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Abstract: The major problems for the osseointegration of dental implants are the loosening of the
screw that fixes the dental implant to the abutment and the micromovements that are generated
when mechanical loads are applied. In this work, torque differences in the tightening and loosening
of the connection screws after 1 cycle, 10 cycles and 1000 cycles for 4 dental implants with 2 external
and 2 internal connections were analyzed. The loosening of 240 implants (60 for each system) was
determined using high-precision torsimeters and an electromechanical testing machine. A total of
60 dental implants for each of the 4 systems were inserted into fresh bovine bone to determine the
micromovements. The implant stability values (ISQ) were determined by RFA. The mechanical loads
were performed at 30◦ from 20 N to 200 N. By means of the Q-star technique, the micromovements
were determined. It was observed that, for a few cycles, the loosening of the screw did not exceed
a loss of tightening of 10% for both connections. However, for 1000 cycles, the loss for the external
connection was around 20% and for the internal connection it was 13%. The micromovements showed
a lineal increase with the applied load for the implant systems studied. An external connection
presented greater micromotions for each level of applied load and lower ISQ values than internal
ones. An excellent lineal correlation between the ISQ and micromobility was observed. These results
may be very useful for clinicians in the selection of the type of dental implant, depending on the
masticatory load of the patient as well as the consequences of the insertion torque of the dental
implant and its revisions.

Keywords: dental implant; torque insertion; external connection; internal connection; micromobility;
resonance frequency analysis

1. Introduction

Dental implant healing during the initial osteointegration stage requires mechanical
stability [1]; that is, it will only tolerate micromotions that do not exceed a 50 to 150 µm
range or a fibrous interface may form around the implant, thus resulting in implant fail-
ure [2]. This primary stability, resulting from the mechanical engagement of the implant
in the prepared surrounding bone [3], is often associated with implant insertion torque.
However, this insertion torque cannot be excessive and each implant manufacturer recom-
mends a certain maximum ranging from 30 to 70 N.cm [1]. On the other hand, insertion
torques as low as 25 N.cm have been shown to be sufficient even for immediate loading
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protocols [4]. An implant stability assessment is commonly measured by a resonance
frequency analysis (RFA), a method that measures the oscillation frequency of the implant
in the bone, converting the values from hertz to the implant stability quotient (ISQ) [1,5–9].
Several parameters can influence the obtained insertion torque and ISQ values such as the
implant design, bone quality and surgical bone preparation technique employed [10,11]. In
this context, the relationship between these variables still requires an extended clarification.

Numerous studies have determined the relationship between dental implant designs
and implant stability [12–20]. It was ascertained that different macro-designs of dental
implants affect the stability values. However, especially important is the roughness; this
improves the ISQ values in an important way because there is much more bone that
is anchored to the implant, causing greater stability. A rough topography also favors
secondary stability [21–25]. Another factor is the quality of the bone; it is possible to
determine how a lower bone density causes less bone stability. The cortical bone strongly
improves this stability [26,27]. Falco et al. demonstrated that large-thread implant designs
are highly desirable in cases of poor bone quality [28]. Each implant geometry generates
an insertion torque value, which is correlated to the stability of that specific implant in
a specific bone quality, but the insertion torque is not an objective value to compare the
primary stability between different implant types.

One of the most serious problems associated with the restorative aspect of dental
implants is the loosening and fracturing of screws. Winkler et al. [29] advised that implant
screws should be retightened 10 min after the initial torque application as a routine clinical
procedure to help compensate for the settling effect. Mechanical torque gauges should
be used instead of hand drivers to ensure the consistent tightening of the implant com-
ponents to the torque values recommended by the implant manufacturers. In addition,
Siamos et al. [30] proposed that an increase in the torque value for abutment screws above
30 N.cm could be beneficial for abutment implant stability and could decrease screw loos-
ening episodes. Several authors have studied insertion torques [31,32] with other prosthetic
materials. No significant differences were observed in the loading protocols of dental
implants, although care should be taken with immediately loaded implants because the
compressive stress when anchoring the implants to the cortical bone is occasionally so great
that it causes a loss of vascularization of the bone [30,31]. No influence has been observed
in bone volume augmentation techniques [32–37].

