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Type 2 Diabetes Mellitus (T2DM) is a metabolic disease that leads to multiple

vascular complications with concomitant changes in human neurophysiology,

which may lead to long-term cognitive impairment, and dementia. Early

impairments of neurovascular coupling can be studied using event-related

functional magnetic resonance imaging (fMRI) designs. Here, we aimed to

characterize the changes in the hemodynamic response function (HRF) in

T2DM to probe components from the initial dip to late undershoot. We

investigated whether the HRF morphology is altered throughout the brain in

T2DM, by extracting several parameters of the fMRI response profiles in

141 participants (64 patients with T2DM and 77 healthy controls) performing

a visual motion discrimination task. Overall, the patients revealed significantly

different HRFs, which extended to all brain regions, suggesting that this is a

general phenomenon. The HRF in T2DM was found to be more sluggish, with a

higher peak latency and lower peak amplitude, relative slope to peak, and area

under the curve. It also showed a pronounced initial dip, suggesting that the

initial avidity for oxygen is not compensated for, and an absent or less prominent

but longer undershoot. Most HRF parameters showed a higher dispersion and

variability in T2DM. In sum, we provide a definite demonstration of an impaired

hemodynamic response function in the early stages of T2DM, following a

previous suggestion of impaired neurovascular coupling. The quantitative

demonstration of a significantly altered HRF morphology in separate

response phases suggests an alteration of distinct physiological mechanisms

related to neurovascular coupling, which should be considered in the future to

potentially halt the deterioration of the brain function in T2DM.
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Introduction

Type 2 Diabetes Mellitus (T2DM) is a multifactorial

metabolic disorder, representing the sixth leading cause of

disability, with an ever-increasing incidence (Stumvoll et al.,

2005; McCarthy, 2010; Chatterjee et al., 2017; Yuan and

Wang, 2017). T2DM causes macro and microvascular

alterations (McCarthy, 2010) which cause long-term damage,

dysfunction, and deterioration in several tissues and organs, such

as the brain, causing cerebrovascular disease and changes in

cerebral hemodynamics (McCarthy, 2010; American Diabetes

Association, 2012; American Diabetes Association, 2017;

Chatterjee et al., 2017; Yuan and Wang, 2017). Due to its

association with an increased risk for neural functional loss,

long-term cognitive impairment, and dementia (Biessels and

Reijmer, 2014; Ryan et al., 2014; Duarte et al., 2015; Moran

et al., 2015; Callisaya et al., 2018; Moran et al., 2019; Biessels et al.,

2020), it becomes crucial to understand the neurobiological

correlates of early brain dysfunction in T2DM, in particular,

at early stages of the disease when there are no evident structural

lesions (Espeland et al., 2013; Moran et al., 2013; Biessels and

Reijmer, 2014).

Several authors have used functional magnetic resonance

imaging (fMRI) blood oxygenation level-dependent (BOLD)

signal (Ogawa et al., 1990a; Ogawa et al., 1990b) to indirectly

measure neuronal activity and investigate neurophysiological

impairment in T2DM. However, results in the clinical setting

have been inconsistent, namely regarding the presence or absence

of functional alterations and its association with cognition (Zhou

et al., 2010; Chhatwal and Sperling, 2012; Musen et al., 2012; Xia

et al., 2013; Cui et al., 2014; Wang et al., 2014; Liu et al., 2018, 2019;

Xiong et al., 2020). The BOLD signal is an intrinsic hemodynamic

signal which depends on the neurovascular coupling (NVC)

between neuronal activity and cerebral blood flow (Attwell et al.,

2010; Phillips et al., 2015). On the other hand, neurovascular

coupling reflects the close temporal and regional linkage between

neural activity and cerebral blood flow. This close matching of local

blood flow to neuronal activation is related to the high energetic

demands of brain cells. Thus, even slight changes to the energy

supply require precise autoregulation mechanisms. Therefore, an

impaired NVC can result in brain dysfunction and neuronal

atrophy. Abnormal NVC has been implicated in Alzheimer’s

disease, multiple sclerosis, traumatic brain injury, spinal cord

injury, and stroke (Fletcher et al., 2022).

