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Abstract
Wind turbines are increasingly expanding worldwide and Doubly‐Fed Induction Gener-
ator (DFIG) is a key component of most of them. Stator winding fault is a major fault in
this equipment and its incipient detection is of vital importance. However, there is a
paucity of research in this field. In this study, a novel machine learning‐based method is
proposed for incipient detection of inter‐turn short‐circuit fault (ITF) in the DFIG stator
based on the current signals of the stator. The proposed method makes use of state‐of‐
the‐art deep learning methods along with conventional signal processing tools and general
machine learning techniques. More specifically, the incipient fault detection problem is
regarded as a multi‐class classification problem and a Long Short‐Term Memory network,
which is more appropriate for time‐series data is utilised for inference. Furthermore, a
variant of the celebrated Empirical mode Decomposition analysis tool is used to extract
some well‐known statistical features among which the most informative ones are selected
using a new feature selection method. Our tests using experimental data in steady‐state
conditions show that the proposed method can accurately detect ITF fault at its initial
stage when only one turn is shorted. Moreover, its performance is considerably higher
than that of a variety of machine learning‐based methods.
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1 | INTRODUCTION

Climate change is the greatest threat facing humanity and
shifting to renewable energy seems to be the inevitable remedy.
As a result, the capacity of renewable energy systems has been
increasingly expanded over the past decades; and to achieve the
net‐zero climate goals by 2050, this growth must be even
faster. Wind energy, as one of the most cost‐competitive and
resilient power sources, has always been the leading non‐hydro
renewable energy source worldwide [1] and even outstripped
hydro‐power in the US [2]. Wind is now an affordable and
beneficial source of energy; partly owing to the efficient and
reliable condition monitoring services that are absolutely vital
for the efficiency, reliability, and safety of wind power plants.
The kinetic energy of the wind is generally converted to

electricity using a wind turbine whose key element is a
generator.

A study carried out on more than 1500 wind turbines
operating in Germany over a period of 15 years showed that
among all components of a wind turbine, damage to the
generator results in the longest downtime [3]. On the other
hand, with a 48.62% share, Doubly‐Fed Induction Generator
(DFIG) is the most commonly used generator in wind turbines
[4], mainly because utilising partial converters and induction
machine makes it more cost‐effective when compared to other
technologies. A survey conducted by the Motor Reliability
Working Group of the Institute of Electrical and Electronics
Engineers Industrial Application Society revealed that winding
failures account for more than 29% of the faults in electric
motors [5]. Another study done under the sponsorship of the

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2022 The Authors. IET Electric Power Applications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

256 - IET Electr. Power Appl. 2023;17:256–267. wileyonlinelibrary.com/journal/elp2

https://doi.org/10.1049/elp2.12262
https://orcid.org/0000-0003-1971-2828
https://orcid.org/0000-0002-9651-8925
mailto:alipoor@hut.ac.ir
https://orcid.org/0000-0003-1971-2828
https://orcid.org/0000-0002-9651-8925
https://ietresearch.onlinelibrary.wiley.com/journal/17518679
http://crossmark.crossref.org/dialog/?doi=10.1049%2Felp2.12262&domain=pdf&date_stamp=2022-10-28


Electric Power Research Institute suggested that 36% of fail-
ures in powerhouse motors pertain to the stator, mostly
winding faults [6]. With the increase in the rated power of the
electric machines, one can surmise that these percentages can
be even higher.

Among the various winding faults, the inter‐turn short‐
circuit fault (ITF) is the most incipient one and the main
cause of the others. An ITF, if not detected in an early stage,
results in an increase in the circulating current and therefore
overheating that in turn can deteriorate the insulation and lead to
more severe faults, such as phase‐to‐phase and phase‐to‐ground
faults. This fault can also propagate to other parts, for example,
rotor and even mechanical components. Timely fault detection
is more critical for equipment used for power generation since
any interruption has both financial and social consequences. On
the other hand, it is extremely difficult to detect the ITF incip-
iently, since it has an almost imperceptible symptom.