In this work, we studied two important aspects for stability: insertion torques and
torque loss due to tightening and untightening processes, and stability as a function of the
successive application of mechanical loads on dental implants with conventional designs
with two types of connection. The results may help clinicians to know the influence of the
masticatory load and the implant abutment connection system for the selection of the best
implant system for each patient.

2. Materials and Methods
2.1. Dental Implants

Four types of dental implant connections using Klockner® dental implants (SOADCO,
Escaldes Engordany, Andorra) were used for the study. These implants were manufactured
from commercial grade 3 titanium.

Two systems of connection for the implants with an abutment were evaluated, as
shown in Figure 1:

- External connection: SK2 implant (S) and KL implant (K).
- Internal connection: VEGA® implant (V) and ESSENTIAL® implant (E).

The implants used were 4 mm in diameter and 12 mm in length.
The SK2 implant (S) has a machined collar that allows the connection gap to be elevated

with respect to the bone crest. The conicity part offers a great primary stability, ending in a
maximum diameter of 4.2 mm of the shoulder of the implant platform. The implants have
a hexagonal connection that is 1.8 mm in height, with 3 mm between the planes.
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vated with respect to the bone crest. The conicity part offers a great primary stability, ending 
in a maximum diameter of 4.2 mm of the shoulder of the implant platform. The implants have 
a hexagonal connection that is 1.8 mm in height, with 3 mm between the planes. 

KL implant (K) is a threaded, external connection implant with a slightly ogival shape 
and two sections at the tip to facilitate the surgical insertion. The implant presents as a 
connection a hexagon of 0.7 mm in height that allows the connection gap to be elevated 
with respect to the osseous crest. The hexagonal connection makes it possible to block the 
rotation and repositioning of the attachment. By means of the fixation screw, its complete 
immobilization is achieved. They end at a maximum diameter of 4.1 mm of the shoulder 
of the implant platform. 

The ESSENTIAL® cone implant (E) system has an internal double-loop connection. 
Its design at a cervical level is expected for placements following the semi-submerged 
technique, generating an optimal biological seal that prevents bone resorption caused by 
bacterial filtration through the connection gap. 

The VEGA® implant (V) is an internal connection implant that requires working with 
the implants at a bone level. The hexagonal polygon at the bottom of the cone facilitates 
the clinical handling and the correct positioning of the prosthetic components, minimizing 
rotational movements between the implant and prosthetic components. 

2.2. Torque Tests 
Sixty implants of each type were used. These were placed in a metallic support with 
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implants of each type were used for each type of loading. Therefore, a total of one hundred 
eighty dental implants were used. 

Figure 1. Implants studied: (a) SK2 dental implant (S); (b) KL dental implant (K); (c) ESSENTIAL®

dental implant (E); (d) VEGA® dental implant (V).

KL implant (K) is a threaded, external connection implant with a slightly ogival shape
and two sections at the tip to facilitate the surgical insertion. The implant presents as a
connection a hexagon of 0.7 mm in height that allows the connection gap to be elevated
with respect to the osseous crest. The hexagonal connection makes it possible to block the
rotation and repositioning of the attachment. By means of the fixation screw, its complete
immobilization is achieved. They end at a maximum diameter of 4.1 mm of the shoulder of
the implant platform.

The ESSENTIAL® cone implant (E) system has an internal double-loop connection.
Its design at a cervical level is expected for placements following the semi-submerged
technique, generating an optimal biological seal that prevents bone resorption caused by
bacterial filtration through the connection gap.

The VEGA® implant (V) is an internal connection implant that requires working with
the implants at a bone level. The hexagonal polygon at the bottom of the cone facilitates
the clinical handling and the correct positioning of the prosthetic components, minimizing
rotational movements between the implant and prosthetic components.

2.2. Torque Tests

Sixty implants of each type were used. These were placed in a metallic support with
the most coronal portion 2 mm outside the device, as shown in Figure 2. Fifteen dental
implants of each type were used for each type of loading. Therefore, a total of one hundred
eighty dental implants were used.