Notably, in diabetes, pathophysiological vascular changes can

influence the blood flow regulation in cerebral microvasculature,

possibly impairing the NVC. Therefore, the interaction of neurons

with the surrounding vasculature in terms of autoregulatory

mechanisms is critical for proper function of the central nervous

system. Their deregulation may contribute to early cognitive

impairments, namely in the memory domain. Indeed, several

longitudinal studies have shown that patients with T2DM have

an increased risk of developing dementia (Hardigan et al., 2016).

However, alterations in the BOLD signal may reflect abnormal

neuronal activity or inefficient neurovascular coupling, generating

an ambiguity in interpretation. Thus, underlying mechanistic

changes might be indistinguishable. They could be

neurodegenerative, vascular, or a combination of both.

The vascular response triggered by neuronal activation and

measured with fMRI BOLD is described by a hemodynamic

response function (HRF) (Carusone et al., 2002), which has been

shown to be altered, for instance, in patients with stroke

(Bonakdarpour et al., 2007; Altamura et al., 2009), resulting in

misinterpretation or under-estimation of the fMRI signal. In a

previous fMRI study (Duarte et al., 2015), we have used a

performance-matched visual stimulation task, thereby

recruiting similar neural and cognitive resources in T2DM

and control participants, to examine the BOLD response

specifically in three task-related regions-of-interest (ROIs)

involved in visual processing, perceptual decision mechanisms,

and executive functioning (Duarte et al., 2017). This earlier study

suggested an overal change in HRF at early stages of T2DM,

which might reflect an impaired neurovascular coupling (Duarte

et al., 2015), raising the question of which components of the

HRF might be changed in diabetes.

This previous study highlighted the need to obtain a

complete understanding of the components of hemodynamic

model parameters and the underlying physiology of the BOLD

signal to improve the utility of functional brain mapping in the

context of diabetes.

In this new study, we investigated whether the HRF in its

distinct phases would be compromised in individuals with

T2DM depending on the brain region or would instead

represent a general cortical phenomenon, in a large cohort of

patients with T2DM and healthy controls, in response to the

same visual motion discrimination task presented with both

block and event-related paradigms. The analysis of the data

measured during block stimulation allowed to localize

activated brain regions, in which we extracted the HRF during

the event-related stimulation task by a deconvolution GLM

analysis. Overall, and as expected, patients with T2DM

revealed significantly different HRF profiles. Furthermore, as a

novel approach, several HRF parameters corresponding to

distinct phases were extracted from response profiles and

compared between groups in each region to understand what

sort of physiological changes arise with T2DM and what

consequences they can cause.

Since alterations in the HRF may reflect changes in the NVC

and, consequently, pathophysiological brain changes even at

early stages, the use of the HRF as a functional imaging

biomarker has been investigated in the context of cerebral

pathology (Miezin et al., 2000; Taylor et al., 2018). While

previous studies investigating HRF parameters as biomarkers

have focused on peak amplitude (Peck et al., 2004), there has

been interest in the evaluation of other parameters, such as the

activation duration and the peak latency (Miezin et al., 2000;
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Bonakdarpour et al., 2007; Lindquist and Wager, 2007). This is

important to sort out, prior to the investigation of HRF as a

potential biomarker of clinical/cognitive complications in

T2DM. As T2DM induces a decrease in cerebral blood flow

(Kelly-Cobbs et al., 2012), reducing neural efficiency

(Abdelkarim et al., 2019), we hypothesized that T2DM leads

to neurovascular decoupling (Duarte et al., 2015) and yields

consequences in the HRF morphology components (Hillman,

2014). We hypothesize that T2DM is characterized by a lower

overall amplitude of the peak, initial dip and undershoot, and a

higher peak latency and that the source of these differences may

be possibly driven by the disruption of the NVC.

Materials and methods

Participants

We included 141 participants in this study, divided in a group

of 64 patients with T2DM and a group of 77 healthy controls. The

participants were recruited and included in this analysis

according to the procedure described in our previous study

(Duarte et al., 2015). The prior study included 51 patients

with T2DM and 29 healthy controls, which were also included

in the current study with an extended sample size for a detailed

analysis of the hemodynamic response function. While in our

previous studies (Duarte et al., 2015; Ferreira et al., 2017), the

strategy was to have carefully matched cohorts, in the current

study, we widely extended the sample size with a focus on using

covariates in statistical analysis. All participants provided

informed written consent. The Helsinki Declaration of 1975

(and as revised in 1983) guidelines were followed throughout

the study. The Ethics Committee of the Faculty of Medicine of

the University of Coimbra approved all experimental procedures.