Fault detection and diagnosis (FDD) in induction machines
has always been a hot topic of research and technology.
Various methods proposed for FDD can be categorised into
three main classes: model‐based, signal‐based, and data‐based
approaches. In the first approach, a specific machine fault is
mathematically modelled based on the physics of the fault and
its impacts on the observed signals. Some mathematical models
derived for ITF in DFIGs can be found in refs. [7–12]. Model‐
based methods are susceptible to the problem characteristics
and even the parameter variation and suffer from the lack of
flexibility. On the other hand, in signal‐based methods signals
are analysed to extract symptoms or signatures of the fault.
This can be done in time or/and frequency domains by signal
processing tools such as Discrete Fourier Transform and its
short‐time version known as the Short Time Fourier Trans-
form, Discrete Wavelet Transform, Hilbert–Huang transform,
and Empirical mode Decomposition (EMD). Among
numerous signal‐based FDD methods proposed in the litera-
ture, a small number addressed the ITF detection problem in
DFIGs [13–16]. One of the most popular techniques in this
category that has been widely used for ITF detection is the
Motor Current Signature Analysis [17].

In both aforementioned categories, interpretation and final
inference must be done by an expert. In addition to affecting
the detection performance, this fact increases the decision time
which is very crucial in many applications. Nevertheless, the
methods within the third category employ machine learning
algorithms to make the FDD process more intelligent and
automated. The main idea of the data‐based FDD approaches
is that all necessary information is embedded in the data and all
one needs to do is to let a machine (that is an algorithm) learn
from the data how to detect the fault. Furthermore, in some
cases, it may be useful to first extract discriminative features
from the signals using signal processing tools, before applying
them to the machine.

Employing classical machine learning algorithms, such as
Support Vector Machine (SVM), shallow neural networks, ge-
netic algorithm, fuzzy logic, and decision trees for ITF
detection in induction machines has a long history [18–25].
However, over the last 2 decades, the new concept of Deep

Learning (DL) brought about an evolution in the field of
machine learning [26]. In many fields, for example, natural
language, speech, image, and vision, DL methods have met
successes far beyond the classical methods and eclipsed them.
Within the past 5 years, several attempts have also been made
to use DL techniques for fault detection, but the conducted
study on ITF detection in induction machines is very few [27–
32] and to the best of our knowledge, there is no report on
employing machine learning methods (whether shallow or
deep) for ITF detection in DFIGs.

Due to the importance of the ITF detection problem in
DFIGs and in light of the paucity of research in the field, this
study is dedicated to incipient detection of stator ITF in DFIGs
using DL techniques. For this aim, detection of the ITF at
various levels is considered as a multi‐class classification prob-
lem and a deep model is trained to discover the occurrence of
the fault and detect it at its initial stage when only one turn is
shorted. Owing to the higher performance of the Long Short‐
Term Memory (LSTM) network in coping with time‐series
data, this deep model is adopted in the current study. Addi-
tionally, among the various modalities used for FDD, we
decided to use the three‐phase stator current signals. The main
reasons are that these signals contain more information about
and have a higher sensitivity to the target fault, while no dedi-
cated sensor is used as these signals are usually measured for
other purposes. On the contrary, vibration signal that is vastly
used for fault detection suffers from two problems of the un-
certainty of sensor location and the high vulnerability to noise.

To further improve the capability of the LSTM, the cele-
brated EMD signal processing tool is also employed in the
proposed scheme, based on which some well‐known statistical
features are extracted and a new feature selection approach is
also devised. Empirical mode Decomposition [33] is a data‐
adaptive time‐frequency analysis method that has proven to
be useful in the field of FDD. In this analysis method, a signal
is modelled as the superposition of some components that are
the natural oscillatory modes embedded in the signal. More-
over, in contrast to the harmonic functions, the frequency and
the amplitude of these components are generally time‐varying.
These facts make EMD useful for our study since electrical
signals are originally sinusoidal where any fault superimposes
some disturbances, with variable amplitudes and frequencies,
on it. On the other hand, EMD decomposes a signal into some
components that are all in the time domain and of the same
length as the original signal. This allows for varying frequencies
in time to be preserved and hence makes EMD a useful tool
for extracting information inherent to the signal. Specifically, in
the proposed method, each signal is first decomposed into its
main components using the EMD and some statistical features
are then extracted from each component. Subsequently, the
most useful features are selected using the proposed feature
selection technique, that are then used as the inputs of an
LSTM.

