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aUniversidade de CoimbraPreprint Number 04{17EFFECT OF BOUNDARY VORTICITY DISCRETISATIONON EXPLICIT STREAM-FUNCTION VORTICITYCALCULATIONSERC�ILIA SOUSA AND IAN SOBEYAbstra
t: The numeri
al solution of the time dependent Navier{Stokes equationsin terms of the vorti
ity and a stream fun
tion is a well tested pro
ess to des
ribetwo-dimensional in
ompressible 
ows, both for 
uid mixing appli
ations and forstudies in theoreti
al 
uid me
hani
s. In this paper we 
onsider the intera
tion be-tween the unsteady adve
tion-di�usion equation for the vorti
ity, the Poisson equa-tion linking vorti
ity and stream-fun
tion and the approximation of the boundaryvorti
ity, examining from a pra
ti
al viewpoint, global error and global iterationstability. Our results show that error is dominated by the largest error in any of thethree parts of the pro
ess and that most s
hemes have very similar global stability
onstraints although there may be small stability gains from the 
hoi
e of methodto determine boundary vorti
ity.Keywords: Navier-Stokes; vorti
ity boundary 
onditions, �nite di�eren
es; stabil-ity.1. Introdu
tionWhile the majority of 
urrent 
uid 
ow 
al
ulations are oriented towardsthree dimensional 
ow �elds, there remain an important group of simula-tions of two dimensional unsteady laminar 
ows: either for appli
ationswhi
h are approximately two dimensional or for the intrinsi
 relevan
e oftwo-dimensional 
ow to theoreti
al 
uid me
hani
s, see for instan
e Ottino[1℄. In 
al
ulating two dimensional 
ow there are signi�
ant advantages inusing a stream-fun
tion vorti
ity formulation of the Navier{Stokes equationsrather than a velo
ity-pressure formulation: the 
ontinuity equation is auto-mati
ally satis�ed, only one adve
tion equation has to be solved and there isno diÆ
ulty in mat
hing a pressure to the velo
ity �eld. In regular geometries(or irregular geometries using a 
onformal map) the use of a �nite di�eren
es
heme to integrate the stream-fun
tion vorti
ity equations is straight for-ward ex
ept for one important area: the treatment of the boundary vorti
ity.Re
eived May 19, 2004.ES was partially supported by Centro de Matem�ati
a da Universidade de Coimbra1



2 E. SOUSA AND I.J. SOBEYThe purpose of this paper is to extend studies of the e�e
t of di�erent dis-
retisation of the vorti
ity boundary 
onditions for the unsteady in
ompress-ible Navier-Stokes equations in the stream-fun
tion vorti
ity formulation.We are espe
ially interested in understanding the global stability propertiesof expli
it time mar
hing s
hemes using various methods for dealing withthe spatially impli
it vorti
ity boundary 
ondition, although in prin
iple,our methods 
ould be applied to impli
it time mar
hing s
hemes. With thispurpose we build a matrix form for the system of equations whi
h 
ouplestogether the adve
tion-di�usion equation for the vorti
ity, the Poisson equa-tion for the stream-fun
tion and the vorti
ity boundary 
ondition to providea global iteration matrix; we then study the properties of that matrix fortwo parti
ular 
ows. While stability is the primary fo
us of this work wealso note in passing some results on a

ura
y whi
h are in a

ordan
e withexisting results although with some new data.There are many studies of the stream-fun
tion vorti
ity formulation for theNavier-Stokes equations and a substantial literature on the subje
t, from theseminal work of Thom [2℄ through to texts on 
omputational 
uid me
hani
s,ranging from the early text Roa
he [3℄ to the more re
ent Peyret and Taylor[4℄. The basi
 method is also reviewed in papers su
h as Orszag and Israeli[5℄ and Gresho [6℄.The way vorti
ity is handled at a boundary is extremely important froma physi
al point of view as it re
e
ts the me
hanism of vorti
ity generationat a boundary. The diÆ
ulty with a vorti
ity formulation is the la
k of nat-ural boundary 
ondition on the vorti
ity sin
e a no-slip boundary 
onditiondoes not have a simple 
ounterpart in terms of the vorti
ity. In order to 
om-plete the dis
rete formulation is nevertheless ne
essary to impose a numeri
alboundary 
ondition on the vorti
ity. Perhaps the most well known numer-i
al vorti
ity boundary 
ondition is that given by Thom [2℄ whi
h 
omesfrom a quadrati
 polynomial approximation of the stream-fun
tion near aboundary. The approximation is 
onstrained to satisfy the 
orre
t normalderivative and then applied at the �rst interior point from the boundary.This type of numeri
al boundary 
ondition has been analysed by Hou andWetton [7℄, asso
iated with a 
entral s
heme for the vorti
ity equation, andshown to yield se
ond order a

urate solutions. Later Wang and Liu [8℄ stud-ied the Wilkes-Pearson formula asso
iated with the 
entral di�eren
es and afourth order s
heme with Briley's formula. Other work that has fo
used onthe role of vorti
ity boundary 
onditions is in for example: Weinan and Liu



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 3[9℄ or Napolitano et al. [10℄. More re
ently Li and Wang [11℄ have gener-alised vorti
ity boundary 
onditions to 
urved boundary domains. There isalso signi�
ant work on steady solutions and parti
ularly their a

ura
y inSpotz [12℄.The plan of this paper is to brie
y re
ap the formulation of the global iter-ation matrix for the Navier Stokes equations (the idea was �rst explored inSousa and Sobey [13℄ for a one-dimensional analogue of the stream-fun
tionvorti
ity equations), to 
onsider a number of well known dis
retisations (ofboth the vorti
ity transport equation and the boundary vorti
ity) and thento 
onsider two 
avity type 
ows, one an exa
t solution of the Navier{Stokesequations and one a 
avity 
ow driven by one wall moving uniformly, ex-amining variation of the solution with numeri
al parameters and stability ofexpli
it �nite di�eren
e s
hemes for these 
ows.2. Global iteration matrix formulationIn this se
tion we derive a global iteration matrix for the dis
retised form ofthe adve
tion-di�usion equation, the Poisson equation between the stream-fun
tion and the vorti
ity and the boundary vorti
ity method, also 
onsid-ering brie
y some 
onditions for stability of the global iteration.2.1. Flow equations. We 
onsider in
ompressible vis
ous 
ow in a two-dimensional domain without in
ow or out
ow. The motion of the 
uid isgoverned by the Navier-Stokes equations,�u�t + (u � r)u = �rp+ 1Rer2u;r � u = 0; (1)where u = u(x; y; t) = (u(x; y; t); v(x; y; t)) is a non-dimensional velo
ity�eld, p = p(x; y; t) is a non-dimensional pressure, and Re is a Reynolds num-ber. In a bounded domain 
 en
losed by a boundary �
, the impermeabilityof the boundaries and the no-slip 
ondition implies thatu(x; y; t) = uW (x; y; t); for (x; y) 2 �
; t > 0; (2)where uW denotes the boundary velo
ity.In terms of the vorti
ity �eld ! = vx�uy, the momentum equations providea vorti
ity equation, �!�t + u�!�x + v�!�y = 1Rer2!: (3)



