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EFFECT OF BOUNDARY VORTICITY DISCRETISATION
ON EXPLICIT STREAM-FUNCTION VORTICITY
CALCULATIONS

ERCILIA SOUSA AND IAN SOBEY

ABSTRACT: The numerical solution of the time dependent Navier—Stokes equations
in terms of the vorticity and a stream function is a well tested process to describe
two-dimensional incompressible flows, both for fluid mixing applications and for
studies in theoretical fluid mechanics. In this paper we consider the interaction be-
tween the unsteady advection-diffusion equation for the vorticity, the Poisson equa-
tion linking vorticity and stream-function and the approximation of the boundary
vorticity, examining from a practical viewpoint, global error and global iteration
stability. Our results show that error is dominated by the largest error in any of the
three parts of the process and that most schemes have very similar global stability
constraints although there may be small stability gains from the choice of method
to determine boundary vorticity.

KEYWORDS: Navier-Stokes; vorticity boundary conditions, finite differences; stabil-
ity.

1. Introduction

While the majority of current fluid flow calculations are oriented towards
three dimensional flow fields, there remain an important group of simula-
tions of two dimensional unsteady laminar flows: either for applications
which are approximately two dimensional or for the intrinsic relevance of
two-dimensional flow to theoretical fluid mechanics, see for instance Ottino
[1]. In calculating two dimensional flow there are significant advantages in
using a stream-function vorticity formulation of the Navier—Stokes equations
rather than a velocity-pressure formulation: the continuity equation is auto-
matically satisfied, only one advection equation has to be solved and there is
no difficulty in matching a pressure to the velocity field. In regular geometries
(or irregular geometries using a conformal map) the use of a finite difference
scheme to integrate the stream-function vorticity equations is straight for-
ward except for one important area: the treatment of the boundary vorticity.
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The purpose of this paper is to extend studies of the effect of different dis-
cretisation of the vorticity boundary conditions for the unsteady incompress-
ible Navier-Stokes equations in the stream-function vorticity formulation.
We are especially interested in understanding the global stability properties
of explicit time marching schemes using various methods for dealing with
the spatially implicit vorticity boundary condition, although in principle,
our methods could be applied to implicit time marching schemes. With this
purpose we build a matrix form for the system of equations which couples
together the advection-diffusion equation for the vorticity, the Poisson equa-
tion for the stream-function and the vorticity boundary condition to provide
a global iteration matrix; we then study the properties of that matrix for
two particular flows. While stability is the primary focus of this work we
also note in passing some results on accuracy which are in accordance with
existing results although with some new data.

There are many studies of the stream-function vorticity formulation for the
Navier-Stokes equations and a substantial literature on the subject, from the
seminal work of Thom [2] through to texts on computational fluid mechanics,
ranging from the early text Roache [3] to the more recent Peyret and Taylor
[4]. The basic method is also reviewed in papers such as Orszag and Israeli
[5] and Gresho [6].

The way vorticity is handled at a boundary is extremely important from
a physical point of view as it reflects the mechanism of vorticity generation
at a boundary. The difficulty with a vorticity formulation is the lack of nat-
ural boundary condition on the vorticity since a no-slip boundary condition
does not have a simple counterpart in terms of the vorticity. In order to com-
plete the discrete formulation is nevertheless necessary to impose a numerical
boundary condition on the vorticity. Perhaps the most well known numer-
ical vorticity boundary condition is that given by Thom [2] which comes
from a quadratic polynomial approximation of the stream-function near a
boundary. The approximation is constrained to satisfy the correct normal
derivative and then applied at the first interior point from the boundary.
This type of numerical boundary condition has been analysed by Hou and
Wetton [7], associated with a central scheme for the vorticity equation, and
shown to yield second order accurate solutions. Later Wang and Liu [8] stud-
ied the Wilkes-Pearson formula associated with the central differences and a
fourth order scheme with Briley’s formula. Other work that has focused on
the role of vorticity boundary conditions is in for example: Weinan and Liu
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[9] or Napolitano et al. [10]. More recently Li and Wang [11] have gener-
alised vorticity boundary conditions to curved boundary domains. There is
also significant work on steady solutions and particularly their accuracy in
Spotz [12].

The plan of this paper is to briefly recap the formulation of the global iter-
ation matrix for the Navier Stokes equations (the idea was first explored in
Sousa and Sobey [13] for a one-dimensional analogue of the stream-function
vorticity equations), to consider a number of well known discretisations (of
both the vorticity transport equation and the boundary vorticity) and then
to consider two cavity type flows, one an exact solution of the Navier—Stokes
equations and one a cavity flow driven by one wall moving uniformly, ex-
amining variation of the solution with numerical parameters and stability of
explicit finite difference schemes for these flows.

2. Global iteration matrix formulation

In this section we derive a global iteration matrix for the discretised form of
the advection-diffusion equation, the Poisson equation between the stream-
function and the vorticity and the boundary vorticity method, also consid-
ering briefly some conditions for stability of the global iteration.

2.1. Flow equations. We consider incompressible viscous flow in a two-
dimensional domain without inflow or outflow. The motion of the fluid is
governed by the Navier-Stokes equations,

ou 1 _,
E‘F(U-V)U_ = —Vp-l-ﬁv u,
V.ou = 0, (1)
where u = u(z,y,t) = (u(z,y,t),v(z,y,t)) is a non-dimensional velocity

field, p = p(z, y, t) is a non-dimensional pressure, and Re is a Reynolds num-
ber. In a bounded domain €2 enclosed by a boundary 0€2, the impermeability
of the boundaries and the no-slip condition implies that

u(z,y,t) = uw(z,y,t), for (z,y)€ 0, >0, (2)

where uy denotes the boundary velocity.
In terms of the vorticity field w = v, —u,, the momentum equations provide
a vorticity equation,
Ow Ow Ow 1

- - - = 2
5 +u8x +U(9y Rev w. (3)
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The fluid velocity, u = (u, v) is obtained from

o ay

u=— V=

— 4
oy’ oz’ (4)

where ¢(z,y,t) is a stream-function, which is connected to the vorticity w,
by a Poisson equation

w = —V2¢, (5)

where without inflow or outflow in the cavity flows we consider, the stream
function is zero on the boundary, 1,, = 0. The boundary conditions (2)
translate into boundary conditions for the stream function

o b
<_8_y’%

There is no explicit boundary condition for the vorticity.

