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Abstract
The multicriteria decision aiding field offers many methods to support decision makers in
comparing a list of alternatives. Among these, outranking methods such as ELECTRE are
appreciated for avoiding full compensation among criteria, but outranking relations are dif-
ficult to exploit due to incompleteness and lack of transitivity. This work focuses on choice
problems, proposing a stochastic exploitation method to select the most preferred alternative.
It builds on the concept of Markov solution, which has become popular to select a winner
in tournaments and voting problems. The proposed method can be used to exploit crisp out-
ranking relations, valued outranking relations, or stochastic outranking relations. This can be
a valuable addition to the toolbox for exploiting outranking relations as this work shows that
solutions can be computed without much effort and guarantee some essential properties.

Keywords Multiple criteria decision analysis · Outranking relations · ELECTRE · Choice
problematic · Markov

1 Introduction

The field of Multicriteria Decision Aiding (MCDA) offers a wide variety of methods to
support Decision Makers (DMs) who wish to evaluate or compare a list of alternatives
(Belton & Stewart, 2002; Greco et al., 2016; Ishizaka & Nemery, 2013). These methods
include outrankingmethods,which build and exploit binary relations on the set of alternatives.
Such relations, called outranking relations, can be crisp (outranks/not outranks) or valued
(an outranking degree in [0,1]), according to the method.

Typically, the use of an outranking method begins with a construction step, in which the
crisp or valued outranking relation on a set of alternativesA� {a1,…,an} is derived from data
on the alternatives and from a number of parameters required by the method, namely those
reflecting the preferences of the DMs. This is followed by the exploitation step, in which the
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outranking relation is analyzed in viewof producing a recommendation, in termsof the choice,
ranking, or sorting results. Outranking methods include the well-known ELECTRE (Dias &
Mousseau, 2018; Figueira et al., 2005; Roy, 1991) and PROMETHEE (Behzadian et al.,
2010; Brans et al., 1986), among other (Martel &Matarazzo, 2005). Outranking methods are
particularly suited to DMs who wish to avoid complete compensation (substitution) among
criteria, i.e., not allowing a very poor performance on one criterion to be compensated by a
very good performance on some other criterion.

Outranking methods such as ELECTRE build and exploit crisp or valued outranking
relations among pairs of alternatives. In ELECTRE, a statement ai outranks aj, denoted
(aiSaj) means that ai is at least as good as aj (Figueira et al., 2005; Roy, 1991). When the
focus is on relative or comparative problems, outranking relations are not easy to exploit
because the outranking relation is not complete (some pairs of alternatives may have no
relation) and not transitive (for instance cycles can occur). Methods to exploit such relations
have been proposed, for the purposes of choice and especially for ranking problems. The latter
includemainly two groups ofmethods. One group adapts concepts of social choice and voting
methods, such as the Net Flow rule (Bouyssou, 1992), the Min rule (Pirlot, 1995), or prudent
orders and their extensions (Dias & Lamboray, 2010). Another group follows optimization
strategies seeking to obtain a good compatibility between the outranking relations and the
obtained ranking (Fernandez & Leyva, 2004; Fernandez et al., 2008; Leyva López et al.,
2021). For choice problems specifically, a well-known approach is to select a kernel of an
outranking relation, as proposed by Roy (1968, 1996).

When the problem is stated as a choice problem statement, DMs wish to select the most
preferred alternative (one alternative only) among a given set. For instance, if A � {a1, a2,
a3} and S is such that a1Sa2 and a1Sa3 while ¬(a2Sa1) and ¬(a3Sa1), then a1 should be
chosen and, differently from a ranking problem, one does not care to differentiate between
a2 and a3. The classical way of exploiting it is to define a subset of A, as small as possible,
containing a shortlist of the candidates to be the best option. Roy (1968) suggested the use
of the kernel concept from graph theory:

K is a kernel ⇐⇒
{∀a j /∈ K , ∃ai ∈ K : ai Sa j

∀ai , a j ∈ K ,¬(ai Sa j )

Depending on how rich the S relation is, the kernel can contain a single winner, or several
(sometimes many) potential winners. However, if the outranking relation contains cycles, a
kernel might not exist, or more than one kernel might exist, causing the need to break cycles
by removing their weakest link or to consider cycles as a single alternative (an indifference
class) (Roy & Bouyssou, 1993).

The above paragraph is just an example of the difficulties faced when exploiting a relation
that is not transitive andnot completewhen it comes to selecting themost preferred alternative.
Such problems also appear in the literature of social choice, in which the binary relation
reflects the number of persons preferring one option to another, as well as in the literature
on tournaments, in which the binary relation reflects the results of the confrontations among
pairs of alternatives.

To cope with these difficulties, several authors have independently proposed under differ-
ent names the use of what we name in this work the Markov solution (Brandt et al., 2016),
described in the following section.

This work contributes to the literature on exploiting outranking relations in MCDA by
proposing and studying a stochastic method based on the concept ofMarkov solution (Brandt
et al., 2016). To the best of our knowledge, no prior work has studied the concept of Markov
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solution in this context. For probabilistic outranking relations obtained, for instance, from a
Stochastic Multicriteria Acceptability Analysis (SMAA) approach (Govindan et al., 2019;
Hokkanen et al., 1998), the Markov solution can be readily defined, according to different
variants proposed and studied in this work. For traditional (non-probabilistic) crisp or valued
outranking relations, this work also proposes different variants for transforming them into a
stochastic relation. Two desirable characteristics of the exploitation method for our specific
context (monotonicity and dominance with regards to the evaluations of the alternatives
on multiple criteria) are also demonstrated, considering the specificities of a probabilistic
outranking function.

Following this introduction, Sect. 2 briefly reviews the concept of a Markov solution.
Section 3 presents a method for a stochastic exploitation of a crisp or valued outranking
relation. The method is illustrated on several examples in Sects. 4 and 5. Section 6 discusses
somemathematical properties of this exploitation approach, and Sect. 7 concludes this article.

2 Background on theMarkov solution

LetA� {a1,…,an} denote a set of n alternatives the DMwishes to choose from. The rationale
for the Markov exploitation strategy is the following. Suppose the DM is contemplating an
alternative ai and considering it as a provisional choice. When comparing it with other
alternatives, the DMmight wish to exchange alternative ai for another one. Let pij denote the
probability that the DM exchanges ai for alternative aj (j �� i) and let pii denote the probability
that the DM keeps ai. Naturally, one has

pi j ≥ 0 and
n∑
j�1

pi j � 1, ∀i

TheMarkov solution builds on ideas dating back to the work of Daniels (1969) and Moon
andPullman (1970). It consists in selecting the alternativewith the highest probability of being
chosen according to this process. It has been studied mainly in the context of determining
a winner from the results of a round-robin tournament or from voting, sometimes under the
name of fair bets method (González-Díaz et al., 2014) or the self-consistency rule (Laslier,
1997). In the simplest case, the transition probability matrix P � [pij] is assumed to be binary
representing an adjacencymatrix pij ∈ {0,1}, e.g., representing majority voting (Brandt et al.,
2016), but it has also been studied in a more general case where the matrix has continuous
values pij ∈ [0,1].