4 E. SOUSA AND I.J. SOBEYThe 
uid velo
ity, u = (u; v) is obtained fromu = � �y ; v = �� �x ; (4)where  (x; y; t) is a stream-fun
tion, whi
h is 
onne
ted to the vorti
ity !,by a Poisson equation ! = �r2 ; (5)where without in
ow or out
ow in the 
avity 
ows we 
onsider, the streamfun
tion is zero on the boundary,  j�
 = 0. The boundary 
onditions (2)translate into boundary 
onditions for the stream fun
tion��� �y ; � �x� = uW (x; y; t); (x; y) 2 �
: (6)There is no expli
it boundary 
ondition for the vorti
ity.2.2. Matrix form of dis
retisation. The idea of the matrix formulationwas initially introdu
ed in Sousa and Sobey [13℄ for a one dimensional modelproblem whi
h was similar to a stream-fun
tion vorti
ity problem and soin
luded some of the features of that problem but in other respe
ts was
onsiderably simpler, having only two boundary points. In two dimensionswe have a more 
omplex problem for various reasons, one of them being thefa
t that we have a 
onsiderably larger number of points on the boundary.As we have noted, the stream-fun
tion vorti
ity formulation has the advan-tage that it not only eliminates the pressure variable, but also automati
allyenfor
es in
ompressibility. Yet, a diÆ
ulty in the numeri
al simulation of (3){ (6) is de
iding a suitable numeri
al boundary 
ondition for the vorti
ity.When the vorti
ity adve
tion-di�usion equation is updated in time, that doesnot provide values for the vorti
ity on the boundaries, only at mesh pointsin the interior of 
 so that an additional 
ondition is needed to determinethe vorti
ity on the boundary.We will des
ribe how the problem (3) { (6) is implemented in matrix form.We assume that we are in a 
avity, with 
 = [0; 1℄ � [0; 1℄ but these ideasgeneralise straight forwardly to arbitrary domains and to more 
ompli
ated
ows with inlet and outlet 
onditions.We start by writing the dis
retised vorti
ity values in two ve
tors, WI ,
ontaining points whi
h lie in the interior and WB 
ontaining points on theboundary. The dis
rete values of the stream-fun
tion are similarly 
ontained



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 5in	I , for the interior and	B for the boundary. A time update of the vorti
-ity adve
tion-di�usion equation provides an update for the interior vorti
ityvalues only. A fairly broad 
lass of time mar
hing dis
retisation for the vor-ti
ity adve
tion equation, (3), 
an be written in the formQWn+1I = AWnI +BWnB; (7)for suitable matri
es Q, A and B. Note that this formulation hides someaspe
ts of the Navier-Stokes equations sin
e a

ording to (4), the matri
esA and B are both fun
tions of the stream-fun
tion, and thus impli
itly ofthe vorti
ity. The equation (7), 
overs some impli
it and all expli
it timemar
hing s
hemes. For these 
avity problems, assume there is uniform dis-
retization where the spa
e step is the same in both dire
tions, namely h,and that the mesh points are:f(jh; kh) : j; k = 0; : : : ;mg:Thus the ve
torWI holds (m�1)2 values and the ve
torWB has 4m values.The dimensions of the matri
es Q and A are (m� 1)2� (m� 1)2 and of thematrix B are (m� 1)2 � 4m.For a driven 
avity 
ow, the natural ordering of the stream-fun
tion valuesimplies an ordering of values  jk =  (jh; kh); j; k = 0; : : : ;m with h = 1=m.Suppose we denote a ve
tor of values 	jk whi
h approximate  jk using thisnatural ordering 	 = [	00;	10;	20; : : : ;	mm℄T ; (8)then there will exist a permutation matrix P su
h that	 = P � 	B	I � ; (9)where	B are values on the boundary (j or k equal to 0 or m, in this 
ase 4mvalues), 	I those values in the interior (0 < j; k < m, in this 
ase (m � 1)2values) and if P is suitable partitioned as P = [P1;P2℄ then	 = P1	B +P2	I ; (10)where the matrix P1 is a (m+1)2�4m matrix and P2 is a (m+1)2�(m�1)2matrix.In a similar manner the vorti
ity approximationWjk, 
an be written (usingthe same permutation matri
es)W = [W00;W10;W20; : : : ;Wmm℄T = P1WB +P2WI : (11)



6 E. SOUSA AND I.J. SOBEYNext, the stream-fun
tion vorti
ity Poisson equation 
an be dis
retised atthe interior points by R	 = �h2WI ; (12)where R is a matrix of dimension (m � 1)2 � (m + 1)2 and is easy to writedown in terms of the natural ordering of 	, so that in equation (12),1h2L	n+1I + 1h2N	n+1B = �Wn+1I ; (13)L = RP2 and N = RP1: (14)and L is a (m� 1)2 � (m� 1)2 and N is an (m� 1)2 � 4m matrix.If the vorti
ity equation is dis
retised at the interior points (again usingthe natural ordering of 	n),QWn+1I = GWn = G[P1WnB +P2WnI ℄; (15)where G is a matrix of dimensions (m� 1)2 � (m+ 1)2. ThenQWn+1I = GP1WnB +GP2WnI ; (16)so that the matrix A and B in (7) are determined byA = GP2 and B = GP1: (17)The boundary vorti
ity is more 
ompli
ated, sin
e the dis
retisation thererelates the wall vorti
ity to the updates stream-fun
tion, but if we use anatural ordering to obtain on the boundaryD1Wn+1 = 1h2D2	n+1 + vn+1; (18)where D1 and D2 are 4m � (m + 1)2 matri
es. The ve
tor vn+1 might forinstan
e arise in a driven 
avity problem where the walls are moving. Itfollows thatD1[P1Wn+1B +P2Wn+1I ℄ = 1h2D2[P1	n+1B +P2	n+1I ℄ + vn+1; (19)and soD1P1Wn+1B = 1h2D2P1	n+1B + 1h2D2P2	n+1I �D1P2Wn+1I + vn+1: (20)This 
an be rewrittenWn+1B = 1h2M	n+1I + FWn+1I + 1h2J	n+1B + (D1P1)�1vn+1; (21)



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 7where the matri
es M, F and J are of dimensions 4m� (m� 1)2 and givenbyM = (D1P1)�1D2P2; F = �(D1P1)�1D1P2; J = (D1P1)�1D2P1: (22)This enables the stream-fun
tion to be eliminated in the interior using (13)Wn+1B = (F�ML�1)Wn+1I + 1h2 (J�ML�1N)	n+1B + (D1P1)�1vn+1; (23)and then the update of the vorti
ity in the interior 
an be repla
ed so thatWn+1B = (F�ML�1)Q�1(AWnI +BWnB) + 1h2 (J�ML�1N)	n+1B + (D1P1)�1vn+1: (24)This essentially 
ompletes the derivation of the iteration matrix for thisversion of the Navier-Stokes equations, sin
e we now have�Wn+1IWn+1B � = � Q�1A Q�1B(F�ML�1)Q�1A (F�ML�1)Q�1B � �WnIWnB �+ Sn+1;(25)or Wn+1 = KWn + Sn+1; (26)where Sn+1 = 1h2 � 0(J�ML�1N)	n+1B �+ (D1P1)�1vn+1and K denotes the overall iteration matrix,K = � Q�1A Q�1B(F�ML�1)Q�1A (F�ML�1)Q�1B � : (27)Let X = F�ML�1, p = (m� 1)2 and q = 4m. We haveK(p+q)2 = � Q�1Ap�p Q�1Bp�qXQ�1Aq�p XQ�1Bq�q � ;and we 
an observe thatK = � Ip�p 0p�qXq�p Iq�q � � Q�1p�p 0p�q0q�p Iq�q � � Ap�p Bp�q0q�p 0q�q � :Note that if we have an expli
it s
heme then Q = I so thatK = � I 0X I � � A B0 0 � (28)andX represents the in
uen
e of the vorti
ity boundary 
onditions and Pois-son's equation and A and B the in
uen
e of the vorti
ity equation.



