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ON THE DOUBLY SINGULAR EQUATION γ(u)t = ∆pu
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Abstract: We prove that local weak solutions of a nonlinear parabolic equation
with a doubly singular character are locally continuous. One singularity occurs in
the time derivative and is due to the presence of a maximal monotone graph; the
other comes up in the principal part of the PDE, where the p-Laplace operator is
considered. The paper extends to the singular case 1 < p < 2, the results obtained
previously by the second author for the degenerate case p > 2; it completes a
regularity theory for a type of PDEs that model phase transitions for a material
obeying a nonlinear law of diffusion.
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1. Introduction

Questions of regularity concerning partial differential equations that are
either degenerate or singular, or both, have been addressed quite intensively
in the last two decades. The understanding by DiBenedetto (cf. [7]) of the
crucial relation between the structure of these PDEs and the geometry in
which they have to be analyzed set up a vast research programme that is
still far from being completed.

One interesting family is that of equations of the form

γ(u)t − div a(x, t, u,∇u) = b(x, t, u,∇u) in D′(ΩT ) ,

where γ is a maximal monotone graph and a and b are measurable functions
satisfying the usual appropriate structure conditions. The equality is to be
interpreted in the sense of the graphs, i.e., for a choice v ∈ γ(u). To fix ideas,
let us restrict our attention to the case

a(x, t, u,∇u) = |∇u|p−2∇u ; b(x, t, u,∇u) ≡ 0

that is, to the equation for the p-Laplace operator

vt = ∆pu , v ∈ γ(u) ; p > 1 . (1)
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When γ has a single jump at the origin, this equation generalizes to a non-
linear setting the modelling of the classical Stefan problem that corresponds
to the case p = 2 and describes a phase transition at constant temperature
for a substance obeying Fourier’s law. There is a vast literature concerning
the Stefan problem: see [14] or [16] and the references therein.

The table below sums up what we already know, from the point of view of
the local regularity properties of weak solutions of (1), in terms of the range
of values p can assume (the case p = 2 obviously corresponds to the Laplacian
as principal part in the equation) and the number of jumps of the maximal
monotone graph γ; the original reference for each result is also indicated:

range for p # of jumps of γ regularity paper

p = 2 one continuity [1] and [4]
p = 2 several continuity [10]
p > 2 none Hölder continuity [6]
p > 2 one continuity [18]

1 < p < 2 none Hölder continuity [2]

Our objective is to enlarge the table, treating the case 1 < p < 2 in the
presence of one jump and showing that local weak solutions are locally con-
tinuous.

To be precise, consider a bounded domain Ω ⊂ RN , with a regular bound-
ary ∂Ω, fix a time interval (0, T ), for some T > 0, and denote with ΩT =
Ω× (0, T ) the space-time domain. Consider the maximal monotone graph H
associated with the Heaviside function

H(s) =







0 if s < 0
[0, 1] if s = 0

1 if s > 0

and let γ(s) = s + λH(s), where λ is a positive constant (physically, the
latent heat of the phase transition). The equation

vt = ∆pu , v ∈ γ(u) ; 1 < p < 2 (2)

has a double singularity: since p < 2, its modulus of ellipticity |∇u|p−2 blows
up at points where |∇u| = 0, and, concerning the time derivative, we have
what can be heuristically described as γ ′(0) = ∞.
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For strongly elliptic/parabolic equations the technique used to obtain re-
sults on the continuity of weak solutions (including quantitative information
on their modulus of continuity) is based on energy (and logarithmic) esti-
mates. These are essential to set forward an iterative argument consisting of
showing that, for every point in the domain, we can find a sequence of nested
and shrinking cylinders such that, as the cylinders shrink to the point, the
essential oscillation of the solution in the cylinders converges to zero. This
iterative argument was introduced for strongly elliptic equations by DeGiorgi
in [3], revisited by Moser in [15], and adapted later by the Russian school to
the parabolic case (cf. [12]). It is essential to the reasoning that the equa-
tion is strongly elliptic/parabolic so that the integral norms appearing in the
estimates are homogeneous.

In the case of (2), that has a double singularity, this homogeneity is lost.
On the one hand, the singularity in the principal part gives rise to a power
p < 2 in the energy estimates. On the other hand, dealing with the maximal
monotone graph involves a regularization procedure and the proof that the
family of approximate solutions is equicontinuous. The consequence of esti-
mating uniformly the regularization of the maximal monotone graph is the
appearance of a third power (power 1) in the energy estimates. We are thus
dealing with three powers (1, p and 2) and we have 1 < p < 2.

The technique introduced by DiBenedetto to deal with singular (and degen-
erate) parabolic PDEs is called intrinsic scaling. The main idea consists in
looking at the equation in its own geometry, i.e., in a geometry dictated by its
singular (or degenerate) structure. This amounts to rescale the standard par-
abolic cylinders by a factor depending on the oscillation of the solution. The
procedure, which can be called accommodation of the singularity/degeneracy,
allows for the recovering of the homogeneity in the energy estimates if written
over these rescaled cylinders. It can be said heuristically that the equation
behaves in its own geometry like the heat equation.

In the case of three different powers, the price to be paid for the recovering
of the homogeneity in the energy estimates is a dependence on the oscillation
in the various constants that are determined along the proof. Owing to this
fact we will no longer be able to exhibit a modulus of continuity but only
to define it implicitly independently of the regularization. This is enough to
obtain a continuous solution for the original problem, via Ascoli’s theorem,
but the Hölder continuity, that holds in the case γ(s) = s, is lost.
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We anticipate that the choice of the right intrinsic geometry is the main
difficulty of the problem. To fully understand what is at stake, let us observe
that a bridge between the singularity in time and a degeneracy in space can be
made through rewriting equation (2) in terms of v only, taking into account
that u = γ−1(v) and γ−1 is now a well defined function, such that γ−1(s) = 0
for 0 ≤ s ≤ λ. It is clear that the time singularity in the u-equation becomes
a space degeneracy for the v-equation. Now, the existent literature shows
that a singularity in the principal part of an equation requires a rescaling
in the space variables while a degeneracy requires a rescaling in the time
variable. In the case of equation (1) with p > 2, that was treated in [18],
we were in the presence of two types of degeneracy and that explains why
a rescaling in time was enough. Also, in the case 1 < p < 2 but with no
jumps (i.e., for γ(s) = s), there is only a singularity, so a rescaling in space
suffices (see [7, Ch. 4]). Here, we have the equivalent of both a singularity
and a degeneracy in the principal part and so we need both rescalings; it is
the first time, to the best of our knowledge, that an intrinsic scaling has to
be performed simultaneously in the space and time dimensions, although in
[10] a similar procedure has been adopted but keeping the natural space-time
homogeneity.

The technical implementation of the proof consists in the study of an al-
ternative. In the first part of the alternative, we deal with the singularity in
time (degeneracy in space) so what dominates the geometry is the scaling in
time; the type of partition of the cylinders that is considered is a reflection
of this fact. In the second part of the alternative, everything takes place
above the singularity in time, the singular character of the principal part
thus being the dominant factor; it comes with no surprise that the type of
partition considered there is a partition in space.

2. Regularization and local estimates

The proof that local weak solutions of (2) are locally continuous consists
in defining an approximated problem and showing that the sequence of ap-
proximate solutions, which can be shown to be uniformly bounded, is also
equicontinuous. The use of Ascoli’s theorem completes the reasoning. We
will not be concerned with problems of existence of the weak solution for
boundary value problems associated with (2) or the convergence of the se-
quence of approximate solutions to the weak solution. This problem was
treated in [17] (see also, the now classical, reference [13]).
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Let 0 < ε � 1 and consider the function

γε(s) = s+ λHε(s) ,

where Hε is a C∞ approximation of the Heaviside function, such that

Hε(s) = 0 if s ≤ 0 ; Hε(s) = 1 if s ≥ ε ,

H ′
ε(s) ≥ 0, s ∈ R and Hε −→ H uniformly in compact subsets of R \ {0} as

ε → 0. The function γε is bilipschitzian and satisfies

1 ≤ γ ′ε(s) ≤ 1 + λLε , s ∈ R , (3)

where Lε ≡ O(1
ε
) is the Lipschitz constant of Hε. Its inverse βε = γ−1

ε satisfies

0 <
1

1 + λLε

≤ β ′
ε(s) ≤ 1 , s ∈ R . (4)

The approximated problem consists in finding a function

θε ∈ H1
(

0, T ;L2(Ω)
)

∩ L∞
(

0, T ;W 1,p
0 (Ω)

)

∩ L∞(ΩT )

such that, for a.e. t ∈ (0, T ),
∫

Ω×{t}
∂t(γε(θε)) ϕ+

∫

Ω×{t}
|∇θε|p−2∇θε · ∇ϕ = 0 , ∀ϕ ∈W 1,p

0 (Ω) . (5)

We assume that the approximate solutions satisfy the uniform bound

‖θε‖L∞(ΩT ) ≤M .

It is easily seen that (5) corresponds, in the sense of distributions, to an
equation of the type

ut − div a(x, t, u,∇u) = 0 ,

with u = γε(θε) and a(x, t, u,∇u) = |∇βε(u)|p−2∇βε(u), that satisfies the
structure conditions

a(x, t, u,∇u) · ∇u ≥
(

1

1 + λLε

)p−1

|∇u|p

and

|a(x, t, u,∇u)| ≤ |∇u|p−1 .

As a consequence of this fact, we conclude (using the theory developed in
[7]) that the approximate solutions are Hölder continuous. But the constant
C0(ε) := ( 1

1+λLε
)p−1 deteriorates when ε → 0 and, in this way, nothing is
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obtained in the limit. We will next obtain a series of estimates that are inde-
pendent of the approximating parameter ε and will allow us to show that the
approximate solutions are continuous independently of the approximation.
The main result of this paper then follows from Ascoli’s theorem.

Theorem 1. The sequence (θε)ε is locally equicontinuous, i.e., for each θε,
there exists an interior modulus of continuity that is independent of ε. There-
fore equation (2) has, at least, one locally continuous solution.

Let us start with some notation. Given x0 ∈ RN , define the N -dimensional
cube

[x0 +Kρ] :=

{

x : max
1≤i≤N

|xi − x0i| < ρ

}

.

Given the pair (x0, t0) ∈ RN+1, define the cylinder

[(x0, t0) +Q(τ, ρ)] := [x0 +Kρ] × (t0 − τ, t0) .

The energy and logarithmic estimates that we are about to present will be
written for a cylinder with “vertex” at (0, 0). It is easy to obtain analogous
estimates for a cylinder with “vertex” at a generic point (x0, t0).

