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Highlights Impact and implications
� CCA tissues are characterized by miR upregulation,
increased miR biogenesis pathway expression and
miR heterogeneity.

� Most miRs upregulated in CCA resulted in increased pro-
liferation when introduced into human cholangiocyte
models in vitro.

� MiR-27a-3p affects FoxO signalling in individuals with CCA
in vitro and in vivo.

� CRISPR/Cas9 nickase knockout of miR-27a abrogates
tumorigenicity in vitro and in vivo.
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Cholangiocarcinogenesis entails extensive cellular reprogram-
ming driven by genetic and non-genetic alterations, but the
functional roles of these non-genetic events remain poorly
understood. By unveiling global miRNA upregulation in patient
tumours and their functional ability to increase proliferation of
cholangiocytes, these small non-coding RNAs are implicated
as critical non-genetic alterations promoting biliary tumour
initiation. These findings identify possible mechanisms for
transcriptome rewiring during transformation, with potential
implications for patient stratification.
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Background & Aims: Cholangiocarcinoma (CCA) is a heterogeneous and lethal malignancy, the molecular origins of which remain
poorly understood. MicroRNAs (miRs) target diverse signalling pathways, functioning as potent epigenetic regulators of tran-
scriptional output. We aimed to characterise miRNome dysregulation in CCA, including its impact on transcriptome homeostasis
and cell behaviour.
Methods: Small RNA sequencing was performed on 119 resected CCAs, 63 surrounding liver tissues, and 22 normal livers. High-
throughput miR mimic screens were performed in three primary human cholangiocyte cultures. Integration of patient tran-
scriptomes and miRseq together with miR screening data identified an oncogenic miR for characterization. MiR-mRNA in-
teractions were investigated by a luciferase assay. MiR-CRISPR knockout cells were generated and phenotypically characterized
in vitro (proliferation, migration, colony, mitochondrial function, glycolysis) and in vivo using subcutaneous xenografts.
Results: In total, 13% (140/1,049) of detected miRs were differentially expressed between CCA and surrounding liver tissues,
including 135 that were upregulated in tumours. CCA tissues were characterised by higher miRNome heterogeneity and miR
biogenesis pathway expression. Unsupervised hierarchical clustering of tumour miRNomes identified three subgroups, including
distal CCA-enriched and IDH1 mutant-enriched subgroups. High-throughput screening of miR mimics uncovered 71 miRs that
consistently increased proliferation of three primary cholangiocyte models and were upregulated in CCA tissues regardless of
anatomical location, among which only miR-27a-3p had consistently increased expression and activity in several cohorts. FoxO
signalling was predominantly downregulated by miR-27a-3p in CCA, partially through targeting of FOXO1. MiR-27a knockout
increased FOXO1 levels in vitro and in vivo, impeding tumour behaviour and growth.
Conclusions: The miRNomes of CCA tissues are highly remodelled, impacting transcriptome homeostasis in part through
regulation of transcription factors like FOXO1. MiR-27a-3p arises as an oncogenic vulnerability in CCA.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Cholangiocarcinoma (CCA) is the second most-common pri-
mary liver cancer, encompassing a diverse group of malig-
nancies arising in the intrahepatic or extrahepatic bile ducts,
the latter being further divided in perihilar and distal CCA. Most
patients diagnosed with CCA have sporadic disease, with no
clear underlying risk factors.1 While the underlying aetiologies
of most tumours remain unknown,2 chronic inflammation is
believed to be causative of or at least contributory to chol-
angiocarcinogenesis.3 The inflammatory environment triggers
ductular reactions, involving hyperproliferation of chol-
angiocytes in response to immune stimuli. Rapid proliferation of
cells in pro-inflammatory microenvironments is accompanied
by epigenetic alterations, which lead to further genetic and
epigenetic alterations, ultimately resulting in malignant
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transformation.4 While genomic analysis of invasive CCA has
identified clinically impactful DNA-based alterations in pa-
tients,5–7 mutation rates are intermediate compared to other
cancers8 and are not alone sufficient to explain the major
transcriptomic changes and complex biology exhibited by
tumour cells. Of note, both mutations and different tumour
aetiologies are linked to epigenetic changes in CCA,7,9 but the
contribution of epigenetic alterations to disease initiation re-
mains poorly defined. Identifying epigenetic mechanisms that
contribute to cholangiocarcinogenesis is fundamental to un-
derstanding disease risk and preventative management, as well
as potentially expanding the repertoire of therapeutic targets
beyond those identified from DNA sequence analysis.10