Table 1 details the participants’ demographic and clinical data.

Experimental protocol

We employed both a block and an event-related

experimental design to investigate the BOLD response to a

visual speed discrimination task, as described in our previous

study (Duarte et al., 2015). Briefly, the participants performed a

psychophysical task inside the scanner to select stimulus levels

individually, which consisted of a two-alternative forced choice

test aimed to determine a speed discrimination threshold by

comparing the speed of two white dots, the reference and the

target. The computation of the speed values was individually

tuned to ensure that we would analyze fMRI signal changes in

identical performance conditions across participants. Then,

each participant performed three fMRI experimental runs:

two presenting the task in blocks and one in an event-

related design. In the block design, the reference dot

constantly moved at 5 deg/s, and the target dot moved with

one of four different values: the reference speed (reference

condition, most difficult), the reference speed incremented

with the individual unit threshold of discrimination

(threshold condition, second most difficult), the reference

speed incremented with three times the previous threshold

(submaximum condition, second easiest), and an arbitrarily

defined high-speed value of 20 deg/s (maximum condition, the

easiest). The reference condition was presented two times, in

which the dot moved at the reference speed in both visual

hemifields. Each of the three remaining conditions was

presented four times, with the faster dot appearing two times

in each visual hemifield. This yields 29 blocks of alternated

visual stimulation (14 blocks of 12.5 s each) and baseline

fixation (15 blocks of 12.5 s each). In the event-related

stimulation paradigm, the alternation between stimulation

and baseline fixation is maintained, but only the threshold

and the sub-maximum conditions were presented, for the sake

of time. Each of the two conditions, representing intermediate

difficulty levels, was presented 20 times (10 times per hemi-

field). Each visual stimulation period lasted 400 ms, and the

baseline fixation period was jittered and lasted 4.600, 7.100, or

9.600 ms, which occurred randomly. The participants were

instructed to maintain fixation on a white cross during the

whole experiment and report the faster dot during the baseline

fixation periods succeeding the stimulation blocks/events. All

participants were presented with the same randomized

sequences. Both block and event-related designs are

represented in Figure 1.

TABLE 1 Characteristics of the study participants and identification of covariates.

T2DM Controls p-value

n 64 77

Age (years) 58.8 ± 8.9 51.4 ± 8.7 <0.001

Gender (M/F) 42/22 32/45 0.004

HbA1c (NGSP, %) 9.55 ± 2.35 5.37 ± 0.36 <0.001

Discrimination threshold (deg/sec) 2.53 ± 1.87 1.39 ± 1.25 <0.001

Data are mean ± standard deviation. NGSP, national glycohemoglobin standardization program; M, male; F, female.
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MRI data acquisition

Functional and structural MRI data were collected at ICNAS,

University of Coimbra. The data were acquired on a 3T MR

scanner (Magnetom TIMTrio, Siemens, Munich, Germany) with

a phased array 12-channel head coil. We acquired a 3D

anatomical MPRAGE scan (TR = 2,530 ms; TE = 3.42 ms;

FA = 7°; 176 slices with voxel size 1 × 1 × 1 mm) and three

functional imaging series consisting of two runs of 145 GE-EPI

brain scans (TR = 2,500 ms; TE = 30 ms; FA = 90°; 36 interleaved

slices with voxel size 3 × 3 × 3 mm) in a block design stimulation

paradigm and one run of 116 GE-EPI scans (with the same

parameters) in an event-related design stimulation paradigm.

fMRI data preprocessing

Structural and functional MRI data were processed as in our

previous study (Duarte et al., 2015), using BrainVoyager 21.4

(Brain Innovation, Maastricht, Netherlands). In brief, structural

scans underwent skull stripping and intensity inhomogeneity

correction. In functional data, we applied slice timing correction,

linear trend removal, motion correction, slight spatial smoothing

(full width at half maximum of 3 mm), and temporal high-pass

filtering (0.02 Hz for block design and 0.04 Hz for event-related

design). Functional scans were coregistered with each individual

anatomical scan and normalized into MNI space.

fMRI data analysis

Statistical analysis of fMRI data was performed using the RFX

GLM framework, which allows to explicitly model both within-

subjects and between-subjects variance components to generalize

findings at the population level (Beckmann et al., 2003; Penny

and Holmes, 2003).