The novelties of the work can be summarised as follows:

� Studying the stator ITF detection problem using DL tech-
niques for the first time in DFIGs
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� Incorporating EMD tool from signal processing realm and
feature extraction and selection techniques from classical
machine learning field into the proposed scheme to devise a
method that can effectively detect the ITF in its incipient
stages

� Devising a new feature selection approach that efficiently
and effectively selects the most suitable features extracted
from the signals

� Applying the proposed method to experimental data in
steady‐state operation and conducting extensive in-
vestigations and evaluations in comparison with classical
machine learning methods as well as state‐of‐the‐art
methods proposed for ITF detection in induction
machines

The rest of the manuscript is organised as follows. Liter-
ature background, including a short introduction to the LSTM
model and the EMD as well as a concise review of the research
done in the field of ITF detection using DL, is presented in the
next section. The following two sections are dedicated to
describing the proposed method and reporting the test results
respectively. Finally, some concluding remarks are drawn up in
the last section.

2 | BACKGROUND

2.1 | Empirical mode Decomposition and its
variants

Empirical mode Decomposition is a robust time‐frequency
analysis method first proposed by Huang et al. to adaptively
decompose non‐stationary signals into their intrinsic oscilla-
tory modes [33]. These components are called intrinsic mode

functions (IMF), each with slowly varying amplitude and
phase. IMFs satisfy the generalised alternating and zero‐mean
properties and relaxes the amplitude and frequency from be-
ing constant. In other words, EMD is based on a simple
premise that each signal is made of a number of IMF each with
the following two conditions:

� Alternating Property: The number of extrema and the
number of zero‐crossings must be either equal or differ at
most by one, that is, IMFs have alternating stationary points
and zeroes.

� Zero‐Mean Property: At any point, the mean value of the
envelopes defined by the local maxima and local minima is
zero, that is, the maxima and the minima of the IMFs are
opposite in sign.

These IMFs are extracted through an algorithm known as
the sifting process that can effectively sift the complex signals
in the time domain. IMFs provide valuable information about
the signal. Empirical mode Decomposition suffers from a
problem known as the mode‐mixing and Ensemble EMD
(EEMD) was introduced to tackle this problem [34]. In the
EEMD algorithm, IMFs are obtained by averaging over modes
resulting from applying the EMD sifting procedure on several
noisy versions of the original signal, each with different real-
isations of the white noise. As a result of adding noise to the
signal, the signal reconstructed from the IMFs of the EEMD
algorithm contains some residual noise. Furthermore, adding
different samples of the white noise may lead to different
IMFs. These issues are addressed in a modified version of the
EEMD, called complementary EEMD (CEEMD) [35].
Figure 1 demonstrates an example of decomposing a frame of
faulty stator current signal into its first five IMFs, using the
CEEMD algorithm.

F I GURE 1 Applying complementary EEMD (CEEMD) to a frame of faulty stator current signal.
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2.2 | Long Short‐Term Memory

Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) are two main classes of deep neural networks
that have received a wealth of interest in many applications.
Unlike more conventional feed‐forward neural networks,
including CNNs, RNN has feedback connections that allow
the network to feed its activation at the current time step back
to its input at the next step. In other words, RNN has a hidden
state that stores the information from previous steps. This
temporal dynamic makes RNNs useful in dealing with signals
of the form of time series, such as signals considered in the
current study. This mechanism can be better perceived using
the diagrams shown in Figure 2 and the equation (1) that de-
scribes its operation.

ht ¼ tanhðWhxt þUhht−1 þ bhÞ; ð1Þ

whereWh and Uh matrixes and bh vector are the parameters of
the model that should be learnt during the training phase. Wh
and Uh are the weight matrixes that weigh the input vector at
the current time step (i.e. xt) and the hidden state vector at the
previous step (i.e. ht) respectively. The result is then added to
the bias vector bh and is finally passed to a non‐linear activation
function that is usually a tanh function. The recurrent nature of
the RNN model can be more easily perceived by unrolling it
into successive time steps, as illustrated in Figure 2b.