) =uy(z,y,t), (z,y) € . (6)

2.2. Matrix form of discretisation. The idea of the matrix formulation
was initially introduced in Sousa and Sobey [13] for a one dimensional model
problem which was similar to a stream-function vorticity problem and so
included some of the features of that problem but in other respects was
considerably simpler, having only two boundary points. In two dimensions
we have a more complex problem for various reasons, one of them being the
fact that we have a considerably larger number of points on the boundary.

As we have noted, the stream-function vorticity formulation has the advan-
tage that it not only eliminates the pressure variable, but also automatically
enforces incompressibility. Yet, a difficulty in the numerical simulation of (3)
— (6) is deciding a suitable numerical boundary condition for the vorticity.
When the vorticity advection-diffusion equation is updated in time, that does
not provide values for the vorticity on the boundaries, only at mesh points
in the interior of {2 so that an additional condition is needed to determine
the vorticity on the boundary.

We will describe how the problem (3) — (6) is implemented in matrix form.
We assume that we are in a cavity, with Q@ = [0, 1] x [0, 1] but these ideas
generalise straight forwardly to arbitrary domains and to more complicated
flows with inlet and outlet conditions.

We start by writing the discretised vorticity values in two vectors, Wiy,
containing points which lie in the interior and W p containing points on the
boundary. The discrete values of the stream-function are similarly contained
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in W, for the interior and Wp for the boundary. A time update of the vortic-
ity advection-diffusion equation provides an update for the interior vorticity
values only. A fairly broad class of time marching discretisation for the vor-
ticity advection equation, (3), can be written in the form

QW' = AW} + BW}, (7)

for suitable matrices Q, A and B. Note that this formulation hides some
aspects of the Navier-Stokes equations since according to (4), the matrices
A and B are both functions of the stream-function, and thus implicitly of
the vorticity. The equation (7), covers some implicit and all explicit time
marching schemes. For these cavity problems, assume there is uniform dis-
cretization where the space step is the same in both directions, namely h,
and that the mesh points are:

{(jh,kh) : 4,k =0,...,m}.

Thus the vector W; holds (m — 1)? values and the vector W has 4m values.
The dimensions of the matrices Q and A are (m — 1)? x (m — 1)? and of the
matrix B are (m — 1)? x 4m.

For a driven cavity flow, the natural ordering of the stream-function values
implies an ordering of values ¢ = ¢¥(jh, kh), j,k=0,...,m with h = 1/m.
Suppose we denote a vector of values W, which approximate 1;, using this
natural ordering

W = [Ugg, U9, Wap, - - ., U] (8)
then there will exist a permutation matrix P such that
_p| ¥B
v-r| g, 8

where W are values on the boundary (j or k equal to 0 or m, in this case 4m
values), W those values in the interior (0 < j,k < m, in this case (m — 1)?
values) and if P is suitable partitioned as P = [Py, P3| then

v =P ¥p+ PV, (10)

where the matrix Py is a (m+1)% x 4m matrix and Py isa (m+1)?x (m—1)?
matrix.

In a similar manner the vorticity approximation W, can be written (using
the same permutation matrices)

W = [Woo, Wig, Wag, . - ., Winm]|T = P1Wp + PyW7. (11)
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Next, the stream-function vorticity Poisson equation can be discretised at
the interior points by
RY = —h*W, (12)

where R is a matrix of dimension (m — 1)? x (m + 1)? and is easy to write
down in terms of the natural ordering of ¥, so that in equation (12),

L\I,n—l—l 4 N\I,n—l—l Wn—l—l (13)
h? h?
L=RP; and N =RP;. (14)
and Lisa (m —1)? x (m — 1) and N is an (m — 1)? x 4m matrix.
If the vorticity equation is discretised at the interior points (again using
the natural ordering of ¥"),

QW) = GW" = G[P,W% + P,W7], (15)
where G is a matrix of dimensions (m — 1) X (m + 1)2. Then
QW' = GP,W} + GP,W?, (16)
so that the matrix A and B in (7) are determined by
A =GP, and B=GP,. (17)

The boundary vorticity is more complicated, since the discretisation there
relates the wall vorticity to the updates stream-function, but if we use a
natural ordering to obtain on the boundary

1
h?

where Dy and Dy are 4m x (m + 1) matrices. The vector v"*! might for
instance arise in a driven cavity problem where the walls are moving. It
follows that

D W™ = — Dyt 4 y" (18)

n+1

1
D[P W + PaWIH) = ﬁDQ[Pl\II%“ + Pyt vyt (19)
and so
1 1
D,P,Wp = 3 DaP gl 4 3 DoPo W] mt D PyWIT 4 vt (20)

This can be rewritten

1 1
Wn+1 h M\Iln+1+FWn+1 ﬁJ\II%_H_'_ (D1P1)_1Vn+1, (21)
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where the matrices M, F and J are of dimensions 4m x (m — 1) and given
by

M = (D;P;) 'DyP;, F = —(D;P;)"'DiPy, J=(DP;) 'DyP;. (22)

This enables the stream-function to be eliminated in the interior using (13)
n - n 1 - n —iyvh

Wit — (F - ML H)W7H 4 ﬁ(J — MLIN)®H (D, Py) vt (23)

and then the update of the vorticity in the interior can be replaced so that

— - n n 1 - n - n
Wit = (F - ML™)Q ' (AW? + BW?%) + E(J ~ ML™'N)@% 4 (D, P) " 'v" . (24)
This essentially completes the derivation of the iteration matrix for this
version of the Navier-Stokes equations, since we now have