Block design–standard GLM
Predictors for each stimulation condition were used to

estimate condition effects (beta weights) separately for each

subject. In the second step, the beta weights of all participants

were provided as an input for a second-level group analysis, in

FIGURE 1
Graphical representation of the stimuli and experimental protocols of block and event-related designs.
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which group effects of all conditions were estimated as a percent

signal change relative to the baseline. To locate the ROIs with overall

engagement in the stimulation task, a [stimulation vs. baseline]

contrast was defined including all stimulation conditions. The

resulting statistical map, presented in Figure 3, was corrected for

multiple comparisons with the Bonferroni correction for a

significance threshold of p < 0.05. The clusters of voxels showing

significant signal changes were defined as ROIs to be further

investigated in the subsequent analysis of the HRF parameters,

which were calculated after estimation of the HRF with

deconvolution GLM analysis of the event-related run. The ROIs

were differentiated into positive and negative signal change ROIs,

and their list, including the MNI coordinates of each cluster, is

presented in Table 2.

Event-related design–deconvolution GLM
For the event-related design, we applied a deconvolution GLM

analysis within each previously defined ROI to separate the

contributions of different events and estimate the response curves

(HRF) for each condition (Buckner, 1998; Glover, 1999).

Deconvolution GLM is an alternative GLM analysis in which the

shape of the HRF is not fixed in advance. Each protocol condition

encodes a set of stick predictors, each of them separately estimating

the HRF amplitude at a data point regarding the onset of that

condition. In the end, the series of amplitude estimates describes the

HRF shape in each condition.

HRF analysis

After the GLM deconvolution analysis, the series of beta weights

that describe the estimated HRF in each stimulation condition, for

each subject, and in each ROI, were analyzed in MATLAB.

Average and median HRF curves
The mean beta weights for each condition (Threshold and

Submaximum) were calculated for each ROI by averaging the

corresponding left and right beta values for each participant.

Then, for each group, condition, and ROI, the average and

standard deviation of each beta weight were calculated,

yielding an average HRF. We also calculated the median HRF

with its interquartile range, as it is a more robust measure and

gives an enhanced sense of a typical value, with less influence

from outliers. Finally, we also calculated the average and median

HRFs per ROI type (positive or negative signal change) in each

group and stimulation condition, which were designated as grand

average and grandmedian HRFs, and are depicted in Figures 4, 6.

Estimation of the HRF parameters
Several parameters describing the HRF morphology were

computed and compared between groups per ROI to assess

whether there were any differences and, if so, if they could

provide any clue regarding underlying neurovascular damage

(Bellgowan et al., 2003). The HRF parameters that were

calculated are portrayed in Figure 2.

The calculated HRF parameters included peak amplitude,

peak latency, relative slope to peak, area under the curve

(AUC), area of the positive curve sections (APCS) and area

of the negative curve sections (ANCS). In healthy participants,

the canonical HRF peaks on average at about 6–8 s after a

short dip and then has an undershoot that lasts for as long as

15 s post-onset before returning to baseline (Bonakdarpour

et al., 2015). As it can vary in this clinical context, we

calculated the HRF peak amplitude by determining the

HRF curve maximum in the range of data points between

5 and 15 s. In this estimation, it was also determined the data

point where the peak occurs, which, when multiplied by the

TABLE 2 Clusters with positive signal change during stimulation blocks.