The transition probability matrix P � [pij] defines a Markov chain with n states (one for
each alternative) considering a random walk on the set of alternatives, and assuming the
probability of visiting the next alternative does not depend on the path followed to arrive at
the present alternative. According to the theory of Markov chains, a steady state row vector
π, whose elements πi represent the long-run (stationary) probability of being in the state
corresponding to choosing ai, satisfies the equilibrium equation:

π P � π, with
n∑
j�1

π j � 1 and π j ≥ 0.

Under some conditions (e.g., if all pij are strictly positive) theMarkov chainwill be ergodic

and Pt �
[
pti j

]
, i.e., the tth power of the transition matrix, converges to a matrix where each

row corresponds to the stationary distribution π, i.e.,
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lim
t→∞pti j � π j

In such conditions, P is irreducible and the Markov ranking of the alternatives by decreas-
ing order of their steady-state choice probability, π j , is characterized by five properties, i.e.,
it is the unique method satisfying these properties (see González-Díaz et al. (2014) for formal
definitions and proofs):

• Anonymity: a standard property requiring that the results do not depend on the labelling
of the alternatives.

• Homogeneity: results are invariant to a rescaling of P by multiplying this matrix by a
positive constant.

• Symmetry: all alternatives are tied in the results if pij � pji, ∀i, j .
• Flatness preservation: if according to matrix P all alternatives are tied and the same occurs
for matrix P’, then all players are tied for matrix P + P’.

• Negative response to losses (Slutzki &Volij, 2005): if according tomatrixP all alternatives
are tied, then a matrix P’ obtained by multiplying the losses of each alternative ai (i.e.,
multiplying the ith column of P) by a constant λi > 1 yields a ranking inversely related to
the value of these constants.

The last two properties assume P can be any non-negative matrix with null diagonal,
whereas in the case in which P represents transition probabilities, the elements of P have
an upper bound of 1 and

∑n
j�1 pi j � 1,∀i . Assuming the additional condition that pij

+ pji � 1/n, ∀i, j , Herrero and Villar (2021) presented a further application of the Markov
solution for social choice, namedBorda-Condorcet rule,mentioning it satisfies standard social
choice methods properties: universal domain, anonymity, neutrality, weak Pareto principle,
weak unanimity, independence of fully dominated alternatives, independence of generally
unconcerned individuals, replication invariance, and monotonicity. The same authors also
address the situation in which pij + pji < 1/n, ∀i, j .

To a great extent the Markov solution approach has been studied in the contexts of voting
and tournaments (Brandt et al., 2016; González-Díaz et al., 2014; Laslier, 1997). Besides
voting and tournaments, this type of approach has been used for ranking websites in search
engines (Brandt et al., 2016). Among ranking methods that can be related to the ideas of the
Markov solution, the PageRankmethod and its variants have been the focus ofmuch attention
recently and applied not only to rank web pages, but also in sports, bibliometrics, and other
application areas (Chung, 2014; Franceschet, 2011; Gleich, 2015; Langville &Meyer, 2012).
Also, recently, Herrero and Villar (2021), suggested a way of using the Markov solution
concept in a setting with multiple issues by selecting issues in a random way. To our best
knowledge, no prior work has studied the concept of Markov solution as a means to exploit
an outranking relation.

To address this gap, in the following section we propose and study different ways that the
Markov solution can be adapted to exploit an outranking relation, through a suitable trans-
lation of the deterministic outranking relation (crisp or valued) into a stochastic outranking
relation.

3 The stochastic exploitationmethod

Following the idea behind the Markov solution, the exploitation strategy proposed in this
work consists in selecting the alternative with the highest probability of being chosen, based
on a probabilistic transition matrix. In the context of tournaments, the transition probabilities
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are derived from the results obtained when each alternative plays against other alternatives.
In the context of voting, the transition majorities are derived from the number of voters
supporting each alternative against other alternatives. In the context of MCDA, Herrero
and Villar (2021) suggested that multi-issue (multicriteria) evaluations could be considered
by selecting a criterion randomly when comparing two options. Here, we discuss how an
outranking relation can originate a transition probability matrix.

To define each transition probability, we consider that at some point alterative ai is the
current incumbent (the provisional choice of the DM) and a challenger aj (another alterna-
tive in A, different from ai) is randomly chosen with probability 1/(n − 1), i.e., all other
alternatives can be the challenger with the same probability. Let cij denote the probability
that the DM would exchange ai for aj if the latter appears as a challenger. The following
Sects. 3.1–3.3 discuss different ways of modelling the exchange probabilities cij based on an
outranking relation. The notation and characteristics of this outranking relation follow the
logic of ELECTRE outranking relations (Roy, 1991), considering outranking means “at least
as good as”. Adaptations can be made if the outranking relation refers to a strict preference,
as occurs for PROMETHEE methods (Brans et al., 1986). Then, Sect. 3.4 presents how to
use these probabilities to compute the long-term (stationary) probability that each alternative
is chosen.

3.1 Deterministic crisp relation

A crisp binary relation S is defined on the set of alternatives when the outranking relation
either holds or does not hold for each ordered pair of alternatives. Following the usual
notation in ELECTRE methods, for an ordered pair (ai,aj) ∈ A × A, either aiSaj, meaning
that ai outranks (is at least as good as) aj, or ¬(aiSaj), meaning the contrary. Based on the
outranking relation, three other relations can be defined as a (P,I,R) system of preference
relations (Roy, 1996):

aiPaj ⇔ aiSaj ∧¬(ajSai) (preference relation).
aiIaj ⇔ aiSaj ∧ ajSai (indifference relation).
aiRaj ⇔ ¬(aiSaj) ∧ ¬(ajSai) (incomparability relation).

As presented above, the transition probabilities pij depend on the probability cij that the
DM would exchange ai for aj if the latter appears as a challenger. In the context of a (P,I,R)
system of preferences we envisage three working hypotheses as follows:

H1: cij � 1 if and only if ajPai (otherwise cij � 0). This corresponds to a strong attachment
to the status quo alternative. The DM will exchange ai for aj only if the latter is strictly
preferred to it.

H2: cij � 1 if and only if ajSai, i.e., if ajPai or ajIai (otherwise cij � 0). This corresponds to
a weak attachment to the status quo alternative. The DM will exchange ai for aj if the latter
is strictly preferred to it or if it is considered to be indifferent to it.

H3: cij � 1 if ajPai, ajIai or ajRai (cij � 0 only if aiPaj). This corresponds to an exploratory
attitude in which the DM will exchange ai for aj unless ai is strictly preferred to aj.

3.2 Deterministic valued relation

We now examine the case when a valued binary relation S in [0,1] is defined on the set of
alternatives. For an ordered pair (ai,aj) ∈ A × A, let sij denote the credibility degree for the
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Fig. 1 Preference relations as a function of the cutting level λ

statement that ai is at least as good as aj. In ELECTRE methods, the exploitation of the
valued outranking relation involves defining a cutting threshold λ to transform the valued
outranking relation into a crisp one:

ai Sa j ⇔ si j ≥ λ.

In the presence of a fixed value for λ, the outranking relation is crisp, as presented in the
previous subsection. In the absence of a fixed value for λ, the probabilistic interpretation of
the outranking relation can be grounded on a volume-based (domain-based) interpretation,
equivalent to drawing λ from a uniform distribution U(0.5, 1.0), see Fig. 1.