The abutment screws were made of Ti6Al4V. They were the same for all dental implants
and the same screw was always used for each implant. As a consequence, one hundred
eighty screws were used. No screw breakage occurred in the various tests due to the high
mechanical strength of the titanium alloy used.
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Figure 3. Fixation of the implant to cyclic load tests. 

Figure 2. Prosthetic screwdriver with torque calibration system for screw fixation.

The torque loss of the connection screw was determined in three cases:

• A single tightening torque was applied to the screw to connect the abutment and
implant at 30 N.cm. It was untightened by calculating the new torque.

• Multiple loads with the same tightening torque were applied. The tightening and
untightening operation was performed 10 times, leaving 15 s between tightening
and untightening.

• Cyclic loading, in which 1000 screw tightening and untightening operations were performed.

For the connection of the abutment to the implant, a cordless prosthetic screwdriver
with a torque calibration system for screw fixation for NSK® brand prosthetic procedures
was used. The model used was iSD900® (Tokyo, Japan). The measurements of the torque
forces for screwing and unscrewing were determined with a high-precision Centor Touch
Star TH® torque tester (Andilog Technologies, Vitrolles, France). The sensitivity of the
equipment was 0.015 N.m.

The cyclic load tests were performed using a Bionix servo-hydraulic testing machine,
which was programmed to perform 1000 load cycles of 50 kg with an actuator speed of
about 0.16 mm/s. The test frequency was 1.25 Hz. Figure 3 shows the performance of the
cyclic load test.
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2.3. Bone Quality

Fresh bovine rib was used, and the dental implants were inserted according to the
indications of the commercial company. The bone type was determined by a scanning
electron microscopy observation of the cortical and cancellous bone tissue zone obtaining
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class 2. The confirmation of this classification was performed by means of a Matzsusawa
microhardness tester (Tokyo, Japan), which realized 15 microindentations in the cortical
place of the bovine bone by applying 500 gf for 15 s with a Vickers indenter. The values
obtained were 205 ± 19 MPa, which was classified as type 2 bone density [38].

2.4. Implant Stability Coefficient and Micromobility

Once the change in the insertion torques with the cycles were studied, the study of
micromovements was carried out by applying a gradual tension to the dental implant.
For this purpose, 60 implants of each of the 4 dental implant systems (2 with an external
connection (S and K) and two with an internal connection (E and V)) were used. Incremental
loads were applied from 20 to 200 N at an approximate angle of 30◦ direct to the implant-
screwed provisional abutments (Figure 4).
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Figure 4. Fresh bovine bone (class 2) and loading process for each dental implant systems.

The insertion torque was measured with an analog-calibrated dynamometer (BTG90CN-
Tohnichi, Tokyo, Japan). The RFA was measured using a Penguin RFA (Integration Diag-
nostics Sweden AB, Göteborg, Sweden). This is a device used to measure implant stability
by means of a resonance frequency analysis (RFA). A small magnetic measuring pencil, a
MulTipegTM, was used, which was screwed onto the implant or attachment and vibrated
without contact. The measured value was represented as the implant stability coefficient
(ISQ) and provided information about the appropriate restoration for the implant.

An electromechanical testing machine was used to apply the loads (Autograph AG-1
5 Kn Shimadzu, Tokyo, Japan). The images were taken at each 20 N load step by means of
high-resolution Q-star systems, which had a sensitivity of 1 µm in the displacements. The
quantification of the resulting micromotion was carried out by a high-resolution digital
image correlation (DIC–VIC 3D Correlated Solutions). Figure 5 shows the test configuration.
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Figure 5. Configuration of the experiment in an electromechanical test machine that applied loads
from 20 N to 200 N and the two high-resolution cameras that determined the micromovements.
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2.5. Statistical Analysis

The data were reported by using the means, standard deviations (SDs), ranges,
95% confidence intervals (CIs) and medians (SPSS, SPSS Inc., Chicago, IL, USA). A paired
two-sample t-test was performed. The results were considered to be significant at p < 0.001.