MicroRNAs (miRs) are small non-coding RNAs and key
epigenetic regulators of the transcriptome. Their ability to
2022; available online 28 October 2022
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regulate multiple transcripts enables extensive, rapid, and
reversible transcriptomic regulation in response to external
stimuli such as inflammation.11 In CCA, miRs are involved in
several oncogenic hallmarks, such as uncontrolled prolifera-
tion, decreased apoptosis, invasion and metastasis, and
inflammation.12 In particular, oncomiR miR-21 has been
extensively studied in CCA. By regulating several key signalling
pathways such as PI3K/AKT, ERK,13 and PTEN,14 miR-21
expression leads to increased epithelial-mesenchymal transi-
tion13 and drug resistance.15 It is therefore essential to perform
larger scale analysis to be able to fully decipher the deregulated
landscape of miRs and determine their impact on regulatory
pathways involved in the development and progression of
the disease.

In this study, we characterized the miRNomes and matched
transcriptomes of CCA and surrounding liver (SL) tissues, and
in parallel tested the ability of over 2,700 miR mimics to induce
proliferation in normal human cholangiocytes. From these data,
we identified miR-27a-3p as a critical pro-proliferative miR in
patient tumours. This miR was implicated predominantly in the
regulation of forkhead box O family (FoxO) signalling, in part by
targeting FoxO1. The regulation of FOXO1 by miR-27a was
subsequently confirmed to be oncogenic in CCA.

Materials and methods

Patient cohort and patient-derived models

Tissue samples were obtained from 128 treatment-naïve pa-
tients undergoing surgical resection with curative intent as part
of their clinical management, including 63 matched-SL speci-
mens. In total, 9 samples did not pass quality control during
pre-processing. These samples were retrospectively identified
from six clinical centers in Europe, the USA, and China. Addi-
tionally, 22 normal human liver samples were included as in-
dependent controls. These samples were obtained from the
Liver Tissue Cell Distribution System at University of Pittsburgh
(MTA36479-13). Patient consent and ethical approval were
obtained for use of all samples and information evaluated in this
study, in accordance with local, national, and international
regulations (declaration of Helsinki).7,16 These involved the
Danish Committee system on Health and Research Ethics
(Protocol no. H-4-2015-FSP; 15014207) as well as the NCI and
Shanghai Cancer Institute (Shanghai Biliary Tract Cancer Case-
control study, protocol no. OH97CN028). Patient consent and
ethical approval were provided for the generation of primary
patient-derived models17 (no. 837.199.10 (7208), University of
Mainz, Germany).

Small RNA sequencing and analysis

Total RNA was extracted from fresh-frozen resected tissues
using AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) following
the manufacturer�s protocol. RNA was quantified with Qubit
RNA HS Assay Kit (Life Technologies) and RNA integrity
number was determined in the Aligent 2100 Bioanalyzer Sys-
tem (RNA 6000 Nano Assay) according to the manufacturer�s
instructions, with a value >7 representing high-quality RNA. All
samples were processed for small RNA sequencing (RNAseq)
using the Hiseq 4000 system (Illumina) by Beijing Genomics
Institute (BGI, https://www.bgi.com/global/, Copenhagen, DK),
with a required coverage of >20 million matched reads. The
Journal of Hepatology, Febru
data were subsequently processed by standardized bio-
informatic pipelines.