Again, three working hypotheses are envisaged for the exchange probability, analogous
to the crisp case:

H1: cij is the probability of ajPai

ci j �
⎧⎨
⎩
2
(
s ji − si j

)
, i f s ji > si j ∧ si j > 0.5

2
(
s ji − 0.5

)
, i f s ji > 0.5 ∧ si j ≤ 0.5

0, otherwise

H2: cij is the probability of ajSai

ci j �
{
2
(
s ji − 0.5

)
, i f s ji > 0.5

0, otherwise

H3: cij is the probability of ajPai, ajIai or ajRai, i.e, the probability of ¬(aiPaj)

ci j �

⎧⎪⎨
⎪⎩
1, i f s ji ≥ si j ∨ si j < 0.5
2
(
1 − si j

)
, i f s ji < si j ∧ s ji ≤ 0.5

1 − 2
(
si j − s ji

)
, i f s ji < si j ∧ s ji > 0.5

More generally, the same logic can be applied to any function that converts a deterministic
outranking degree sij into an outranking probability cij. Such a function F(.):[0,1] → [0,1]
must be such that:

• F(0) � 0, i.e., outranking is impossible if the credibility degree is null;
• F(1) � 1, i.e., outranking is guaranteed if the credibility degree is equal to one;
• F(.) is nondecreasing, i.e., if the credibility degree increases the outranking probability
cannot decrease.

These properties imply that F(.) can be seen as a cumulative distribution function for some
probability distribution, which can be interpreted as a probability distribution for a stochastic
cutting level. Indeed, the interpretation behind Fig. 1 corresponds to a uniform distribution
U(0.5, 1.0), but other distributions supported on a bounded interval can be used, such as the
triangular, Beta, PERT, etc. (e.g., Fig. 2).

The above possibilities for the exchange probability can then be rewritten as follows:
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Fig. 2 Credibility to probability cumulative distribution functions

H1: cij is the probability of ajPai

ci j � F
(
s ji

) − F
(
si j

)
H2: cij is the probability of ajSai

ci j � F
(
s ji

)
H3: cij is the probability of ajPai, ajIai or ajRai, i.e, the probability of ¬(aiPaj)

ci j � 1 − (
F

(
si j

) − F
(
s ji

))
.

3.3 Stochastic valued relation

A third possibility is that cij is given by a stochastic analysis, e.g., resulting fromMonte-Carlo
simulation of the outranking relation given stochastic distributions for the parameters of an
MCDA outranking model, as in SMAA methods. The same three cases considered before
can then be considered using the probabilities for ajPai (H1), ajSai (H2) or ¬(aiPaj) (H3)
resulting from the stochastic analysis:

H1: cij � Prob(ajPai)

H2: cij � Prob(ajSai)

H3: cij � 1-Prob(aiPaj)

3.4 Computation of the stationary probabilities

To define each transition probability pij we consider that when alterative ai is the current
incumbent (the provisional choice of the DM) the challenger aj can be any other alternative,
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with the same probability 1/(n − 1). Given cij, the probability that the DM would exchange
ai for aj if the latter appears as a challenger, we can write

pi j � ci j/(n − 1) for all i �� j and pii � 1 −
∑
j ��i

pi j for all i .

(Note: it is easy to check that pii ∈ [0,1]).
All the alternatives are considered to have the same probability (1/n) of being considered

in the first place. From P � [pij], we then seek to obtain the steady stationary distribution
π � (π1, . . . , πn), with π j representing the long-run (stationary) probability of choosing
alternative aj. The solution, henceforth named “equiprobable start solution” (ESS), can be
obtained by solving a system of equations or by simulation.

The above reasoning follows the idea of theMarkov solution, assuming an infinite number
of comparisons, each one potentially replacing the incumbent alternative by one of its chal-
lengers, and also assuming exchange probabilities depend solely on the outranking relation
(and not on the path followed to arrive to the incumbent alternative). Of course, in practice
DMs would be uncapable of performing such a large number of comparisons, but we assume
they would accept to follow this logic, since the outcome is not hard to compute, as described
in the following paragraphs.

3.4.1 Solution solving a system of equations

A solution can be obtained by solving the system of linear equations πP � π, which is
guaranteed to have at least one solution (see, e.g., Chpt. 4 of Gallager (2013)). Although
finding a solution is guaranteed, it may happen that the system πP � π admits multiple
solutions, and only one among these will correspond to the ESS. However, if P is irreducible
(i.e., if transition probabilities are such that a path exists to reach aj starting from ai, ∀i,j), then
the system πP � π admits only one solution, which is independent of the initial conditions
and therefore corresponds to the ESS.

It is also possible to find the ESS with a very good approximation without needing to
verify if P is irreducible. One possibility consists in using the simulation process presented
below.

3.4.2 Solution using a simulation process

The ESS can be obtained by reiterating π(t+1) � π(t)P from t � 0 up to a large number niter ,
starting withπ(0) � [ 1n . . . 1

n ], emulating aMonte-Carlo simulation process. Noting that, e.g.,
π(1) � π(0)P and π(2) � π(1)P imply π(2) � π(0)P2, and so on, by induction this process
corresponds to the approximated solution π ∼� [ 1

n . . . 1
n

]
Pniter . In “Appendix A”, we show

that this process is convergent.

4 Analysis of examples with three alternatives (crisp deterministic
relation)

It is instructive to study the transition matrices P for a simple case with three alternatives
and the ESS that correspond to each working hypothesis H1-H3 envisaged for the exchange
probability. All possible combinations (apart from permutations) are depicted in Fig. 3.
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Fig. 3 Crisp outranking relations for three alternatives and corresponding ESS

Situations (A), (K) and (P) are fully symmetric, and the choice probabilities given by
π are naturally the same. Situations (E), (J) and (M) have a clear winner preferred to both
competing alternatives, hence it is also natural to give the winner a choice probability of 1.
The three possibilities to define cij also yield the same π in the following cases:

• (C) and (I), where all the relations are symmetric (I or R) and no distinctions are made;
• (F) and (L), where there is a clear loser with null chance of being selected and no reason
to pick a single winner.

The differences appear in six cases that are harder to exploit: (B), (D), (G), (H), (N), and
(O). Variant iii) corresponding to H3 is the one that yields a final distribution π more evenly
spread. This can be seen as a disadvantage, since it provides a less clear-cut result concerning
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Fig. 3 continued

the aim of identifying the most preferred alternative. In cases (B) and (H), but also (G),
it is difficult to understand why should anyone contemplate choosing the alternative with
choice probability 1/6, whereas variants (i) (H1) and (ii) (H2) yield a more natural choice
probability of 0. We therefore conclude that H1 and H2 are preferable to H3. For this reason,
in the continuation we drop variant, (iii) (H3) and focus on H1 and H2.

The kernel method could also be used to analyze many of these relations. In some situa-
tions, the results would be perfectly aligned:

• In situation (A) the three alternatives would be in the kernel, which matches well having
the same choice probabilities;

• In situations (E), (J), and (M) the kernel has a single winner, whichmatches well the choice
probability of 1;
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• In situation (F) the two outranking alternatives a and c would be in the kernel, which
matches well having 0.5 choice probabilities for each one.