In practice, the standard RNN, also known as the vanilla
RNN, suffers from two main problems of gradient vanishing
and gradient exploding. In particular, when an RNN is trained
using back‐propagation, due to round‐off errors, the long‐term
gradient values may tend to zero or infinity. This phenomenon
restricts the memory of the vanilla RNN and prevents it from
remembering long‐term dependencies. Long Short‐Term
Memory network, first introduced in ref. [37], is a special
version of the standard RNN that solves the gradient vanishing

problem by controlling the information that should be kept
and/or discarded [38, 39]. The structure of an LSTM in its
compressed and unrolled forms are depicted in Figure 3 and
the governing equations are:

f t ¼ σ
�
Wf xt þUf ht−1 þ bf

�

it ¼ σðWixt þUiht−1 þ biÞ

Ĉt ¼ tanhðWcxt þUcht−1 þ bcÞ

Ct ¼ f t ⊙ Ct−1 þ it ⊙ Ĉt
ot ¼ σðWoxt þUoht−1 þ boÞ
ht ¼ ot ⊙ tanhðCtÞ

ð2Þ

where ⊙ denotes the Hadamard (element‐wise) product and
again W and U matrixes and b vectors are the trainable the
parameters of the model.

The main feature of this structure is the cell state Ct that
like a conveyor belt carries contextual information throughout
the time. This context is controlled by the following four gates:

� Forget gate decides the information from the previous step
that should be forgotten and keeps what remains. This is
done by creating ft vector whose elements are numbers
between 0 and 1 that then weight the elements of the pre-
vious context Ct−1.

� Candidate gate creates the new information Ĉt to be
added to the context.

� Input gate controls the amount of the new information
that should be added to the context. This is done by creating
it vector whose elements are numbers between 0 and 1 that
then weight the elements of the newly created context Ĉt.

� Output gate determines what the output or the next hidden
state should be. The result of this gate, i.e. ot, is then
weighted with numbers between 0 and 1 that are created by
passing the updated cell state Ct through a tanh layer.

F I GURE 2 Structure of the vanilla Recurrent
Neural Network (RNN) [36]

F I GURE 3 Structure of the Long Short‐Term
Memory (LSTM) [36]

ALIPOOR ET AL. - 259

 17518679, 2023, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12262 by U

niversidade D
e C

oim
bra, W

iley O
nline L

ibrary on [22/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3 | inter‐turn short‐circuit fault detection
using deep learning

1‐DCNNwas used in ref. [27] to identify stator ITF in squirrel‐
cage induction motors, in which some well‐known wavelets are
used to initialise the convolution kernels. Various ITF scenarios,
including the simultaneous occurrence of multiple faults, are
considered in this study. The reported accuracy is 96.13%. In
another study reported in ref. [28], 2‐D CNNs composed of
multiple layers are proposed for stator ITF detection in induc-
tion motors, where 16 different fault categories (including 1 ~ 5
shorted turns in each phase, as well as the healthy state) is
considered. The impacts of the structure of the CNN and
learning parameters on the performance are investigated and the
best accuracy value is reported to be 99.3%. However, no valid
comparison with existing methods is reported in these papers.

Three other researches that deserve more attention are re-
ported in refs. [30–32]. In ref. [30], LSTMnetwork is employed in
the encoder‐decoder structure equipped with the attention
mechanism to estimate an indicator of stator ITF in permanent
magnet synchronous machines. In the proposed method, a
bidirectional LSTM is used in the encoder. A bidirectional LSTM
consists of two LSTMs operating in the opposite directions that
can extract both forward and backward dependencies. More-
over, raw values of the negative‐sequence current and the
positive‐sequence current, both calculated based on the stator
three phase currents, and the rotational speed are used as the
inputs to the network. Although the fault indicator indicates the
severity of the fault and the reported results show high accuracy
of the estimation, it was not utilised for automatic fault detection
and classification.

In ref. [32], a method is proposed to detect gearbox bearing
and generator winding faults in wind turbines. In this method,
LSTM is used to predict some output variables based on some
other input variables and then the fault condition is diagnosed by
comparing the probability distributions of the true output vari-
ables with those of the predicted variables. Discrimination be-
tween the true and predicted probabilities is performed based on
the Kullback‐Leibler Divergence. 128 monitoring variables,
including several sensors mounted on the sub‐systems of the
turbine, from a Supervisory Control And Data Acquisition sys-
tem is used, where wind speed and active power variables are
selected as themodel inputs based onwhich the temperature and
the pressure variables are predicted. The best accuracy reported
for the generator winding fault is 92%which is higher than those
reported for some other state‐of‐the‐art methods. In ref. [31],
LSTM and Gated Recurrent Unit (GRU), which is another
version of the RNN, are combined with the 1D‐CNN for stator
ITF detection in induction motors. It is reported that the pro-
posed hybrid methods outperform the individual networks, that
is, 1D‐CNN, LSTM, and GRU.