Wit QA QB Wi g
[W%“] = [ (F-ML)Q'A (F —ML‘l)Q‘lB] [W%] T
(25)
or
Wn—i—l = KW" + Sn+1, (26)
where

n 1 0 —1.,n
= [ (J - ML™'N) w7+ ] + (DyPy) 7™

and K denotes the overall iteration matrix,

QA QB
K= [ (F-ML)Q'A (F-ML)Q'B ] | (27)

Let X=F - ML ! p=(m—1)? and ¢ = 4m. We have

K 9 — Q_lApxp Q_prXq
(p+q) XQ_IAqxp XQ_IBqu ;

and we can observe that

K= [ Ipxp 01”“1] [Qz;}p OPXQI [Apxp BPX(J] )
X‘]Xp Iqu

Note that if we have an explicit scheme then Q = I so that

c[L2][32

and X represents the influence of the vorticity boundary conditions and Pois-
son’s equation and A and B the influence of the vorticity equation.

qup Iqu qup Oqu



8 E. SOUSA AND I.J. SOBEY

In this work we consider two-level time-integration schemes and constant
boundary conditions so that S"*! = S, is constant and so,

Wt — K, W" + 8, (29)

where S contains boundary values of the stream-function and of the velocity
field and in the case where the flow field is evolving or time dependent since
then the global iteration matrix varies from iteration to iteration and so is
denoted K,,.

In section 4 below we consider a case where K, is constant, K, = K. Since
the flow field is constant and known in advance,

Wt = KW" + S, (30)

For such a steady flow, we can denote the difference between the steady
solution, W and the current iteration value, W" as an error, " = W — W",
In that case the error e” satisfies the equation

et = Ke" = K""e", (31)

When K is constant, we have the following stability condition, see Richtmyer
and Morton [14].

Stability condition: In order for W” to remain bounded and the scheme,
defined by the operator K"*!, to remain stable, the infinite set of operators
K" has to be uniformly bounded. That is, we should have, in a selected

norm, for finite T
I|K"|| < C for 0 < nAt < T,

where C' is independent of n, At, h.

The norm of K" is often very difficult to analyse, and instead a necessary
condition but not always sufficient condition can be obtained from an analysis
of the eigenvalues of K.

The condition p(K) < 1 is necessary for the scheme implemented by (30)
to be stable, where p(K) is the spectral radius of K.

We have the following result.

Proposition 1: The value A # 0 is an eigenvalue of the matrix K, defined
by (28), if and only if is an eigenvalue of the matrix A + BX.

Proof: If A # 0 is an eigenvalue of the matrix K then exists z such that
Kz = Az. From this, we get Azy + Bz = Az; and XAz, + XBzy = Az,
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where z = [z z3]7. We have Xz; = z5 and then Az; + BXz; = Az; and \
is an eigenvalue of A + BX.

Reciprocally if A is an eigenvalue of A 4+ BX then there is z; such that
Az, + BXz; = Az;. Therefore )\ is an eigenvalue of K, since we have

Kz = Az, where z = [z, Xz;]7.

We can not easily get explicit conditions between the eigenvalues of A and
the eigenvalues of A 4+ BX, since neither A or BX are special matrices,
namely symmetric or other. However the fact that the eigenvalues of K are
the eigenvalues of A + BX shows us more clearly that the different choices
of the vorticity boundary conditions, implicitly represented by X, can affect
the spectral radius of K.

Also if we want to compute numerically the spectrum of K for large di-
mensions is more efficient to use the matrix A + BX.

In later sections we are also going to use a fourth-order Poisson discretisa-
tion. Briefly, we point out the changes that occurs in the matrix formulation
when using this discretisation.

The formula (13) come as

1 1
SLUF 4 S NEGT = —Ty Wi - T, W, (32)

and then
Uit = _LOINWLH - RPLTIT W - 2L T WY, (33)

Consequently (23) is now given by
n - n - n 1 — n — n

Wit = (F~ML™'T; )W - ML 1T2WB+ﬁ(J—ML 'N)®LH (D Py) v (34)

and then

Wi

Wit = [(F-ML'T{)Q 'A  (F-ML 'T,)Q 'B - ML 'T,] [ wn,

] + S"*(;.5)

3. Finite difference discretisations

In this section we set out two different schemes for the unsteady vorticity
advection-diffusion equation; one a second order Lax—Wendroft type scheme
and one a third order, Quickest type scheme. These schemes, which are
forms of well known schemes of the same name, were introduced in Sousa
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and Sobey [15]. We consider two schemes for discretising a Poisson equation,
one the usual second order central difference scheme and one a fourth order
scheme (see Iserles [16]). We also set out a number of well known schemes
for discretising the boundary vorticity, that of Thom [2], Woods [17], Jensen
[18], d’Alessio and Dennis [19] and Briley [20]. We note in passing some
consequences for stability from the discretisation of the advection-diffusion
equation.

3.1. Discretisation of the vorticity advection-diffusion equation. We
use the difference operators,

1
AWk = E(Wj+1,k —Wi_1k),

Wik = Wisrg — 2Wjg + Wj-v,
Ax_Wj:k - W],k o W]—l,k

with operators A, W, 5§Wj,k, A,_W;} defined analogously.

Also define local numerical parameters,
uAt vAt 1 At
7 Vy = 7 H = D190

h h Re h
where At is the time-step so that the iteration time is ¢, = nAt.

We discretise the vorticity advection-diffusion equation (3) on the (m —

1) x (m — 1) interior points using two different numerical schemes.
An explicit second-order numerical Lax-Wendroff type scheme is given by:

Ve =

1
Wn+1 — ﬁg - Va:Aa:O iy + (2 T + ,ux)éQ ]k AyOWﬁg
1
+(=v2 + ,uy)52 ik T Ve Do DyoWiy, 3,k =1,...,m — 1,(36)

5%y
This scheme uses a nine point stencil and can be used independently of the
direction of the velocity field (u,v).