8 E. SOUSA AND I.J. SOBEYIn this work we 
onsider two-level time-integration s
hemes and 
onstantboundary 
onditions so that Sn+1 = S, is 
onstant and so,Wn+1 = KnWn + S; (29)where S 
ontains boundary values of the stream-fun
tion and of the velo
ity�eld and in the 
ase where the 
ow �eld is evolving or time dependent sin
ethen the global iteration matrix varies from iteration to iteration and so isdenoted Kn.In se
tion 4 below we 
onsider a 
ase whereKn is 
onstant,Kn = K. Sin
ethe 
ow �eld is 
onstant and known in advan
e,Wn+1 = KWn + S: (30)For su
h a steady 
ow, we 
an denote the di�eren
e between the steadysolution,W and the 
urrent iteration value,Wn as an error, en =W�Wn.In that 
ase the error en satis�es the equationen+1 = Ken = Kn+1e0: (31)When K is 
onstant, we have the following stability 
ondition, see Ri
htmyerand Morton [14℄.Stability 
ondition: In order forWn to remain bounded and the s
heme,de�ned by the operator Kn+1, to remain stable, the in�nite set of operatorsKn has to be uniformly bounded. That is, we should have, in a sele
tednorm, for �nite T jjKnjj < C for 0 < n�t < T;where C is independent of n;�t; h.The norm of Kn is often very diÆ
ult to analyse, and instead a ne
essary
ondition but not always suÆ
ient 
ondition 
an be obtained from an analysisof the eigenvalues of K.The 
ondition �(K) � 1 is ne
essary for the s
heme implemented by (30)to be stable, where �(K) is the spe
tral radius of K.We have the following result.Proposition 1: The value � 6= 0 is an eigenvalue of the matrixK, de�nedby (28), if and only if is an eigenvalue of the matrix A+BX.Proof: If � 6= 0 is an eigenvalue of the matrix K then exists z su
h thatKz = �z. From this, we get Az1 + Bz2 = �z1 and XAz1 +XBz2 = �z2,



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 9where z = [z1 z2℄T . We have Xz1 = z2 and then Az1 +BXz1 = �z1 and �is an eigenvalue of A+BX.Re
ipro
ally if � is an eigenvalue of A + BX then there is z1 su
h thatAz1 + BXz1 = �z1. Therefore � is an eigenvalue of K, sin
e we haveKz = �z, where z = [z1 Xz1℄T .We 
an not easily get expli
it 
onditions between the eigenvalues of A andthe eigenvalues of A + BX, sin
e neither A or BX are spe
ial matri
es,namely symmetri
 or other. However the fa
t that the eigenvalues of K arethe eigenvalues of A + BX shows us more 
learly that the di�erent 
hoi
esof the vorti
ity boundary 
onditions, impli
itly represented by X, 
an a�e
tthe spe
tral radius of K.Also if we want to 
ompute numeri
ally the spe
trum of K for large di-mensions is more eÆ
ient to use the matrix A+BX.In later se
tions we are also going to use a fourth-order Poisson dis
retisa-tion. Brie
y, we point out the 
hanges that o

urs in the matrix formulationwhen using this dis
retisation.The formula (13) 
ome as1h2L	n+1I + 1h2N	n+1B = �T1Wn+1I �T2WnB; (32)and then 	n+1I = �L�1N	n+1B � h2L�1T1Wn+1I � h2L�1T2WnB: (33)Consequently (23) is now given byWn+1B = (F�ML�1T1)Wn+1I �ML�1T2WnB+ 1h2 (J�ML�1N)	n+1B +(D1P1)�1vn+1; (34)and thenWn+1B = �(F�ML�1T1)Q�1A (F�ML�1T1)Q�1B�ML�1T2� � WnIWnB �+ Sn+1:(35)3. Finite di�eren
e dis
retisationsIn this se
tion we set out two di�erent s
hemes for the unsteady vorti
ityadve
tion-di�usion equation; one a se
ond order Lax{Wendro� type s
hemeand one a third order, Qui
kest type s
heme. These s
hemes, whi
h areforms of well known s
hemes of the same name, were introdu
ed in Sousa



10 E. SOUSA AND I.J. SOBEYand Sobey [15℄. We 
onsider two s
hemes for dis
retising a Poisson equation,one the usual se
ond order 
entral di�eren
e s
heme and one a fourth orders
heme (see Iserles [16℄). We also set out a number of well known s
hemesfor dis
retising the boundary vorti
ity, that of Thom [2℄, Woods [17℄, Jensen[18℄, d'Alessio and Dennis [19℄ and Briley [20℄. We note in passing some
onsequen
es for stability from the dis
retisation of the adve
tion-di�usionequation.3.1. Dis
retisation of the vorti
ity adve
tion-di�usion equation. Weuse the di�eren
e operators,�x0Wj;k = 12(Wj+1;k �Wj�1;k);Æ2xWj;k = Wj+1;k � 2Wj;k +Wj�1;k;�x�Wj;k = Wj;k �Wj�1;kwith operators �y0Wj;k; Æ2yWj;k;�y�Wj;k de�ned analogously.Also de�ne lo
al numeri
al parameters,�x = u�th ; �y = v�th ; � = 1Re�th2 ;where �t is the time-step so that the iteration time is tn = n�t.We dis
retise the vorti
ity adve
tion-di�usion equation (3) on the (m �1)� (m� 1) interior points using two di�erent numeri
al s
hemes.An expli
it se
ond-order numeri
al Lax-Wendro� type s
heme is given by:W n+1jk = W njk � �x�x0W njk + (12�2x + �x)Æ2xW njk � �y�y0W njk+(12�2y + �y)Æ2yW njk + �x�y�x0�y0W njk; j; k = 1; : : : ;m� 1:(36)This s
heme uses a nine point sten
il and 
an be used independently of thedire
tion of the velo
ity �eld (u; v).An expli
it third-order Qui
kest type s
heme is given by:W n+1jk = W njk � �x�x0W njk � �y�y0W njk + (12�2x + �x)Æ2xW njk+(12�2y + �y)Æ2yW njk + �x�y�x0�y0W njk+16�x(1� �2x � 6�x)Æ�xW njk + 16�y(1� �2y � 6�y)Æ�yW njk