Consider a cylinder Q(τ, ρ) ⊂ ΩT , and piecewise smooth cutoff functions ξ
in Q(τ, ρ) such that 0 ≤ ξ ≤ 1, |∇ξ| < ∞ and ξ = 0, x /∈ Kρ. Let k < M
and ϕ = −(θε − k)−ζp in (5). Integrating in time over (−τ, t) for t ∈ (−τ, 0),
the first term gives

−
∫ t

−τ

∫

Kρ

∂t [γε(θε)] ((θε − k)−ζ
p) =

∫

Kρ

∫ t

−τ

∂t

(

∫ (θε−k)−

0

γ′ε(k − s)s ds

)

ζp

=

∫

Kρ×{t}

(

∫ (θε−k)−

0

γ′ε(k − s)s ds

)

ζp−
∫

Kρ×{−τ}

(

∫ (θε−k)−

0

γ′ε(k − s)s ds

)

ζp

−p
∫ t

−τ

∫

Kρ

(

∫ (θε−k)−

0

γ′ε(k − s)s ds

)

ζp−1∂tζ

≥ 1

2

∫

Kρ×{t}
(θε − k)2

−ζ
p − 2(M + λ)

∫

Kρ×{−τ}
(θε − k)−ζ

p

−2p(M + λ)

∫ t

−τ

∫

Kρ

(θε − k)−ζ
p−1∂tζ , (6)
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since we have, recalling (3),
∫ (θε−k)−

0

γ′ε(k − s)s ds ≥
∫ (θε−k)−

0

s ds =
1

2
(θε − k)2

−

and
∫ (θε−k)−

0

γ′ε(k − s)s ds ≤ (θε − k)−

∫ (θε−k)−

0

γ′ε(k − s) ds

= (θε − k)−[γε(k) − γε(θε)] ≤ 2(M + λ) (θε − k)− .

Concerning the other term, we have
∫ t

−τ

∫

Kρ

|∇θε|p−2∇θε · ∇[ − (θε − k)−ζ
p] =

∫ t

−τ

∫

Kρ

|∇(θε − k)− ζ|p

−p
∫ t

−τ

∫

Kρ

|∇θε|p−2∇θε · ∇ζ [ζp−1(θε − k)−]

≥ 1

2

∫ t

−τ

∫

Kρ

|∇(θε − k)− ζ|p − C(p)

∫ t

−τ

∫

Kρ

(θε − k)p
− |∇ζ|p , (7)

using Young’s inequality. Since t ∈ (−τ, 0) is arbitrary, we can combine
estimates (6) and (7) to obtain

Proposition 1. Let θε be a solution of (5) and k < M . Then there exists a
constant C, that is independent of ε, such that for every cylinder Q(τ, ρ) ⊂
ΩT ,

sup
−τ<t<0

∫

Kρ×{t}
(θε − k)2

−ξ
p +

∫ 0

−τ

∫

Kρ

|∇(θε − k)−ξ|p ≤ C

∫ 0

−τ

∫

Kρ

(θε − k)p
−|∇ξ|p

+C

∫

Kρ×{−τ}
(θε − k)−ξ

p + C

∫ 0

−τ

∫

Kρ

(θε − k)−ξ
p−1ξt . (8)

Remark 1. This estimate and the ones to follow in this section were first
obtained in [18]. We reproduce them here for the sake of completeness. It is
obvious that they are the same irrespective of the value of p being greater of
less than two.

The second and third terms in the right hand side of (8) involve a power
1 that is due to the fact that γ ′ε is not uniformly bounded above near the
singularity. When k > ε, we are above the singularity and the energy estimate
reads
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Proposition 2. Let θε be a solution of (5) and k > ε. Then there exists a
constant C, that is independent of ε, such that for every cylinder Q(τ, ρ) ⊂
ΩT ,

sup
−τ<t<0

∫

Kρ×{t}
(θε − k)2

+ξ
p +

∫ 0

−τ

∫

Kρ

|∇(θε − k)+ξ|p ≤ C

∫ 0

−τ

∫

Kρ

(θε − k)p
+|∇ξ|p

+C

∫

Kρ×{−τ}
(θε − k)2

+ξ
p + C

∫ 0

−τ

∫

Kρ

(θε − k)2
+ξ

p−1ξt . (9)

Next, we obtain logarithmic estimates. Let a, b, c be real constants verify-
ing 0 < c < a. Define the nonnegative function

ψ±
{a,b,c}(s) ≡

(

ln
{

a
(a+c)−(s−b)±

})

+

=











ln
{

a
(a+c)±(b−s)

}

if b± c ≶ s ≶ b ± (a+ c)

0 if s S b± c

whose first derivative is

(

ψ±
{a,b,c}

)′
(s) =







1
(b−s)±(a+c) if b ± c ≶ s ≶ b± (a+ c)

0 if s ≶ b ± c
T 0

and second derivative, off s = b± c, is

(

ψ±
{a,b,c}

)′′
=

{

(

ψ±
{a,b,c}

)′
}2

≥ 0 .

Now, given a bounded function u in a cylinder Q(τ, ρ) and k ∈ R, define
the constant

H±
u,k ≡ ess sup

Q(τ,ρ)

(u− k)± .

The following function was introduced in [5] and since then has been used
as a recurrent tool in the proof of results concerning the local behaviour of
solutions of singular and degenerate PDE’s:

Ψ±
(

H±
u,k, (u − k)±, c

)

≡ ψ±
{H±

u,k,k,c}(u) , 0 < c < H±
u,k . (10)
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We will write it as ψ±(u), omitting the subscripts whose meaning will be
clear from the context. This function is essential in the derivation of the
following logarithmic estimates (see [18] for the details):

Proposition 3. Let θε be a solution of (5), k ∈ R and 0 < c < H−
θε,k

. There
exists a constant C > 0, that is independent of ε, such that for every cylinder
Q(τ, ρ) ⊂ ΩT ,

sup
−τ<t<0

∫

Kρ×{t}

[

ψ−(θε)
]2
ξp ≤

∫

Kρ×{−τ}

(
∫ θε

k

2γ′ε(s)ψ
−(s)(ψ−)′(s) ds

)

+

ξp

+C

∫ 0

−τ

∫

Kρ

ψ−(θε)|(ψ−)′(θε)|2−p|∇ξ|p . (11)

Remark 2. In this estimate there is a dependence on ε through γ ′ε. We will
see later how to get over this difficulty.

Proposition 4. Let θε be a solution of (5), k > ε and 0 < c < H+
θε,k

. There
exists a constant C > 0, that is independent of ε, such that for every cylinder
Q(τ, ρ) ⊂ ΩT ,

sup
−τ<t<0

∫

Kρ×{t}

[

ψ+(θε)
]2
ξp ≤

∫

Kρ×{−τ}

[

ψ+(θε)
]2
ξp

+C

∫ 0

−τ

∫

Kρ

ψ+(θε)
[

(ψ+)′(θε)
]2−p |∇ξ|p . (12)

3. The intrinsic geometry

The study of the interior regularity of the approximate solution, namely
showing that it is continuous independently of ε, requires the choice of a
geometry that somehow reflects the two singularities in the equation. This
means that, instead of working with the standard parabolic cylinders, we
have to consider cylinders whose dimensions are suitably stretched in a way
that is directly related to the structure of the PDE. In order to simplify the
notation, from now on we drop the subscript ε in θε.

Given R > 0, sufficiently small such that

Q
(

R,R
1
2

)

⊂ ΩT ,

define

µ− := ess inf
Q(R,R

1
2 )

θ ; µ+ := ess sup
Q(R,R

1
2 )

θ ; ω := ess osc
Q(R,R

1
2 )

θ = µ+ − µ−
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and then construct the cylinder

Q (a0R
p, c0R) , a0 =

(ω

A

)(1−p)(2−p)

; c0 =
(ω

B

)p−2

, (13)

where A = 2s and B = 2s̄, for some s, s̄ > 1 to be chosen. Observe that for
p = 2, a0 = c0 = 1, and these are the standard parabolic cylinders, reflecting
the natural homogeneity of the space and time variables.

We assume, without loss of generality, that ω ≤ 1 and also that

ω > max
{

AR
1

2−p , BR
1

2(2−p)

}

. (14)

Then Q(a0R
p, c0R) ⊂ Q(R,R

1
2) and

ess osc
Q(a0R

p,c0R)
θ ≤ ω . (15)

Remark 3. If (14) does not hold then the oscillation is comparable to the
radius (in a way given by the reverse of the above inequality) and there is
nothing to prove. Note also that (15) is not verified for any given cylinder,
since its dimensions have to be defined in terms of the essential oscillation
of the solution within it.

We now consider the cube Kc0R partitioned in disjoint subcubes, each one
of them congruent to Kd∗R, with d∗ = ( ω

2n∗+1 )
p−2, for n∗ to be determined:

[x̄+Kd∗R] , x̄ ∈ KR(ω) , R(ω) := c0R− d∗R = L1d∗R

L1 =

(

B

2n∗+1

)2−p

− 1 , B > 2n∗+1 .

c
0
R
 d
*
R


a
0
R
p


Figure 1. Partition in space of Q(a0R
p, c0R).

Since we may arrange L1 to be an integer, we can look at Kc0R as the disjoint
union, up to a set of measure zero, of LN

1 cubes of the above type. Then we
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may regard the cylinder Q(a0R
p, c0R) as the disjoint union, up to a set of

measure zero, of LN
1 subcylinders of the type [(x̄, 0) +Q(a0R

p, d∗R)].
We next consider subcylinders of [(x̄, 0) +Q(a0R

p, d∗R)] of the form

[(x̄, t̄) +Q(dRp, d∗R)] , d =
(ω

2

)(1−p)(2−p)

,

which are contained in [(x̄, 0) + Q(a0R
p, d∗R)] assuming that A > 2 and

t̄ ∈ I(ω) := (−a0R
p + dRp, 0) . (16)

c
0
R
 d
*
R


d
R

p


a
0
R
p


Figure 2. Partition in space and time of Q(a0R
p, c0R).

The proof of the equicontinuity relies on the study of two complementary
cases and the achievement of the same conclusion for both, namely the re-
duction of the oscillation. For a given constant ν0 ∈ (0, 1), which will be
determined later only in terms of the data and ω, we assume that either

the first alternative

there exists t̄ ∈ I(ω) such that, for all x̄ ∈ KR(ω),

∣

∣(x, t) ∈ [(x̄, t̄) + Q(dRp, d∗R)] : θ(x, t) < µ− + ω
2

∣

∣

|Q(dRp, d∗R)| ≤ ν0 (17)

or

the second alternative

for every t̄ ∈ I(ω), there exists x̄ ∈ KR(ω) such that

∣

∣(x, t) ∈ [(x̄, t̄) +Q(dRp, d∗R)] : θ(x, t) > µ+ − ω
2

∣

∣

|Q(dRp, d∗R)| < 1 − ν0 . (18)



12 E. HENRIQUES AND J.M. URBANO

4. The first alternative

Assume that (17) holds in [(x̄, t̄) + Q(dRp, d∗R)], where [x̄ + Kd∗R] is any
subcube of the partition of Kc0R and t̄ is the same in all these cylinders.
Since Kc0R is the disjoint union, up to a set of measure zero, of subcubes of
the form [x̄ +Kd∗R], the first alternative implies that there exists a cylinder
of the type [(0, t̄) + Q(dRp, c0R)] in which

∣

∣(x, t) ∈ [(0, t̄) +Q(dRp, c0R)] : θ(x, t) < µ− + ω
2

∣

∣

|Q(dRp, c0R)| ≤ ν0 . (19)

Lemma 1. There exists a constant ν0 ∈ (0, 1), depending only upon the data
and ω, such that if (17) holds for some t̄ ∈ I(ω) and all x̄ ∈ KR(ω),

θ(x, t) ≥ µ− +
ω

4
, a.e (x, t) ∈

[

(0, t̄) + Q

(

d

(

R

2

)p

, c0
R

2

)]

. (20)

Proof. According to what we have just remarked, (19) is in force. After
translation, we may assume that t̄ = 0. Define two decreasing sequences of
numbers

Rn =
R

2
+

R

2n+1
, kn = µ− +

ω

4
+

ω

2n+2
; n = 0, 1, 2, . . .

and construct the family of nested and shrinking cylindersQn≡Q(dRp
n, c0Rn).