High-throughput miR mimic screening

Three primary cultures of normal human cholangiocytes (C324,
NHC2, NHC3)18,19 were used for in vitro studies. Transfection
of a human miR mimic library (based on miRBase Version 21,
Sanger Institute) was performed in NHC3. The library consisted
of 2,754 miR mimics (MISSION® microRNA Mimic, MI00300,
Sigma-Aldrich). Briefly, NHC3 cells were reverse transfected in
384 well-plates with a final concentration of 10 nM of each miR
mimic (in triplicates) using a Hamilton Microlab STARlet robot.
MiR mimics were transiently transfected using Lipofectamine
RNAiMAX (Life Technologies) according to the manufacturer�s
guidelines. Monitoring of cell proliferation changes were
measured over time (0 to 120 h) using the real-time, non-
invasive, and quantitative IncuCyte® Live-Cell Analysis System
(ESSEN BIOSCIENCE). miR scrambles were used as trans-
fection controls and taurocholic acid was used as a positive
proliferation control. For further confirmation of our screening
results, two validation screens were performed under the same
conditions in NHC2 and C324.

Statistical analyses

For bioinformatics approaches, all analyses were conducted in
R v4.0. Categorical data were compared between groups using
Pearson’s Chi-squared test with Yates’ continuity correction or
Fisher’s exact test. For continuous data, normality was evalu-
ated by Shapiro-Wilk test. Non-normally distributed data were
compared and correlated using Wilcoxon rank-sum test with
continuity correction and Spearman correlation, respectively.
Normally distributed data were compared and correlated using
Welch’s t test and Pearson correlation. Heatmaps and corre-
lation plots were generated using the ‘gplots’ and ‘ggplot2’
packages, respectively. Experimental results were statistically
analysed using the GraphPad Prism 9 statistical software (San
Diego, USA). All data are shown as mean ± standard deviation.
For comparisons between two groups, a parametric unpaired t
test or a non-parametric Mann-Whitney test were used. Dif-
ferences were considered significant when p <0.05.

For further details regarding the materials andmethods used,
please refer to the CTAT table and supplementary information.

Results

MiRNome aberrations are characteristic of CCA and
implicated in tumour heterogeneity

High-quality small RNAseq data were generated for 119 CCA
and 63 SL samples obtained during surgical resection. This
cohort is comprised of patients enrolled from multiple clinical
centres, overlapping with our previously reported transcriptome
cohorts.16,20 Clinicopathologic characteristics are summarized
in Table S1. In total, 1,049 miRNAs were identified with a me-
dian mapped read count of 33,531,719 reads (range:
13,274,065-63,983,783) mapping to known miRs per sam-
ple (Table S2).

Comparing the miRNomes of CCA and SL samples using
two independent methods (DESeq2; Wilcoxon rank-sum test of
counts per million values), 140 differentially expressed miRs
(DEmiRs; 135 higher and 5 lower expressed in CCA) were
ary 2023. vol. 78 j 364–375 365
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identified by both methods (Table S3). Hierarchical clustering
with the 140 DEmiRs significantly stratified the samples into
tumour-associated and non-tumour-associated clusters (p
<0.0001, chi-squared; Fig. 1A). The expression profile of these
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miRs appeared highly similar between SL and independent
normal liver samples (n = 22), but 85.7% (120/140) of these
DEmiRs were differentially expressed between tumour
anatomical subtypes (Table S3). Among DEmiRs, 30.7% (43/
miRNome diversity (p <0.0001)
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140) were found to be reproducibly differentially expressed in
The Cancer Genome Atlas (TCGA)-CHOL cohort. The CCA-
associated cluster was characterized by higher intrasample
miRNA diversity (p <0.0001, Wilcoxon rank-sum test of Simp-
son’s diversity index; Fig. 1B) and higher miRNA biogenesis
pathway expression (p <0.0001; Fig. 1C). A majority (58.3%, 14/
24) of signalling pathways were more highly expressed in the
CCA-associated cluster compared to SL, including common
oncogenic networks (Apelin, ErbB, Hippo, MAPK, Notch,
phospholipase D, PI3K-Akt, Rap1, Ras, Sphingolipid, TGF-B,
TNF, VEGF and Wnt) (Fig. 1D, Table S4). In contrast, 20.8%
(5/24) of signal transduction pathways were more lowly
expressed in the CCA-associated cluster and included path-
ways associated with metabolic and immune regulation (AMPK,
calcium, cGMP-PKG, FoxO, JAK-STAT) (Fig. 1E). As most
DEmiRs are upregulated in tumours (96.4%, 135/140), resulting
in negative regulation of their target genes, their major impact in
CCA is likely through downregulation of critical pathways.