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 11��y(�x + 12�2x)Æ2x�y0W njk � �x(�y + 12�2y)Æ2y�x0W njk;j; k = 1; : : : ;m� 1; (37)where the operators Æ�x and Æ�y 
hange a

ording to the dire
tion of thevelo
ity �eld as des
ribed in the table below. This s
heme uses an elevenpoint sten
il. u; v � 0 u � 0; v � 0 u � 0; v � 0 u; v � 0Æ�x Æ2x�x� Æ2x�x� Æ2x�x+ Æ2x�x+Æ�y Æ2y�y� Æ2y�y+ Æ2y�y� Æ2y�y+De�nition of the operators Æ�x and Æ�y.In the 
ase of a non-linear velo
ity �eld, we treat these di�eren
e expansionsas lo
al approximations and use the velo
ity 
omponents (u; v) involved inthe variables �x and �y at the 
entral mesh point, (xj; yk). For additionalinformation on the derivation of these two s
hemes see Sousa and Sobey [15℄.If we retain the lo
ally 
onstant approximation then the stability of theiteration is from a linear problem and we 
an use von Neumann stabilityanalysis for the Cau
hy problem involving the adve
tion-di�usion vorti
ityequation. This gives us ne
essary 
onditions for stability whi
h are usuallyworthwhile taking into 
onsideration in the non-linear problem.A von Neumann analysis in two dimensions is a straightforward general-isation of the one-dimensional 
ase. The dis
rete Fourier de
omposition intwo dimensions 
onsists of the de
omposition of the fun
tion into a Fourierseries as Unjk =X�x;�y �nei�xj�xei�yk�y;where the range �x, �y is de�ned separately for ea
h dire
tion, as in the one-dimensional 
ase. The ampli�
ation fa
tor is given by �. The produ
ts �x�xand �y�y are often represented as a phase angle, namely, �x = �x�x; �y =�y�y: To obtain a von Neumann stability 
ondition we insert the singular
omponent �neij�xeik�y into the dis
retised s
heme. The ampli�
ation fa
toris said to satisfy the von Neumann 
ondition if there is a 
onstant K su
hthat j�(�x; �y)j � 1 +K�t 8 �x; �y 2 [0; 2�℄: (38)
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(a) (b)Figure 1. Stability 
onditions given in Proposition 2: (a) Se
ond-orders
heme. (b) Third-order s
heme.
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(a) (b)Figure 2. Stability 
onditions given in Proposition 3: (a) Se
ond-orders
heme: 
ontours for � = 0:05 (�); � = 0:1 (� � �); � = 0:2 (� � �); � =0:24 (��). (b) Third-order s
heme: 
ontours for � = 0:1 (���); � = 0:2 (���);� = 0:24 (��).As in the one-dimensional 
ase, in pra
ti
e we use the stronger 
onditionj�(�x; �y)j � 1 8 �x; �y 2 [0; 2�℄; (39)and the dis
rete s
heme that meets this 
ondition, we refer to as von Neu-mann stable. This has been 
alled pra
ti
al stability by Ri
htmyer and Mor-ton [14℄ or stri
t stability by other authors. In some 
ases 
ondition (38)allows numeri
al modes to grow exponentially in time for �nite values of �t.Therefore, the pra
ti
al, or stri
t, stability 
ondition (39) is re
ommendedin order to prevent numeri
al modes from growing faster than the physi
almodes of the di�erential equation.



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 13For our �nite di�eren
e s
hemes we have the following results, that are alsorepresented in Figures 1 and 2.Proposition 2: For the hyperboli
 problem, that is, � = 0, we have:(a) The s
heme (36) is stable if and only ifj�xj2=3 + j�yj2=3 � 1: (40)(b) The s
heme (37) is stable only ifj�xj+ j�yj � 1: (41)Proof:(a) This is well known, see Turkel [21℄.(b) Let u; v � 0 so that �x; �y � 0. The ampli�
ation fa
tor for the phaseangles �x = 0 and �y = � gives that to have j�j � 1 is the same as tohave �x � 1. Similarly for the phase angles �x = � and �y = 0, we have�y � 1.Then assuming �x; �y � 1 for the phase angles of high frequen
y�x = �y = �, j�j � 1 is equivalent to �x + �y � 1. Similarly results 
ouldbe obtained for di�erent dire
tions of the velo
ity �eld in order to obtain
ondition (41).Proposition 3:(a) Ne
essary von Neumann 
onditions for the stability of the s
heme (36)are 4� � 1 �2x + �2y � 1� 4�:(b) A ne
essary von Neumann 
ondition for the stability of the s
heme (37)is (�2x + 2�) + (�2y + 2�) + 23 j�xj(1� �2x � 6�) + 23 j�yj(1� �2y � 6�) � 1:Proof:(a) The �rst 
ondition is obtained in the limiting 
ase �x ! 0, �y ! 0. These
ond 
ondition is obtained from the parti
ular 
ase �x = �y = �.(b) Let u; v � 0 so that �x; �y � 0. The se
ond 
ondition is obtained fromthe parti
ular 
ase �x = �y = �.3.2. Dis
retisation of the Poisson equation. We 
onsider two dis
retisa-tions of the Poisson equation, (5). The �rst is the usual se
ond order 
entral



14 E. SOUSA AND I.J. SOBEYdi�eren
e s
heme, (Æ2x + Æ2y)	n+1j;k = �h2W n+1j;k : (42)The se
ond dis
retisation was originated by Collatz [22℄, see also Iserles [16℄,(Æ2x + Æ2y + 16Æ2xÆ2y)	n+1j;k = �h2(I + 112(Æ2x + Æ2y))W n+1j;k (43)where I is an identity operator. This s
heme is fourth order a

urate inh. We believe that this s
heme is the same as that advo
ated in Spotz [12℄who derived the s
heme afresh using dis
rete approximation for high orderderivatives in the trun
ation error.3.3. Boundary vorti
ity dis
retisation. While there are no formal orexpli
it 
onditions on the vorti
ity at a wall, it is ne
essary to use an impli
it
ondition in order to provide the vorti
ity at the wall. There are variousdi�erent methods for spe
ifying wall vorti
ity,WB, in terms of the vorti
ityin the interior and the stream fun
tion. An extensive review of methods fordealing with the boundary vorti
ity 
an be found in Napolitano et al. [10℄. Interms of our matrix formulation, di�erent boundary vorti
ity s
hemes imply
hanges only in the matri
es D1;D2.The 
onditions we use to 
al
ulate the vorti
ity on the boundaries areillustrated for one boundary, y = 0. Sin
e the velo
ity �eld on that bound-ary, u(x; 0), is not zero, the formulae assume that  y = u impli
itly on theboundary. The formulae below are due to Thom [2℄, Woods [17℄, Jensen [18℄,d'Alessio and Dennis [19℄ and Briley [20℄.Thom: Wj0 = 2h2 (	j0 �	j1 + hu(jh; 0)) (44)Woods: Wj0 = 3h2 (	j0 �	j1 + hu(jh; 0))� 12Wj1 (45)Jensen: Wj0 = 12h2 (7	j0 � 8	j;1 +	j2 + 6hu(jh; 0)) (46)D'Alessio & Dennis: Wj0 = 4h2 (	j0 �	j1 + hu(jh; 0))� 13(4Wj1 �Wj2)(47)Briley: Wj0 = 118h2(85	j;0�108	j;1+27	j;2�4	j;3+66hu(jh; 0)): (48)We omit the supers
ript n+ 1 de�ning the time, tn+1, in the formulas (44)-(48), all the variables are taken at the updated time level, tn+1. The dis-
retisation for the other boundaries is analogous. Considering (18) we have