Anatomical brain region Cluster code MNI coordinates at the cluster’s peak

X Y Z

Left Inferior Parietal Lobule, Brodmann area 40 L_IPL_BA40 −30 −46 40

Left Insula, Brodmann area 13 L_Insula_BA13 −30 23 4

Left Precuneus, Brodmann area 7 L_Precuneus_BA7 −24 −52 44

Right Inferior Frontal Gyrus, Brodmann area 9 R_IFG_BA9 45 11 25

Right Middle Frontal Gyrus, Brodmann area 8 R_MFG_BA8 6 17 46

Right Middle Frontal Gyrus, Brodmann area 46 R_MFG_BA46 48 26 25

Right Superior Frontal Gyrus, Brodmann area 6 R_SFG_BA6 6 8 53

Right Superior Parietal Lobule, Brodmann area 7 R_SPL_BA7 30 −57 46

Right V2 area, Brodmann area 18 R_V2_BA18 29 −73 22

Right V5/MT area, Brodmann area 19 R_MT_BA19 46 −64 9
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repetition time, yields the HRF peak latency. In turn, the HRF

relative slope to peak was given by the ratio between the HRF

amplitude variation between the peak time and the initial

instant (t = 0) and the peak latency. The HRF area under the

curve (AUC) was determined by applying the trapezoidal rule

between the onset and the end of the HRF after offsetting its

values to set its minimum value as the zero of the HRF.

Regarding the HRF area of the positive curve sections

(APCS), the trapezoidal rule was implemented between the

positive HRF values and zero. Likewise, for the HRF area of

the negative curve sections (ANCS), the same approach was

employed, but for the negative HRF values.

As the HRF is observed to show considerable variation in

T2DM, we also calculated separate parts of the positive and

negative curve sections to account for differences between

groups in initial dip, undershoot and sustained or quickly

dropping responses after the peak. We calculated the initial

dip area, the undershoot area, the first positive section curve

area [fPCSA, in the interval (0; 5) s], the second positive

section curve area [sPCSA, in the interval (5; 10) s], and

the third positive section curve area [tPSCA, in the interval

(10; 17.5) s].

Coefficient of variation
To ascertain how reliable and/or robust the mean peak and

peak latency were, we calculated their coefficient of variation

(CV), which represents the variability of these parameters

concerning the population’s average, and it is given by the

ratio between the standard deviation of the parameter and its

corresponding mean value.

Statistical analysis of the HRF parameters

The parameters of the average HRF were calculated for each

participant, in each ROI, for each stimulation condition. As the

values were very similar across ROIs, the average parameters

were calculated for all positive and negative ROIs in each

participant for comparison between groups. The differences

between T2DM and CNT were assessed with an ANCOVA

model, in which the HRF parameters were the dependent

variable and the group was the between-subjects factor, while

accounting for the effect of age as a covariate. The statistical tests

were corrected for multiple comparisons with the

Benjamini—Hochberg approach, and the p-values were

adjusted for false discovery rate (FDR). We further calculated

the correlation of each HRF parameter with age and HbA1c levels

in each group, as well as the difference between parameters

estimated in participants of each sex.

Results

Standard GLM analysis of the block design

The fMRI statistical map extracted from the standard RFX

GLM analysis of the block design task is shown in Figure 3. In the

blocked experiment, we can observe similar statistical maps as

those obtained in our previous study, including the visual motion

regions, the insula, and the inferior frontal gyrus (Duarte et al.,

2015). The list of regions showing significant positive and

negative signal change is presented in Tables 2, 3, respectively.

FIGURE 2
HRF parameters calculated on the HRF curves. Note that the HRF third positive section curve area is not depicted in this representation of a
standard HRF but was observed in cases of altered HRF in T2DM.
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Average and median HRF

ROIs with positive signal change
In the ROIs with positive signal change, on average

(Figure 4), T2DM participants showed a more delayed

HRF, with smaller values of peak amplitude, relative slope

to peak, AUC, PCSA, and NCSA, and higher peak latency.

Furthermore, the HRF of T2DM participants depicted a

larger variability, a deeper initial dip, and an absent or

lengthier but less intense undershoot with later onset.

These results are observed consistently in the average HRF

plots in individual ROIs, presented in Figure 5. Similarly, the

grand median HRF plot, displayed in Figure 4, reveals an

overall replication effect, which shows that these results do

not depend on outliers.

ROIs with negative signal change
There were ROIs with negative signal change in the

block paradigm in which healthy controls showed a

positive response whereas T2DM participants showed a

negative response, which suggests a possible abnormal

enhancement of the dip signal due to an excess of oxygen

consumption.

The HRFs in these ROIs (Figure 6) displayed less amplitude

variation than the analogs in the positive signal change ROIs.