3 | PROPOSED METHOD

Our proposed method for incipient detection of the stator ITF
in DFIGs is pictured in Figure 4. In this paper, three phase
signals and corresponding features are denoted by subscripts a,

b, and c. Three phase currents, that is, Ia, Ib, and Ic, go through
the same procedure of feature extraction to extract 50 features
from each current signal.

Each signal is first decomposed into its five dominant
IMFs using the CEEMD algorithm, whose indices range
from 0 to 4. To exploit the temporal evolution of the char-
acteristics of the signals, following the behaviour of the
LSTMs, each IMF is then chopped into 10 sub‐frames of
equal lengths, denoted by L. Each sub‐frame is attributed to a
time step and the corresponding index, ranging from 0 to 9,
is indicated by a superscript. Finally, 10 renowned statistical
features are extracted from each sub‐frame, whose indices are
represented by the third subscript. These features and their
definitions and indices are summarised in Table 1. Each
feature has unique characteristics and reveals distinct infor-
mation about the status of the machine. Mean, Root Mean
Square (RMS), skewness, and kurtosis are the four lowest‐
order statistics that contain information about the general
tendency, energy, symmetry, and outliers. The crest factor,
impulse factor, and margin factor are three impulsive metrics
that characterise the peakedness of the signals. On the other
hand, entropy quantifies the randomness or disorder and
zero‐crossing involves the notion of the rate of change or
frequency. Changes in these features can indicate changes in
the health status of the generator.

The above‐described procedure results in a temporal
sequence of 10 feature vectors that each contains 150 statistical
features. These features are denoted as Fnpij where subscripts p,
i, and j represent phase, IMF, and statistical feature indices,
respectively and the superscript n shows the time step. The
successive 10 feature vectors can serve as the sequential inputs
to the LSTM. In this manner, the LSTM processes each vector
at a time step and the output at the last time step, that is, h9
vector, is fed into a fully‐connect layer that follows the LSTM
and makes the final classification. The target variable is one‐hot
encoded.

The 150‐length feature vectors extracted from 3 current
signals can be directly applied to the LSTM. However, not all
these features are suitable for classification, since some of them
have not enough relevancy with the target variables and there
may also be some redundancy among them. In fact, using
irrelevant or redundant features may degrade the classification
performance or at least increase complexity and overfitting;
therefore discarding these features is always desirable. This can
be done using feature selection methods whose aim is to
reduce the number of features by selecting the most eligible
ones [40]. The kth selected feature at time step n is denoted as
SFnk k¼ 1; 2;…K.

Filter‐based and wrapper‐based methods are the two
main categories of supervised feature selection methods.
Filter‐based methods sort features based on their statistical
measures, independent of the machine learning algorithm.
Neighbourhood component analysis (NCA) is a non‐
parametric feature selection method whose goal is to maxi-
mise prediction accuracy of the classification task [41]. On
the other hand, wrapper‐type methods evaluate the classifi-
cation algorithm for different subsets of the features and
follow a greedy search approach to select the features that
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maximise the performance, according to a performance
index.

Filter‐based feature selection methods are of limited per-
formance; but wrapper‐type methods suffer from huge
complexity [42], in particular when a deep model is used for
classification. Hence, a new hybrid feature selection method is
proposed in this section that copes well with the proposed
fault detection approach. In this method, the NCA feature
selection technique is first employed as a pre‐processing step to
sort the features according to their importance. This step can
be regarded as a coarse search in which features are scored
according to their statistical characteristics. In the second step,
the wrapper approach is adopted for fine search, where instead
of searching among all features, the search area is limited to a
pre‐defined number of features, say M. In particular, the
selected subset is sequentially augmented where at each itera-
tion, M highest‐scored entities among the remaining features

are individually included into the selected subset and one that
brings about the highest improvement in the classification
performance is selected. This strategy can attain a near‐optimal
solution, with affordable complexity.

