the kernelK satisfies (A2), the functions K1 and K2 may be

chosen bounded so that each variable Yn,q,j is bounded by
2p‖Kq‖∞

hn
, where

‖·‖∞ represents the supremum norm.
Finally define, for q = 1, 2,

Zod
n,q = Yn,q,1 + Yn,q,3 + · · · + Yn,q,2r−1,

(2.4)

Zev
n,q = Yn,q,2 + Yn,q,4 + · · · + Yn,q,2r,

and analogously without the subscript q. With these definitions, whenever

n = 2pr we have f̂n,q(x) − IE[f̂n,q(x)] = 1
n(Zev

n,q + Zod
n,q).

The assumption (A3) provides control on the variance terms mentioned
above, as proved in Lemma 2.2 of Oliveira [13].

Lemma 2.3 (Oliveira [13]). Suppose (A1) and (A3) are satisfied. If the
kernel K is bounded then, for each x ∈ IR,

nhn Var(f̂n(x)) −→ g2(x, x)

∫
K2(u) du.

Further, the convergence is uniform on compact sets.

Notice that, for the variables we have introduced, this means that

hn

pn
Var(Yn,q,1) −→ cq(x) = g2(x, x)

∫
K2

q (u) du, q = 1, 2.

Define now, for each x ∈ IR, c(x) = c1(x) + c2(x).

3. Main results

In this section we first prove some preparatory lemmas that pave the way
to the proof of the main results.

The next lemma states how we may control both terms IE
(
e

λ
nZod

n,q

)
and

IE
(
e

λ
n
Zev

n,q

)
with respect to the independent case.
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Lemma 3.1. Suppose (A1) and (A2) are satisfied. With the definitions made
before, for every λ > 0,

∣∣∣∣∣IE
(
e

λ
nZod

n,q

)
−

r∏

j=1

IE
(
e

λ
nYn,q,2j−1

)∣∣∣∣∣ ≤

(3.1)

≤ λ2

2n
exp

(
λ‖Kq ‖∞

hn

) (2r−1)p∑

j=p+2

Cov(Tn,q,1, Tn,q,j), q = 1, 2,

and analogously for the term corresponding to Zev
n,q.

Proof : As Zod
n,q =

∑r
j=1 Yn,q,2j−1 and the summands are bounded, we may

apply Lemma 2.2. Then use the stationarity twice and the fact that 2pr ≤
n.

The preceding results considered the integers p and r fixed. Let us now
make the choices of these integers dependent on n, thus obtaining sequences
pn and rn such that n

2pnrn
−→ 1. We show now how (A3) may be used to

control the independent like term.

Lemma 3.2. Suppose (A1), (A2) and (A3) are satisfied. Given a sequence

of positive numbers cn, it follows, for q = 1, 2 and every λ ∈
(
0, nhncn

2pn‖Kq‖∞

)
,

that

IE
(
e

λ
n
Yn,q,j

)
≤ exp

(
λ2c∗n
n2

Var(Yn,q,1)

)
,

where c∗n =
∑∞

k=2
ck−2
n

k! .

Proof : As for every n ∈ IN, q = 1, 2, j = 1, . . . , rn, IE(Yn,q,j) = 0, it follows,
using a Taylor expansion, that

IE
(
e

λ
nYn,q,j

)
= 1 +

∞∑

k=2

λk

nkk!
IE(Y k

n,q,j) .

As the kernel K is bounded, we have, for each k ≥ 2,

∣∣Y k
n,q,j

∣∣ ≤
(

2pn‖Kq ‖∞
hn

)k−2

Y 2
n,q,j,
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so, inserting this in the Taylor expansion, it follows that, using also the
stationarity of the variables,

IE
(
e

λ
n
Yn,q,j

)
≤ 1 +

(
λ

n

)2

Var(Yn,q,1)
∞∑

k=2

1

k!

(
2pn‖Kq ‖∞λ

nhn

)k−2

≤

≤ 1 +

(
λ

n

)2

Var(Yn,q,1)c
∗
n ≤ exp

(
λ2c∗n
n2

Var(Yn,q,1)

)
.

Notice that there is an evident relation between c∗n and cn: c∗n ≤ ecn. This
will be useful to make some explicit construction of upper bounds.

This lemma provides immediately control of the independent like terms:
under the assumptions of Lemma 3.2 we have

r∏

j=1

IE
(
e

λ
nYn,q,2j−1

)
≤ exp

(
λ2c∗nrn

n2
Var(Yn,q,1)

)
, q = 1, 2,

r∏

j=1

IE
(
e

λ
nYn,q,2j

)
≤ exp

(
λ2c∗nrn

n2
Var(Yn,q,1)

)
, q = 1, 2.