Besides, they presented atypical responses, which made

rendering estimation for several HRF parameters in these

ROIs challenging (see Supplementary Material S1). Their

values showed different properties from the ones previously

described in the positive signal change ROIs. Given the

atypical profiles of the regions, which did not follow the

standard HRF, they were not further considered for parameter

extraction.

HRF parameters

In the pool of ROIs with standard positive signal change, the

average or median parameters of the HRF confirm the observation

that, generally, the peak amplitude, slope to peak, and undershoot

area are lower in T2DM. On the other hand, the peak latency and

the initial dip seem to be higher in T2DM. The summary of these

results, with the statistical comparison between groups, is

presented below in Table 4.

Discussion

In this study, we found that theHRF in the brain of patients with

T2DM is altered relative to healthy controls, as shown by a novel

quantitative analysis of the HRF morphology. Overall, in all ROIs,

T2DM patients presented a more sluggish (time-delayed) HRF,

diverging from the canonicalHRF, with a higher peak latency and an

absent or less intense but lengthier undershoot (curve below the

baseline at the end of the response). Furthermore, theHRF in T2DM

patients exhibited a smaller peak amplitude and relative slope to

peak. These differences were found using age as a covariate, thus

suggesting a specific effect of T2DM independent of healthy aging.

Although the area under the curve, including the positive and

negative sections, appears to be relatively similar between the two

populations, there is still a trend to be smaller in T2DM patients.

Besides, the variability of HRF parameters was, on average,

higher in T2DM patients. Lastly, the HRF of T2DM patients

often included an initial dip (the classic initial reduction due to

the mismatch between oxygen consumption and blood supply)

with clear enhancement, unlike what is observed in the control

group. This even led to some regional dominantly negative

responses in diabetic patients in contrast with controls.

FIGURE 3
Functional maps generated from RFX GLM analysis of the fMRI response to any stimulation condition during the block design experiment for
controls and T2DM patients. The map is corrected for multiple comparisons (pBonferroni < 0.05). One can see significant positive signal change
(yellow/red) and negative signal change (blue) in several clusters, which are further described in Tables 2, 3. We used these ROIs to extract the fMRI
BOLD signal for further analysis of the HRF in each group. SAG, sagittal; TRA, transverse; COR, coronal; A, anterior; P, posterior; R, right; L, left.
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These results are consistent with our hypothesis that the

underlying reason for these changes in the HRFs of T2DM

patients might be an early compromised neurovascular

coupling. Possible explanations for the observed differences

include vascular damage (such as endothelial dysfunction),

impairment of the vasodilation regulatory mechanisms, or

excessive O2 consumption. It is not likely that different levels

of neuronal activity alterations could have a significant effect on

these curves because, as mentioned, the stimuli were individually

fitted, so that the task difficulty was similar for all participants.

Furthermore, the task performance was identical between

groups, revealing a comparable perceptual discrimination ability.

In T2DM patients, there is an imbalance between relative O2

consumption and blood supply. In fact, given similar neuronal

activation conditions in both groups, with NVC changes in

T2DM, the oxygenated blood supply becomes smaller, and, thus

the O2 decrease induced by neuronal activity will not be so swiftly

compensated. This contributes to the overall HRF delay observed.

Consequently, the deoxyhemoglobin concentration will further

increase initially, hence decreasing the BOLD signal, which

explains the large initial dip seen in its average and median HRFs,

which in turnwasmost often absent or less perceptible in the controls.

When the blood supply finally starts to balance the O2

consumption, the BOLD signal increases, but more gradually

FIGURE 4
Grand average and grandmedian HRF curves in the ROIs with positive signal change. Solid and dashed thick lines represent the average/median
for each condition, and the shaded areas represent the standard deviation/interquartile range.

TABLE 3 Clusters with negative signal change during stimulation blocks.