Write the energy estimate (8) for the functions (θ − kn)−, over Qn, and for
smooth cutoff functions 0 ≤ ξn ≤ 1, defined in Qn, and such that







ξn ≡ 1 in Qn+1 ; ξn ≡ 0 on ∂pQn

|∇ξn| ≤ 2n+2

c0R
; 0 < ∂tξn ≤ 2(n+2)p

dRp

Since (θ − kn)− ≤ ω
2 , we get

sup
−dRp

n<t<0

∫

Kc0Rn×{t}
(θ − kn)

2
−ξ

p
n +

∫ ∫

Qn

|∇(θ − kn)−ξn|p

≤ C
(ω

2

)p 2(n+2)p

cp0R
p

∫ ∫

Qn

χ[θ<kn] + C
(ω

2

) 2(n+2)p

dRp

∫ ∫

Qn

χ[θ<kn]

≤ C
(ω

2

)p 2(n+2)p

Rp

{

c−p
0 + d−1

(ω

2

)1−p
}
∫ ∫

Qn

χ[θ<kn] .



DOUBLY SINGULAR PDE 13

Now observe that, since 1 < p < 2, and (θ − kn)− ≤ ω
2 ,

(θ − kn)
2
− = (θ − kn)

(1−p)(2−p)
− (θ − kn)

p(2−p)
− (θ − kn)

p
−

≥
(ω

2

)(1−p)(2−p)

(θ − kn)
p(2−p)
− (θ − kn)

p
− = d(θ − kn)

p(2−p)
− (θ − kn)

p
−.

Introducing the level

kn+1 < k̄n ≡ kn + kn+1

2
< kn ,

we have
∫

Kc0Rn

(θ − kn)
2
−ξ

p
n ≥ d

∫

Kc0Rn

(θ − kn)
p(2−p)
− (θ − kn)

p
−ξ

p
n

≥ d
(

kn − k̄n

)p(2−p)
∫

Kc0Rn

(θ − k̄n)
p
−ξ

p
n

= d
(ω

2

)p(2−p)
(

1

2n+3

)p(2−p) ∫

Kc0Rn

(θ − k̄n)
p
−ξ

p
n .

Consequently,

sup
−dR

p
n<t<0

∫

Kc0Rn×{t}
(θ− k̄n)

p
−ξ

p
n +

1

d

(

2

ω

)p(2−p)

2(n+3)p(2−p)

∫ ∫

Qn

|∇(θ− k̄n)−ξn|p

≤C
(ω

2

)p 2(n+2)p

dRp
2(n+3)p(2−p)

{

(ω

2

)p(p−2)

c−p
0 +

(ω

2

)p(p−2)+(1−p)

d−1

}
∫∫

Qn

χ[θ<kn]

= C
(ω

2

)p 2(3−p)pn

dRp
2p(2+3(2−p))

{

(

2

B

)p(2−p)

+
2

ω

}

∫ ∫

Qn

χ[θ<kn]

≤ C

ω

(ω

2

)p 2(3−p)pn

dRp
2p(2+3(2−p))

{

(

2

B

)p(2−p)

+ 2

}

∫ ∫

Qn

χ[θ<kn]

since ω ≤ 1.
Consider the change of variables

y =
x

c0
, z =

t

d

and define the new functions

θ̄(y, z) = θ(x, t) , ξ̄n(y, z) = ξn(x, t) .
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Denoting the new variables again by (x, t) and defining

An =

∫ 0

−Rp
n

|An(t)| dt , An(t) =
{

x ∈ KRn
: θ̄(x, t) < kn

}

,

the above inequality reads

sup
−R

p
n<t<0

∫

KRn

(θ̄ − k̄n)
p
−ξ̄

p
n +

(

2

ω

)p(2−p)

2(n+3)p(2−p)

∫ ∫

Q(Rp
n,Rn)

∣

∣∇(θ̄ − k̄n)−ξ̄n
∣

∣

p

≤ C

ω

(ω

2

)p 2(3−p)pn

Rp
2p(2+3(2−p))

{

(

2

B

)p(2−p)

+ 2

}

An .

Recalling once again that ω ≤ 1, and the choice of ξn, we conclude that

∥

∥(θ̄ − k̄n)−
∥

∥

p

V p(Q(Rp
n+1,Rn+1))

≤ C

ω

(ω

2

)p 2(3−p)pn

Rp
2p(2+3(2−p))

{

(

2

B

)p(2−p)

+ 2

}

An .

Now, on the one hand, we have
∫ ∫

Q(Rp
n+1,Rn+1)

(θ̄ − k̄n)
p
− ≥ (k̄n − kn+1)

pAn+1 =
(ω

2

)p 1

2p(n+3)
An+1

and, on the other hand, using Corollary 3.1 of Chapter I of [7],
∫ ∫

Q(Rp
n+1,Rn+1)

(θ̄ − k̄n)
p
−

≤ C
∣

∣[θ̄ < k̄n] ∩Q(Rp
n+1, Rn+1)

∣

∣

p
N+p

∥

∥(θ̄ − k̄n)−
∥

∥

p

V p(Q(Rp
n+1,Rn+1))

≤ CA
p

N+p
n

∥

∥(θ̄ − k̄n)−
∥

∥

p

V p(Q(Rp
n+1,Rn+1))

Combining these two inequalities with the previous one, we get

An+1 ≤
C

ω

2p(5+3(2−p))

Rp

{

(

2

B

)p(2−p)

+ 2

}

2(4−p)pnA
1+ p

N+p

n .

Defining

Yn =
An

|Q(Rp
n, Rn)|

and noting that

|Q(Rp
n, Rn)|1+

p
N+p

|Q(Rp
n+1, Rn+1)|

≤ 2N+2pRp
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we arrive at

Yn+1 ≤
C

ω

{

(

2

B

)p(2−p)

+ 2

}

2(4−p)pnY
1+ p

N+p
n .

Using a lemma on the fast geometric convergence of sequences (see [7, page
12]), we conclude that if

Y0 ≤
(

C

ω

{

(

2

B

)p(2−p)

+ 2

})

−(N+p)
p

2−p(4−p)(N+p
p )

2

then Yn → 0 as n→ ∞. Since
{

(

2

B

)p(2−p)

+ 2

}
N+p

p

≤ 2
N
p

{

(

2

B

)(2−p)(N+p)

+ 2
N+p

p

}

≤ 2
N
p

{

1 + 2
N+p

p

}

,

if we take

Y0 ≤ C−N+p

p 2−p(4−p)(N+p

p )
2

ω
N+p

p 2−
N
p

{

1 + 2
N+p

p

}−1

= Cω
N+p

p ≡ ν0 (21)

we obtain Yn → 0 as n → ∞, which implies that An → 0 as n→ ∞. But

Y0 =

∫ 0

−Rp

∣

∣

∣
x ∈ KR : θ̄(x, t) < µ− +

ω

2

∣

∣

∣
dt

|Q(Rp, R)| ,

so (21) is our hypothesis (19). Since Rn ↘ R
2 and kn ↘ µ− + ω

4 , having
An → 0 as n→ ∞, means that

∣

∣

∣

∣

(x, t) ∈ Q

((

R

2

)p

,
R

2

)

: θ̄(x, t) < µ− +
ω

4

∣

∣

∣

∣

= 0

that is, going back to the original variables and function,

θ(x, t) ≥ µ− +
ω

4
, a.e. (x, t) ∈ Q

(

d

(

R

2

)p

, c0
R

2

)

.

Consider now the time level −t∗ = t̄ − d(R
2 )p. From the conclusion of

Lemma 1, we have

θ(x,−t∗) ≥ µ− +
ω

4
, a.e. x ∈ Kc0

R
2
.

We will use this time level as an initial condition to bring the information up
to t = 0, and therefore to obtain an analogous inequality in a full cylinder
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of the type Q(τ, c0ρ). A first step in this direction is given by the following
result.

Lemma 2. Assume that (17) holds for some t̄ ∈ I(ω) and for all x̄ ∈ KR(ω).
Given ν1 ∈ (0, 1), there exists 1 < s1 ∈ N, depending only upon the data and
A, such that, if B ≥ 2s1, then

∣

∣

∣
x ∈ Kc0

R
4

: θ(x, t) < µ− +
ω

2s1

∣

∣

∣
< ν1

∣

∣

∣
Kc0

R
4

∣

∣

∣
, ∀t ∈ (−t∗, 0) .

Proof. Consider the cylinder Q(t∗, c0
R
2 ) and write the logarithmic estimate

(11) over this cylinder, for the function (θ−k)−, with k = µ−+ ω
4 and c = ω

2n+2

(n to be chosen). Defining

k − θ ≤ H−
θ,k := ess sup

Q(t∗,c0
R
2
)

(θ − k)− ≤ ω

4
<
ω

2

(that we may assume strictly positive, otherwise there is nothing to prove), we
then choose n sufficiently large so that 0 < c < H−

θ,k. Then the logarithmic

function ψ− ≡ ψ−(θ), introduced in (10), is well defined and satisfies the
estimates

ψ− ≤ ln(2n) = n ln 2 , because
H−

θ,k

H−
θ,k + θ − k + c

≤
ω
4
ω

2n+2

= 2n;

|(ψ−)′|2−p =

(

1

H−
θ,k + θ − k + c

)2−p

=
(

H−
θ,k + θ − k + c

)(p−1)(2−p)
(

1

H−
θ,k + θ − k + c

)p(2−p)

≤
(ω

2

)(p−1)(2−p)
(

1

c

)p(2−p)

= d−1

(

2n+2

ω

)p(2−p)

,

since c ≤ H−
θ,k + θ − k + c ≤ H−

θ,k <
ω
2 and 0 < p− 1 < 1.

Take as a cutoff function x → ξ(x) (independent of t), defined in Kc0
R
2
,

and satisfying






0 ≤ ξ ≤ 1 in Kc0
R
2

ξ ≡ 1 in Kc0
R
4

|∇ξ| ≤ 4
c0R

.
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The logarithmic estimate takes the form

sup
−t∗<t<0

∫

K
c0

R
2

(ψ−)2ξp ≤ C

∫ 0

−t∗

∫

K
c0

R
2

ψ−|(ψ−)′|2−p|∇ξ|p

≤ Cn ln 2 d−1

(

2n+2

ω

)p(2−p)
4p

cp0R
p

∣

∣

∣
Kc0

R
2

∣

∣

∣
t∗ ,

since θ(x,−t∗) ≥ k in the cube Kc0
R
2

which implies that ψ−(x,−t∗) = 0, for

x ∈ Kc0
R
2
. Recalling that t∗ < a0R

p, and taking B ≥ 2n+2, we get

sup
−t∗<t<0

∫

K
c0

R
2

(ψ−)2ξp ≤ CA(p−1)(2−p)n
∣

∣

∣
Kc0

R
4

∣

∣

∣
.