In other situations, one would find differences, showing the kernel method and the ESS
follow different philosophies:

• In situations (B) and (G) both a and cwould be in the kernel. These are the alternatives with
positive choice probability (in H1 andH2). SomeDMsmight appreciate the discrimination
provided by the ESS, with higher probability for a that results from its comparison with b,
whereas other DMs might prefer the kernel method’s more neutral stance of not making a
distinction between a and c;

• In situation (D) the kernel consists of a and c. This reflects a cautious stance of keeping
not only a (the only alternative not outranked), but also c as it is not outranked by a. This
reflects the intransitivity of the outranking relation. The ESS, on the other hand, follows a
different logic because the intuitive idea of successively exchanging the provisional choice
entails some transitivity: if given c, the DM would exchange it for b, and if given b the
DM would exchange it for a, this leads to the final choice of a;

• In situations (H) and (N), only a would be in the kernel, and a has the highest probability
of the ESS. For H1 the probability of choosing a is greater than that for H2, given the
latter’s treatment of the indifference relation.

In situation (K) no kernel exists. In all the remaining situations, more than one kernel
exists.

As a note, some of these cases with three alternatives are instructive to remark that the
ESS (and the same applies to the kernel solution) is mostly appropriate to the context of
selecting a single alternative, and not to contexts of selecting multiple alternatives or ranking
the alternatives (even though the ESS probabilities could be used to define a ranking). An
example is case (J), for which the ESS yields probability 1 for alternative a and probability
0 for b and c. The ESS makes no difference between b and c for the purpose of being the
winner, as both are obviously not a winner, even though in terms of a ranking one would
easily accept that after a, b would be second and c would be third. Another example is (B),
for which the ESS under H1 or H2 indicates b has zero probability of being the best one,
whereas c has some probability of being the best one. Suppose a has good quality and it is
cheap, b has also good quality but it costs a bit more (hence it is outranked by a), and c has
excellent quality but costs a lot more (hence it was considered to be incomparable to a and
b). If the DM needed to select one alternative, b would obviously not be selected. However,
if the DM needed to select two alternatives, then some DMs might prefer to have a and b
rather than a and c.

5 Additional examples

This section revisits two real-world case studies described in the literature. The results were
obtained using an exact approach solving πP � π.

5.1 Probabilities derived from crisp or valued relations

First, let us consider a real-world application at the French postal services described by Roy
and Bouyssou (1993, Chpt. 8), which aimed at the selection of a machine to sort packages.
Table 1 presents a valued outranking relation considering the concordance values obtained
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Table 1 Valued outranking relation S � [sij] adapted from (Roy & Bouyssou, 1993)

a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 1.000 0.718 0.667 0.795 0.925 0.744 0.692 0 0

a2 0.692 1.000 0.872 0.718 0.923 0.641 0 0 0.667

a3 0.615 0.923 1.000 0.846 0.923 0.769 0 0.795 0.59

a4 0.692 0.846 0.795 1.000 1.000 0.718 0 0 0

a5 0 0 0 0 1.000 0 0 0 0

a6 0 0 0 0 0.949 1.000 0.615 0 0

a7 0 0.590 0.538 0.615 0.872 0.923 1.000 0.795 0

a8 0.538 0 0 0 0.667 0.590 0.590 1.000 0

a9 0.436 0 0 0 0.744 0 0 0.615 1.000

Values in boldface correspond to the crisp outranking relation considering a cutting level λ � 0.7

by the ELECTRE IS method, with zeroes corresponding to veto situations. In the cited study,
this relation was exploited considering a cutting level λ � 0.7, obtaining a choice set (using
the kernel method) containing alternatives a1, a7, and a9 as candidates to be the preferred
alternative.

First, let us consider only the crisp outranking relation corresponding to the cutting level
λ � 0.7 (Fig. 4; boldface in Table 1), i.e., aiSaj ⇔ sij ≥ λ. The transition probabilities and the
ESS corresponding to hypotheses H1 and H2 are presented in Tables 2 and 3, respectively.

According to H1, the DM is strongly attached to the status quo alternative, and will
exchange ai for aj only if the latter is strictly preferred to it. Then, once theDM reaches a1, a3,
a7, or a9, no further exchanges occur and this provisional alternative remains the final choice.
The steady state probabilities reflect the chances of ending the chain of exchanges in each of
these alternatives, when the starting alternative is picked randomly, favoring alternative a1
as the most likely to be chosen.

According to H2, the DM is not so attached to the status quo alternative and will exchange
a provisional alternative ai for aj if the latter is at least as good as the provisional alternative.

Fig. 4 Crisp outranking relation S � [sij] adapted from (Roy & Bouyssou, 1993)
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Table 2 Transition matrix P and corresponding ESS for the crisp relation under hypothesis H1

P a1 a2 a3 a4 a5 a6 a7 a8 a9 ESS

a1 1.000 0 0 0 0 0 0 0 0 0.444

a2 0.125 0.875 0 0 0 0 0 0 0 0

a3 0 0 1.000 0 0 0 0 0 0 0.214

a4 0.125 0 0 0.875 0 0 0 0 0 0

a5 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0 0.125 0

a6 0.125 0 0.125 0.125 0 0.500 0.125 0 0 0

a7 0 0 0 0 0 0 1.000 0 0 0.214

a8 0 0 0.125 0 0 0 0.125 0.750 0 0

a9 0 0 0 0 0 0 0 0 1 0.127

Table 3 Transition matrix P and corresponding ESS for the crisp relation under hypothesis H2

P a1 a2 a3 a4 a5 a6 a7 a8 a9 ESS

a1 1.000 0 0 0 0 0 0 0 0 0.659

a2 0.125 0.625 0.125 0.125 0 0 0 0 0 0

a3 0 0.125 0.75 0.125 0 0 0 0 0 0

a4 0.125 0.125 0.125 0.625 0 0 0 0 0 0

a5 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0 0.125 0

a6 0.125 0 0.125 0.125 0 0.599 0.125 0 0 0

a7 0 0 0 0 0 0 1.000 0 0 0.214

a8 0 0 0.125 0 0 0 0.125 0.750 0 0

a9 0 0 0 0 0 0 0 0 1 0.127

Thus, if the provisional alternative is a3, the DM might exchange it for a2 or a4, and the
exchange chain eventually ends up at a1, a7 or a9. Coincidentally, these are the three alter-
natives in the kernel solution, but the ESS provides an argument to select a single one. H2
benefits a1, which increases the probability of being chosen to 0.659.

Let us now consider the valued outranking relation in Table 1, i.e., without defining a value
for the cutting level. Following the method proposed in Sect. 3.2, this requires specifying
a credibility-to-probability function F. In this example we consider hypotheses H1 and H2
and two different functions: U(0.5, 1.0), following the rationale in Fig. 1, and Pert(0.3, 0.75,
0.9). Both functions are depicted in Fig. 2.