In summary, in the proposed ITF detection method, the
following procedure should be repeated over each stator cur-
rent signal to extract all statistical features:

� Decompose each signal into its 5 dominant IMFs, using the
CEEMD algorithm.

� Chop each IMF into 10 sub‐frames of equal lengths,
denoted by L.

� Calculate 10 statistical features, described in Table 2, from
each sub‐frame.

The successive 10 feature vectors, each containing 150
statistical features, can serve as the sequential inputs to the

F I GURE 4 Pictorial description of the proposed method
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LSTM. However, it is proposed to extract and use only a
subset of these 150 features, over each sub‐frame. These fea-
tures are selected based on the proposed feature selection
method that can be summarised as follows:

� Coarse Search: Employing the 150‐feature vectors extrac-
ted from all training sub‐frames, sort these 150 features
using the NCA feature selection technique.

� Fine Search: Starting from an empty subset, apply the
wrapper approach to sequentially augment the selected
subset; but instead of searching among all features, the
search area is limited to a pre‐defined number of features.

Note that the feature selection step is applied once in
advance, to specify the most informative features that should
be extracted.

4 | EXPERIMENTAL TESTS

4.1 | Dataset

For effective evaluation of the proposed detection method, a
DFIG test bed has been utilised, whose experimental config-
uration is depicted in Figure 5. As is usual in DFIGs, the stator
of the wound rotor induction machine is directly connected to
the grid by means of a three‐phase transformer, while the rotor

windings are fed by a rotor‐side converter. The DFIG is me-
chanically coupled to an induction motor supplied by a variable
speed drive. In this way, the shaft speed is appropriately set by
the drive. The DFIG is controlled by vector control strategy
which has been discussed in ref. [14]. Based on this control
system, the value of injected active and reactive power to the
grid could be adjusted. The whole framework of the control

TABLE 1 Statistical features extracted from IMFs

Index Feature Definition

0 Mean x¼ 1
L
PL
l¼1xðlÞ

1 RMS xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
PL
l¼1x2ðlÞ

q

2 Skewness s¼
1
L

PL

l¼1
ðxðlÞ−xÞ3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

PL

l¼1
ðxðlÞ−xÞ2

q �
3

3 Kurtosis k¼
1
L

PL

l¼1
ðxðlÞ−xÞ4

�
1
L

PL

l¼1
ðxðlÞ−xÞ2

�2

4 Zero‐crossing Number of times x crosses the zero value

5 Shape factor sf ¼ xrms
meanðjxjÞ

6 Crest factor cf ¼ maxðxÞ
xrms

7 Impulse factor if ¼ maxðjxjÞ
meanðjxjÞ

8 Margin factor mf ¼ maxðjxjÞ
meanð

ffiffiffiffi
jxj
p

Þ
2

9 Entropy en¼ −
PL
l¼1pðxðlÞÞlog2ðpðxðlÞÞÞ, where the probability p(⋅) is represented by the normalised

histogram counts.

TABLE 2 Data description

Quantity Value

Fault severity (number of shorted turns) 0, 1, 2, 5, 7 and 15

Generator speed (rpm) 1350, 1500 and 1650

Active power injected to the grid (W) 0, 1000 and 2000

Used signal Ias, Ibs and Ics

F I GURE 5 Schematic diagram of the experimental Doubly‐Fed
Induction Generator (DFIG) system

TABLE 3 Parameters of the Doubly‐Fed Induction Generator
(DFIG) used in the experimental tests

Quantity Value Quantity Value

Rated power (kW ) 4 Rated frequency (Hz) 50

Rated stator voltage (V ) 400 Rated rotor voltage (V ) 230

Rated stator current (A) 9.4 Rated rotor current (A) 11.5

Rated speed (rpm) 1420 Number of poles 40

Inertia (kgm2) 0.15 Friction coefficient (Nms/rad ) 0.03
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system and gating signals computation was implemented in the
dSPACE 1103 platform.