(3.2)

We are now in position to prove exponential rates for the convergence in
probability of the centered estimator. We will need to optimize the choice of
λ where the generating functions is to be computed.

Lemma 3.3. Suppose (A1), (A2) and (A3) are satisfied. If supn∈IN
pn

cnc∗n
< M

and

nh2
n

c∗n
2

exp

(
n

c∗n

) ∞∑

j=pn+2

Cov(Tn,q,1, Tn,q,j) ≤ C0 < ∞ , (3.3)

then, for every ε ∈
(
0, 1

4M min
(
c1(x), c2(x), c1(x)

‖K1‖∞
, c2(x)
‖K2‖∞

))
,

P

(
1

n

∣∣Zod
n,q

∣∣ > ε

)
≤ 2(1 + C0) exp

(
− ε2nhn

4c∗ncq(x)

)
, q = 1, 2,

and analogously for Zev
n,q.
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Proof : Markov’s inequality and (3.2) lead to

P

(
1

n
Zod

n,q > ε

)
≤

≤ exp

(
λ2c∗nrn

n2
Var(Yn,q,1) − λε

)
+ e−λε

∣∣∣∣∣IE
(
e

λ
n
Zod

n,q

)
−

r∏

j=1

IE
(
e

λ
n
Yn,q,2j−1

)∣∣∣∣∣ .

The optimization of the first term leads to λ = εn2

2c∗nrnVar(Yn,q,1)
∼ εnpn

c∗nVar(Yn,q,1)
. In

Lemma 3.2 there is an upper bound for the choice of λ, which means that
εpn

c∗nVar(Yn,q,1)
≤ hncn

2pn‖Kq‖∞
, or equivalently, ε pn

cnc∗n
≤ 1

2‖Kq‖∞
hn

pn
Var(Yn,q,1). For ε small

enough this is verified, since supn∈IN
pn

cnc∗n
< M and, according to Lemma 2.3,

hn

pn
Var(Yn,q,1) is convergent, so the result follows.

In order to state the main result we have to deal with the terms in f̂n,q(x)
that are not in 1

n(Zod
n,q + Zev

n,q). But these are, as expected, negligible. For

easier reference, define Rn,q = f̂n,q(x) − IE[f̂n,q(x)] − 1
n(Zod

n,q + Zev
n,q), q = 1, 2.

Lemma 3.4. Suppose (A1), (A2) are satisfied and

nhn

pn
−→ +∞. (3.4)

Then, for n large enough and every ε > 0, P(|Rn,q| > ε) = 0, q = 1, 2.

Proof : Write Rn,q = 1
n

∑n
j=2rnpn+1 Tn,q,j. As the functions Kq, q = 1, 2, are

bounded, it follows that Rn,q is bounded by 2n−2pnrn

nhn
‖Kq ‖∞ ≤ 4pn‖Kq‖∞

nhn
ac-

cording to the construction of the sequences pn and rn. It follows from
(3.4) that eventually this upper bound becomes less than ε, so the lemma is
proved.

Now, the main work has been completed. It remains to collect the various
partial results in order to obtain the exponential rate for the kernel estimator
centered at its mean.

Theorem 3.5. Suppose (A1), (A2), (A3) and (3.4) are satisfied. Further
assume that supn∈IN

pn

cnc∗n
< M and

n

c∗n
2

exp

(
n

c∗n

) ∞∑

k=pn+2

Cov1/3(X1, Xj) ≤ C1 < ∞ , (3.5)
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then, for every ε ∈
(
0, 3

2M min
(
c1(x), c2(x), c1(x)

‖K1‖∞
, c2(x)
‖K2‖∞

))
and n large enough,

P
(∣∣∣f̂n(x) − IE[f̂n(x)]

∣∣∣ > ε
)
≤ D exp

(
− ε2nhn

144c∗nc(x)

)
, (3.6)

where

C = max(‖K1‖∞, ‖K2‖∞),

D = 4

[
2 + B2C1

((∫
K ′

1(u)du
)2

+
(∫

K ′
2(u)du

)2
)]

,

and c(x) is defined at the end of Section 2.

Proof : We have

f̂n(x) − IE[f̂n(x)] =

=
(
f̂n,1(x) − IE[f̂n,1(x)]

)
+
(
f̂n,2(x) − IE[f̂n,2(x)]

)
=

=
1

n

(
Zod

n,1 + Zev
n,1

)
+

1

n

(
Zod

n,2 + Zev
n,2

)
+ Rn,1 + Rn,2.