We estimate from below the left hand side of the above inequality integrating
over the smaller set

{

x ∈ Kc0
R
4

: θ(x, t) < µ− +
ω

2n+2

}

⊂ Kc0
R
2
.

In this set, ξ ≡ 1 and

ψ− = ln

(

H−
θ,k

H−
θ,k + θ − k + c

)

≥ ln

(

H−
θ,k − ω

4 + ω
4

H−
θ,k − ω

4 + ω
2n+1

)

≥ (n− 1) ln 2

since H−
θ,k − ω

4 ≤ 0. Then, for all t ∈ (−t∗, 0),
∣

∣

∣
x ∈ Kc0

R
4

: θ(x, t) < µ− +
ω

2n+2

∣

∣

∣
≤ CA(p−1)(2−p) n

(n− 1)2

∣

∣

∣
Kc0

R
4

∣

∣

∣
.

Choosing n > 1 + 2C
ν1
A(p−1)(2−p) we get CA(p−1)(2−p) n

(n−1)2 < ν1 and the result

is proved for the choice s1 = n+ 2.

Remark 4. Note that the dependency of s1 on ω, if it occurs, occurs through
A; it will be shown that A can be determined independently of ω. Observe also
that the ε dependency appearing in the logarithmic estimate was overcome.

We are now in position to prove the main result of this section, namely

Proposition 5. There exist constants ν0 ∈ (0, 1), depending upon the data
and ω, and 1 < s1 ∈ N, depending only upon the data and A, such that, if
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(17) holds for some t̄ ∈ I(ω) and for all x̄ ∈ KR(ω), then

θ(x, t) ≥ µ− +
ω

2s1+1
, a.e. (x, t) ∈ Q

(

t∗, c0
R

8

)

. (22)

Proof. Consider the decreasing sequence of real numbers

Rn =
R

8
+

R

2n+3
, n = 0, 1, . . .

and construct the family of nested and shrinking cylinders Qn = Q(t∗, c0Rn),
where t∗ is given as before. Write the energy estimates (8) for the functions
(θ − kn)− over Qn, with

kn = µ− +
ω

2s1+1
+

ω

2s1+1+n
,

and choosing piecewise smooth cutoff functions ξn(x) defined in Kc0Rn
and

satisfying, for n = 0, 1, 2, . . .,






0 ≤ ξn ≤ 1 in Kc0Rn

ξn ≡ 1 in Kc0Rn+1

|∇ξn| ≤ 2n+4

c0R
.

Since, for all n = 0, 1, . . .,

θ(x,−t∗) ≥ µ− +
ω

4
> kn , for x ∈ Kc0

R
2
⊃ Kc0Rn

we have
∫

Kc0Rn

(θ(·,−t∗) − kn)− ξ
p
n = 0 ,

and consequently the energy estimates read

sup
−t∗<t<0

∫

Kc0Rn

(θ − kn)
2
−ξ

p
n +

∫ ∫

Qn

|∇(θ − kn)−ξn|p

≤ C

∫ ∫

Qn

(θ − kn)
p
−|∇ξn|p ≤ C

( ω

2s1

)p 2(n+4)p

cp0R
p

∫ ∫

Qn

χ[θ<kn] .

Reasoning as in the proof of Lemma 1, we estimate from below the left hand
side in the following way: letting

kn+1 < k̄n ≡ kn+1 + kn

2
< kn
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then, since 1 < p < 2, (θ − kn)− ≤ ω
2s1

and t∗ ≤ a0R
p, we have

(θ − kn)
2
− ≥

( ω

2s1

)(1−p)(2−p) (R
2 )p

t∗

t∗
(R

2 )p

( ω

2s1

)p(2−p)

2(n+3)p(p−2)(θ − k̄n)
p
−

≥ 2−p
( ω

2s1

)(1−p)(2−p) (ω

A

)(p−1)(2−p) ( ω

2s1

)p(2−p)

2(n+3)p(p−2) t∗
(R

2 )p
(θ − k̄n)

p
−

≥ 2−p

(

2s1

A

)(p−1)(2−p)
(ω

B

)p(2−p)

2(n+3)p(p−2) t∗
(R

2 )p
(θ − k̄n)

p
−

≥ c−p
0 2(n+3)p(p−2) t∗

(R
2 )p

(θ − k̄n)
p
−

if we choose B ≥ 2s1 and s1 such that

s1 > log2A+
p

(p− 1)(2 − p)
.

Therefore the above integral inequality takes the form

sup
−t∗<t<0

∫

Kc0Rn

(θ − k̄n)
p
−ξ

p
n + cp02

(n+3)p(2−p) (
R
2 )p

t∗

∫ ∫

Qn

∣

∣∇(θ − k̄n)−ξn
∣

∣

p

≤ C
( ω

2s1

)p 2(3−p)pn

(R
2 )p

23p(3−p) (
R
2 )p

t∗

∫ ∫

Qn

χ[θ<kn] .

Introducing the change of variables

y =
x

c0
, z =

(

R

2

)p
t

t∗

and defining the new functions

θ̄(y, z) = θ(x, t) , ξ̄n(y) = ξn(x) ,

we write the inequality in the new variables (again denoted by (x, t)), ob-
taining

sup
−(R

2 )p<t<0

∫

KRn

(θ̄ − k̄n)
p
−ξ̄

p
n + cp02

(n+3)p(2−p)

∫ ∫

Q((R
2
)p,Rn)

∣

∣∇(θ̄ − k̄n)−ξ̄n
∣

∣

p

≤ C
( ω

2s1

)p 2(3−p)pn

(R
2 )p

23p(3−p)

∫ ∫

Q((R
2
)p,Rn)

χ[θ̄<kn] .
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Defining

An =

∫ 0

−(R
2 )p

|An(t)| dt , An(t) =
{

x ∈ KRn
: θ̄(x, t) < kn

}

and recalling the definition of c0 and that ω ≤ 1, we arrive at

∥

∥θ̄ − k̄n)−
∥

∥

p

V p(Q((R
2 )p,Rn+1))

≤ C
( ω

2s1

)p 2(3−p)pn

(R
2 )p

23p(3−p)An .

Now, since
( ω

2s1

)p 1

2(n+3)p
An+1 = (k̄n − kn+1)

pAn+1

≤
∫ ∫

Q((R
2 )p,Rn+1)

(θ̄ − k̄n)
p
− ≤ CA

p
N+p

n

∥

∥θ̄ − k̄n)−
∥

∥

p

V p(Q((R
2
)p,Rn+1))

,

we get

An+1 ≤ C
2(4−p)pn

(R
2 )p

23p(4−p)A
1+ p

N+p
n .

Define Yn = An

|Q((R
2
)p,Rn)| . Due to the fact that

|Q((R
2 )p, Rn)|1+

p
N+p

|Q((R
2 )p, Rn+1)|

≤ 2N+p

(

R

2

)p

we get the algebraic inequality

Yn+1 ≤ C2(4−p)pnY
1+ p

N+p
n

so, as before, if Y0 ≤ C−N+p

p 2−p(4−p)(N+p

p
)2 ≡ ν1 then Yn → 0 as n→ ∞. Using

Lemma 2 for this value of ν1 we conclude that there exists 1 < s1 ∈ N such
that

∣

∣

∣
x ∈ Kc0

R
4

: θ < µ− +
ω

2s1

∣

∣

∣
< ν1

∣

∣

∣
Kc0

R
4

∣

∣

∣
, ∀t ∈ (−t∗, 0) .

To conclude, note that

Y0 =

∫ 0

−(R
2 )p

∣

∣

∣
x ∈ KR

4
: θ̄(x, t) < µ− +

ω

2s1

∣

∣

∣
dt

|Q((R
2 )p, R

4 )|
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=
(R

2 )p

t∗

∫ 0

−t∗

∣

∣

∣
x ∈ Kc0

R
4

: θ(x, t) < µ− +
ω

2s1

∣

∣

∣
dt

(R
2 )p|Kc0

R
4
|

≤ ν1

so Yn , An → 0 as n→ ∞. Since Rn ↘ R
8 and kn ↘ µ− + ω

2s1+1 , we obtain

θ(x, t) ≥ µ− +
ω

2s1+1
, a.e. (x, t) ∈ Q

(

t∗, c0
R

8

)

.

Corollary 1. Assume that (17) holds for some t̄ ∈ I(ω) and for all x̄ ∈
KR(ω). Then there exist constants ν0 ∈ (0, 1), depending only upon the data
and ω, and σ0 ∈ (0, 1), depending only upon the data and A, such that

ess osc
Q(d(R

2
)p,c0

R
8
)
θ ≤ σ0ω . (23)

Proof. The proof is trivial, recalling that

−t∗ = t̄− d

(

R

2

)p

< −d
(

R

2

)p

from which follows Q
(

t∗, c0
R
8

)

⊃ Q
(

d(R
2 )p, c0

R
8

)

.

5. The second alternative

If the first alternative does not hold then the second alternative is
in force. We will show that, in this case, we can achieve a conclusion similar
to (23). Note that the constant ν0 has already been determined and is given
by (21).

Lemma 3. Fix t̄ ∈ I(ω) and x̄ ∈ KR(ω) for which (18) holds. There exists a
time level

t0 ∈
[

t̄− dRp, t̄− ν0

2
dRp

]

(24)

such that
∣

∣

∣
x ∈ [x̄+Kd∗R] : θ(x, t0) > µ+ − ω

2

∣

∣

∣
≤
(

1 − ν0

1 − ν0

2

)

|Kd∗R| . (25)
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Proof. Suppose not. Then, for all t ∈ [t̄− dRp, t̄− ν0

2 dR
p],

∣

∣

∣
(x, t) ∈ [(x̄, t̄) +Q(dRp, d∗R)] : θ(x, t) > µ+ − ω

2

∣

∣

∣

≥
∫ t̄−ν0

2 dRp

t̄−dRp

∣

∣

∣
x ∈ [x̄+Kd∗R] : θ(x, τ) > µ+ − ω

2

∣

∣

∣
dτ

>

(

1 − ν0

1 − ν0

2

)

|Kd∗R|
(

1 − ν0

2

)

dRp = (1 − ν0) |Q(dRp, d∗R)|

which contradicts (18).

This result tells us that, at the time level t0, the portion of the cube [x̄ +
Kd∗R] where θ(x) is near its supremum is small. In what follows we prove
that the same happens at all time levels near the top of the cylinder [(x̄, t̄)+
Q(dRp, d∗R)].

Lemma 4. There exists 1 < s2 ∈ N, depending only upon the data and ω,
such that

∣

∣

∣
x ∈ [x̄+Kd∗R] : θ(x, t) > µ+ − ω

2s2

∣

∣

∣
<

(

1 −
(ν0

2

)2
)

|Kd∗R| , (26)

for all t ∈ (t0, t̄).