Hall effect current sensors measure the stator and rotor
currents, while voltage sensors measure the stator voltages and
the dc‐link voltage of the rotor‐side converter (based on a 3‐
phase Semikron inverter bridge SKiiP132GD120 − 3DUL).
An incremental encoder of 2048ppr measures the rotor posi-
tion. The main parameters of the DFIG used in the experi-
mental tests are listed in Table 3. The test bed accompanied by
the overall control platform and the rotor side converter are
illustrated in Figure 6. The stator inter‐turn fault is introduced
by providing some taps connected to different turns of one of
the stator coils. By selecting two taps and their interconnection,
various fault severities are achieved.

The described test bench was then utilised for our inves-
tigation. In the current study, different fault severities (0, 1, 2,
5, 7, and 15 shorted turns) at several values of injected powers
and shaft speeds was considered, in steady‐state conditions.
The shaft speed was determined by the induction motor drive
adjustment and three speeds were selected, each belonging to a
special mode of DFIG operation; 1350 rpm for sub‐
synchronous mode (the rotor circuit absorbs active power
from the power converter), 1500 rpm for synchronous mode
(the rotor circuit has almost no active power exchange with the
power converter) and 1650 rpm for super‐synchronous mode
(the rotor circuit delivers active power to the power converter).
Furthermore, 3 active power values were selected for injection
into the grid (0, 1000, and 2000 W). The amount of exchanged
reactive power is chosen to be zero, as is usually the case in the
normal condition of the grid. Different signals have been
measured, but the stator three‐phase currents was regarded for
the current study. The mentioned data have been acquired at a
sampling frequency of 18 kHz. These specifications are sum-
marised in Table 2.

4.2 | Test settings

All tests were performed using MATLAB 2019b in 64 − bit
Windows OS with 6 GB memory on either a 2.2 GHz Intel
CPU while only one core is enabled or an 810 MHz NVIDIA
GPU with 384 cores.1

In all tests that are reported in this section, each signal is
split into segments of length 360 points, corresponding to a
cycle of the periodic current signals, and each segment is
regarded independently as a data sample. Furthermore, a one‐
layer LSTM with 150 hidden units is used that is trained using
the Adam optimisation algorithm in mini‐batches of 144
training samples.

4.3 | Results

At first, feature selection is not involved, that is, all extracted
features are applied to the classifier. The confusion matrix
obtained by training the LSTM model over all extracted fea-
tures using 300 epochs is depicted in Figure 7. This test was
conducted using hold‐out cross‐validation, where 70% of data
samples were used for training and the remaining samples were
held out for the test. As a comparison, the accuracy obtained
by the LSTM model is compared, in Table 4, with those of the
most successful traditional shallow classifiers; including Linear
Discriminant Analysis, K‐Nearest Neighbours (KNN), Naive
Bayes, SVM, Decision Tree and Multi‐Layer Perceptron. This
test was conducted using 10‐fold cross‐validation which is a
standard choice in machine learning. Furthermore, the shallow

F I GURE 6 Overall control platform and measurement system

1
Simulation codes are available at https://github.com/G‐Alipoor/DFIG_ITF.
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binary classification models were extended to the multi‐class
problem using the error‐correcting output code technique [43].

These results demonstrate the higher accuracy obtained by
the LSTM model. Moreover, one can note that distinguishing

between two classes becomes more difficult as the difference
in the number of shorted turns in these classes decreases.
For instance, discriminating between the healthy and the 1‐turn
cases is more difficult than discriminating between the 15−
turns case and any of the other cases. It is in accordance with
the expectation since the higher the number of shorted turns
is, the more the measured signals are affected by the fault. This
in turn causes the sensitivity for the 1−turn class, calculated in
the one‐against‐all‐approach (that is the ratio of all cases that
were truly predicted as the 1−turn case to all cases that were
actually in the 1−turn case) to be relatively small, because this

F I GURE 7 Confusion matrix of the classification task; effect of selecting a limited number of features based on the proposed hybrid feature selection
method

TABLE 4 Averaged accuracy employing all features

Method LSTM LDA KNN Bayes SVM DT MLP

Accuracy 92.16% 62.62% 67.02% 33.75% 18.52% 80.63% 71.92%

Abbreviations: DT, Decision Tree (DT); KNN, K‐Nearest Neighbours; LDA, Linear
Discriminant Analysis; LSTM, Long Short‐Term Memory; MLP, Multi‐Layer
Perceptron; SVM, Support Vector Machine.
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case is more prone to be misclassified as one of the two close
cases of healthy and 2−turns. In addition, from a physical point
of view, the impedance decrease of the winding caused by one‐
turn inter‐turn is nearly compensated by added impedance
value owing to the extra terminal and cabling. So, the stator
current is less affected than what would be expected.