Results are presented in Tables 4, 5, 6 and 7. Tables 4 and 5 consider H1 for two dis-
tinct distribution functions, obtaining similar results. The Pert distribution allows a small
probability p19 � 0.001 (Table 5) that a9 is preferred to a1, even though s91 � 0.436 < 0.5
(Table 1), whereas according to U(0.5, 1.0) this preference would never occur. Comparing
Tables 4 or 5 with Table 2 (crisp relation), differences are much larger. Alternative a1 is still
the most likely to be chosen, but with much higher probability when exploiting the valued
relation directly instead of using λ � 0.7. The valued relation benefits a1 mainly because its
outranking credibility over a7 is s17 � 0.692, which is below but very near the cutting level.
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Table 4 Transition matrix P and corresponding ESS for the valued relation considering function U(0.5, 1.0)
and hypothesis H1

P a1 a2 a3 a4 a5 a6 a7 a8 a9 ESS

a1 0.991 0 0 0 0 0 0 0.01 0 0.675

a2 0.007 0.926 0.013 0.032 0 0 0.023 0 0 0.011

a3 0.013 0 0.978 0 0 0 0.01 0 0 0.164

a4 0.026 0 0.013 0.933 0 0 0.029 0 0 0.005

a5 0.106 0.106 0.106 0.125 0.249 0.112 0.093 0.042 0.061 0.000

a6 0.061 0.035 0.067 0.055 0 0.683 0.077 0.023 0 0.000

a7 0.048 0 0 0 0 0 0.952 0 0 0.085

a8 0 0 0.074 0 0 0 0.051 0.846 0.029 0.042

a9 0 0.042 0.023 0 0 0 0 0 0.936 0.019

Table 5 Transition matrix P and corresponding ESS for the valued relation considering function Pert(0.3, 0.75,
0.9) and hypothesis H1

P a1 a2 a3 a4 a5 a6 a7 a8 a9 ESS

a1 0.988 0 0 0 0 0 0 0.011 0.001 0.672

a2 0.011 0.914 0.002 0.051 0 0 0.021 0 0.000 0.015

a3 0.017 0 0.972 0 0 0 0.011 0 0.000 0.152

a4 0.044 0 0.018 0.91 0 0 0.028 0 0.000 0.009

a5 0.125 0.125 0.125 0.125 0.131 0.125 0.123 0.045 0.076 0.000

a6 0.076 0.036 0.087 0.065 0 0.617 0.097 0.021 0.000 0.000

a7 0.054 0 0 0 0 0 0.946 0 0.000 0.089

a8 0 0 0.098 0 0 0 0.078 0.796 0.028 0.035

a9 0 0.045 0.021 0 0 0 0 0 0.934 0.028

Table 6 Transition matrix P and corresponding ESS for the valued relation considering function U(0.5, 1.0)
and hypothesis H2

P a1 a2 a3 a4 a5 a6 a7 a8 a9 ESS

a1 0.866 0.048 0.029 0.048 0 0 0 0.01 0 0.274

a2 0.055 0.731 0.106 0.087 0 0 0.023 0 0 0.155

a3 0.042 0.093 0.782 0.074 0 0 0.01 0 0 0.196

a4 0.074 0.055 0.087 0.757 0 0 0.029 0 0 0.171

a5 0.106 0.106 0.106 0.125 0.249 0.112 0.093 0.042 0.061 0.000

a6 0.061 0.035 0.067 0.055 0 0.654 0.106 0.023 0 0.012

a7 0.048 0 0 0 0 0.029 0.901 0.023 0 0.142

a8 0 0 0.074 0 0 0 0.074 0.824 0.029 0.034

a9 0 0.042 0.023 0 0 0 0 0 0.936 0.015
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Table 7 Transition matrix P and corresponding ESS for the valued relation considering function Pert(0.3, 0.75,
0.9) and hypothesis H2

P a1 a2 a3 a4 a5 a6 a7 a8 a9 ESS

a1 0.852 0.054 0.028 0.054 0 0 0 0.011 0.001 0.294

a2 0.065 0.672 0.125 0.117 0 0 0.021 0 0.000 0.157

a3 0.045 0.123 0.724 0.098 0 0 0.011 0 0.000 0.187

a4 0.098 0.065 0.117 0.692 0 0 0.028 0 0.000 0.173

a5 0.125 0.125 0.125 0.125 0.131 0.125 0.123 0.045 0.076 0.000

a6 0.076 0.036 0.087 0.065 0 0.589 0.125 0.021 0.000 0.009

a7 0.054 0 0 0 0 0.028 0.897 0.021 0.000 0.135

a8 0 0 0.098 0 0 0 0.098 0.776 0.028 0.027

a9 0 0.045 0.021 0 0 0 0 0 0.934 0.018

The stationary probability of selecting a7 is thus much lower in Tables 4 and 5. Another
alternative that sees its choice probability decrease much is a9. The reason is similar: s29 �
0.667 and s39 � 0.590, both below λ, enabling transition from a9 to a2 or a3 when exploit-
ing the outranking relation, which was not possible before. Comparing Tables 4 or 5 with
Table 2 also indicates the exploitation of the crisp relation yields more alternatives with null
probability of being chosen in the stationary distribution. Since the exploitation of the valued
relation takes into account differences between sij and sji when both are below (or above)
the cutting level of the crisp relation, small transition probabilities appear. Nevertheless, the
alternatives with null probability of being chosen in Table 2 still have a very small choice
probability in Tables 4 and 5.

Tables 6 and 7 are the equivalent of Tables 4 and 5 consideringH2 for the same distribution
functions. As occurred for H1, the choice of the distribution did not impact much the results.
In turn, comparing Tables 6 or 7 with Table 3 (crisp relation), differences are much larger.
Curiously, underH2, the exploitation of the valued relationmakes it less clear thata1 should be
chosen, although it is still the most likely one. Under H2, a2, a3, and a4 have a relatively high
credibility of outranking a1, respectively 0.692, 0.615, and 0.692, which was not considered
in the crisp relation because it is lower than the cutting level. Thus, now it becomes possible
to transition from a1 to a2, a3, or a4. Note that this does not occur under H1, because
although s21, s31, and s41 are relatively high, s12, s13, and s14 are even higher and therefore
the preference relation occurs only in favor of a1. Similarly to what is observed under H1,
the direct exploitation of the valued outranking relation yields fewer alternatives with null
choice probability.

Based on either H1 or H2, which reflect two different perspectives concerning the will-
ingness to exchange an alternative for another one, the Markov solution provides a rationale
to select one of the alternatives. In this case, rather than having a kernel of several undistin-
guished alternatives to choose from, the Markov solution typically will point to a single one
as having the maximum probability of being chosen.

5.2 Probabilities given by a stochastic relation

The Markov solution can also be used when the outranking or preference probabilities have
already been computed by some other means. For instance, Govindan et al. (2019) analyzed
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the problem of choosing a reverse logistics provider for an Indian automotive company. To
this aim, the authors performed a Stochastic Multicriteria Acceptability Analysis (SMAA)
considering an ELECTRE underlying model. Accounting for uncertainty in the preference-
related parameters, the results of SMAA included a matrix of outranking probabilities (the
outranking acceptability indices) and a matrix of preference probabilities (the preference
acceptability indices), both depicted in Table 8. According to SMAA, the probabilities pro-
vided in Table 8 have been obtained from a Monte-Carlo simulation of the crisp outranking
relation that results for many thousands of randomly generated parameter values for an
ELECTRE preference model.