Unsupervised hierarchical clustering of CCA samples alone
identified threemiR expression-based clusters (Fig. S1A). Patient
age did not differ between clusters (Table S5). While miR
biogenesis pathway expression did not significantly differ be-
tween tumour clusters (p = 0.595, ANOVA), miR diversity was
higher among cluster 2 tumours (p <0.0001, Wilcoxon; Fig.S1B).
Using transcriptome-based deconvolution of cell types, no sig-
nificant differences in fibroblast (p = 0.97, ANOVA) or immune cell
(p = 0.25) content were identified between clusters (Fig.S1C).
Cluster 1 (25.2%; 30/119) tumours were characterized by lower
expression of ErbB (p = 0.0002), Hippo (p = 0.0027), Notch (p =
0.02), phospholipase D (p <0.03), sphingolipid (p = 0.0073) and
Wnt (p= 0.0018) signalling pathways (Fig.S1D). Cluster 2 tumours
(28.6%; 34/119) were enriched in distal CCA (p <0.0001, Fisher’s
exact test), Chinese origin (p <0.0001) and exhibited higher cal-
cium signalling pathway expression (p = 0.03). Cluster 3 tumours
(46.2%; 55/119) were associated with high expression of ErbB (p
<0.04), Hippo (p = 0.0081), sphingolipid (p = 0.04) and Wnt (p
<0.0090) signalling pathways, as well as lower calcium signalling
pathway expression (p <0.03). Further, cluster 3 tumours were
found to be enriched in females (p = 0.0138, Fisher’s exact test)
and IDH1 mutations (p = 0.0045), whereas no significant associ-
ation was found between other recurrent genomic alterations
(mutations in KRAS or TP53, FGFR2:BICC1 fusions) and tumour
clusters (Fig.S1E, Table S6). Overall survival of patients differed
between miR clusters (p = 0.0005, log-rank test), with cluster 2
patients exhibiting the shortest survival (Fig.S1F). Whole miR-
Nome survival analysis identified 19 survival-associated miRs in
individuals with resected CCA, independent of tumour location
(multivariable Cox proportional hazards model, false discovery
rate [FDR] p <0.05), as anatomical subtypes are associated with
different survival outcomes for patients receiving best supportive
care2 (Fig.S1G, Table S7). Collectively, these data implicate miRs
in diverse features of patient heterogeneity, such as tumour
location, tumour genotype and pathobiological signalling, but
independent from miRNA biogenesis pathway expression or
tumour tissue composition.
High-throughput mimic screening in normal cholangiocytes
identifies patient-relevant proliferative miRs

In parallel with miR profiling of resected CCA tissues, a high-
throughput screen of 2,754 miR mimics was performed in
Journal of Hepatology, Febru
normal human cholangiocytes (NHC3) to systematically identify
miRs that increase cell proliferation (Fig. 2A, Fig. S2A). In total,
548 miRs were found to increase proliferation (p <0.05) and 546
miRs decreased proliferation (p <0.05, Wilcoxon) of NHC3 cells
(Fig. 2B). Among pro-proliferative miRs with evaluable phalloi-
din staining, the majority (66.1%, 361/546) did not affect cell
area, suggesting that increased confluency at the final time-
point was not due to epithelial-mesenchymal transition phe-
notypes. To confirm the pro-proliferative effect of those 548
miRs, two validation screens were subsequently performed in
two additional primary NHC models (NHC2 and C324)
(Fig. S2B-C). In the validation screens, 326 miRs and 250 miRs
were found to significantly increase the proliferation of NHC2
and C324, respectively (Fig. S2D-E). Overall, 179 miR mimics
were found to consistently increase proliferation of all three
NHC cell models (Fig. 2C; Table S8).