Anatomical brain region Cluster code MNI coordinates at the cluster’s peak

X Y Z

Left Anterior Cingulate, Brodmann area 32 L_AC_BA32 0 44 1

Left Cingulate Gyrus, Brodmann area 31 L_CG_BA31 −3 −46 32

Right Cingulate Gyrus, Brodmann area 24 R_CG_BA24 −3 −10 43

Right Insula, Brodmann area 13 R_Insula_BA13 37 −19 4

Left Posterior Cingulate, Brodmann area 30 L_PC_BA30 −6 −55 13

Right Posterior Cingulate, Brodmann area 23 R_PC_BA23 −3 −45 28

Left Paracentral Lobule, Brodmann area 5 L_PrcL_BA5 −12 −37 49

Left Parahippocampal Gyrus, Brodmann area 36 L_PrhG_BA36 −30 −31 −17

Right Precentral Gyrus, Brodmann area 4 R_PrecG_BA4 36 −19 40

Right Precentral Gyrus, Brodmann area 43 R_PrecG_BA43 54 −7 11

Right Primary Sensorial area, Brodmann area 1 R_PrimSens_BA1 39 −16 19

Right Superior Temporal Gyrus, Brodmann area 39 R_STG_BA39 52 −55 19
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and slower than in healthy conditions, until the peak is reached,

which elucidates, in turn, the higher peak latency and smaller

peak amplitude and relative slope to peak overall seen in the

average and median HRFs of T2DM patients. On the opposite,

the controls, with a more efficient NVC, show a higher and faster

BOLD signal increase, producing a higher peak amplitude,

relative slope to peak, AUC, PCSA, and NCSA, but a lower

peak latency, which matches with the overall results. In T2DM

patients, after reaching the peak, the return to the baseline, due to

the aforementioned reasons, will be delayed and will be slower

than in controls, which is mainly in line with the achieved results.

On the other hand, the undershoot may not be discerned, which

may be due to a masking effect prompted by the lower efficiency

of the first phase of the hemodynamic response.

The components of the NVC may present intraindividual,

inter-region, and inter-condition variability (Elbau et al., 2018).

Its characterization to understand how the hemodynamic

response is altered in T2DM, is therefore quite relevant. Our

FIGURE 5
Average HRF curves in each ROI with positive signal change. Solid and dashed thick lines represent the average for each condition, and the
shaded areas represent the standard deviation.

FIGURE 6
Grand average and grand median HRF curves in the ROIs with negative signal change. Solid and dashed thick lines represent the average/
median for each condition, and the shaded areas represent the standard deviation/interquartile range.
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results show that the hemodynamic response, did indeed display

a large inter-subject variability in T2DM, which is consistent with

the notion of damage induced differences in NVC. Conversely,

control participants might have a more efficient NVC, and the

hemodynamic response will be more similar between them and

will show less variability, also taking into account the relatively

restricted age of the sample (40–76 years). Furthermore, the

results also demonstrate a robust replication of the HRF effect

between ROIs and between the type of stimuli. This consistency

suggests an overall effect of T2DM on the HRF which is similar

between regions and conditions. To further test the roles of

variables such as age, sex, or HbA1c levels as possible causes for

this variability, we investigated the correlation of the HRF

parameters with these factors in each group. We did not find

any significant correlation of HRF with age or HbA1c, nor a

differential effect of sex, which suggests that these are not the

cause of the variability in this data set, but rather T2DM.

In the ROIs with negative signal change, notably, their

particular morphology justifies the reason why we designated

these ROIs as negative signal change ROIs (may be corresponding

and exaggerated negative dip) instead of deactivation regions.

The HRFs of these ROIs were distinct from the classical

deactivation pattern, which expectedly would be like those

existing in the positive change ROIs, yet inverted. That is,

there would be a large signal decrease against the baseline, a

peak (which would correspond to the minimum of the function)

around 4–6 s, and a return to the baseline at 16–20 s. Similarly to

the canonical HRF, there could also be an initial dip (positive)

before the peak (Havlicek et al., 2017). Overall, it could be

captured as a deactivation by the GLM. As the term

deactivation is commonly associated with a physiological

meaning - a region which decreases its activity during a

condition - and as the meaning of the HRFs of these ROIs is

not understood, it was considered wiser to designate them as

TABLE 4 Average (±SD) HRF parameters in ROIs with positive signal change.