According to Lemma 3.4, for n large enough we have that P
(
|Rn,1| > ε

6

)
=

P
(
|Rn,2| > ε

6

)
= 0, so we need to concentrate only on the first terms. In order

to apply Lemma 3.3 we must check that (3.3) is verified. For this purpose
notice that, according to Lemma 2.1,

Cov(Tn,q,1, Tn,q,j) =

=
1

h2
n

Cov

(
Kq

(
x − X1

hn

)
, Kq

(
x − Xj

hn

))
≤

≤ 1

h2
n

B2

(∫
K ′

q(u)du

)2

Cov1/3(X1, Xj).

As K ′
1 and K ′

2 are assumed integrable, it follows that (3.5) implies (3.3).
Applying then Lemma 3.3, we find, for q = 1, 2,

P

(
1

n

∣∣Zod
n,q

∣∣ > ε

6

)
≤ 2

(
1 + B2C1

(∫
K ′

q(u)du

)2
)

exp

(
− ε2nhn

144c∗nc(x)

)
,

and analogously for Zev
n,q, from where the result follows.
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Strengthening the conditions on the kernel we may use a decomposition
of a compact interval to derive an uniform exponential rate for the centered
estimator. Let, on what follows, [a, b] be a fixed interval and decompose
[a, b] = ∪sn

j=1[zn,j−tn, zn,j +tn] into sn intervals of length 2tn. Then, obviously,

sup
x∈[a,b]

∣∣∣f̂n(x) − IE[f̂n(x)]
∣∣∣ ≤

≤ max
1≤j≤sn

∣∣∣f̂n(zn,j) − IE[f̂n(zn,j)]
∣∣∣+

+ max
1≤j≤sn

sup
x∈[zn,j−tn,zn,j+tn]

∣∣∣f̂n(x) − f̂n(zn,j) − IE[f̂n(x) − f̂n(zn,j)]
∣∣∣ .

If we suppose the kernel K to be Lipschitzian, it follows that there exists a
constant θ > 0 such that

∣∣∣f̂n(x) − f̂n(zn,j) − IE[f̂n(x) − f̂n(zn,j)]
∣∣∣ ≤ 2

θ |x − zn,j|
h2

n

≤ 2θtn
h2

n

.

A correct choice of the sequence of radii will verify tn
h2

n
−→ 0. Supposing this

condition satisfied it follows then that

P

(
sup

x∈[a,b]

∣∣∣f̂n(x) − IE[f̂n(x)]
∣∣∣ > ε

)

≤ P

(
max

1≤j≤sn

∣∣∣f̂n(zn,j) − IE[f̂n(zn,j)]
∣∣∣ > ε − 2θtn

h2
n

)
≤

≤ sn max
1≤j≤sn

P
(∣∣∣f̂n(zn,j) − IE[f̂n(zn,j)]

∣∣∣ >
ε

2

)
.

Thus we may state a result summarizing what was derived before.

Theorem 3.6. Suppose that (A1), (A2), (A3), (3.4), (3.5) are satisfied,
supn∈IN

pn

cnc∗n
< M , the kernel K is Lipschtzian and tn

h2
n
−→ 0. Let C and D

be defined as in Theorem 3.5. Then, for n large enough, each interval [a, b]

and every ε ∈
(
0, 3

2M min
(
c1(x), c2(x), c1(x)

‖K1‖∞
, c2(x)
‖K2‖∞

))
,

P

(
sup

x∈[a,b]

∣∣∣f̂n(x) − IE[f̂n(x)]
∣∣∣ > ε

)
≤ D

b − a

2tn
exp

(
− ε2nhn

576c∗nc(x)

)
. (3.7)
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4. Some examples and convergence rates

In the preceding we derived some sufficient conditions allowing the proof
of exponential inequalities for the kernel estimator for the density. We will
show that our assumptions on the sequences hn and pn may be fulfilled and
that the convergence rates that follow are just slightly slower than those
known for independent samples. These compare with the results proved by
Masry [11] for geometrically decreasing covariances. For the case of polyno-
mially decreasing covariances our inequalities seem to be not strong enough.

4.1. Geometric decreasing covariances. Suppose that Cov(X1, Xn) =
ρ0ρ

n for some ρ0 > 0 and ρ ∈ (0, 1), so that
∞∑

j=pn+2

Cov1/3(X1, Xj) ∼ ρ
pn
3 .

Let us first check that the assumptions we used are attainable. The term in
(3.5) behaves like

n

c∗n
2
exp

(
n

c∗n
+

pn

3
log ρ

)
= exp

(
n

c∗n
+

pn

3
log ρ + 2 log

√
n

c∗n

)
≤ C0. (4.1)

Proposition 4.1. Suppose that (A1), (A2), (A3), (3.4) are satisfied and
Cov(X1, Xj) = ρ0ρ

n for some ρ > 0 and ρ ∈ (0, 1). If supn∈IN
pn

cnc∗n
< M ,

supn∈IN
n

pnc∗n
< M ′ and ρ ∈ (0, e−9M ′

) then (3.6) holds. Moreover, if the

kernel K is Lipschitzian and tn
h2

n
−→ 0 the inequality (3.7) also holds.