3. Results

Figure 6 shows the differences in the initial torque when performing a loading and
unloading cycle. Figure 7 shows one corresponding with multiple cycling and Figure 8
shows one corresponding with cyclic cycling, which corresponded with 1000 cycles.
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Figure 7. Torque differences for multiple cycles of tightening and untightening torque for each dental
implant system.

Once the dental implants were placed with their abutments, the RFA measurements
were taken, obtaining mean ISQ values of 66 and 68 for the K and S dental implants,
respectively. No statistically significant differences were observed in the values between
the externally connected dental implants. However, the RFA values for the dental implants
with an internal connection were 76 and 74 for the E and V implants, respectively. Among
the dental implants with an internal connection, there were no statistically significant
differences using, as in the previous case, values of p < 0.001. Statistically significant
differences were observed between the two types of internal and external connection, with
significantly higher values for the internal connection.
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Figure 8. Torque differences for the cyclic test of tightening and untightening torque for each dental
implant system.

The values of the micromotion for each of the dental implants were obtained when a
progressive load of 20 N was applied. It was observed that in all the systems, it increased
in a linear way with the applied load and the micromotions were smaller when the ISQ
was higher. The results for the K implants are shown in Figure 9, for the S implants in
Figure 10, for the E implants in Figure 11, the results for the V bone level implants are
shown in Figure 12.
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Figure 9. Micromovements in micrometers associated with the load in N for the K implants.

The equations that related the micromotions to the applied force fitted the lines with
correlation coefficients greater than 0.9 for each type of dental implant, as can be seen in
Table 1.
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Table 1. Equations relating the micromovements (M) to the applied load (F) and their correlation
coefficient.

Dental Implant Equation Correlation Coefficient

K M = −79.8 + 9.850 F 0.9887

S M = −146.2 + 9.708 F 0.9901

E M = −160.1 + 7.615 F 0.9916

V M = −153.7 + 8.239 F 0.9961

4. Discussion

The first two types of insertion torque tests are common in clinics and, therefore, the
results have an important clinical significance. In the case of 1000 cycles, it simulated
the process of cyclic loads to which the connection screw between the implant and the
abutment is subjected, which occasionally generates the loosening of the screw and even the
fracture of the same. In the latter case, it simulated the fatigue processes to which the screw
is subjected. From the results of the differences in the tightening and untightening torque
of the dental implants, in the single and multiple cycling, the torque difference values
between the four dental implant systems did not show statistically significant differences,
with a value of p < 0.001. However, when we studied the cyclic behavior, with the implants
subjected to 1000 cycles of tightening and loosening, the dental implants with an external
connection had higher torque difference values to those corresponding with an internal
connection. These differences were statistically significant, with a value of p < 0.001. There
were also statistically significant differences between the V implants at the bone crest
level and the E implants. This may have been because the V implants had a more severe
sandblasting treatment on the entire dental implant, including the implant neck, which
presented a greater surface energy of a compressive nature. This increase in the rough
surface would produce an increase in fixation due to the frictional forces generated by the
bone on the implant, making its movement more difficult. This fact has been studied by
different authors [39,40], who determined that the level of the compressive state on the
surface could exceed compressive residual stresses of more than 100 N, causing a closing
stress that could justify these differences in the dental implant at the osseous level [40–42].

We did not observe settlement or friction. The screws made of Ti6Al4V had a greater
hardness; thus, when unscrewed, they came out easily. Large deformations occur in
commercially pure titanium and gold screws, which a few companies use to increase
deformation and grip [43,44].

The values of the micromovement increased as the mechanical load increased in the
studies carried out up to the application of a load of 200 N at an angle of 30◦. As is
well-known, mechanical loads cause small deformations in the implant and the implant
transfers the load to the surrounding tissue, causing micromovements. It can be seen from
the graphs in Figures 9–12 that, in all cases, the micromotion produced linearly depended
on the applied load. This linear relationship occurred for all types of implants, whether
they had internal or external connections, with a correlation coefficient greater than 0.9
(Figure 13).