Under hypothesis H1, we consider the preference acceptability indices, leading to the
transition probabilities and the ESS in Table 9. In this case, the transitions invariably lead to
choose a5. Indeed, all alternatives have a positive probability of transitioning to a5, and once
they arrive there is no other alternative preferred to it.

Under hypothesis H2, we consider the outranking acceptability indices, leading to the
transition probabilities and the ESS in Table 10. Alternative a5 is the most likely to be
chosen, but the small chance that it is outranked by a4 allows other alternatives (except a3) to
appear with a positive stationary probability. Yet, this probability is very small, and does not
put into question the superiority of a5. These conclusions match those obtained by Govindan
et al. (2019) through a simulation of which alternatives might appear in the kernel.

Table 8 Stochastic preference and outranking relations from Govindan et al. (2019)

Preference acceptability indices Outranking acceptability indices

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

a1 0.000 0.303 0.787 0.653 0.000 1.000 1.000 0.787 0.974 0.000

a2 0.000 0.000 0.726 0.317 0.000 0.697 1.000 0.726 0.494 0.000

a3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

a4 0.000 0.000 0.587 0.000 0.000 0.321 0.177 0.587 1.000 0.124

a5 0.592 0.546 1.000 0.876 0.000 0.592 0.546 1.000 1.000 1.000

Table 9 Transition matrix P and corresponding ESS for the stochastic preference relation considering hypoth-
esis H1

a1 a2 a3 a4 a5 ESS

a1 0.852 0 0 0 0.148 0

a2 0.076 0.788 0 0 0.137 0

a3 0.197 0.182 0.225 0.147 0.25 0

a4 0.163 0.079 0 0.539 0.219 0

a5 0 0 0 0 1.000 1
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Table 10 Transition matrix P and corresponding ESS for the stochastic preference relation considering hypoth-
esis H2

a1 a2 a3 a4 a5 ESS

a1 0.598 0.174 0 0.08 0.148 0.055

a2 0.250 0.569 0 0.044 0.137 0.037

a3 0.197 0.182 0.225 0.147 0.250 0

a4 0.244 0.124 0 0.383 0.250 0.053

a5 0 0 0 0.031 0.969 0.854

6 Properties of the stochastic exploitationmethod

This section addresses two important properties of the stochastic exploitation process pro-
posed in this work. The Markov solution has been studied in other contexts (see, e.g.,
González-Díaz et al. (2014)), but some properties and proofs that apply to tournaments
do not apply or need to be redefined for our specific context. Considering all the variants
introduced in Sect. 3, we find the following characteristics in common:

• sij and sji can take any values in [0,1], ∀i,j. No constraint on their sum is considered, such
as the usual assumptions sij + sji � 1 or sij + sji ≤ 1.

• pij, i �� j, have an upper bound 1/(n-1).
• pij, the probability of the transition from ai to aj, cannot increase with sij and cannot
decrease with sji, i.e., for any two outranking relations S and S’, s

′
i j > si j ⇒ p

′
i j ≤

pi j
∧

p
′
j i ≥ p ji ,∀i �� j (note the right-side inequalities are not strict). No relation can

be assumed between pij and pji.

Themethods proposed here lead to a transitionmatrixPwith the property that
∑n

j�1 pi j �
1,∀i and pij ∈ [0, 1/(n − 1)] ∀i �� j , i.e., not restricted to pij + pji ≤ 1/(n − 1), ∀i, j as in
(Herrero & Villar, 2021), but less general than the case characterized by González-Díaz et al.
(2014).

The ESS obviously satisfies the typical properties of Anonymity and Symmetry included
in González-Díaz et al. (2014)’s characterization, whereas the properties of Homogeneity
and Flatness preservation, and Slutzki and Volij (2005)’s Negative response to losses are
not applicable in our context where adding outranking relations or multiplying them by a
constant is meaningless. More generally than Negative response to losses, we next define and
prove a monotonicity property, and we also analyze a property based on dominance. These
properties have already been proved for more specific contexts, namely for a transitionmatrix
P with the property pij + pji ≤ 1/(n − 1), ∀i, j (Herrero & Villar, 2021), but they remain to be
demonstrated for our more general context and also expressed in terms of the performances
of the alternatives on multiple criteria and the way it impacts the outranking relation.

6.1 Monotonicity

Monotonicity is a common desideratum in MCDA. This property guarantees that an alterna-
tive cannot be worse-off in its evaluation if its performance becomes better on some criterion
or criteria (while maintaining its performance on the remaining criteria). For instance, if the
MCDA is being used to choose a vendor and one of the criteria considered is the cost, then the
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method should ensure that an alternative cannot be worse-off if its cost decreases (everything
else remaining equal). Proposition 1 below shows the ESS respects monotonicity concerning
the alternatives performances, based on the following lemma.

Lemma 1 Let π be the ESS for an irreducible transition matrix P. Let P’ be a new matrix
resulting from updating P as follows, for some δ, some row w and some column b (w �� b),

p’wb � pwb + δ, with δ ∈ ]max{−pwb, pww − 1},min{1 − pwb, pww}[
p’ww � pww−δ (so that the row sum is still equal to 1)
p’ij � pij for all other (i, j) �� (w, b)

Then, it must hold that:

• If δ > 0, then π’b ≥ πb.
• If δ < 0, then π’b ≤ πb.

Proof Suppose that the transition probability pww is decreased by δ while pwb is increased
by the same amount. Assuming the resulting matrix is irreducible (managing δ bounds), then
expressions for the difference in the stationary probabilities are given by [Thm 4.2. Hunter,
2005]:

π j − π
′
j �

⎧⎨
⎩

δπwπ
′
wmbw, j � w

−δπbπ
′
wmwb, j � b

δπ jπ
′
w(mbj − mw j ), j �� w, b

,

where mi j is the mean time for the DM to exchange, for the first time, alternative ai with
alternative a j . As πi . π

′
i . mi j ≥ 0 ∀i, j , if δ > 0 then

πw − π
′
w ≥ 0 ⇒ π

′
w ≤ πw

πb − π
′
b ≤ 0 ⇒ π

′
b ≥ πb

π j − π
′
j ≥ 0 i f mbj − mw j ≥ 0 ⇒ π

′
j ≤ π j i f mbj ≥ mw j .

The last inequality means that regardless of the perturbations at aw and ab, the stationary
distributions at j �� w, b depends on the “distance” a j is from aw and ab.

Moreover, under the conditions of Theorem 4.2 [Corollary 4.2.2. Hunter, 2005]:

−δπ
′
wmwb � πb − π

′
b

πb
≤ π j − π

′
j

π j
≤ πw − π

′
w

πw

� δπ
′
wmbw, 1 ≤ j ≤ n.

Thus,

1 − δπ
′
wmbw � π

′
w

πw

≤ π
′
j

π j
≤ π

′
b

πb
� 1 + δπ

′
wmwb

and π
′
w

πw
< 1 <

π
′
b

πb
so that π

′
w < πw and π

′
b > πb.