Overlapping the in vitro screen results with CCA patient
data (Fig. S3A), 39.7% (71/179) miRs were found to be upre-
gulated in patient tumours and to consistently trigger
increased proliferation in all cholangiocyte models (Table S9).
By using TCGA-CHOL cohort21 for further validation, this set of
fundamental pro-proliferative DEmiRs was refined to five: miR-
23a-3p, miR-27a-3p, miR-181-5p, miR-199b-5p, miR-3127-5p
(Fig. 2D). To prioritize these miRs for downstream experiments,
differential expression and predicted differential activity (infer-
red from transcriptomic profiles with miReact22) of miRs were
evaluated. MiR-27a-3p was the only candidate miR whose
activity was predicted to be increased in CCA tissues
compared to SL and independent normal bile duct samples
(Fig. 2E, Fig. S3B). Therefore, miR-27a-3p was selected as the
optimal proliferative DEmiR to further characterize ex vivo,
in vitro, and in vivo.
MiR-27a-3p affects cell cycle regulation in CCA, involving
modulation of FoxO signalling

Integrative analysis of matched miR and transcriptomic data
(96 CCA, 58 SL) identified 9,925 genes to be significantly
correlated with miR-27a-3p expression (4,382 negatively, 5,543
positively, FDR p <0.05). Pathway over-representation analysis
identified ‘cell cycle’ as the most associated biological process
among these genes, a finding that was reproduced in TCGA-
CHOL cohort (Fig. 3A, Fig. S4A). To pinpoint which of these
genes may be direct targets of this miR, known and/or pre-
dicted (minimum eight algorithms) targets whose expression
anticorrelated with miR-27a-3p were identified (FDR p <0.05). In
total, 263 genes met these criteria and were most significantly
over-represented within the FoxO signalling pathway (Fig. 3B,
Table S10). MiR-27a-3p targets were also found to be most
over-represented among the FoxO signalling pathway in
TCGA-CHOL cohort (Fig. S4B). Notably, we found the FoxO
signalling pathway to be downregulated in CCA (Fig. 1E) and it
is known to be linked to cell cycle regulation in other cancer
types.23 Within the FoxO signalling pathway, miR-27a-3p
expression significantly correlated with the expression of
74.1% (80/108) of pathway members in our cohort. These
included 12 known targets whose expression inversely corre-
lated with miR-27a-3p (FDR p <0.05) (Fig. 3C). In total, 5 of
these candidate miR targets were replicated in TCGA-CHOL
cohort: BNIP3, EGFR, FOXO1, IGF1, IRS1 (Table S11). These
genes all play distinct roles in the FoxO signalling pathway,
ary 2023. vol. 78 j 364–375 367
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including signal transduction (EGFR, IGF1, IRS1), transcrip-
tional regulation (FOXO1), and autophagy (BNIP3) (Fig. 3D).
FOXO1 is a target of miR-27a-3p in cholangiocytes
and CCA

In patient tissues, miR-27a-3p was found overexpressed in bulk
CCAcompared to SL (Fig. 4A) andwas expressed in tumour cells
as revealed by in situ staining (Fig. S5). MiR-27a-3p expression
did not differ between small (pT1-2) and large (pT3-4) tumours
(p = 0.12, Wilcoxon), tumours without (pN0) or with (pN1) lymph
368 Journal of Hepatology, Febru
node involvement (p = 0.87) or based on genomic alterations
(Fig. S6A-C). However, high miR-27a-3p expression trended
towards an associationwith decreased patient survival (p = 0.05,
log-rank) (Fig. S6D). Our in vitro CCA cell models (CC16, EGI-1,
ETK-1, HuCCT-1) exhibited higher expression of miR-27a-3p
compared to primary cholangiocytes (NHC3, miR-seq) (Fig. 4B)
and immortalised cholangiocytes (H69, quantitative reverse-
transcription PCR [RT-qPCR]) (Fig. 4C). To further characterize
the regulatory role(s) of miR-27a-3p, we analysed the five
candidate miR-target genes. Only FOXO1 and its downstream
gene BNIP3were significantly downregulated at the mRNA level
ary 2023. vol. 78 j 364–375
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in CCA cell lines compared to H69 (Fig. 4D). Thus, the potential
interaction between miR-27a-3p and the transcription factor
FOXO1, was selected for further evaluation in vitro. Reverse-
transcription quantitative PCR and immunoblotting confirmed
FOXO1 expression to be significantly lower in CCA cells
compared toH69 cells (Fig. 4E-F). To confirm the binding ofmiR-
27a-3p to the 3�UTRof FOXO1 in vitro, a luciferase reporter assay
was performed in H69 cells using a wild-type construct and a
construct mutated at the candidate miR-27a-3p binding site.
After addition of an miR-27a-3p mimic, the luciferase activity
level was reduced for the wild-type but not the mutant plasmid,
confirming that miR-27a-3p binds to the 3�UTR of FOXO1 and
impairs its translation (Fig. 4G).
Journal of Hepatology, Febru
Knockout of miR-27a-3p affects CCA growth in vitro