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 15for Thom's vorti
ity boundary 
ondition that D1 = I where I is the matrixidentity, and D2 depends of the values of 	 at the boundary dis
retisation.For Woods' and d'Allesio & Dennis' boundary 
ondition D1 is no longer anidentity matrix. Also for Thom's, Jensen's and Briley's formulae, F = 0,sin
e they do not depend of the interior vorti
ity values. The order of a

u-ra
y of the various methods (see Napolitano et al. [10℄) is O(h) for Thom's,O(h2) for Woods', Jensen's and d'Alessio & Dennis' and O(h3) for Briley's.4. Cavity 
ow whi
h is exa
t solution of Navier{StokesequationsIn this se
tion we approa
h the problem of using the global iteration matrixby turning to an exa
t solution of the Navier{Stokes equations. The solutionis somewhat 
ontrived in that it relies on a body for
e whi
h may not beattainable in reality but it is, nevertheless, an exa
t solution and thus allows
onsideration of pre
isely de�ned error measures, whereas normally in dealingwith 
ow problems, one 
an only test against solutions obtained from re�nedmeshes.We start from the stream-fun
tion (x; y) = 1� sin�x sin �y; (49)whi
h will take 
onstant (zero) value on the boundaries of the unit squareand so in one sense 
an be des
ribed as a driven 
avity problem. This stream-fun
tion des
ribes a 
ow with velo
ity �eld u = (u; v)u(x; y) = sin �x 
os �y; (50)v(x; y) = � 
os �x sin �y; (51)and vorti
ity ! = �r2 = 2� sin�x sin�y: (52)In order to make this an exa
t solution, 
onsider the momentum equation inthe Navier-Stokes equations, (1), with the addition of a body for
e, f ,�u�t + (u � r)u = �rp+ 1Rer2u+ f ; (53)and 
hoose p = 14(
os 2�x+ 
os 2�y); (54)f = 2�2Re [sin�x 
os �y;� 
os �x sin �y℄: (55)



16 E. SOUSA AND I.J. SOBEYThe set  , p and f provide an exa
t solution to the steady Navier-Stokesequations.The problem we 
onsider is to suppose that we have some distribution ofvorti
ity W (x; y; t) and stream-fun
tion, 	(x; y; t) related byr2	 = �W; (56)but subje
t to the steady velo
ity �eld u and body for
e f through thevorti
ity adve
tion equation whi
h results from (53). The time dependentNavier-Stokes equations will give W ! ! as t!1 and we let W satisfy:�W�t + (u � r)W = 1Rer2W � 1Rer2!: (57)Now use the result that for this exa
t steady 
ow �eld�!�t � 0; (u � r)! � 0; (58)so that the di�eren
e, e =W � !, satis�es�e�t + (u � r)e = 1Rer2e: (59)We interpret e as an error in a vorti
ity �eld, the error satisfying an adve
tiondi�usion equation with a velo
ity �eld whi
h is spatially varying but 
onstantin time. If the vorti
ity time variation on the boundary is set to zero, thenthe vorti
ity error will de
ay to zero in time as W ! ! and properties of thedis
retisation of the adve
tion-di�usion equation alone should determine thevorti
ity time variation behavior in time. If, however, the boundary vorti
ityis not spe
i�ed expli
itly, but determined as usual for the stream-fun
tionvorti
ity formulation, then the error will not de
ay to zero in time but willre
e
t a global trun
ation error of the dis
retisation of the whole stream-fun
tion vorti
ity system. Hen
e the pro
edure to 
arry out one time step is:(a) update the error e in the interior of the domain using (59), (b) 
al
ulateW in the interior from W = e + !, (
) 
al
ulate the stream-fun
tion, 	 inthe interior by solving r2	 = �W , (d) 
al
ulate the vorti
ity W on theboundary using an appropriate method, and �nally (e) 
al
ulate the error onthe boundary using e =W � !.There are two numeri
al parameters whi
h 
hara
terise the system,� = �th � = 1Re�th2 :
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(d) (e)Figure 3. Eigenvalues less than one: The lo
al matrix A (��); the globalmatrix K ({); m = 32. Se
ond-order method for adve
tion-di�usion with:(a) Thom's boundary 
ondition; (b) Woods's boundary 
ondition; (
) Jensenboundary 
ondition; (d) Alessio's boundary 
ondition; (e) Briley's boundary
ondition.4.1. Stability. We 
onsider 
onsequen
es for stability of 
hoosing di�erentboundary vorti
ity 
onditions. Sin
e the vorti
ity di�eren
e, e, satis�es anadve
tion-di�usion equation with 
onstant velo
ity �eld we 
an examine sta-bility through the global iteration matrix, K, de�ned in (27), where we usedthe se
ond-order Poisson's dis
retisation.The results for the eigenvalues of K for di�erent vorti
ity boundary 
ondi-tions with the se
ond order Lax{Wendro� type s
heme are shown in �gure 3where we also show the eigenvalues of the iteration matrix for the adve
tion-di�usion equation, A, The results were obtained for the mesh size m = 32.The overall pattern is that there may be a small redu
tion in the region ofstability with higher order methods but in general, the 
hoi
e of boundaryvorti
ity dis
retisation does not have signi�
ant stability penalties. Meshre�nement does not a�e
t this 
on
lusion.
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(d) (e)Figure 4. Eigenvalues less than one: The lo
al matrix A (��);the global matrix K ({); m = 32. Third-order method foradve
tion-di�usion with: (a) Thom's boundary 
ondition; (b)Wood's boundary 
ondition; (
) Jensen boundary 
ondition; (d)Alessio's boundary 
ondition; (e) Briley's boundary 
ondition.We have also 
onsidered the 
ase of a third order Qui
kest type s
hemefor the adve
tion-di�usion equation and the regions of stability are shown in�gure 4. In this 
ase there is a more noti
eable stability penalty but again,only marginally important. There is a region near the � = 0 axis where theeigenvalues are predi
ted to be very slightly greater than one but in pra
ti
al
omputations, the iterations remain stable in this region.Although Figures 3 and 4 display the stability regions obtained when us-ing the se
ond-order Poisson's dis
retisation, for the fourth-order Poissondis
retisation (43) we obtain very similar stability regions.4.2. A

ura
y. We have used solution of the system (56) and (59) to ex-amine the a

ura
y of the di�erent numeri
al s
hemes although as we shallsee in the next se
tion, the 
on
lusions are more limited than we had hoped.



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 19We start the iteration with the vorti
ity initially set to have unit valueeverywhere ex
ept at the four 
orner nodes where it is set to zero (the 
ornervalues of the vorti
ity are not used anywhere in the iteration). The systemis then updated a