Therefore, if p
′
ww < pww and p

′
wb > pwb then π

′
w < πw and π

′
b > πb. Furthermore,

while the stationary probabilities at all other alternatives increase or decrease depending on
the “distance” from aw and ab, the relative change in magnitude at any alternative never
exceeds the relative changes of alternatives aw and ab, i.e., the minimal and maximal relative
changes occur at alternatives aw and ab, respectively.
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Proposition 1 (Monotonicity). Let S � [sij] be any outranking relation (crisp or valued).

(1) Let S’ � [s’ij] be another relation obtained by improving the performance of some
alternative ab on one or more criteria, without any further changes. Then the steady
state probability π ′

b of choosing ab either increases or remains unchanged.
(2) On the contrary, if S’� [s’ij] is obtained by worsening the performance of some alterna-

tive aw on one or more criteria, without any further changes, the steady state probability
π ′

w of choosing aw either decreases or remains unchanged.

Proof We will prove the first part only, as the proof for the second part is similar. The idea
of this proof is that originally the outranking relation is S, and this relation is modified to S’
in a way favorable to alternative ab. We assume ab has improved its performance on some
criteria, and as a consequence the degree to which ab outranks other alternatives cannot be
lower than it was before, and the degree to which other alternatives outrank ab cannot be
higher than it was before.

We take for granted that, as occurs in ELECTRE methods, improving the performance of
ab implies s

′
bj ≥ sbj and s

′
jb ≤ s jb,∀ j . Then, noting that all the variants proposed in Sect. 3

would lead to c
′
bj ≤ cbj and c

′
jb ≥ c jb,∀ j (withC � [ci j ] andC’[c

′
i j ] denoting the exchange

probabilities for S and S’), we conclude that p
′
bj ≤ pbj and p

′
jb ≥ p jb,∀ j (with P � [pi j ]

and P’[p
′
i j ] denoting the transition probabilities for S and S’).

If � j �� b : p
′
bj < pbj

∨
p

′
jb > p jb, then π

′
b � πb. Otherwise, by successively applying

Lemma 1 to all indices {j �� b: p
′
bj < pbj

∨
p

′
jb > p jb}, we will successively increase the

steady state probability for ab, leading to π
′
b > πb.

6.2 Dominance

Dominance is also an important property to guarantee in a choice problem. In multicriteria
evaluations, an alternative is said to dominate another alternative if its performance is equal
to or better than the latter on all the criteria, and strictly better in at least one of them. The
traditional dominance property requires that a dominated alternative is not chosen as being
the best one.

In outrankingmethods such as ELECTRE, it may occur that an alternative ab is considered
to be indifferent to another one ad , even if the former dominates the latter. This can occur
because the current versions of such methods accept imprecision in the assessment of perfor-
mance, and allow the DM to indicate indifference thresholds for performance differences in
the multiple criteria (Roy, 1996). Therefore, it is possible that one alternative strictly domi-
nates another one, but if their performance differences are below the indifference thresholds,
they will outrank each other. This means that a dominance relation might not be reflected in
the outranking relation, and therefore might remain invisible to the ESS method (and to any
other method exploiting the same outranking relation).

For this reason, we introduce a novel concept of dominance, requiring that the dominance
relation impacts the transition probabilities, i.e., not only an alternative dominates another
one, but their performance differences are significant enough so that their transition proba-
bilities are not exactly the same. This new dominance relation, which refers to the transition
probabilities and not strictly to the alternatives’ performance measurements, is defined as
follows:
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Definition: p-dominance relation An alternative ab p-dominates another alternative ad if and
only if all of the following holds:

(i) pbi ≤ pdi ,∀i �� b, d , i.e., the probability of leaving to any third alternative ai is not
lower for ad than it is for ab;

(ii) pib ≥ pid ,∀i �� b, d , i.e., if the current alternative is ai, the probability of leaving to
ab is not lower than the probability of leaving to ad ;

(iii) pbd < 0.5×1/(n−1), i.e., if the current alternative is ab, and if ad is randomly selected
as a potential exchange (with probability 1/(n − 1)), then the probability of accepting
the exchange (leaving) is less than the probability of rejecting the exchange (staying);

(iv) pdb > 0.5×1/(n−1), i.e., if the current alternative is ad , and if ab is randomly selected
as a potential exchange (with probability 1/(n−1)), then the probability of accepting the
exchange (leaving) is greater than the probability of rejecting the exchange (staying);

Based on the following Lemma, we will show the ESS respects the p-dominance relation.

Lemma 2 Let ab and ad be two alternatives such that ab p-dominates ad and let the starting

probability vector be π (0) �
[
π
(0)
1 · · · π (0)

b · · · π (0)
d · · · π (0)

n

]
such that π (0)

b ≥ π
(0)
d and π

(0)
b >

0. Then, the steady state probability vector is such that πb > πd .

Proof Let

π(1) � π(0)P �
[
π

(1)
1 · · · π(1)

b · · · π(1)
d · · · π(1)

n

]
.

Then,

π
(1)
b � π

(0)
1 p1b + π

(0)
2 p2b + · · · + π

(0)
b pbb + · · · + π

(0)
d pdb + · · · + π (0)

n pnb

and

π
(1)
d � π

(0)
1 p1d + π

(0)
2 p2d + · · · + π

(0)
b pbd + · · · + π

(0)
d pdd + · · · + π(0)

n pnd .

Then, we can write

π
(1)
b − π

(1)
d �

⎡
⎣ ∑
i ��b,d

π
(0)
i (pib − pid)

⎤
⎦ + π

(0)
b pbb + π

(0)
d pdb − π

(0)
b pbd − π

(0)
d pdd

As pib ≥ pid , i �� b, d , the sum in square brackets must be non-negative, i.e.,

π
(1)
b − π

(1)
d ≥ � � π

(0)
b pbb + π

(0)
d pdb − π

(0)
b pbd − π

(0)
d pdd

Let us now examine the sign of �, the right part of the inequality.
Note that pbi ≤ pdi ,∀i �� b, d ∧ pbd < 0.5

(n−1) < pdb imply that

∑
i ��b

pbi <
∑
i ��d

pdi ⇐⇒ −
∑
i ��b

pbi > −
∑
i ��d

pdi

⇐⇒ 1 −
∑
i ��b

pbi > 1 −
∑
i ��d

pdi ⇐⇒ pbb > pdd .

Moreover, pbd < 0.5
(n−1) implies

pbb � 1 −
∑
i ��b,d

pbi − pbd > 1 −
∑
i ��b,d

1

(n − 1)
− 0.5

(n − 1)
� 0.5

(n − 1)
⇐⇒ pbb > pbd .
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Since pbb > pdd , pbb > pbd , and pdb > pbd , the only possible rankings for these four
probabilities are:

(a) pbb ≥ pdb ≥ pbd ≥ pdd
(b) pbb ≥ pdb ≥ pdd ≥ pbd
(c) pbb ≥ pdd ≥ pdb ≥ pbd
(d) pdb ≥ pbb ≥ pbd ≥ pdd
(e) pdb ≥ pbb ≥ pdd ≥ pbd

Rewriting � as � � π
(0)
b (pbb − pbd ) + π

(0)
d (pdb − pdd ), and recalling pbb > pbd it

follows that in cases a), b), d) and e) pbb − pbd > 0 and pdb − pdd ≥ 0, thus π
(1)
b > π

(1)
d .