To evaluate tumour-associated miR-27a-dependency,
CRISPR/Cas9-mediated single-cell knockout of miR-27a in the
HuCCT-1 CCA cell line was performed. qRT-PCR confirmed
the knockout of miR-27a as part of the miR-23a/27a/24-2
cluster (Fig. 5A, Fig. S7A-B). Knockout of miR-27a in HuCCT-
1 led to a significant increase of FOXO1 expression in three
independent single-cell knockout clones (Fig. 5B), but only
minor changes in upstream miR-27a-targeted FoxO signalling
members (Fig. 3D, IRS1, EGFR, IGF-) (Fig. S7C). Comparing
knockout clones to wild-type HuCCT-1 cells, loss of miR-27a
decreased proliferation and wound healing, as well as impair-
ing colony formation (Fig. 5C-F), whereas an unsuccessful
ary 2023. vol. 78 j 364–375 369
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MicroRNA regulation in cholangiocarcinoma
CRISPR/Cas9 clone (WT clone) without changes in miR-27a-3p
expression by qRT-PCR showed no significant phenotypic
changes compared to HuCCT-1 (Fig. S7D-F). MiR-27a
370 Journal of Hepatology, Febru
knockout-associated FOXO1 upregulation and associated
phenotypes were further confirmed in the CCA cell line, ETK-1
(Fig. S7G-J). As FOXO1 is a key regulator of metabolism, we
ary 2023. vol. 78 j 364–375
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examined the mitochondrial function and glycolytic rate in
HuCCT-1 and miR-27a knockout (KO1 and KO3) by Seahorse
Cell Mito Stress and glycolytic rate test (Fig. 5G-J, Fig. S8). We
observed a reduction of non-mitochondrial oxygen consump-
tion, in combination with decreased basal respiration and ATP
production (Fig. 5H), indicating reduced mitochondrial function
following miR-27a knockout. The reduction in mitochondrial
activity is accompanied by an increased dependence on
glycolysis, as shown by % proton efflux rate and the ratio be-
tween mitochondrial oxygen consumption rate and glycolytic
proton efflux rate (Fig. 5I-J). Nevertheless, basal glycolysis and
the glycolysis product L-lactic acid (Fig. 5J, Fig. S8H) remain
unchanged, suggesting a reduced glycolytic efficiency in miR-
27a knockout compared to wild-type CCA cells.
MiR-27a knockout impedes tumour growth and
proliferation in vivo