To investigate the effect of utilising the feature selection
step on the performance of the proposed method, a test was
carried out in which the classification accuracy is compared
against the number of selected features. In this test, data
samples were first split into training and test sub‐sets that
contain 80% and 20% of available data samples respectively.
Then 4 − fold cross‐validation was performed on the training
set, that is, in each fold 60% of data samples were used for
training and the other 20% samples were used for validation.
This specific cross‐validation makes test and validation sub‐
sets of equal size.

Results achieved using NCA and proposed selection
algorithms are shown in Figure 8, in which the accuracy
achieved based on validation and test sub‐sets are reported.
This test reveals the outperformance of the proposed
feature selection method. Particularly, one can see that 6
features carry the most information required for classifica-
tion and the best accuracy is achieved when 21 features are
used. The averaged classification accuracies, over the test
data set, with 6 and 21 most informative features selected
by the proposed hybrid feature selection method are

87.80% and 91.30%, respectively; while these results are
82.10% and 88.94% for the NCA method. The 21 most
informative features selected by the proposed feature se-
lection method along with their descriptions are tabulated in
Table 5. Confusion matrixes of the proposed method, when
the first 6 and 21 features selected by the proposed
methods are utilised, are also shown in Figure 7. These
results show that discarding the non‐informative features,
despite decreasing the complexity, can improve the accuracy
of the proposed fault detection method. Moreover, better
results can be achieved using the proposed hybrid feature
selection method.

Finally, the averaged accuracies of the proposed method in
comparison with the conventional shallow machine learning
models, when only the 6 or the 21 selected features are used, are
summarised in Table 6. These tests are also obtained by 10−fold
cross‐validation, similar to the results reported in Table 4. It can
be seen that our proposed method results in substantially higher
accuracy, while its complexity is considerably lowered by
decreasing the data dimensionality using the proposed feature
selection method. More importantly, the proposed method can
detect the fault at its initial stages where only one turn is
shorted. This outcome confirms the high performance of the
proposed method for incipient detection of stator winding ITF
in the DFIG.

5 | CONCLUSION

A new machine learning‐based method for incipient detection
of stator ITF in DFIGs using the stator current signals was
proposed in this paper. To this end, the above problem was
considered as a multi‐class classification problem with which it
is possible to detect the fault incipiently with only one turn is
shorted. The classification was carried out by a state‐of‐the‐art
deep model, known as the LSTM network, that can better cope
with the temporal evolution of signals characteristics. This
model is further improved by equipping it with the EMD
signal processing tool as well as extracting the most repre-
sentative features for which a new feature selection method
was also presented.

F I GURE 8 Classification accuracy as a function of the number of selected features

TABLE 5 The most informative features selected by the proposed
feature selection method

Order Features Order Features Order Features

1 Fc52 8 Fb54 15 Fb31

2 Fb59 9 Fc56 16 Fa56

3 Fc59 10 Fb40 17 Fb49

4 Fa59 11 Fb41 18 Fc34

5 Fb50 12 Fc40 19 Fa52

6 Fc51 13 Fb52 20 Fc11

7 Fb51 14 Fb11 21 Fb20

ALIPOOR ET AL. - 265

 17518679, 2023, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/elp2.12262 by U

niversidade D
e C

oim
bra, W

iley O
nline L

ibrary on [22/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Tests conducted on experimental data showed the effec-
tiveness of the presented feature selection technique and the
high performance of the proposed method for incipient
detection of steady‐state faults. In particular, the proposed
method can detect various stator short‐circuit faults with an
accuracy of about 95%, even in the case of only one shorted
turn. The proposed method is very general and can be applied
to any similar problem, for example, detecting other electrical
faults and even detecting the faulted phase. The only necessity
is to apply the proposed feature extraction and feature selec-
tion methods to data samples collected for the new problem
and then train the LSTM network on the training data samples.
It is worth noting that the selected features may be different
for other problems.
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