The slope of the straight line was higher in the straight lines of the externally connected
dental implants, indicating that these dental implants had a higher sensitivity to the load
application. For the same load, the external connection implants presented a greater
amount of micromovement and this grew faster. These aspects should be considered
by clinicians for the type of patients in whom the dental implants should be placed. In
principle, for patients with bruxism or with a high application of mechanical stresses to
the dental implant, it is better to place dental implants with an internal connection than an
external connection.
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Figure 13. Relationship between the slope of the linear equation (micromovement-applied load)
versus ISQ.

A variable that was clearly affected was that as the ISQ values increased, the mi-
cromovements became smaller for the load levels studied. The slope of the straight line
between the micromovement and applied force indicated the ease of the provoking mi-
cromovement when we applied a force. If we represented these slopes with respect to the
ISQ values (Figure 13), we obtained a linear decreasing relationship. The higher the ISQ,
the more the micromotion was impeded. With these equations, we could determine the
micromotion that could occur for a given level of ISQ and a given type of implant for a
given load level. The clinician’s knowledge of these relationships will be useful for the
clinical evaluation and the convenience of placing a type of implant.

The results of our research agreed with those obtained by Bergamo et al. [11], who
observed a relationship between the insertion torque and ISQ. Osseodensification improves
the implant stability, irrespective of the arch and area operated on as well as the implant
design and dimension, with exceptions for short implants and the connection type.

The study by Farronato et al. [26] about the influence of the RFA and applied loads
complement our studies because they determined that the implant diameter was not
associated with the RFA or insertion torque. These results suggest that the implant can
achieve a good level of primary stability in terms of the insertion torque and the RFA. In
addition, a strong correlation was found between the values of the insertion torque and
the RFA. From the results of this work, we confirmed that this relationship was lineal.
Similarly, Falco et al. [28] demonstrated that an implant abutment connection plays an
important role in the degree of primary implant stability with the bone quality. Each
implant geometry generated an insertion torque value, which was correlated to the stability
of that specific implant in a specific bone quality. They explained that the insertion torque
was not an objective value to compare the primary stability between different implant
types. The results of Stacchi et al. [10] are also interesting; they confirmed that no significant
differences in either the primary or secondary stability or the implant survival rate after
1 year of loading were demonstrated between implants inserted into sites prepared with
osseodensification drills and a piezoelectric implant site preparation.

A limitation of this work was that we only performed the tests with a class 2 bone type
and with a dental implant system that presented a certain design for internal and external
connections. However, the different dental implants had similar designs and, in principle,
should not have varied significantly in micromovement with respect to the applied loads.
Another limitation of this study was that the dental implants were made of commercially
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pure titanium and, although these are the most common in the market, there are also other
implants made of Ti6Al4V, Ti 13Zr or zirconia that may vary the results of this work [45,46].

In addition, the implant design must be taken into consideration when placed in a
lower density bone and an insertion torque applied. It is very important to follow the
recommendations of the manufacturer. The insertion torque must be considered as an
important factor and a loss of torque with possible tightening and untightening cycles must
be considered. A high torque value is important to achieve a good fixation and this load can
be transferred to the tissue. However, excessive torque can cause plastic deformations in
dental implants, especially in grade 1 and 2 titanium implants, which have a lower elastic
limit. Cases of fractured dental implants have even been observed due to an excessive
mechanical load applied in the torque.

With this study, we aimed to contribute to a better understanding of the variables for
the fixation of dental implants and to improve their stability. There are many limitations to
the study such as the difference in implant designs and the type of screws and in vivo tests
could not be performed. Therefore, it is important to continue working on the variables
that affect stability to improve the manufacture of dental implants and to provide clinicians
with criteria to improve the long-term behavior of dental implants.

5. Conclusions

A decrease in the tightening of an abutment implant connection at a few cycles
was observed. No differences were observed between external and internal connection
implants. When 1000 cycles were reached, the decrease was around 20% with a greater loss
for the external connection. The micromovements of the dental implant presented a linear
relationship with the level of applied load, with a higher slope for the external connection
than the internal ones. The ISQ values were higher for the internally connected implants
and a linear relationship between the ISQ values and the increase in micromotion with the
application of a mechanical load was demonstrated.
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