Proof. Assume, without loss of generality, that x̄ ≡ 0. Consider the loga-
rithmic estimate (12) written over the cylinder Kd∗R×(t0, t̄), for the function
(θ − k)+, with k = µ+ − ω

2 and c = ω
2n∗+1 (n∗ to be chosen). Assuming that

the number n∗ has been chosen, we determine the length of the cube Kd∗R

by choosing

d∗ =
( ω

2n∗+1

)p−2

.

In the definition of ψ+ take

θ − k ≤ H+
θ,k := ess sup

Kd∗R×(t0,t̄)

(θ − k)+ ≤ ω

2
.

Assume that H+
θ,k > 0 and then choose n∗ large enough so that 0 < c =

ω
2n∗+1 < H+

θ,k. Since H+
θ,k − θ + k + c > 0, the logarithmic function ψ+ is well

defined and satisfies the estimates

ψ+ ≤ n∗ ln 2 , since
H+

θ,k

H+
θ,k − θ + k + c

≤
ω
2
ω

2n∗+1

= 2n∗;
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[

(

ψ+
)′
]2−p

=
(

H+
θ,k − θ + k + c

)(p−1)(2−p)
(

1

H+
θ,k − θ + k + c

)p(2−p)

≤ d−1

(

2n∗+1

ω

)p(2−p)

= d−1dp
∗ ,

for the non trivial case θ > k + c.
Take as a cutoff function x→ ξ(x), defined in Kd∗R, and satisfying







0 ≤ ξ ≤ 1 in Kd∗R

ξ ≡ 1 in K(1−σ)d∗R , for some σ ∈ (0, 1)

|∇ξ| ≤ (σd∗R)−1 .

The logarithmic estimates read

sup
t0<t<t̄

∫

Kd∗R×{t}

(

ψ+
)2
ξp ≤

∫

Kd∗R×{t0}

(

ψ+
)2
ξp

+C

∫ t̄

t0

∫

Kd∗R

ψ+
[

(

ψ+
)′
]2−p

|∇ξ|p

and therefore

sup
t0<t<t̄

∫

Kd∗R×{t}

(

ψ+
)2
ξp ≤ n2

∗(ln 2)2 |x ∈ Kd∗R : θ(x, t0) > k + c|

+
C

σpdp
∗Rp

n∗ ln 2 d−1dp
∗ |Kd∗R| (t̄− t0)

≤
{

n2
∗(ln 2)2

(

1 − ν0

1 − ν0

2

)

+ C
n∗
σp

}

|Kd∗R| ,

using Lemma 3, the estimates for ψ presented above, and the fact that t̄−t0 ≤
dRp. In order to bound the left hand side from below, we integrate over the
smaller set

S =
{

x ∈ K(1−σ)d∗R : θ(x, t) > µ+ − ω

2n∗+1

}

⊂ K(1−σ)d∗R

where ξ ≡ 1 and ψ+ ≥ (n∗ − 1) ln 2, since

H+
θ,k

H+
θ,k − ω

2 + ω
2n∗

=
H+

θ,k − ω
2 + ω

2

H+
θ,k − ω

2 + ω
2n∗

≥ 2n∗−1 , because H+
θ,k −

ω

2
≤ 0 .
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We obtain

|S| ≤
{

(

n∗
n∗ − 1

)2(
1 − ν0

1 − ν0

2

)

+
C

n∗σp

}

|Kd∗R|.

Consequently, for all t ∈ (t0, t̄), we have
∣

∣

∣
x ∈ Kd∗R : θ(x, t) > µ+ − ω

2n∗+1

∣

∣

∣
≤ |S| +

∣

∣Kd∗R \K(1−σ)d∗R

∣

∣

≤ |S| + Nσ|Kd∗R|

≤
{

(

n∗
n∗ − 1

)2(
1 − ν0

1 − ν0

2

)

+
C

n∗σp
+Nσ

}

|Kd∗R|.

Choose σ so small that Nσ ≤ 3
8ν

2
0 and then n∗ so large that

C

n∗σp
≤ 3

8
ν2

0 and

(

n∗
n∗ − 1

)2

≤
(

1 − ν0

2

)

(1 + ν0) ≡ β .

With these choices we obtain
∣

∣

∣
x ∈ Kd∗R : θ(x, t) > µ+ − ω

2n∗+1

∣

∣

∣
≤
(

1 −
(ν0

2

)2
)

|Kd∗R| , ∀t ∈ (t0, t̄)

and the result follows with s2 = n∗ + 1.

Remark 5. From the choice σ ≤ 3
8N ν

2
0 , we see that, in order to satisfy the

first condition, it suffices to choose the number n∗ such that

n∗ ≥ Cν
−2(p+1)
0 ,

where C is a constant depending only upon the data. From the second con-
dition on n∗ we get

n∗ ≥
β +

√
β

β − 1
,

and, since β > 1 (and assuming, without loss of generality, that ν0 ∈ (0, 1
2)),

β +
√
β

β − 1
≤ 2β

β − 1
=

4

ν0(1 − ν0)
+ 2 ≤ 4

ν2
0

+ 2

and it suffices to choose

n∗ ≥
4

ν2
0

+ 2 .
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So n∗ is to be chosen such that

n∗ ≥ max

{

Cν
−2(p+1)
0 ,

4

ν2
0

+ 2

}

.

Recalling that ν0 = Cω
N+p

p , we choose

n∗ ≥ Cω−α , α =
2(p+ 1)(N + p)

p

and n∗ depends upon the data and ω.

Remark 6. This result determines the value s2 and consequently d∗, which
represents the size of the subcubes [x̄ +Kd∗R] making up the partition of the
full cube Kc0R; it has a double scope: we determine a level and a cylinder
such that the measure of the set where θ is above such a level can be made
small on that particular cylinder.

Remark 7. In the proof we assumed that H+
k > 0. If H+

k = 0 we argue as
in the next section, with θ̄ = (θ − µ+) 1

ω
.

Since for the different values of t̄ we may get cylinders with different axes,
we start by expanding the negativity to a complete cylinder in space and then
use the fact that t̄ is an arbitrary element of I(ω) to get a reduction of the
oscillation in a smaller cylinder centered at the origin. In order to do so, and
since the location of x̄ within the cube KR(ω) is only known qualitatively, we
will assume that x̄ is the centre of the larger cube [x̄+K8c0R] which we assume
to be contained in K

R
1
2
. Indeed, if that is not the case, there is nothing to

prove since

ω ≤ C(B, p)R
1

2(2−p) .

We then work within the cylinder

[x̄+K8c0R] × (t0, t̄)

which is mapped into Q4 ≡ K4 × (−4p, 0) through the change of variables

y =
x− x̄

2c0R
, z = 4p

(

t− t̄

t̄− t0

)

.

With this same mapping, the cube [x̄+Kd∗R] is mapped into Kh0
, where

h0 = 1
2

(

2s2

B

)2−p
< 1. Define the new function

θ̄ = (θ − µ+)

(

2n∗

ω

)



26 E. HENRIQUES AND J.M. URBANO

and observe that θ̄ ≤ 0 and that, for the new variables and function, (26) is
now written in the form

∣

∣

∣

∣

y ∈ Kh0
: θ̄(y, z) < −1

2

∣

∣

∣

∣

>
(ν0

2

)2

|Kh0
| , ∀z ∈ (−4p, 0) . (27)

5.1. An equation in dimensionless form. The new function satisfies,
in the sense of the distributions, an equation similar to that satisfied by θ,
namely (denoting again the new variables by (x, t))

∂tγ̃ε(θ̄) − C div
(

|∇θ̄|p−2∇θ̄
)

= 0 in D′(Q4) (28)

where γ̃ε is such that γ̃ε
′(θ̄) = γ′ε(θ) and

C =
1

23p
ω(p−1)(2−p)

(

2n∗

Bp

)2−p
(t̄− t0)

Rp
.

Since t0 ∈
[

t̄− dRp, t̄− ν0

2 dR
p
]

,

C ∈
[

1

23p

(

2n∗+p−1

Bp

)2−p
ν0

2
,

1

23p

(

2n∗+p−1

Bp

)2−p
]

.

In order to simplify the calculations we will assume, for the time being,
that

∂tγ̃ε

(

θ̄
)

∈ C
(

−4p, 0;L1(K4)
)

(29)

and will remove this assumption later. The weak formulation of (28) is then
given by

∫

K4

∂tγ̃ε(θ̄)ϕ+ C

∫

K4

∣

∣∇θ̄
∣

∣

p−2 ∇θ̄ · ∇ϕ = 0 ,

for all t ∈ (−4p, 0) and for all ϕ ∈ C(Q4) ∩ C(−4p, 0;W 1,p
0 (K4)).

Due to the fact that the equation is weakly parabolic and θ̄ is a solution,
(θ̄ − k)+ is a sub-solution and then, for all admissible test functions ϕ ≥ 0,

∫

K4

∂tγ̃ε

[

(θ̄ − k)+

]

ϕ+ C

∫

K4

∣

∣∇(θ̄ − k)+

∣

∣

p−2 ∇(θ̄ − k)+ · ∇ϕ ≤ 0 ,

for all t ∈ (−4p, 0). In this inequality we take

ϕ =
ξp

(

−k(1 − δ) − (θ̄ − k)+

)p−1
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where k and δ ∈ (−1, 0) are to be chosen and ξ(x, t) = ξ1(x)ξ2(t) is a piecewise
smooth cutoff function defined in Q4 and satisfying







0 ≤ ξ ≤ 1 in Q4 ; ξ ≡ 1 in Q2 ; ξ ≡ 0 on ∂pQ4 ;

|∇ξ1| ≤ 1 ; 0 ≤ ∂tξ2 ≤ 1 ;

and the property that the sets {x ∈ K4 : ξ1(x) > −k} are convex for all
k ∈ (−1, 0). Set

ψk(θ̄) = ln

( −k(1 − δ)

−k(1 − δ) − (θ̄ − k)+

)

≥ 0 (30)

and

φk(θ̄) =

∫ (θ̄−k)+

0

1

(−k(1 − δ) − s)p−1
ds (31)

and observe that

1. for k, δ ∈ (−1, 0), the functions ϕ, ψk and φk are well defined since

−k(1 − δ) − (θ̄ − k)+ =







−k + kδ if θ̄ ≤ k

kδ − θ̄ if θ̄ > k
≥ 0 ;

2. the graph γ has a jump at θ = 0 so the corresponding graph γ̃ has a
jump at θ̄ = −µ+

(

2n∗

ω

)

< 0. If we choose n∗ such that −µ+
(

2n∗

ω

)

<
−1, that is,

n∗ > log2

(

ω

µ+

)

then, for k ∈ (−1, 0), the function (θ̄− k)+ is above the singularity in
time and γ̃ε

′ ≡ 1.