An explicit third-order Quickest type scheme is given by:

1
Wi = Wik = velaoWji — vy AyoWji + (507 + 1)V
1
—l—(2u§ + ,uy)52W 1 vy D g0 Ayo ]k

1 1
—|—6V$(1 — vz — 6,)0 AW, + 6Vy(1 — 2 — 6p,)0A,
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1 i 1 i
_Vy(,“x + 5”:3)532:Ay0wjk - Vx(:“y + 5”;4;2)5§Aw0 ko
5L,k=1,...,m—1, (37)
where the operators A, and dA, change according to the direction of the

velocity field as described in the table below. This scheme uses an eleven
point stencil.

‘ Hu,UZO u>0,v<0 u<0,v>0 U,USO‘

6A, | 02A, 62A, 62A, 4 62A, 4

0A, 55Ay_ 55Ay+ 5§Ay_ 5§Ay+
Definition of the operators A, and dA,,.

In the case of a non-linear velocity field, we treat these difference expansions
as local approximations and use the velocity components (u,v) involved in
the variables v, and v, at the central mesh point, (z;,y;). For additional
information on the derivation of these two schemes see Sousa and Sobey [15].

If we retain the locally constant approximation then the stability of the
iteration is from a linear problem and we can use von Neumann stability
analysis for the Cauchy problem involving the advection-diffusion vorticity
equation. This gives us necessary conditions for stability which are usually
worthwhile taking into consideration in the non-linear problem.

A von Neumann analysis in two dimensions is a straightforward general-
isation of the one-dimensional case. The discrete Fourier decomposition in
two dimensions consists of the decomposition of the function into a Fourier
series as

;’lk — E :Iinelfx]Aa:elfykAy’
&ar&y

where the range &,, {, is defined separately for each direction, as in the one-
dimensional case. The amplification factor is given by . The products £, Az
and §,Ay are often represented as a phase angle, namely, 0, = {,Az, 6, =
§,Ay. To obtain a von Neumann stability condition we insert the singular
component "€ %¢e*% into the discretised scheme. The amplification factor
is said to satisfy the von Neumann condition if there is a constant K such
that

6(6,,0,)] <1+ KAt ¥ 6,,0, € [0,2x]. (38)
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FIGURE 1. Stability conditions given in Proposition 2:
scheme. (b) Third-order scheme.

(a) Second-order

1] 1]

:’/h e :/A\\
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s> 0 > 0 !‘1‘; «": 13
-05 -05 N ‘ s
\\\ o ///
-1 -1 o
-1 -0.5 \9 0.5 1 -1 -0.5 \9 0.5 1
(a) (b)
FIGURE 2. Stability conditions given in Proposition 3: (a) Second-order
scheme: contours for g = 0.05 (=); p=01(—-=); p=02(--); p =
0.24 (——). (b) Third-order scheme: contours for = 0.1 (—-—); p = 0.2 (--+);
p=0.24(—-).

As in the one-dimensional case, in practice we use the stronger condition

|k(0z,0,)] <1 V6,,86,c]0,2n],

and the discrete scheme that meets this condition, we refer to as von Neu-
mann stable. This has been called practical stability by Richtmyer and Mor-

ton [14] or strict stability by other authors.

In some cases condition (38)

allows numerical modes to grow exponentially in time for finite values of At.
Therefore, the practical, or strict, stability condition (39) is recommended
in order to prevent numerical modes from growing faster than the physical

modes of the differential equation.
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For our finite difference schemes we have the following results, that are also
represented in Figures 1 and 2.

Proposition 2: For the hyperbolic problem, that is, u = 0, we have:
(a) The scheme (36) is stable if and only if

Py P < 1. (10)
(b) The scheme (37) is stable only if
Vel + |y < 1. (41)

Proof:

(a) This is well known, see Turkel [21].

(b) Let u,v > 0 so that v,, v, > 0. The amplification factor for the phase
angles 6§, = 0 and 6, = 7 gives that to have || < 1 is the same as to
have v, < 1. Similarly for the phase angles 6, = 7 and 6, = 0, we have
vy, < 1.Then assuming v,,v, < 1 for the phase angles of high frequency
0, =6, = m, |k <1isequivalent to v, + v, < 1. Similarly results could
be obtained for different directions of the velocity field in order to obtain
condition (41).

Proposition 3:
(a) Necessary von Neumann conditions for the stability of the scheme (36)
are
<1  vi+v, <1-—4pu

(b) A necessary von Neumann condition for the stability of the scheme (37)
is

2 2
(V2 200) + (V2 + 20) + =l (1 = 02 = 60) + [y (1 = 12 = 60) < 1.

Proof:

(a) The first condition is obtained in the limiting case 8, — 0, 6, — 0. The
second condition is obtained from the particular case 8, = 0, = .

(b) Let u,v > 0 so that v,,v, > 0. The second condition is obtained from
the particular case 6, = 0, = .

3.2. Discretisation of the Poisson equation. We consider two discretisa-
tions of the Poisson equation, (5). The first is the usual second order central
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difference scheme,

(624 62) Wi = —R*WIH. (42)
The second discretisation was originated by Collatz [22], see also Iserles [16],
(67 +6; + 65555)\11;;1 = —h*(I + 5 (52 + o)Wt (43)

where [ is an identity operator. This scheme is fourth order accurate in
h. We believe that this scheme is the same as that advocated in Spotz [12]
who derived the scheme afresh using discrete approximation for high order
derivatives in the truncation error.

3.3. Boundary vorticity discretisation. While there are no formal or
explicit conditions on the vorticity at a wall, it is necessary to use an implicit
condition in order to provide the vorticity at the wall. There are various
different methods for specifying wall vorticity, W g, in terms of the vorticity
in the interior and the stream function. An extensive review of methods for
dealing with the boundary vorticity can be found in Napolitano et al. [10]. In
terms of our matrix formulation, different boundary vorticity schemes imply
changes only in the matrices D¢, Ds.

The conditions we use to calculate the vorticity on the boundaries are
illustrated for one boundary, y = 0. Since the velocity field on that bound-
ary, u(z,0), is not zero, the formulae assume that 1, = u implicitly on the
boundary. The formulae below are due to Thom [2], Woods [17], Jensen [18],
d’Alessio and Dennis [19] and Briley [20].