Proof : In order to the exponent in (4.1) to be bounded we must have log ρ ≤
3A
pn

− 3n
pnc∗n

− 6
pn

log
√

n
c∗n

. Since, 1
pn

log
√

n
c∗n

≤ n
pnc∗n

, it is enough that supn∈IN
n

pnc∗n
<

M ′ and log ρ ≤ −9M ′.

It is easy to construct sequences pn, hn and cn that fulfil the assumptions
of the last proposition: for example, pn = nδ, hn = n−β and cn = γ log n,
with δ, β, γ ∈ (0, 1) such that δ < γ, β + γ < 1 < δ + γ.

In order to derive an almost sure convergence rate we will not use (3.5)
directly. Indeed, in Theorem 3.5 we tried to make an assumption that would
be independent of the ε appearing in the inequality. This means some loss
of power when trying to optimize the choice of such an ε. To take full
advantage of the method we state the conditions we would find in Lemma
3.3 and Theorem 3.5. It is easily seen that (3.5) may be replaced by
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ε2n

c∗n
2

exp

(
εn

c∗n

) ∞∑

j=pn+2

Cov1/3(X1, Xj) ≤ C1 < ∞. (4.2)

To find a convergence rate we allow ε to depend on n according to

ε2
n =

αc∗n log n

nhn
, (4.3)

where α > 0 should be conveniently chosen to obtain a convergent series.
With this choice and the geometric decrease rate of the covariances, (4.2)
will follow if we assume that

(
c∗n log n

nhn

)1/2
n

c∗n
+

pn

3
log ρ

is bounded. This leads to the choice of the sequence pn with growth of order(
n log n
c∗nhn

)1/2

. The characterization of the convergence rate depends now on the

behaviour of c∗n, which must be done taking into account the choice and the

upper bound assumed on λ in Lemma 3.3:
2pn‖Kq‖∞λ

nhn
≤ cn and λ ∼ εnnpn

c∗nVar(Yn,q,1)
.

With the choices made for εn and pn we have pnλ
nhn

∼ log n
hnc∗n

, remembering that,

according to Lemma 2.3, hn

pn
Var(Yn,q,1) is convergent. So to satisfy the upper

bound on λ we need to have hn ≥ log n
cnc∗n

, which means that we must choose

the sequences cn and c∗n such that cnc
∗
n −→ +∞ sufficiently fast to allow

hn −→ 0. If we choose c∗n ∼ nδ for some δ ∈ (0, 1) (and cn = δ log n), which
meets the needs just stated, it will follow that the almost sure convergence

rate for the kernel estimator is log1/2 n

n(1−δ)/2h
1/2
n

, that is, somewhat slower than the

best known rate for the independent case. Notice that we did not assume
any absolute continuity of any random vector with margins chosen from the
sample variables. There is though a price to pay: the bandwidth sequence
hn must not decrease to zero to fast, but the restriction is not to strong as
it allows for choices of the form hn ∼ n−a, a > 0, which include the known
optimal rates for the independent case.

4.2. Polynomial decreasing covariances. Suppose now that the covari-
ances decrease at a polynomial rate, that is, Cov(X1, Xn) = An−a, for some
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A > 0 and a > 3. Then
∞∑

j=pn+2

Cov1/3(X1, Xj) ∼ p
3−a

3
n .

Inserting the behaviour of the series into (3.5) we find a term like

n

c∗n
2

exp

(
n

c∗n
− a1 log pn

)
, (4.4)

where a1 = a−3
3 , as before. If this term is to be bounded we need that,

for some c1 > 0, c∗n ≥ c1
n

log pn
, that is c∗n should be chosen so that is goes

to infinity fast enough. Remember that the upper bound assumed on λ in
Lemma 3.3 leads to pn ≤ Mcnc

∗
n, for some M > 0, but this is satisfied if pn

is chosen such that pn log pn ≤ c1n for some c1 > 0. Thus, for polynomially
decreasing covariances we have, at least, exponential convergence rate for the
convergence in probability, according to (3.6) and (3.7).

As what concerns almost sure convergence rates for the kernel estimator our
exponential inequalities are not strong enough. With εn chosen as (4.3), the
boundedness of (4.4) and the upper bound on λ implies that c∗n ≥ c1

n
hn log n ,

for some c1 > 0, which means that εn does not converge to zero and so it is
not possible to derive convergence rates.
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