Therefore, for n∗ > max
{

Cω−α, log2

(

ω
µ+

)}

and k, δ ∈ (−1, 0), the weak

formulation presented above reads
∫

K4

∂t(θ̄ − k)+ϕ+ C

∫

K4

∣

∣∇(θ̄ − k)+

∣

∣

p−2 ∇(θ̄ − k)+ · ∇ϕ ≤ 0 , (32)

for all t ∈ (−4p, 0).
The first term of (32) can be estimated from below as follows

∫

K4

∂t(θ̄ − k)+ϕ =

∫

K4

∂tφk(θ̄)ξ
p
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=
d

dt

∫

K4

φk(θ̄)ξ
p − p

∫

K4

φk(θ̄)ξ
p−1ξt

≥ d

dt

∫

K4

φk(θ̄)ξ
p − C1

2 − p

using the conditions on ξ and the fact that

φk(θ̄) =
1

2 − p

{

(−k(1 − δ))2−p − (−k(1 − δ) − (θ̄ − k)+)2−p
}

<
1

2 − p
(−k(1 − δ))2−p <

22−p

2 − p
, k, δ ∈ (−1, 0) .

For the second term we have
∫

K4

∣

∣∇(θ̄ − k)+

∣

∣

p−2 ∇(θ̄ − k)+ · ∇ϕ

= p

∫

K4

(

ξ

−k(1 − δ) − (θ̄ − k)+

)p−1
∣

∣∇(θ̄ − k)+

∣

∣

p−2 ∇(θ̄ − k)+ · ∇ξ

+(p − 1)

∫

K4

( |∇(θ̄ − k)+|
−k(1 − δ) − (θ̄ − k)+

)p

ξp .

Recalling the definition of ψk, we have

∇ψk(θ̄) =
∇(θ̄ − k)+

−k(1 − δ) − (θ̄ − k)+

and, using Young’s inequality (ρ is to be chosen), we get from the identity
above

∫

K4

∣

∣∇(θ̄ − k)+

∣

∣

p−2 ∇(θ̄ − k)+ · ∇ϕ

≥ (p− 1)
[

1 − ρ
−p

p−1

]

∫

K4

∣

∣∇ψk(θ̄)
∣

∣

p
ξp − ρp

∫

K4

|∇ξ|p .

Taking ρ = 2
p−1

p , recalling the conditions on ξ and the bounds on C, we
finally get

d

dt

∫

K4

φk(θ̄)ξ
p + C̃0

∫

K4

∣

∣∇ψk(θ̄)
∣

∣

p
ξp ≤ C̃1

2 − p
(33)

where C̃0 = C̃0(p,N, n∗, B, ω, data) and C̃1 = C̃1(p,N, n∗, B). Note that, for
all t ∈ (−4p, 0),

∣

∣[ψk(θ̄) = 0] ∩ [ξ = 1]
∣

∣ =
∣

∣[θ̄ ≤ k] ∩K2

∣

∣ ≥
∣

∣[θ̄ < k] ∩Kh0

∣

∣ > ν̃0
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using (27) for k = −1
2 and ν̃0 =

(

ν0

2

)2 (2s2

B

)N(2−p)
> 0. We can then apply

Proposition 2.1 of Chapter I of [7] to conclude that
∫

K4

∣

∣∇ψk(θ̄)
∣

∣

p
ξp ≥ C

∫

K4

ψp
k(θ̄)ξ

p , C = C(N, p, ν̃0)

and consequently

Lemma 5. There exist constants C0 and C1, that can be determined a priori
only in terms of, respectively, p,N, ω, n∗, B and the data and p,N, n∗, B such
that

d

dt

∫

K4

φk(θ̄)ξ
p + C0

∫

K4

ψp
k(θ̄)ξ

p ≤ C1 . (34)

This integral inequality will be used to prove an auxiliary proposition which
is an important tool in obtaining the sought expansion of “negativity”. In-
troduce the quantities

Yn := sup
−4p≤t≤0

∫

K4∩[θ̄>−|δ|n]

ξp , n = 0, 1, . . . (35)

Proposition 6. The number ν being fixed, we can find numbers δ, σ, de-
pending only upon the data, ω and ν, and independent of ε, such that, for
n = 0, 1, 2, . . ., either

Yn ≤ ν

or
Yn+1 ≤ max{ν, σYn} .

Proof. Take k = −|δ|n in (34), where δ ∈ (−1, 0) is to be chosen. From
(35), it follows that for every ρ ∈ (0, 1) there exists t0 ∈ (−4p, 0) such that

Yn+1 − ρ ≤
∫

K4∩[θ̄>−|δ|n+1]

ξp(·, t0) , n = 0, 1, 2, . . . (36)

After fixing n ∈ N and t0 ∈ (−4p, 0), one of the following two situations
holds: either

d

dt

(
∫

K4

φ−|δ|n(θ̄)ξ
p

)

(t0) ≥ 0 (37)

or
d

dt

(
∫

K4

φ−|δ|n(θ̄)ξ
p

)

(t0) < 0 . (38)
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In either case we may assume that Yn > ν (otherwise the result is trivial).
Assume that (37) holds. Then

∫

K4

ψp

−|δ|n(θ̄)ξ
p(·, t0) ≤ C ,

for a positive constant C, independent of ε. Perform an integration over the
smaller set

{

x ∈ K4 : θ̄(x, t0) > −|δ|n+1
}

,

where

ψp

−|δ|n(θ̄(x, t0)) = lnp

( |δ|n(1 − δ)

−|δ|nδ − θ̄(x, t0)

)

≥ lnp

(

1 − δ

−2δ

)

.

Then
∫

K4∩[θ̄(.,t0)>−|δ|n+1]

ξp(·, t0) ≤ C ln−p

(

1 − δ

−2δ

)

.

Using (36) and taking, without loss of generality, ρ ∈ (0, ν
2), we obtain

Yn+1 ≤
ν

2
+ C ln−p

(

1 − δ

−2δ

)

.

We take |δ| so small that

C ln−p

(

1 − δ

−2δ

)

≤ ν

2
,

that is

|δ| = −δ ≤ 1

2 exp (2C
ν

)
1
p − 1

∈ (0, 1)

and the proposition is proved assuming that (37) holds.
Now assume that (38) holds and define

t∗ := sup

{

t ∈ (−4p, t0) :
d

dt

(
∫

K4

φ−|δ|n(θ̄)ξ
p

)

≥ 0

}

.

Then
∫

K4

φ−|δ|n(θ̄)ξ
p(·, t0) ≤

∫

K4

φ−|δ|n(θ̄)ξ
p(·, t∗)

=

∫

K4

(

∫ |δ|n

0

χ[(θ̄+|δ|n)+>s]

ds

(|δ|n(1 − δ) − s)p−1

)

ξp(·, t∗)



DOUBLY SINGULAR PDE 31

=

∫

K4

(
∫ 1

0

χ[(θ̄+|δ|n)+>s|δ|n]

|δ|n(2−p)

(1 − δ − s)p−1
ds

)

ξp(·, t∗)

=

∫ 1

0

|δ|n(2−p)

(1 − δ − s)p−1

(
∫

K4∩[(θ̄+|δ|n)+>s|δ|n]

ξp(·, t∗)
)

ds .

We estimate from above the integral in brackets, for s ∈ [0, 1]. On the one
hand we have, using the definition of Yn,

∫

K4∩[(θ̄+|δ|n)+>s|δ|n]

ξp(·, t∗) ≤
∫

K4∩[θ̄>−|δ|n]

ξp(·, t∗) ≤ Yn .

On the other hand, from the definition of t∗, we first get
∫

K4

ψp

−|δ|n(θ̄)ξ
p(·, t∗) ≤ C

and then, integrating over the smaller set

K4 ∩ [(θ̄ + |δ|n)+ > s|δ|n] ,
we obtain

∫

K4∩[(θ̄+|δ|n)+>s|δ|n]

ξp(·, t∗) ≤ C ln−p

(

1 − δ

1 − δ − s

)

since, in this set,

ψp

−|δ|n(θ̄) ≥ lnp

(

1 − δ

1 − δ − s

)

.

Then, for all s ∈ [0, 1]
∫

K4∩[(θ̄+|δ|n)+>s|δ|n]

ξp(·, t∗) ≤ min

{

Yn, C ln−p

(

1 − δ

1 − δ − s

)}

.

Let s∗ be such that Yn = C ln−p
(

1−δ
1−δ−s∗

)

, i.e.,

s∗ =
exp ( C

Yn
)

1
p − 1

exp ( C
Yn

)
1
p

(1 − δ) .

For 0 ≤ s < s∗

C ln−p

(

1 − δ

1 − δ − s

)

> C ln−p

(

1 − δ

1 − δ − s∗

)

= Yn
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and for s∗ ≤ s ≤ 1

C ln−p

(

1 − δ

1 − δ − s

)

≤ C ln−p

(

1 − δ

1 − δ − s∗

)

= Yn .

Then
∫ 1

0

|δ|n(2−p)

(1 − δ − s)p−1

(
∫

K4∩[(θ̄+|δ|n)+>s|δ|n]

ξp(·, t∗)
)

ds

≤
∫ s∗

0

|δ|n(2−p)

(1 − δ − s)p−1
Yn ds+

∫ 1

s∗

|δ|n(2−p)

(1 − δ − s)p−1
C ln−p

(

1 − δ

1 − δ − s

)

ds

= |δ|n(2−p)Yn

[
∫ 1

0

1

(1 − δ − s)p−1
ds

−
∫ 1

s∗

1

(1 − δ − s)p−1

{

1 − C

Yn

ln−p

(

1 − δ

1 − δ − s

)}

ds

]

.

Our next goal is to obtain an estimate from below, independent of Yn, for
the second integral on the right hand side of this inequality. We start by
noting that,

s∗ > σ0(1 − δ) , σ0 ≡
exp (C

ν
)

1
p − 1

exp (C
ν
)

1
p

since we are assuming that Yn > ν, and for s∗ ≤ s ≤ 1

0 ≤ 1 − C

Yn

ln−p

(

1 − δ

1 − δ − s

)

.

Therefore
∫ 1

s∗

1

(1 − δ − s)p−1

{

1 − C

Yn

ln−p

(

1 − δ

1 − δ − s

)}

ds

≥
∫ 1

σ0(1−δ)

1

(1 − δ − s)p−1

{

1 − C

Yn

ln−p

(

1 − δ

1 − δ − s

)}

ds

≥
∫ 1

σ0(1−δ)

1

(1 − δ − s)p−1

{

1 − C

ν
ln−p

(

1 − δ

1 − δ − s

)}

ds .

We obtain
∫

K4

φ−|δ|n(θ̄)ξ
p(·, t0) ≤ |δ|n(2−p)Yn

[
∫ 1

0

1

(1 − δ − s)p−1
ds
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−
∫ 1

σ0(1−δ)

1

(1 − δ − s)p−1

{

1 − C

ν
ln−p

(

1 − δ

1 − δ − s

)}

ds

]

= |δ|n(2−p)Yn

[

∫ 1−|δ|

0

1

(1 − δ − s)p−1
ds−

{

−
∫ 1

1−|δ|

1

(1 − δ − s)p−1
ds

+

∫ 1

σ0(1−δ)

1

(1 − δ − s)p−1

{

1 − C

ν
ln−p

(

1 − δ

1 − δ − s

)}

ds

}]

= |δ|n(2−p)Yn[1 − f(δ)]

∫ 1−|δ|

0

1

(1 − δ − s)p−1
ds

where

f(δ)

∫ 1−|δ|

0

1

(1 − δ − s)p−1
ds ≡ −

∫ 1

1−|δ|

1

(1 − δ − s)p−1
ds

+

∫ 1

σ0(1−δ)

1

(1 − δ − s)p−1

{

1 − C

ν
ln−p

(

1 − δ

1 − δ − s

)}

ds .