2

Thom: ng = ﬁ(quo — \Iljl + hu(]h, 0)) (44)
3 , 1
Woods: Wjo = m (\Ifjo — \Ifjl + hu(]h, 0)) — §Wj1 (45)

Jensen: Wi = 552 (TT,0 — 8,1+ U o + 6hu(jh,0)) (46)
4 1
D’Alessio & Dennis: Wjo = m(\lfjo — \Ifjl + hu(]h, 0)) — §(4Wj1 — ng)
, (47)
Briley: WjO 1872 (85\1{70 108\113',1 +27\Ifj,2 —4\113,3—|—66hu(]h, 0)) (48)

We omit the superscript n + 1 defining the time, ¢,.1, in the formulas (44)-
(48), all the variables are taken at the updated time level, t,+1. The dis-
cretisation for the other boundaries is analogous. Considering (18) we have
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for Thom’s vorticity boundary condition that Dy = I where I is the matrix
identity, and Dy depends of the values of ¥ at the boundary discretisation.
For Woods” and d’Allesio & Dennis’ boundary condition D; is no longer an
identity matrix. Also for Thom’s, Jensen’s and Briley’s formulae, F = 0,
since they do not depend of the interior vorticity values. The order of accu-
racy of the various methods (see Napolitano et al. [10]) is O(h) for Thom’s,
O(h?) for Woods’, Jensen’s and d’Alessio & Dennis’ and O(h?) for Briley’s.

4. Cavity flow which is exact solution of Navier—Stokes
equations

In this section we approach the problem of using the global iteration matrix
by turning to an exact solution of the Navier—Stokes equations. The solution
is somewhat contrived in that it relies on a body force which may not be
attainable in reality but it is, nevertheless, an exact solution and thus allows
consideration of precisely defined error measures, whereas normally in dealing
with flow problems, one can only test against solutions obtained from refined
meshes.

We start from the stream-function

1
Y(z,y) = —sinwz sinny, (49)
™

which will take constant (zero) value on the boundaries of the unit square
and so in one sense can be described as a driven cavity problem. This stream-
function describes a flow with velocity field u = (u, v)

u(z,y) = sinmz cosmy, (50)
v(z,y) = —cosmz sinmy, (51)

and vorticity
w = —V*) = 2rsinmzr sinry. (52)

In order to make this an exact solution, consider the momentum equation in
the Navier-Stokes equations, (1), with the addition of a body force, f,

ou i

— Viu= -V Viu + f 53
8t+(u u Pt Vutf, (53)
and choose
1
p= Z(COS 27 + cos 27y), (54)
212 .
f = ——[sinmx cosmy, — cosmx sinmy]. (55)

e
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The set ¥, p and f provide an exact solution to the steady Navier-Stokes
equations.

The problem we consider is to suppose that we have some distribution of
vorticity W (z,y,t) and stream-function, ¥(z, y,t) related by

VI = W, (56)

but subject to the steady velocity field u and body force f through the
vorticity advection equation which results from (53). The time dependent
Navier-Stokes equations will give W — w as t —+ oo and we let W satisfy:

ow 1, 1 _,
Now use the result that for this exact steady flow field
0
a—‘;’ =0, (u-V)w=0, (58)
so that the difference, e = W — w, satisfies
de 1 _,
E—F(U-V)e— ﬁv e. (59)

We interpret e as an error in a vorticity field, the error satisfying an advection
diffusion equation with a velocity field which is spatially varying but constant
in time. If the vorticity time variation on the boundary is set to zero, then
the vorticity error will decay to zero in time as W — w and properties of the
discretisation of the advection-diffusion equation alone should determine the
vorticity time variation behavior in time. If, however, the boundary vorticity
is not specified explicitly, but determined as usual for the stream-function
vorticity formulation, then the error will not decay to zero in time but will
reflect a global truncation error of the discretisation of the whole stream-
function vorticity system. Hence the procedure to carry out one time step is:
(a) update the error e in the interior of the domain using (59), (b) calculate
W in the interior from W = e 4+ w, (c) calculate the stream-function, ¥ in
the interior by solving V2¥ = —W, (d) calculate the vorticity W on the
boundary using an appropriate method, and finally (e) calculate the error on
the boundary using e = W — w.
There are two numerical parameters which characterise the system,

At 1At
~ T MT R

v
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FIGURE 3. Eigenvalues less than one: The local matrix A (-—); the global
matrix K (-); m = 32. Second-order method for advection-diffusion with:
(a) Thom’s boundary condition; (b) Woods’s boundary condition; (c) Jensen
boundary condition; (d) Alessio’s boundary condition; (e) Briley’s boundary

condition.

4.1. Stability. We consider consequences for stability of choosing different
boundary vorticity conditions. Since the vorticity difference, e, satisfies an
advection-diffusion equation with constant velocity field we can examine sta-
bility through the global iteration matrix, K, defined in (27), where we used
the second-order Poisson’s discretisation.

The results for the eigenvalues of K for different vorticity boundary condi-
tions with the second order Lax—Wendroff type scheme are shown in figure 3
where we also show the eigenvalues of the iteration matrix for the advection-
diffusion equation, A, The results were obtained for the mesh size m = 32.
The overall pattern is that there may be a small reduction in the region of
stability with higher order methods but in general, the choice of boundary
vorticity discretisation does not have significant stability penalties. Mesh
refinement does not affect this conclusion.
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FIGURE 4. Eigenvalues less than one: The local matrix A (-—);
the global matrix K (-); m = 32. Third-order method for
advection-diffusion with: (a) Thom’s boundary condition; (b)
Wood’s boundary condition; (c¢) Jensen boundary condition; (d)

Alessio’s boundary condition; (e) Briley’s boundary condition.

We have also considered the case of a third order Quickest type scheme
for the advection-diffusion equation and the regions of stability are shown in
figure 4. In this case there is a more noticeable stability penalty but again,
only marginally important. There is a region near the p = 0 axis where the
eigenvalues are predicted to be very slightly greater than one but in practical
computations, the iterations remain stable in this region.