ording to the s
heme des
ribed above with the followingpossible 
hoi
es:i) Lax{Wendro� or Qui
kest for adve
tion-di�usion equation,ii) a se
ond or fourth order s
heme for solution of the Poisson equation,iii) boundary vorti
ity s
heme from: Thom, Woods, Jensen, d'Allessio &Dennis or Briley.The Poisson equation was solved using a four-level multigrid solver with
onvergen
e 
riterion set to L1 norm of the residual less than 10�7. As theglobal error is 
onverging to zero as the mesh size vanishes, the order of
onvergen
e 
an be extrapolated using two meshes. In the results we do thisfor 16� 16 and 32� 32 meshes and for 32� 32 and 64� 64 meshes.The results shown in table 1 are a little surprising sin
e for the majorityof 
ases se
ond order 
onvergen
e is obtained regardless of the dis
retisationof the vorti
ity equation or whi
h form of boundary 
ondition is used, how-ever, in the 
ase of Jensen or Briley's method, fourth order 
onvergen
e isobtained when the Poisson solver is also fourth order. We believe that thisis 
onsistent with the theory of Bramble and Hubbard [23℄ who showed thatfor an ellipti
 problem with trun
ation error O(hn) [h is mesh spa
ing℄ thenthe global error would remain O(hn) when there were lo
al errors of orderO(hn�1) near a boundary with a mixed or Neumann 
ondition and O(hn�2)near a boundary with Diri
hlet 
ondition. The 
omplexity of this parti
ularproblem means that we 
annot prove this result formally at present. It is alsosurprising that the dis
retisation of the vorti
ity equation does not a�e
t thenumeri
al results but that too may be 
onsistent with the theory of Brambleand Hubbard [23℄ or it may be a 
onsequen
e of the very arti�
ial nature ofthis test problem. Sin
e in the next se
tion where we 
onsider a driven 
avity
ow, we do not see this behavior, it is most likely that the 
onvergen
e hereis determined more by the solution of Poisson equation than by the solutionof the adve
tion di�usion equation so that the 
orre
t explanation for theglobal 
onvergen
e rate 
omes from Bramble{Hubbard theory.
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Boundary Conve
tion Poisson Error Convergen
emethod Di�usion Equation 16� 16 32� 32 64� 64 16-32 32-64O(h2) 0.914E-02 0.222E-02 0.546E-03 2.04 2.02Lax-Wendro� O(h4) 0.181E-01 0.443E-02 0.109E-02 2.03 2.02Thom O(h2) 0.909E-02 0.222E-02 0.546E-03 2.03 2.02Qui
kest O(h4) 0.180E-01 0.443E-02 0.109E-02 2.02 2.02O(h2) 0.278E-01 0.668E-02 0.164E-02 2.06 2.03Lax-Wendro� O(h4) 0.183E-01 0.444E-02 0.109E-02 2.04 2.02Woods O(h2) 0.275E-01 0.667E-02 0.164E-02 2.04 2.02Qui
kest O(h4) 0.181E-01 0.444E-02 0.109E-02 2.03 2.02O(h2) 0.925E-02 0.223E-02 0.546E-03 2.06 2.03Lax-Wendro� O(h4) 0.154E-03 0.930E-05 0.571E-06 4.05 4.03Jensen O(h2) 0.915E-02 0.222E-02 0.546E-03 2.04 2.03Qui
kest O(h4) 0.153E-03 0.930E-05 0.571E-06 4.04 4.03O(h2) 0.686E-01 0.137E-01 0.319E-02 2.32 2.11Lax-Wendro� O(h4) 0.611E-01 0.123E-01 0.284E-02 2.31 2.11d'Allesio O(h2) 0.653E-01 0.136E-01 0.318E-02 2.26 2.10Qui
kest O(h4) 0.582E-01 0.122E-01 0.283E-02 2.26 2.10O(h2) 0.961E-02 0.224E-02 0.547E-03 2.10 2.04Lax-Wendro� O(h4) 0.103E-03 0.628E-05 0.387E-06 4.04 4.02Briley O(h2) 0.947E-02 0.224E-02 0.547E-03 2.08 2.03Qui
kest O(h4) 0.102E-03 0.627E-05 0.387E-06 4.02 4.02Table 1. Global L2 error of time 
onverged solution for three mesh resolutions,16� 16, 32� 32 and 64� 64, with 
al
ulated 
onvergen
e rate for varying vorti
ityboundary 
ondition, 
onve
tion-di�usion dis
retisation and dis
retisation of streamfun
tion-vorti
ity equation.Numeri
al parameters are : Re = 100, �t = 0:0005, multigrid residual less than 10�7.

5.Driven
avitylaminar
ow
Inthethisse
tionwe
onsidertimemar
hingsolutionsforafullNavier-

Stokesproblemusingtherangeofdis
retisationsjustdes
ribedandpresent
stabilityregionsandsomenumeri
alresultsfora

ura
y.Thisproblemhas
longservedastheprototypeforthein
ompressibleNavier-Stokesequations;
see,HouandWetton[7℄,BenjamimandDenny[24℄,S
hreiberandKeller
[25℄andShen[26℄,tomentiononlyafew.
Weassumeu=0andv=0onallthe�xedwallsandthatonthemoving

wallaty=1,u=1andv=0.Theseboundary
onditions
anbewritten



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 21in terms of the stream fun
tion as  = 0on all boundaries and � �n = �where � = 0 on �xed walls and � = 1 on the moving wall at y = 1. The
oordinate n is normal to the surfa
e.5.1. Stability. In the driven 
avity problem, energy is provided to thesystem through for
es a
ting on the moving wall and this energy is dissipatedby vis
ous a
tion, be
oming heat whi
h will be lost through the 
avity walls.The driven 
avity does not show stability for a Reynolds number larger than7500, instead there is bounded os
illations of the energy even for very smalltime-steps. We have not analysed the nature of this os
illation, althoughthe reasons may be asso
iated with the dynami
al features of the physi
alproblem as reported in the literature for the driven 
avity in papers su
h asShen [26℄, Bruneau and Jouron [27℄ and Goodri
h et al. [28℄, where othernumeri
al s
hemes were used.For the driven 
avity problem, a steady laminar 
ow exists for Re < 3000.In this se
tion we give 
al
ulations of the stability of numeri
al 
al
ulationof the steady state for a representative Reynolds number 350.We 
onsider the matrix formulation, des
ribed in se
tion 2, of the system
omposed by the vorti
ity equation with the Poisson's equation. The velo
ity�eld (~u; ~v) introdu
ed in the vorti
ity equation is the numeri
al approxima-tion velo
ity �eld to (u; v) that we obtain from numeri
al solution of the
avity 
ow problem.When we use the se
ond-order and third-order dis
retisation for the vorti
-ity equation and for Thom, Alessio and Dennis and Briley vorti
ity boundarydis
retisations at Reynolds number 350, the result of the eigenvalues for thematrix formulation is des
ribed in �gure 5. We have used the se
ond-orderPoisson's dis
retisation. Nevertheless if instead we use the fourth-order Pois-son's dis
retisation the stability results are very similar to the ones presentedin Figure 5.5.2. A

ura
y. There are well established 
al
ulations of the driven 
avityproblem whi
h provide referen
e values for the solution. We use those fromBottela and Peyret [29℄ whi
h were 
omputed using a high order spe
tral
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(a) (b)Figure 5. Unstable region for Re = 350 [above the 
urves℄: eigenvalueslarger than one; (a) For the 2nd order method (b) For the 3th order method.Thom's boundary 
ondition (�); Alessio's boundary 
ondition (���); Wood'sand Briley's boundary 
ondition (� � �); Jensen's boundary 
ondition(��).
method. In parti
ular we examine the 
ase Re = 100 and the value of thevorti
ity in the middle of the moving wall and the vorti
ity and stream-fun
tion in the 
enter of the 
avity. The results were 
onsidered 
onvergedfor a variation of the vorti
ity between time steps of order 10�21, that is thelimit of double pre
ision a

ura
y. We have used four meshes, 32�32, 64�64,128�128 and 256�256. Then results from pairs of meshes were extrapolatedto give an estimate of the 
onvergen
e rate as the mesh size de
reases. Theresults are given in tables 2-4. For most of the 
al
ulations the 
onvergen
erate is essentially quadrati
. The ex
eption is the 
ondition from d'Allesion& Dennis where the 
onvergen
e rate seems 
loser to 1.5. It is apparent thatthe 
hoi
e of dis
retisation of the Poisson equation makes no di�eren
e, the
onditions whi
h gave quarti
 