In the remaining case, � � π
(0)
b pbb +π

(0)
d pdb − π

(0)
b pbd − π

(0)
d pdd together with pbb ≥

pdd and pdb > pbd , imply

� > π
(0)
b pdd + π

(0)
d pdb − π

(0)
b pdb − π

(0)
d pdd ⇐⇒ � >

(
π

(0)
b − π

(0)
d

)
(pdd − pdb)

Since the right-hand side of this inequality is non-negative, the conclusion π
(1)
b > π

(1)
d

holds.
By induction in t , assume that π (t)

b ≥ π
(t)
d .

Then, replacing in the reasoning above 0 by t and 1 by t + 1 it is straightforward to conclude
π
(t+1)
b > π

(t+1)
d .

Therefore, in the steady state one must have πb > πd .

Proposition 2 (p-dominance) Let ab and ad be two alternatives such that ab p-dominates ad .
Then the ESS is such that πb > πd .

Proof Since the starting probability vector for the ESS is π (0) �[
π
(0)
1 · · · π (0)

b · · · π (0)
d · · · π (0)

n

]
� [

1
n . . . 1

n

]
, which fulfills π

(0)
b ≥ π

(0)
d and π

(0)
b > 0,

the result follows from Lemma 2.

7 Conclusions

This work adds the Markov solution concept proposed in the context of tournaments and
social choice to the toolbox of MCDA outranking methods, proposing methods to exploit an
outranking relation, aiming to informDMs in choice problems. This exploitation strategy can
be applied to crisp outranking relations, valued outranking relations, or stochastic outranking
relations. The proposed ESS solution can be computed without much effort by solving a
system of equations or throughMonte-Carlo simulation. Compared to the well-known kernel
solution for crisp outranking relations, the ESS has an increased ability to pick a singlewinner
and does not require the relation to be acyclic. The kernel solution is able to find solutions
based on the transformation of the relation with cycles in indifference classes, but that might
sometimes lead to results violating monotonicity, a property that ESS has been shown to
comply with. On the other hand, the kernel solution follows a different logic, and can be
considered more cautious as it identifies all potential candidates without directing the DM to
choose one of them. Therefore, the ESS should be seen as an additional tool for the outranking
methods toolbox, rather than a replacement for the existing tools.

Comparing the results of the three working hypotheses considered in this work to obtain
a transition matrix, the analysis of simple cases with three alternatives allowed us to exclude
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the hypothesis that treated the indifference and incomparability relations in a similar way
(H3). The analysis of these cases and two other cases based on real-world data (Sect. 5) does
not allow any definitive conclusions on whether it is better to define transitions based on the
preference relation P (H1) or the outranking relation S (H2). With the caveat of being based
on just a few examples, the identification of the most preferred alternative did not depend on
the hypothesis chosen. H1 produced a more clear-cut result in most instances, but not always.
Since H1 and H2 reflect two different perspectives concerning the willingness to exchange
an alternative for another one, our suggestion would be to use the one that better matches the
perspectives of the DMs on each specific application. The possibility of using a credibility
to probability cumulative distribution function for valued outranking relations adds a further
layer of customization flexibility.

Further research along this line can examine adaptations of the ESS idea to other types of
outranking relations in MCDA, namely those resulting from fuzzy sets theory, an aspect not
addressed in this work. This work also did not address the elicitation of the F function for the
exploitation of valued outranking relations, although the Beta function illustrated in Sect. 3
seems to be particularly adequate to reflect uncertainty concerning a cutting level forwhich the
DMwould be asked to indicate aminimum, amost likely, and amaximum value. On the other
hand, the same example also showed that the choice of the F function did not qualitatively
affect the conclusions obtained simply assuming theU(0.5, 1) distribution. Future simulation
studies might inquire about whether this or some other F function constitutes a good rule-
of-thumb to be used if the analysts do not wish to elicit it.

Acknowledgements CeBER is funded by national funds, through FCT, Portuguese Science Foundation, under
project UIDB/05037/2020.

Appendix A

This appendix shows that the simulation process to compute the stationary probabilities, as
proposed in Sect. 3.4, is convergent.

Lemma A.1 Pt is bounded for any t.

Proof From theChapman–Kolmogorov equation, Pt+s
i j � ∑n

k�1 P
t
ik P

s
k j , it is straightforward

to see that, for each alternative j and each integer t ≥ 1

max
i

Pt+1
i j ≤ max

l
Pt
l j and min

i
Pt+1
i j ≥ min

l
Pt+1
l j .

Thus,

Pt+1
i j �

n∑
k�1

Pik P
t
k j ≤

n∑
k�1

Pik max
l

Pt
l j � max

l
Pt
l j and

Pt+1
i j �

n∑
k�1

Pik P
t
k j ≥

n∑
k�1

Pik min
l

Pt
l j � min

l
Pt
l j .

This shows that, for each column j , the largest of the elements is non-increasing with t
and the smallest of the elements is non-decreasing with t . Thus, the maximum and minimum
elements of a column can change with t , but the range covered by those elements either
shrinks or stays the same as t → ∞.
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It should be noted that in general Pt may not converge despite being bounded, namely
when P is the transition matrix of a periodic Markov chain. For instance, for

Q �

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 0.5 0.5
0.5 0.5 0 0 0
0.5 0.5 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

lim
t→∞Qt does not exist. Furthermore,

[
1
5

1
5

1
5

1
5

1
5

]
.Qt � [0.120.4800.160.24], if t

is odd and
[
1
5

1
5

1
5

1
5

1
5

]
.Qt � [0.080.3200.240.36], if t is even. However, there is a

unique (the algebraic multiplicity of eigenvalue λ � 1 is one) stationary distribution
π � [

1
10

2
5 0 1

5
3
10

]
.

Proposition A.1 The ESS can be approximated by [ 1n . . . 1
n ].P

t for a large value of t.

Proof This approximation is possible if Pt converges as t increases. Let us suppose that
Pt does not converge. Then, the Markov chain defined by P must be either unbounded or
periodic. LemmaA.1 shows it is not unbounded, therefore lack of convergence can only occur
if it is periodic, as occurred for the preceding example matrix Q. Looking at the canonical
form of P for a weakly (same for strongly) periodic Markov chain, which is obtained from
the transition matrix of a strongly periodic Markov chain by replacing the ones by block
matrices Wi (Gebali, 2008), only the last element of the first row is a non-zero element:

P �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0 Wn

W1 0 0 . . . 0 0 0
0 W2 0 . . . 0 0 0
...

. . .
...

0 0 0 . . . 0 0 0
0 0 0 . . . Wn−2 0 0
0 0 0 . . . 0 Wn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In our specific case, the transition matrix is defined by pij � cij /(n-1) for all i �� j and
pii � 1 − ∑

j ��i pi j for all i. Thus, if the first element of the first row is zero, then all the
remaining elements of that rowmust be non-null (more precisely all remaining elementsmust
be 1/(n−1)). This type of transition matrices therefore cannot correspond to the transition
matrix of a periodicMarkov chain.This, togetherwith theLemmaA.1, showsby contradiction
that Pt converges.
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