In order to obtain a lower bound to f(δ) note that

(i) for σ0(1 − δ) ≤ s ≤ 1, 1 − C

ν
ln−p

(

1 − δ

1 − δ − s

)

≥ 0;

(ii) σ0 ≤ σ1 ≡
exp (2C

ν
)

1
p − 1

exp (2C
ν

)
1
p

;

(iii) for σ1(1 − δ) ≤ s ≤ 1, 1 − C

ν
ln−p

(

1 − δ

1 − δ − s

)

≥ 1

2
.

Then

f(δ)

∫ 1−|δ|

0

1

(1 − δ − s)p−1
ds

≥ −
∫ 1

1−|δ|

1

(1 − δ − s)p−1
ds+

1

2

∫ 1

σ1(1−δ)

1

(1 − δ − s)p−1
ds

=
1

2 − p

(

1

2
(−δ)2−p +

1

2
(1 − δ)2−p(1 − σ1)

2−p − (−2δ)2−p

)

≥ 1

2 − p

(

1

2
(1 − δ)2−p(1 − σ1)

2−p − (−2δ)2−p

)
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and consequently

f(δ) ≥ 1

2
(1 − σ1)

2−p −
( −2δ

1 − δ

)2−p

.

Choosing δ ∈ (−1, 0) such that
( −2δ

1 − δ

)2−p

=
1

4
(1 − σ1)

2−p

we get

f(δ) ≥ 1

4
(1 − σ1)

2−p

and then, for σ ≡ 1 − 1
4(1 − σ1)

2−p ∈ (0, 1),
∫

K4

φ−|δ|n(θ̄)ξ
p(·, t0) ≤ σYn

∫ 1−|δ|

0

|δ|n(2−p)

(1 − δ − s)p−1
ds .

To estimate from below the integral over K4, we integrate over the smaller
set K4 ∩ [θ̄(·, t0) > −|δ|n+1] to get, using (36),

∫

K4

φ−|δ|n(θ̄)ξ
p(·, t0) ≥

∫

K4∩[θ̄(.,t0)>−|δ|n+1]

φ−|δ|n(θ̄)ξ
p(·, t0)

=

∫

K4∩[θ̄(.,t0)>−|δ|n+1]

(

∫ |δ|n+θ̄

0

1

(|δ|n(1 − δ) − s)p−1
ds

)

ξp(·, t0)

≥
(
∫

K4∩[θ̄(·,t0)>−|δ|n+1]

ξp(·, t0)
)

(

∫ 1−|δ|

0

|δ|n(2−p)

(1 − δ − s)p−1
ds

)

≥ (Yn+1 − ρ)

∫ 1−|δ|

0

|δ|n(2−p)

(1 − δ − s)p−1
ds .

This and the previous estimate yield, since ρ is arbitrary in (0, ν
2),

Yn+1 ≤ σYn ,

which completes the proof assuming that (38) holds.
We now remove assumption (29). If (29) does not hold we have to make

use of the discrete time derivative in order to obtain the weak formulation of
(28). This means that, for all t ∈ [−4p + h, 0], and h > 0 we have

∫ t

t−h

∫

K4

∂t(θ̄)ϕ+ C

∫ t

t−h

∫

K4

|∇θ̄|p−2∇θ̄ · ∇ϕ = 0 ,
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for all admissible testing functions ϕ, where C is a positive constant inde-
pendent of ε. Being (θ̄ − k)+, with k ∈ (−1, 0), a sub-solution of (28) and
taking ϕ as before, we obtain, for all t ∈ [−4p + h, 0] and h > 0,

C2h ≥
∫

K4×{t}
φk(θ̄)ξ

p −
∫

K4×{t−h}
φk(θ̄)ξ

p + C1

∫ t

t−h

∫

K4

ψp
k(θ̄)ξ

p .

Dividing by h and letting h→ 0 we get an integral inequality similar to (34):
(

d

dτ

)− ∫

K4

φk(θ̄)ξ
p + C1

∫

K4

ψp
k(θ̄)ξ

p ≤ C2

where
(

d

dτ

)− ∫

K4

φk(θ̄)ξ
p := lim sup

h→0

1

h

[
∫

K4×{t}
φk(θ̄)ξ

p −
∫

K4×{t−h}
φk(θ̄)ξ

p

]

.

Define the set

S :=

{

t ∈ (−4p, 0) :

(

d

dτ

)− ∫

K4

φk(θ̄)ξ
p ≥ 0

}

and let t0 be given as in (36). If t0 ∈ S, we proceed as in (37). If t0 /∈ S, take

t̄ = sup{t ∈ (−4p, t0) : t ∈ S} ≤ t0 .

If t̄ = t0, consider a sequence (tn)n, tn ∈ S, such that tn → t0. Since tn ∈ S
we get

∫

K4×{tn}
ψp

k(θ̄)ξ
p ≤ C .

Then
∫

K4×{t0}
ψp

k(θ̄)ξ
p ≤ C

and we proceed as in (37). If t̄ < t0 we have






















∫

K4×{t̄}
ψp

k(θ̄)ξ
p ≤ C

∫

K4

φk(θ̄)ξ
p(x, t0) ≤

∫

K4

φk(θ̄)ξ
p(x, t̄)

and we work as in (38).
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5.2. The expansion of “negativity”. From Proposition 6, we get by
iteration

Yn ≤ max{ν, σnY0} , n = 1, 2, . . .

and since

Y0 = sup
−4p≤t≤0

∫

K4∩[θ̄(.,t)>−1]

ξp(·, t) ≤ |K4|

we obtain

Yn ≤ max{ν, σn|K4|} = max{ν, σn2N |K2|} , n = 1, 2, . . .

Take n = n0 ∈ N so large that σn02N ≤ ν. Then

Yn0
≤ max{ν, σn02N |K2|} ≤ max{ν, ν|K2|} = ν|K2| .

Recalling the definition of Yn, as well as the choice of ξ, we obtain

Yn0
≥ sup

−4p≤t≤0

∫

K2∩[θ̄(.,t)>−|δ|n0 ]

ξp(·, t) ≥
∣

∣x ∈ K2 : θ̄(x, t) > −|δ|n0
∣

∣ ,

for all t ∈ [−2p, 0], and therefore
∣

∣x ∈ K2 : θ̄(x, t) > −|δ|n0
∣

∣ ≤ ν|K2| , ∀t ∈ [−2p, 0] .

We have just proven the crucial result towards the expansion of “negativ-
ity” to a “full” cylinder in space, namely

Lemma 6. Given ν ∈ (0, 1), there exists δ∗ ∈ (0, 1), depending only upon
the data, ν and ω, such that

∣

∣x ∈ K2 : θ̄(x, t) > −δ∗
∣

∣ ≤ ν|K2| , ∀t ∈ [−2p, 0] . (39)

To prove the main result of this section, we need to make use of another
auxiliary result, which proof is a trivial modification to sub-solutions of the
proof of Lemma 4.1 of [7, Ch. 4]. Indeed, being above the singularity in time,
we are dealing only with powers p and 2 in the energy estimates. The proof
is included here for the sake of completeness.

Lemma 7. There exists ν̃, depending upon the data, N and p, and indepen-
dent of ω and ε, such that if θ is a sub-solution of (5) in [(x̄, t̄) +QR(m1,m2)]
satisfying

ess osc
[(x̄,t̄)+QR(m1,m2)]

θ ≤ ω
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and
∣

∣

∣
(x, t) ∈ [(x̄, t̄) +QR(m1,m2)] : θ(x, t) > µ+ − ω

2m

∣

∣

∣
≤ ν̃ |QR(m1,m2)|

then

θ(x, t) ≤ µ+ − ω

2m+1
, ∀(x, y) ∈

[

(x̄, t̄) + QR
2
(m1,m2)

]

,

where m = m1 +m2, m1,m2 ≥ 0 and

QR(m1,m2) = Kd1R ×
(

−2m2(p−2)Rp, 0
)

, d1 =
( ω

2m1

)
p−2

p

.

Proof. Assume that (x̄, t̄) = (0, 0) and construct the decreasing sequence of
numbers

Rn =
R

2
+

R

2n+1
, n = 0, 1, 2, . . .

and the families of nested and shrinking cubes and cylinders

Kn = Kd1Rn
, Qn = QRn

(m1,m2) .

Consider smooth cutoff functions 0 ≤ ξn ≤ 1, defined in Qn, and satisfying
the following set of assumptions







ξn ≡ 1 in Qn+1, ξn ≡ 0 on ∂Qn

|∇ξn| ≤ 2n+2

R
( ω
2m1

)
2−p

p , 0 < ∂tξn ≤ 2(2−p)m2 2p(n+2)

Rp

and write the local energy estimate (9) for the functions (θ − kn)+, with

kn = µ+ − ω

2m+1
− ω

2m+1+n
, n = 0, 1, 2, . . .

over the cylinders Qn, with ξ = ξn. Noting that, when (θ − kn)+ is not zero,

(θ − kn)+ ≤ ω

2m
,

the right hand side of the inequality is estimated from above by

C
2np

Rp
2(2−p)m2

( ω

2m

)2
∫ ∫

Qn

χ[(θ−kn)+>0] .

To estimate from below the left hand side introduce the level

kn < k̄n ≡ kn + kn+1

2
< kn+1 .
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Then, for all t ∈ (−2m2(p−2)Rp
n, 0), we have

∫

Kn

(θ − kn)
2
+ξ

p
n =

∫

Kn

(θ − kn)
2−p
+ (θ − kn)

p
−ξ

p
n

≥
( ω

2m+n+3

)2−p
∫

Kn

(θ − k̄n)
p
+ξ

p
n

and
∫ ∫

Qn

|∇(θ − kn)+|p ξp
n ≥

∫ ∫

Qn

∣

∣∇(θ − k̄n)+

∣

∣

p
ξp
n .

Collecting results, and dividing by ( ω
2m+n+3 )

2−p, we obtain the estimate

sup
−2m2(p−2)R

p
n<t<0

∫

Kn

(θ − k̄n)
p
+ξ

p
n +

( ω

2m+n+3

)p−2
∫ ∫

Qn

∣

∣∇(θ − k̄n)+

∣

∣

p
ξp
n

≤ C
2np+(2−p)m2

Rp

( ω

2m

)2 ( ω

2m+n+3

)p−2
∫ ∫

Qn

χ[(θ−kn)+>0] .

Introduce the change of variables

y =
( ω

2m1

)
2−p

p

x , z = 2(2−p)m2t ,

which maps the cylinder Qn into Qn := KRn
× (−Rp

n, 0), and define new
functions

θ̄(y, z) := θ(x, t) , ξ̄n(y, z) := ξn(x, t) .