Although Figures 3 and 4 display the stability regions obtained when us-
ing the second-order Poisson’s discretisation, for the fourth-order Poisson
discretisation (43) we obtain very similar stability regions.

4.2. Accuracy. We have used solution of the system (56) and (59) to ex-
amine the accuracy of the different numerical schemes although as we shall
see in the next section, the conclusions are more limited than we had hoped.
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We start the iteration with the vorticity initially set to have unit value
everywhere except at the four corner nodes where it is set to zero (the corner
values of the vorticity are not used anywhere in the iteration). The system
is then updated according to the scheme described above with the following
possible choices:

i) Lax—Wendroff or Quickest for advection-diffusion equation,

ii) a second or fourth order scheme for solution of the Poisson equation,

iii) boundary vorticity scheme from: Thom, Woods, Jensen, d’Allessio &
Dennis or Briley.

The Poisson equation was solved using a four-level multigrid solver with
convergence criterion set to L., norm of the residual less than 107", As the
global error is converging to zero as the mesh size vanishes, the order of
convergence can be extrapolated using two meshes. In the results we do this
for 16 x 16 and 32 x 32 meshes and for 32 x 32 and 64 x 64 meshes.

The results shown in table 1 are a little surprising since for the majority
of cases second order convergence is obtained regardless of the discretisation
of the vorticity equation or which form of boundary condition is used, how-
ever, in the case of Jensen or Briley’s method, fourth order convergence is
obtained when the Poisson solver is also fourth order. We believe that this
is consistent with the theory of Bramble and Hubbard [23] who showed that
for an elliptic problem with truncation error O(h") [h is mesh spacing] then
the global error would remain O(h") when there were local errors of order
O(h"1) near a boundary with a mixed or Neumann condition and O(h"~2)
near a boundary with Dirichlet condition. The complexity of this particular
problem means that we cannot prove this result formally at present. It is also
surprising that the discretisation of the vorticity equation does not affect the
numerical results but that too may be consistent with the theory of Bramble
and Hubbard [23] or it may be a consequence of the very artificial nature of
this test problem. Since in the next section where we consider a driven cavity
flow, we do not see this behavior, it is most likely that the convergence here
is determined more by the solution of Poisson equation than by the solution
of the advection diffusion equation so that the correct explanation for the
global convergence rate comes from Bramble-Hubbard theory.
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Boundary | Convection Poisson Error Convergence
method Diffusion Equation 16 x 16 32 x 32 64 x 64 | 16-32 | 32-64
O(h?) |0.914E-02 | 0.222E-02 | 0.546E-03 | 2.04 | 2.02

Lax-Wendroff | O(h?") 0.181E-01 | 0.443E-02 | 0.109E-02 | 2.03 | 2.02

Thom O(h?) 0.909E-02 | 0.222E-02 | 0.546E-03 | 2.03 | 2.02
Quickest O(h") 0.180E-01 | 0.443E-02 | 0.109E-02 | 2.02 | 2.02

O(h?) |0.278E-01 | 0.668E-02 | 0.164E-02 | 2.06 | 2.03

Lax-Wendroff | O(h") [ 0.183E-01 | 0.444E-02 [ 0.109E-02 | 2.04 | 2.02

Woods O(h*) [0.275E-01 | 0.667E-02 | 0.164E-02 | 2.04 | 2.02
Quickest O(h*) [0.181E-01]0.444E-02 [ 0.109E-02 | 2.03| 2.02

O(h?) 10.925E-02 | 0.223E-02 | 0.546E-03 | 2.06 | 2.03

Lax-Wendroff | O(h*) [0.154E-03 | 0.930E-05 | 0.571E-06 | 4.05 | 4.03

Jensen O(h?) 0.915E-02 | 0.222E-02 | 0.546E-03 | 2.04 | 2.03
Quickest O(h") [0.153E-03 | 0.930E-05 | 0.571E-06 | 4.04 | 4.03

O(h?) ] 0.686E-01 | 0.137E-01 | 0.319E-02| 2.32] 2.11

Lax-Wendroff | O(h?") 0.611E-01 | 0.123E-01 | 0.284E-02 | 2.31 | 2.11

d’Allesio O(h?) 0.653E-01 | 0.136E-01 | 0.318E-02 | 2.26 | 2.10
Quickest O(h*) [0.582E-01[0.122E-01 | 0.283E-02 | 2.26 | 2.10

O(h?) [0.961E-02 | 0.224E-02 | 0.547E-03 | 2.10| 2.04

Lax-Wendroff | O(h*) [0.103E-03 | 0.628E-05 | 0.387E-06 | 4.04 | 4.02

Briley O(h*) [0.947E-02 | 0.224E-02 | 0.547E-03 | 2.08 | 2.03
Quickest O(h*) [0.102E-03 | 0.627E-05 | 0.387E-06 | 4.02 | 4.02

Table 1. Global L,y error of time converged solution for three mesh resolutions,
16 x 16, 32 x 32 and 64 x 64, with calculated convergence rate for varying vorticity
boundary condition, convection-diffusion discretisation and discretisation of stream

function-vorticity equation.

Numerical parameters are : Re = 100, At = 0.0005, multigrid residual less than 1077,
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in terms of the stream function as

Y =0
on all boundaries and

0 B

on
where ¢ = 0 on fixed walls and ¢ = 1 on the moving wall at y = 1. The
coordinate n is normal to the surface.

€

5.1. Stability. In the driven cavity problem, energy is provided to the
system through forces acting on the moving wall and this energy is dissipated
by viscous action, becoming heat which will be lost through the cavity walls.
The driven cavity does not show stability for a Reynolds number larger than
7500, instead there is bounded oscillations of the energy even for very small
time-steps. We have not analysed the nature of this oscillation, although
the reasons may be associated with the dynamical features of the physical
problem as reported in the literature for the driven cavity in papers such as
Shen [26], Bruneau and Jouron [27] and Goodrich et al. [28], where other
numerical schemes were used.

For the driven cavity problem, a steady laminar flow exists for Re < 3000.
In this section we give calculations of the stability of numerical calculation
of the steady state for a representative Reynolds number 350.