To determine the consequences of miR-27a knockout on
tumour proliferation in vivo, two miR-27a knockout clones were
chosen for subcutaneous injection (KO1 and KO3). No signifi-
cant difference in cell viability (WST-1) was found between the
knockout clones and wild-type cells prior to transplantation
(Fig. S9A). After injection of tumour cells, the palpable growth
rate of knockout and wild-type (HuCCT-1) tumours separated
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after 25 days (Fig. S9A). Overall, miR-27a knockout cells gave
rise to smaller tumours (size) and lower tumour weights (p =
0.0026 for KO1 and p = 0.0041 for KO2) at the study endpoint
(34 days) compared to wild-type (Fig. 6A-B). Histopathological
evaluation indicated that the tumours did not differ in differ-
entiation grade (grade 3) or necrosis between wild-type and
knockout models (Fig. 6C). However, based on HE stains,
knockout tumours demonstrated a greater abundance of clear
cytoplasm content, less fibrous stromal reaction and lower
collagen deposition. Conversely, wild-type tumours were
characterized by greater eosinophilic cytoplasm content, more
severe fibrous stroma, and more hyaline tissue (Fig. 6C). qRT-
PCR analysis and immunofluorescence staining of the tumour
tissues confirmed significantly lower expression of miR-27a-3p
and higher nuclear expression of FOXO1 in knockout cells, in
association with lower levels of the proliferation marker, Ki67
(Fig. 6D-E, Fig. S9C-D).
Discussion
Limited miR profiling studies have been conducted in in-
dividuals with CCA, though they have typically been charac-
terized by modest-to-small sample sizes, use of microarrays
with pre-specified miR probes, and lack of matching tran-
scriptome or functional data.11,21,24 Herein, we characterised
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the miR profiles of a comparatively large cohort (119 CCA, 63
SL) using unbiased small RNAseq, among which matched
transcriptome data were available for 84.6% (154/182) of
samples. Our observation that 96.4% (135/140) of DEmiRs are
upregulated in tumours suggests predominantly oncogenic
roles of miRs through inhibition of tumour suppressors in CCA,
which has also been reported in a previous pan-cancer study.25

MiRs regulate the transcriptome by repressing translation or
inducing the degradation of their target mRNAs. It is estimated
that each miR family targets around 450 mRNAs, and tran-
scriptome regulation is primarily executed by targeting tran-
scription factors.26,27 However, selection of target mRNAs is
highly context-specific and sensitive to the relative abundance
of target mRNA, implicating these non-coding regulators in
inter- and intra-tumour heterogeneity. By performing a parallel
proliferation screen using miR mimics in primary chol-
angiocytes, we identified a compendium of pro-proliferative
miRs in CCA, and further characterized the impact of miR-
27a-3p on FoxO signalling through its transcription factor
target, FOXO1.

Epigenetic deregulation, especially aberrant expression of
miRs, is initiated in pro-inflammatory states and pre-invasive
lesions of CCA.28 Inflammation and increases in interleukin
(IL)-6 expression are known to induce proliferation of normal
cholangiocytes and are therefore linked to hyperplasia and
CCA development,29–31 which is at least partially regulated
through the action of miRs. In cholestatic rats, downregulation
of miR-124 leads to increased expression of IL-6R and STAT3
inducing IL-6-mediated proliferation of cholangiocytes.29

Additionally, pro-inflammatory cytokines (IL-8, IL-12, IL-18)
induce the expression of miR-506 and miR-425 in chol-
angiocytes, further enhancing inflammation by increasing the
expression of inflammatory markers and cytokine produc-
tion.32,33 To date, two studies have characterized progressive
miR expression alterations in the development of CCA from
hyperplasia, highlighting their essential role in disease initiation
and development.34,35

Our miR mimic screen uncovered proliferative roles for
52.6% (71/135) of patient DEmiRs in normal human chol-
angiocytes lacking genetic or chemical insults, indicating that a
majority of these miRs are functional in cholangiocytes and
could potentially contribute to ductular reaction in response to
liver injury. However, these DEmiRs also likely include “miR
tumour-dependencies” that become important for tumour cell
survival, as well as miRs that predominantly exert their pro-
tumourigenic effects following extravesicular-mediated traf-
ficking from epithelia to cells of the microenvironment. There-
fore, the extent to which miRs can malignify cholangiocytes
independently of genomic alterations and cells of the micro-
environment remains unresolved. The timing of these miR ab-
errations during cholangiocarcinogenesis might provide some
clues as to their cholangiocyte-intrinsic functions during
transformation. Therefore, evaluation of miR dynamics in
multiregional and/or longitudinally sampled tissues represen-
tative of disease evolution (normal bile duct, ductular reaction,
carcinoma in situ, invasive CCA) is warranted.