HRF parameter Condition T2DM CNT Statistics Adjusted p-value

Peak amplitude Thresh 0.098 ± 0.055 0.130 ± 0.035 1.592 0.177

Submax 0.072 ± 0.039 0.113 ± 0.029 2.615 0.034

Peak latency Thresh 7.500 ± 0.796 5.000 ± 1.054 −3.023 0.007

Submax 7.500 ± 0.796 5.000 ± 1.054 −3.481 0.002

Relative slope to peak Thresh 0.013 ± 0.008 0.032 ± 0.011 4.140 0.002

Submax 0.010 ± 0.006 0.025 ± 0.008 4.720 0.001

AUC Thresh 1.297 ± 0.450 1.413 ± 0.253 0.707 0.489

Submax 1.007 ± 0.354 1.340 ± 0.218 2.537 0.037

APCS Thresh 0.324 ± 0.155 0.492 ± 0.127 2.653 0.033

Submax 0.254 ± 0.127 0.413 ± 0.090 3.217 0.012

fPCSA Thresh 0.006 ± 0.006 0.128 ± 0.027 3.742 0.001

Submax 0.004 ± 0.019 0.097 ± 0.022 3.756 0.001

sPCSA Thresh 0.287 ± 0.160 0.340 ± 0.153 0.759 0.472

Submax 0.206 ± 0.138 0.293 ± 0.113 1.551 0.182

tPCSA Thresh 0.027 ± 0.023 0.004 ± 0.022 −1.323 0.219

Submax 0.039 ± 0.032 0.013 ± 0.019 −1.935 0.083

ANCS Thresh 0.364 ± 0.156 0.454 ± 0.130 1.401 0.218

Submax 0.223 ± 0.101 0.394 ± 0.088 4.033 0.002

Initial dip area Thresh 0.170 ± 0.077 0.121 ± 0.080 −1.403 0.218

Submax 0.144 ± 0.073 0.110 ± 0.060 −1.140 0.292

Undershoot area Thresh 0.194 ± 0.128 0.333 ± 0.067 3.047 0.002

Submax 0.056 ± 0.061 0.284 ± 0.044 3.364 0.001

AUC, area under the curve; APCS, area of the positive curve section; fPCSA, first positive curve section area; sPCSA, second positive curve section area; tPCSA, third positive curve section

area; ANCS, area of the negative curve section; Thresh, Threshold; Submax, Submaximum.
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negative signal change ROIs. To maintain the coherence, the

remaining ROIs, on which the discussion was focused, were

designated as positive signal change ROIs, in line with their

typical activation responses.

A very interesting observation is that the same brain region

(Insula BA13) showed very distinct HRFs in the two hemispheres.

This intriguing finding will need to be investigated in the future, in

line with the hemispheric functional asymmetries that are known to

exist in this region (Eckert et al., 2009; Uddin, 2015; Intaitė et al.,

2016; Zhang et al., 2019; Sayal et al., 2020).

Finally, as a limitation of the study, we should mention that

despite the strong statistical power of these results, besides T2DM,

there are several other sources of NVC changes, which, in turn, can

introduce variability. For instance, the BOLD signal, whichmeasures

indirectly the NVC, is also sensitive to other hemodynamic

processes, even from non-pathological sources (e.g., atypical brain

physiology) (Rossini et al., 2004; Elbau et al., 2018). Thus, when the

NVC is investigated, its interpretation and comparison between

groups become more complicated by additional factors (Whittaker

et al., 2016). Since the NVC is a rather complex phenomenon whose

components change between regions and conditions, conditioning

how the coupling takes place (Drew, 2019), further research,

including in animal models, should be done on this topic.

Conclusion

This study provides robust evidence that T2DM patients

have an early compromised neurovascular coupling, as shown by

the changes in the hemodynamic response function overall in the

brain. The novel demonstration of a distinct HRF profile is

expressed by a more sluggish response (higher peak latency),

with a smaller peak amplitude, a pronounced initial dip, a

delayed or absent undershoot, a decreased relative slope to

peak, and lower positive and negative areas under the curve.

These changes in the HRF morphology may provide novel

markers of neurovascular uncoupling caused by T2DM.

Therefore, this study reinforces the role of fMRI as a tool to

evaluate brain function and neurovascular coupling in T2DM.

Duarte et al. (2015) had previously suggested that BOLD signal

differences in diabetic patients could potentially identify NVC

disruption, which was shown here. On the other hand, the novel

analysis of the HRF parameters may prompt further studies that

may involve classification and/or its use as a biomarker which

might be related to the pathophysiological evolution and,

consequently, play a potentially important role in the

assessment of disease progression and effects of therapy.
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