Then we get (denoting the new variables again by (x, t))

sup
−R

p
n<t<0

∫

KRn

(θ̄ − k̄n)
p
+ξ̄n

p
+
( ω

2m+n+3

)p−2

2m2(p−2)

∫ ∫

Qn

∣

∣∇(θ̄ − k̄n)+

∣

∣

p
ξ̄n

p

≤ C
22n

Rp

( ω

2m

)p
∫ ∫

Qn

χ[(θ̄−kn)+>0] .

Note that
( ω

2m+n+3

)p−2

2m2(p−2) =

(

2m1+n+3

ω

)2−p

≥ 1

since 0 < 2− p < 1, ω ≤ 1, and m1 ≥ 0. Recalling the V p norm and defining

An :=
∣

∣(x, t) ∈ Qn : θ̄(x, t) > kn

∣

∣ ,

we obtain from the inequality above,

∥

∥(θ̄ − k̄n)+ξ̄n
∥

∥

p

V p(Qn+1)
≤ C

22n

Rp

( ω

2m

)p

An ,
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since ξ̄n ≡ 1 in Qn+1. Now, on the one hand we have

∥

∥(θ̄ − k̄n)+ξ̄n
∥

∥

p

p,(Qn+1)
=

∫ ∫

Qn+1

(θ̄ − k̄n)
p
+ ≥

∫ ∫

Qn+1∩[θ̄>kn+1]

(θ̄ − k̄n)
p

≥ (kn+1 − k̄n)
p

∫ ∫

Qn+1

χ[θ̄>kn+1] =
( ω

2m+n+3

)p

An+1 ,

and on the other hand, using [7, Corollary 3.1; p. 9], we have
∥

∥(θ̄ − k̄n)+

∥

∥

p

p,(Qn+1)
≤ C

∣

∣[(θ̄ − k̄n)+ > 0]
∣

∣

p

N+p
∥

∥(θ̄ − k̄n)+ξ̄n
∥

∥

p

V p(Qn+1)

≤ CA
p

N+p

n

∥

∥(θ̄ − k̄n)+

∥

∥

p

V p(Qn+1)
.

Then

An+1 ≤ C
2n(2+p)

Rp
A

1+ p

N+p
n

and, dividing this inequality by |Qn+1|, and taking Yn := An

|Qn|
,

Yn+1 ≤
C4pn

Rp
Y

1+ p

N+p
n

|Qn|1+
p

N+p

|Qn+1|
.

Since for n = 0, 1, 2, . . .

|Qn|1+
p

N+p

|Qn+1|
=

[(2Rn)
NRp

n]
1+ p

N+p

[(2Rn+1)NRp
n+1]

= 2
Np

N+p

(

Rn

Rn+1

)N+p

Rp
n ≤ 2N+2pRp ,

we arrive at

Yn+1 ≤ C4pnY
1+ p

N+p

n .

If we take
ν̃ = C

−1
α 4

−p

α2 ,

where α = p
N+p

, we can apply a lemma on the fast geometric convergence
of sequences and conclude that Yn → 0 when n → ∞. But this means that
An → 0 and since

Rn ↘ R

2
, kn ↗ µ+ − ω

2m+1

this implies that

θ(x, t) ≤ µ+ − ω

2m+1
, (x, t) ∈

[

(x̄, t̄) +QR
2
(m1,m2)

]

and the proof is complete.
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We are now in a position to prove the main result of this section.

Proposition 7. Assume the second alternative holds. There exists s3 >
s2 such that

θ(x, t) ≤ µ+ − ω

2s3
, a.e. (x, t) ∈ Q

(

a0

2

(

R

4

)p

, c0R

)

. (40)

Proof. Note that we are done if we prove that (40) holds in the cylinder
[

(x̄, 0) +Q

(

a0

2

(

R

4

)p

, 2c0R

)]

⊇ Q

(

a0

2

(

R

4

)p

, c0R

)

,

independently of the location of x̄ in KR(ω). We will prove that there exists
s4 > 1 such that

θ̄(x, t) ≤ − 1

2s4
, a.e. (x, t) ∈ Q1 ≡ K1 × (−1, 0) ,

and then use the fact that t̄ is an arbitrary element of I(ω) to get (40) for
the cylinder

[

(x̄, 0) +Q
(

a0

2

(

R
4

)p
, 2c0R

)]

and a proper choice of A.
In Lemma 6, take ν = ν̃ from Lemma 7 and determine the corresponding

δ∗ = δ∗(ν̃). Then use Lemma 7 for R = 2, µ+ = 0, ω = 1, m1 = 0 and m2

such that 2−m2 = δ∗(ν̃), over the cylinders
[

(0, t̄) +K2 × (−2m2(p−2)2p, 0)
]

≡ [(0, t̄) +Q2(0,m2)]

as long as they are contained in Q2, that is, for t̄ satisfying

−2p + 2m2(p−2)2p ≤ t̄ ≤ 0 .

Then
∣

∣

∣

∣

(x, t) ∈ [(0, t̄) +Q2(0,m2)] : θ̄(x, t) > − 1

2m2

∣

∣

∣

∣

≤ ν̃ |Q2(0,m2)|

for each one of the cylinders [(0, t̄) +Q2(0,m2)] (since (39) holds for all t ∈
[−2p, 0]). Therefore we conclude that

θ̄(x, t) ≤ − 1

2m2+1
, a.e. (x, t) ∈ [(0, t̄) +Q1(0,m2)] = K1 × (t̄− 2m2(p−2), t̄)

for all t̄ ∈ [−2p + 2m2(p−2)2p, 0]. Since −2p + 2m2(p−2)2p − 2m2(p−2) < −1, we
get

θ̄(x, t) ≤ − 1

2m2+1
, a.e. (x, t) ∈ Q1 .
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Returning to the initial variables and function we arrive at

θ(x, t) ≤ µ+ − ω

2m2+s2
, a.e. (x, t) ∈ [x̄+K2c0R] ×

(

t̄− t̄− t0
4p

, t̄

)

.

Since t0 ∈
[

t̄− dRp, t̄− ν0

2 dR
p
]

, we have

t̄− t̄− t0
4p

∈
[

t̄− d

(

R

4

)p

, t̄− ν0

2
d

(

R

4

)p]

and then

θ(x, t) ≤ µ+ − ω

2m2+s2
, a.e. (x, t) ∈ Kc0R ×

(

t̄− ν0

2
d

(

R

4

)p

, t̄

)

since [x̄+K2c0R] ⊃ Kc0R, independently of the location of x̄ ∈ KR(ω).
Now we just have to make use of the arbitrary choice of t̄ in (16) to conclude

that

θ(x, t) ≤ µ+− ω

2m2+s2
, a.e. (x, t) ∈ Kc0R×

(

−(a0 − d)Rp − ν0

2
d

(

R

4

)p

, 0

)

.

Take A such that
(

A

2

)(p−1)(2−p)

=
a0

d
≥ 2 . (41)

Then

a0

d
≥ 22p+1 − ν0

22p+1 − 1
⇔ −(a0 − d)Rp − ν0

2
d

(

R

4

)p

≤ −a0

2

(

R

4

)p

and consequently

θ(x, t) ≤ µ+ − ω

2s3
, a.e. (x, t) ∈ Q

(

a0

2

(

R

4

)p

, c0R

)

taking s3 = m2 + s2.

An immediate consequence of Proposition 7 is

Corollary 2. Assume the second alternative holds. Then there exists
σ1 ∈ (0, 1), depending only upon the data and ω, such that

ess osc
Q(a0

2 (R
4 )p,c0R)

θ ≤ σ1ω . (42)
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Remark 8. Note that we have only imposed two conditions on A: A > 2
and (41). So we can take

A = 21+ 1
(p−1)(2−p) > 2

and conclude that A is independent of ω.

Remark 9. As far as B is concerned, we have

B > 2s2 and B ≥ 2s1 ,

where, recalling the choice of A, s1 satisfies

s1 > log2A+
p

(p− 1)(2 − p)
= 1 +

p+ 1

(p− 1)(2 − p)

and

s1 > 3 +
2C

ν1
A(p−1)(2−p) = 3 +

C

ν1
22+(p−1)(2−p) ,

and

s2 > max

{

1 + Cω−α, 1 + log2

(

ω

µ+

)}

.

Summarizing:

A = 21+ 1
(p−1)(2−p) > 2

s1 > max
{

3 + C
ν1

22+(p−1)(2−p) , 1 + p+1
(p−1)(2−p)

}

n∗ > max
{

Cω−α, log2

(

ω
µ+

)}

, α = 2(p+1)(N+p)
p

B > max
{

2n∗+1, 2s1
}

.

6. The main result

As a consequence of the alternative, one of the Corollaries 1 or 2 must hold
and, consequently, we obtain

Lemma 8. There exists a constant σ = σ(ω) ∈ (0, 1), depending only upon
the data and ω, such that

ess osc
Q(d(R

8 )p,c0
R
8 )

θ ≤ σ(ω)ω .
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Proof. Let σ = max{σ0, σ1}. Since R
8 <

R
4 < R and (41) is in force

d

(

R

8

)p

≤ a0

2

(

R

4

)p

and the result follows.

We next define recursively two sequences of real positive numbers. Let

ω1 = σ(ω)ω and R1 =
R

C(ω1)
,

where

C(ω1) =

(

A

2

)

(p−1)(2−p)
p

8σ(ω)
(1−p)(2−p)

p B(ω1)
2−pσ(ω)

p−2
p > 8 .

Defining

Q1 = (a1R
p
1, c1R1) ; with a1 =

(ω1

A

)(1−p)(2−p)

, c1 =

(

ω1

B(ω1)

)p−2

and noting that

a1R
p
1 =

(ω1

A

)(1−p)(2−p) Rp

C(ω1)p

=
(ω

2

)(1−p)(2−p)
(

R

8

)p
σ(ω)2−p

B(ω1)p(2−p)

≤ d

(

R

8

)p

and

c1R1 =

(

ω1

B(ω1)

)p−2
R

C(ω1)

=
(ω

B

)p−2
(

R

8

)

1

B2−p
(

A
2

)

(p−1)(2−p)
p

≤ c0
R

8
we get

Q1 ⊂ Q

(

d

(

R

8

)p

, c0
R

8

)



44 E. HENRIQUES AND J.M. URBANO

and, consequently,

ess osc
Q1

θ ≤ ess osc
Q(d(R

8 )
p
,c0

R
8 )

θ ≤ σ(ω)ω = ω1 .

The process can now be repeated starting from Q1 since (15) holds in this
cylinder. We then define the following recursive sequences of real positive
numbers







ω0 = ω

ωn+1 = σ(ωn)ωn

and







R0 = R

Rn+1 = Rn

C(ωn+1)

and construct the family of nested and shrinking cylinders

Qn = (anR
p
n, cnRn) ; with an =

(ωn

A

)(1−p)(2−p)

, cn =

(

ωn

B(ωn)

)p−2

,

where n = 0, 1, . . . The next result is now standard (see, for example, [18] for
a proof) and yields as a consequence the proof of Theorem 1.

Theorem 2. The sequences (ωn)n and (Rn)n are decreasing sequences con-
verging to zero. Moreover, for every n = 0, 1, . . .

Qn+1 ⊂ Qn and ess osc
Qn

θ ≤ ωn .
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