We have observed miR-mediated suppression of FoxO
signalling in CCA, indicating a tumour-inhibitory function of
the pathway. The FoxO family (FOXO1, FOXO3A, FOXO4 and
FOXO6) is a known tumour suppressive family controlling the
transcription of genes involved in cell cycle arrest, apoptosis,
Journal of Hepatology, Febru
autophagy, anti-oxidative enzymes, metabolism, and immune
regulators.23,36 Thus, for cellular homeostasis, tight regulation
of the abundance of FoxO family members by post-
transcriptional and -translational regulation is essential. In
CCA, little is known about the FoxO transcription factor
family, with only FOXO3 having been studied so far. FOXO3
downregulation and phosphorylation-associated inactivation
due to constitutively active Akt contributed to cisplatin
resistance in CCA.37 Phosphorylation of FOXO1 leads to
sequestering of the protein in the cytoplasm, thereby inhibit-
ing the transcription of FOXO1 target genes. In contrast, de-
phosphorylated FOXO1 is located in the nuclei, ensuring
active transcription. We have shown that FOXO1 is regulated
by miR-27a-3p in CCA, impairing mitochondrial function and
resulting in a nuclear localization of FOXO1 in miR-27a
knockout mouse tumours, which indicates its transcription-
ally active dephosphorylated status. FOXO1 promotes cell
viability and decreased apoptosis in HCC,38,39 contributes to
mitochondrial dysfunction and reduction of proliferation in
endothelial cells40 and regulates glycolysis in macrophages,41

supporting the phenotype observed in CCA. How FOXO1
functions as a tumour suppressor in CCA requires further
elucidation by identifying its transcriptional target genes by
combined RNAseq and chromatin immunoprecipitation-
sequencing analyses.

Several limitations apply to our study. While we decided to
focus on the proliferative roles of miRs in CCA, miRs contribute
to diverse hallmarks of tumour biology that are independent of
proliferation and are therefore not assessed by our in vitro
screen. As strategies for miR inhibition like miRZip or locked-
nucleic acids only introduce transient knockdown effects and
are not suitable for long-term experiments, such as in vivo
studies, we applied CRISPR/Cas9nickase editing to knockout
miR-27a. Though successful, we observed a reduction of the
whole miR-23a/27a/24-2 cluster as editing may have led to
impaired maturation of all miRs in the miR stem loop; thus, it is
not possible to completely uncouple our observed phenotypes
from the contribution of other family members. While our study
is the largest miR study reported in CCA to date, this mixed
cohort is still relatively small to define specific roles for miRs in
tumour anatomical subgroups. This may be particularly
important given the substantial differences in DEmiRs between
tumour anatomical subgroups in our study, as well as the
increasing divergence of treatment strategies for individuals
with intrahepatic and extrahepatic CCA. Other stratification
approaches are gaining clinical and biological traction (histo-
logical variants, morphological growth patterns) and future
analysis of miR heterogeneity may benefit from considering
these classifications. Finally, although miR delivery methods
are constantly improving, the cellular- and context-specific
activity of miRs make it challenging to target them therapeuti-
cally.42 Identifying synthetic lethality interactions of miRs (i.e.,
tumour survival co-dependencies on proteins more amenable
to therapeutic development) could provide a possible solution
in the future.

In conclusion, we have characterized the aberrant miR-
Nomes of CCA tissues, including their consequences for
transcriptome homeostasis and transcription factor regulation.
Our results suggest that CCA-associated miRs induce hyper-
proliferation of normal cholangiocytes, potentially contributing
to cholangiocarcinogenesis. Furthermore, our targeted analysis
ary 2023. vol. 78 j 364–375 373
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of miR-27a-3p implicate this oncogenic miR in cell cycle
regulation via the FoxO signalling pathway, rendering miR-27a-
3p a tumour dependency in vitro and in vivo. Collectively, these
374 Journal of Hepatology, Febru
data implicate miRNA-mediated transcription factor regulation
in the expansive transcriptome reprogramming characteristic
of CCA.
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