We consider the matrix formulation, described in section 2, of the system
composed by the vorticity equation with the Poisson’s equation. The velocity
field (@, ) introduced in the vorticity equation is the numerical approxima-
tion velocity field to (u,v) that we obtain from numerical solution of the
cavity flow problem.

When we use the second-order and third-order discretisation for the vortic-
ity equation and for Thom, Alessio and Dennis and Briley vorticity boundary
discretisations at Reynolds number 350, the result of the eigenvalues for the
matrix formulation is described in figure 5. We have used the second-order
Poisson’s discretisation. Nevertheless if instead we use the fourth-order Pois-
son’s discretisation the stability results are very similar to the ones presented
in Figure 5.

5.2. Accuracy. There are well established calculations of the driven cavity
problem which provide reference values for the solution. We use those from
Bottela and Peyret [29] which were computed using a high order spectral
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FIGURE 5. Unstable region for Re = 350 [above the curves|: eigenvalues
larger than one; (a) For the 2nd order method (b) For the 3th order method.
Thom’s boundary condition (—); Alessio’s boundary condition (—-—); Wood’s
and Briley’s boundary condition (- - -); Jensen’s boundary condition(——).

method. In particular we examine the case Re = 100 and the value of the
vorticity in the middle of the moving wall and the vorticity and stream-
function in the center of the cavity. The results were considered converged
for a variation of the vorticity between time steps of order 1072!, that is the
limit of double precision accuracy. We have used four meshes, 32 x 32, 64 x 64,
128 x 128 and 256 x 256. Then results from pairs of meshes were extrapolated
to give an estimate of the convergence rate as the mesh size decreases. The
results are given in tables 2-4. For most of the calculations the convergence
rate is essentially quadratic. The exception is the condition from d’Allesion
& Dennis where the convergence rate seems closer to 1.5. It is apparent that
the choice of discretisation of the Poisson equation makes no difference, the
conditions which gave quartic convergence in the previous section are now
only quadratic so that the conditions for Bramble-Hubbard theory to allow
global convergence to be determined by discretisation in the interior do not
hold (recall that Quickest should be close to third order accurate in space
so we might have hoped to find Quickest plus quartic discretisation of the
Poisson equation giving close to third order convergence).



w(0.5,1) Reference=6.564094 Convergence
wlaq u-Vw |V =—w| 32x32] 64x64[128 x 128 [ 256 x 256 | 32-64 | 64-128 | 128-256
Lax O(h?) 6.990319 | 6.659525 | 6.585685 | 6.569531 | 2.16 2.14 1.99
Wendroff O(h") 6.973841 | 6.650393 | 6.582504 | 6.568800 | 2.25 2.23 1.97
Thom O(h?) 6.856680 | 6.630311 | 6.581038 | 6.568237 | 2.14 1.97 2.03
Quickest O(h%) 6.838890 | 6.620976 | 6.577831 | 6.567307 | 2.27 2.05 2.10
Lax O(h?) 6.856138 | 6.636151 | 6.581579 | 6.568751 | 2.02 2.04 1.91
Wendroff O(h%) 6.833118 | 6.626328 | 6.578337 | 6.568015 | 2.11 2.13 1.86
Woods O(h?) 6.727854 | 6.607491 | 6.576985 | 6.567460 | 1.92 1.75 1.94
Quickest O(h*) 6.703616 | 6.597450 | 6.573714 | 6.566524 | 2.06 1.79 1.98
Lax O(h?) 6.851832 | 6.635290 | 6.581445 | 6.568735 | 2.01 2.04 1.90
Wendroff O(h") 6.831085 | 6.624681 | 6.577995 | 6.567962 | 2.14 2.12 1.85
Jensen O(h?) 6.724270 | 6.606717 | 6.576860 | 6.567444 | 1.91 1.74 1.93
Quickest O(h") 6.701177 | 6.595836 | 6.573376 | 6.566472 | 2.11 1.77 1.96
Lax O(h?) 6.915013 | 6.665129 | 6.592959 | 6.573593 | 1.80 1.81 1.60
Wendroff O(h%) 6.889537 | 6.655285 | 6.589724 | 6.572859 | 1.84 1.83 1.55
d’Allesio O(h?) 6.780886 | 6.635431 | 6.588223 | 6.572284 | 1.60 1.56 1.56
Quickest O(h%) 6.754719 | 6.625346 | 6.584954 | 6.571350 | 1.64 1.55 1.52
Lax O(h?) 6.846822 | 6.638982 | 6.582381 | 6.568893 | 1.92 2.03 1.93
Wendroff O(h") 6.823843 | 6.627732 | 6.578811 | 6.567906 | 2.03 2.11 1.95
Briley O(h? 6.721911 | 6.610509 | 6.577795 | 6.567601 | 1.77 1.76 1.97
Quickest O(h") 6.696143 | 6.598940 | 6.574191 | 6.566612 | 1.92 1.79 2.00