onvergen
e in the previous se
tion are nowonly quadrati
 so that the 
onditions for Bramble-Hubbard theory to allowglobal 
onvergen
e to be determined by dis
retisation in the interior do nothold (re
all that Qui
kest should be 
lose to third order a

urate in spa
eso we might have hoped to �nd Qui
kest plus quarti
 dis
retisation of thePoisson equation giving 
lose to third order 
onvergen
e).
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!(0:5; 1) Referen
e=6.564094 Convergen
e!j�
 u � r! r2 = �! 32� 32 64� 64 128� 128 256� 256 32-64 64-128 128-256Lax O(h2) 6.990319 6.659525 6.585685 6.569531 2.16 2.14 1.99Wendro� O(h4) 6.973841 6.650393 6.582504 6.568800 2.25 2.23 1.97Thom O(h2) 6.856680 6.630311 6.581038 6.568237 2.14 1.97 2.03Qui
kest O(h4) 6.838890 6.620976 6.577831 6.567307 2.27 2.05 2.10Lax O(h2) 6.856138 6.636151 6.581579 6.568751 2.02 2.04 1.91Wendro� O(h4) 6.833118 6.626328 6.578337 6.568015 2.11 2.13 1.86Woods O(h2) 6.727854 6.607491 6.576985 6.567460 1.92 1.75 1.94Qui
kest O(h4) 6.703616 6.597450 6.573714 6.566524 2.06 1.79 1.98Lax O(h2) 6.851832 6.635290 6.581445 6.568735 2.01 2.04 1.90Wendro� O(h4) 6.831085 6.624681 6.577995 6.567962 2.14 2.12 1.85Jensen O(h2) 6.724270 6.606717 6.576860 6.567444 1.91 1.74 1.93Qui
kest O(h4) 6.701177 6.595836 6.573376 6.566472 2.11 1.77 1.96Lax O(h2) 6.915013 6.665129 6.592959 6.573593 1.80 1.81 1.60Wendro� O(h4) 6.889537 6.655285 6.589724 6.572859 1.84 1.83 1.55d'Allesio O(h2) 6.780886 6.635431 6.588223 6.572284 1.60 1.56 1.56Qui
kest O(h4) 6.754719 6.625346 6.584954 6.571350 1.64 1.55 1.52Lax O(h2) 6.846822 6.638982 6.582381 6.568893 1.92 2.03 1.93Wendro� O(h4) 6.823843 6.627732 6.578811 6.567906 2.03 2.11 1.95Briley O(h2) 6.721911 6.610509 6.577795 6.567601 1.77 1.76 1.97Qui
kest O(h4) 6.696143 6.598940 6.574191 6.566612 1.92 1.79 2.00Table 2. Cal
ulation of wall vorti
ity midway along moving wall, !(0:5; 1), for four mesh resolutionstogether with extrapolated 
onvergen
e rate for varying vorti
ity boundary 
ondition,
onve
tion-di�usion and stream fun
tion-vorti
ity equation dis
retisation. The referen
e value givenby Botella & Peyret (1998) is !(0:5; 1) = 6:564094. Numeri
al parameters are : Re = 100,�t = 0:0005, multigrid residual less than 10�7.
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Boundary Conve
tion Poisson !(0:5; 0:5) Referen
e=1.174412 Convergen
emethod Di�usion Equation 32� 32 64� 64 128� 128 256� 256 32-64 64-128 128-256O(h2) 1.063036 1.146349 1.166998 1.172601 1.99 1.92 2.03Lax-Wendro� O(h4) 1.087573 1.153773 1.169074 1.173216 2.07 1.95 2.16Thom O(h2) 1.106146 1.157270 1.168431 1.173058 1.99 1.52 2.14Qui
kest O(h4) 1.131313 1.164780 1.170514 1.173611 2.16 1.31 2.28O(h2) 1.081257 1.149183 1.167304 1.172618 1.88 1.83 1.99Lax-Wendro� O(h4) 1.106249 1.156676 1.169390 1.173229 1.94 1.82 2.09Woods O(h2) 1.123390 1.160001 1.168729 1.173070 1.82 1.34 2.08Qui
kest O(h4) 1.148942 1.167596 1.170825 1.173624 1.90 0.93 2.19O(h2) 1.081077 1.149267 1.167335 1.172620 1.89 1.83 1.98Lax-Wendro� O(h4) 1.105883 1.156949 1.169465 1.173245 1.97 1.82 2.08Jensen O(h2) 1.122976 1.160052 1.168758 1.173078 1.84 1.34 2.08Qui
kest O(h4) 1.148631 1.167852 1.170904 1.173040 1.97 0.90 1.35O(h2) 1.063547 1.140899 1.163966 1.171173 1.73 1.68 1.69Lax-Wendro� O(h4) 1.088474 1.148362 1.166048 1.171759 1.72 1.64 1.66d'Allesio O(h2) 1.106677 1.151932 1.165426 1.171635 1.59 1.32 1.69Qui
kest O(h4) 1.132078 1.159515 1.167520 1.172189 1.51 1.11 1.63O(h2) 1.081195 1.148418 1.167115 1.172590 1.84 1.83 2.00Lax-Wendro� O(h4) 1.106169 1.156240 1.169278 1.173146 1.91 1.82 2.02Briley O(h2) 1.122568 1.159183 1.168539 1.173038 1.77 1.37 2.10Qui
kest O(h4) 1.148513 1.167140 1.170713 1.173605 1.83 0.98 2.20Table 3. Cal
ulation of vorti
ity at the 
entre, !(0:5; 0:5), for four mesh resolutionstogether with extrapolated 
onvergen
e rate for varying vorti
ity boundary 
ondition,
onve
tion-di�usion and stream fun
tion-vorti
ity equation dis
retisation. The referen
e value givenby Botella & Peyret (1998) is !(0:5; 0:5) = 1:174412. Numeri
al parameters are : Re = 100,�t = 0:0005, multigrid residual less than 10�7.
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Boundary Conve
tion Poisson  (0:5; 0:5) Referen
e=0.0665474 Convergen
emethod Di�usion Equation 32� 32 64� 64 128� 128 256� 256 32-64 64-128 128-256O(h2) 0.062828 0.065634 0.066314 0.066490 2.03 1.97 2.02Lax-Wendro� O(h4) 0.063660 0.065884 0.066385 0.066510 2.12 2.03 2.13Thom O(h2) 0.064146 0.065960 0.066355 0.066503 2.03 1.61 2.13Qui
kest O(h4) 0.064976 0.066215 0.066426 0.066522 2.24 1.45 2.27O(h2) 0.063479 0.065729 0.066322 0.066490 1.91 1.86 1.96Lax-Wendro� O(h4) 0.064325 0.065982 0.066393 0.066510 1.97 1.88 2.04Woods O(h2) 0.064746 0.066051 0.066363 0.066503 1.86 1.43 2.05Qui
kest O(h4) 0.065596 0.066306 0.066434 0.066522 1.98 1.09 2.15O(h2) 0.063483 0.065733 0.066324 0.066490 1.91 1.86 1.96Lax-Wendro� O(h4) 0.064322 0.065993 0.066396 0.066510 2.01 1.88 2.03Jensen O(h2) 0.064742 0.066054 0.066364 0.066503 1.87 1.43 2.05Qui
kest O(h4) 0.065595 0.066317 0.066437 0.066523 2.05 1.06 2.15O(h2) 0.062720 0.065385 0.066183 0.066429 1.72 1.68 1.63Lax-Wendro� O(h4) 0.063566 0.065636 0.066254 0.066450 1.71 1.63 1.58d'Allesio O(h2) 0.064039 0.065717 0.066226 0.066443 1.59 1.37 1.62Qui
kest O(h4) 0.064885 0.065972 0.066297 0.066462 1.53 1.20 1.55O(h2) 0.063483 0.065701 0.066315 0.066488 1.86 1.87 1.98Lax-Wendro� O(h4) 0.064328 0.065966 0.066389 0.066508 1.93 1.88 2.00Briley O(h2) 0.064722 0.066021 0.066356 0.066502 1.79 1.46 2.07Qui
kest O(h4) 0.065587 0.066290 0.066430 0.066521 1.90 1.14 2.16Table 4. Cal
ulation of streamfun
tion at 
entre,  (0:5; 0:5), for four mesh resolutionstogether with extrapolated 
onvergen
e rate for varying vorti
ity boundary 
ondition,
onve
tion-di�usion and stream fun
tion-vorti
ity equation dis
retisation.Numeri
al parameters are : Re = 100, �t = 0:0005, multigrid residual less than 10�7.