Table 2. Calculation of wall vorticity midway along moving wall, w (0.5, 1), for four mesh resolutions
together with extrapolated convergence rate for varying vorticity boundary condition,
convection-diffusion and stream function-vorticity equation discretisation. The reference value given
by Botella & Peyret (1998) is w(0.5,1) = 6.564094. Numerical parameters are : Re = 100,
At = 0.0005, multigrid residual less than 1077,
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Boundary | Convection | Poisson w(0.5,0.5) Reference=1.174412 Convergence
method Diffusion Equation | 32 x 32| 64 x 64 | 128 x 128 | 256 x 256 | 32-64 | 64-128 | 128-256
O(h?) 11.063036 | 1.146349 | 1.166998 | 1.172601| 1.99 1.92 2.03
Lax-Wendroff | O(A") [1.087573 [ 1.153773 | 1.169074 | 1.173216 | 2.07 1.95 2.16
Thom O(h?) 1.106146 | 1.157270 | 1.168431 | 1.173058 | 1.99 1.52 2.14
Quickest O(h") 1.131313 | 1.164780 | 1.170514 | 1.173611 | 2.16 1.31 2.28
O(h?) 1.081257 | 1.149183 | 1.167304 | 1.172618 | 1.88 1.83 1.99
Lax-Wendroff | O(h") [1.106249 | 1.156676 | 1.169390 | 1.173229| 1.94 1.82 2.09
Woods O(h*) [1.1233901.160001 | 1.168729 | 1.173070| 1.82 1.34 2.08
Quickest O(h*) [1.148942]1.167596 | 1.170825| 1.173624| 1.90 0.93 2.19
O(h?) |1.081077[1.149267 | 1.167335| 1.172620| 1.89 1.83 1.98
Lax-Wendroff | O(h*) [1.105883 [ 1.156949 | 1.169465 | 1.173245| 1.97 1.82 2.08
Jensen O(h*) [1.122976 ] 1.160052 | 1.168758 | 1.173078 | 1.84 1.34 2.08
Quickest O(h") [1.148631[1.167852| 1.170904 | 1.173040| 1.97 0.90 1.35
O(h?) 11.063547 | 1.140899 | 1.163966 | 1.171173| 1.73 1.68 1.69
Lax-Wendroff | O(h?") 1.088474 | 1.148362 | 1.166048 | 1.171759 | 1.72 1.64 1.66
d’Allesio O(h?) 1.106677 | 1.151932 | 1.165426 | 1.171635| 1.59 1.32 1.69
Quickest O(h*) [1.132078]1.159515| 1.167520 | 1.172189| 1.51 1.11 1.63
O(h?) |1.081195 | 1.148418 | 1.167115 | 1.172590 | 1.84 1.83 2.00
Lax-Wendroff | O(h*) [1.106169 | 1.156240 | 1.169278 | 1.173146 | 1.91 1.82 2.02
Briley O(h*) [1.122568]1.159183| 1.168539 | 1.173038 | 1.77 1.37 2.10
Quickest O(h") ]1.148513 [ 1.167140 | 1.170713 | 1.173605| 1.83 0.98 2.20

Table 3. Calculation of vorticity at the centre, w(0.5,0.5), for four mesh resolutions

together with extrapolated convergence rate for varying vorticity boundary condition,
convection-diffusion and stream function-vorticity equation discretisation. The reference value given
by Botella & Peyret (1998) is w(0.5,0.5) = 1.174412. Numerical parameters are : Re = 100,
At = 0.0005, multigrid residual less than 1077,
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Boundary | Convection | Poisson 1(0.5,0.5) Reference=0.0665474 Convergence
method Diffusion Equation | 32 x 32| 64 x 64 | 128 x 128 | 256 x 256 | 32-64 | 64-128 | 128-256
O(h?) 10.062828 | 0.065634 | 0.066314 | 0.066490 | 2.03 1.97 2.02
Lax-Wendroff | O(h") [0.063660 | 0.065884 | 0.066385 | 0.066510 | 2.12 2.03 2.13
Thom O(h*) ]0.064146 | 0.065960 | 0.066355 | 0.066503 [ 2.03 1.61 2.13
Quickest O(h") 10.064976 | 0.066215 | 0.066426 | 0.066522 | 2.24 1.45 2.27
O(h?) 10.063479 | 0.065729 | 0.066322 | 0.066490 | 1.91 1.86 1.96
Lax-Wendroff | O(h") [0.064325 | 0.065982 | 0.066393 | 0.066510 | 1.97 1.88 2.04
Woods O(h*) ]0.064746 | 0.066051 | 0.066363 | 0.066503 | 1.86 1.43 2.05
Quickest O(h*) 10.065596 | 0.066306 | 0.066434 | 0.066522 | 1.98 1.09 2.15
O(h?) 10.063483 ] 0.065733 | 0.066324 | 0.066490 | 1.91 1.86 1.96
Lax-Wendroff | O(h*) ]0.064322 | 0.065993 | 0.066396 | 0.066510 | 2.01 1.88 2.03
Jensen O(h*) 10.064742]0.066054 | 0.066364 | 0.066503 | 1.87 1.43 2.05
Quickest O(h") ]0.065595 | 0.066317 | 0.066437 | 0.066523 [ 2.05 1.06 2.15
O(h?) 10.062720 | 0.065385 | 0.066183 | 0.066429 | 1.72 1.68 1.63
Lax-Wendroff | O(h") ]0.063566 | 0.065636 | 0.066254 | 0.066450 | 1.71 1.63 1.58
d’Allesio O(h*) 10.064039]0.065717 | 0.066226 | 0.066443 [ 1.59 1.37 1.62
Quickest O(h*) 10.0648850.065972 | 0.066297 | 0.066462 | 1.53 1.20 1.55
O(h?) 10.063483 ] 0.065701 | 0.066315| 0.066488 | 1.86 1.87 1.98
Lax-Wendroff | O(h*) [0.064328 [ 0.065966 | 0.066389 | 0.066508 | 1.93 1.88 2.00
Briley O(h*) 10.064722]0.066021 | 0.066356 | 0.066502 | 1.79 1.46 2.07
Quickest O(h*) ]0.065587]0.066290 | 0.066430 | 0.066521 [ 1.90 1.14 2.16

Table 4. Calculation of streamfunction at centre, (0.5, 0.5), for four mesh resolutions
together with extrapolated convergence rate for varying vorticity boundary condition,
convection-diffusion and stream function-vorticity equation discretisation.
Numerical parameters are : Re = 100, At = 0.0005, multigrid residual less than 1077,
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to examine the effect on numerical stability of different numerical vortic-
ity boundary conditions. The main conclusion is that the various ways of
treating the boundary vorticity make little difference to stability which is
determined mainly by the discretisation of the advection-diffusion vorticity
equation. We have observed in passing some results for accuracy of the cal-
culations and observe that there are situations where discretisation errors
near the boundary do not propagate into the interior and do not affect the
global accuracy, as given by Bramble-Hubbard theory but for the most part,
in solution of practical problems using time marching schemes, it is difficult
to exceed second order convergence.
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