6.Con
lusion
Wehavedevelopedaglobaliterationmatrixformulationforthestream-

fun
tionvorti
ityequationsandappliedittotwodriven
avityproblems
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t on numeri
al stability of di�erent numeri
al vorti
-ity boundary 
onditions. The main 
on
lusion is that the various ways oftreating the boundary vorti
ity make little di�eren
e to stability whi
h isdetermined mainly by the dis
retisation of the adve
tion-di�usion vorti
ityequation. We have observed in passing some results for a

ura
y of the 
al-
ulations and observe that there are situations where dis
retisation errorsnear the boundary do not propagate into the interior and do not a�e
t theglobal a

ura
y, as given by Bramble{Hubbard theory but for the most part,in solution of pra
ti
al problems using time mar
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ultto ex
eed se
ond order 
onvergen
e.Referen
es[1℄ Ottino J. The kinemati
s of mixing, stret
hing, 
haos and transport . Cambridge UniversityPress, 1989.[2℄ Thom A. The 
ow past a 
ir
ular 
ylinders at low speeds. Pro
. Roy. So
. London 1933;A141:651{666.[3℄ Roa
he P. Computational Fluid Dynami
s. Hermosa, 1972.[4℄ Peyret R. and Taylor T. Computational methods for 
uid 
ow . Springer-Verlag: Berlin, 1986.[5℄ Orszag S. and Israeli M. Numeri
al simulation of vis
ous in
ompressible 
ows. Annual Reviewof Fluid Me
hani
s 1974; 6:281{318.[6℄ Gresho P. Some interesting issues in in
ompressible 
uid dynami
s, both in the 
ontinuum andin numeri
al simulation. Advan
es in applied me
hani
s 1992; 28:45{140.[7℄ Hou T. and Wetton B. Convergen
e of a �nite di�eren
e s
heme for the Navier-Stokes equationsusing vorti
ity boundary 
onditions. SIAM Journal of Numeri
al Analysis 1992; 29:615{639.[8℄ Wang C. and Liu J. Analysis of �nite di�eren
e s
hemes for unsteady Navier-Stokes equationsin vorti
ity formulation. Numer. Math. 2002; 91:543{576.[9℄ Weinan E. and Liu J. Vorti
ity boundary 
ondition and related issues for �nite di�eren
es
hemes. Journal of Computational Physi
s 1996; 124:368{382.[10℄ Napolitano M., Pas
azio G., and Quartapelle L. A review of vorti
ity 
onditions in the nu-meri
al solution of the ! �  equations. Computer and Fluids 1999; 28:139{185.[11℄ Li Z. and Wang C. A fast �nite di�eren
e method for solving Navier-Stokes equations onirregular domains. Comm. Math. S
i 2003; 1:180{196.[12℄ Spotz W. A

ura
y and performan
e of numeri
al wall boundary 
onditions for steady, 2Din
ompressible stream fun
tion vorti
ity. Int. J. Numeri
al Methods in Fluids 1998; 28:737{757.[13℄ Sousa E. and Sobey I. Numeri
al stability of unsteady stream-fun
tion vorti
ity 
al
ulations.Communi
ations in Numeri
al Methods in Engineering 2003; 19:407{419.[14℄ Ri
htmyer R. and Morton K. Di�eren
e methods for initial-value problems. Wiley-Inters
ien
e:New York, 1967.[15℄ Sousa E. and Sobey I. A family of �nite di�eren
e s
hemes for the 
onve
tion-di�usion equationin two dimensions. In enumath 2001 Numeri
al Mathemati
s and Advan
ed Appli
ations, pp179{188. Springer-Verlag, 2002.[16℄ Iserles A. A �rst 
ourse in the Numeri
al Analysis of Di�erential Equations. Cambridge Uni-versity Press, 1996.[17℄ Woods L. A note on the numeri
al solution of a fourth order di�erential equation. Aeronauti
alQuarterly 1954; 5:176{182.



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 27[18℄ Jensen V. Vis
ous 
ow round a sphere at low Reynolds numbers. Pro
eedings of the RoyalSo
iety 1959; A294:346{366.[19℄ d'Alessio S. and Dennis S. A vorti
ity model for vis
ous 
ow past a 
ylinder. Computers &Fluids 1994; 23:279{293.[20℄ Briley W. A numeri
al study of laminar separation bubbles using Navier-Stokes equations.Journal of Fluid Me
hani
s 1971; 47:713{736.[21℄ Turkel E. Symmetri
 Hyperboli
 di�eren
e s
hemes and Matrix Problems. Linear Algebra andits Appli
ations 1977; 16:109{129.[22℄ Collatz L. Numeris
he behandlung von di�erentialglei
hungen. Springer-Verlag, 1951.[23℄ Bramble J. and Hubbard B. New monotone type approximations for ellipti
 problems. Math-emati
s of Computation 1964; 18:349{367.[24℄ Benjamin A. and Denny V. On the 
onvergen
e of numeri
al solutions for 2-D 
ows in a 
avityat large Re. Journal of Computational Physi
s 1979; 33:340{358.[25℄ S
hreiber R. and Keller H. Driven 
avity 
ows by eÆ
ient numeri
al te
hniques. Journal ofComputational Physi
s 1983; 49:310{333.[26℄ Shen J. Hopf bifur
ation of the unsteady regularized driven 
avity 
ow. Journal of Computa-tional Physi
s 1991; 95:228{245.[27℄ Bruneau C. and Jouron C. A new upwind s
heme for the driven 
avity 
ow. C. R. des A
ademiedes S
ien
es 1988; 307:359{362.[28℄ Goodri
h J., Gustafson K., and Halasi K. Hopf bifur
ation in the driven 
avity. Journal ofComputational Physi
s 1990; 90:219{261.[29℄ Botella O. and Peyret R. Ben
hmark spe
tral results on the lid-driven 
avity 
ow. Computers& Fluids 1998; 27:421{433.Er
��lia SousaDepartamento de Matem�ati
a, Universidade de Coimbra, PortugalIan SobeyOxford University Computing Laboratory, U.K.


