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Universidade de Coimbra
Preprint Number 04–40

MATRIX REALIZATIONS OF PAIRS OF YOUNG
TABLEAUX, KEYS AND SHUFFLES

OLGA AZENHAS AND RICARDO MAMEDE

Abstract: Let σ ∈ St and Hσ an associated key [6, 7, 12]. Given the pair of
Young tableaux (T ,Hσ), where T is a skew-tableau with the same evaluation as
Hσ, we consider the problem of a matrix realization of the pair (T ,Hσ), over a local
principal ideal domain [2, 3, 4]. It has been shown that, when σ is the identity [2],
the reverse permutation in St [4], or any permutation in S3 [3], (T ,Hσ) has a matrix
realization if and only if the word of T is in the plactic class of Hσ. Here, we extend
the only if condition of this result to any σ ∈ St, t ≥ 1. For a sequence of nonnegative
integers (m1, . . . , mt) and 1 ≤ i ≤ t, this amounts to give a criterion which extends
a word congruent with the key of evaluation (m1, . . . ,mi−1,mi+1 . . . ,mt), to one
congruent with the key of evaluation (m1, . . . , mt).

For the identity, the reverse permutation in St, or an arbitrary permutation in
S3, the plactic class of an associated key may be described as shuffles of their rows
[3]. For t ≥ 4, this is no longer true for an arbitrary permutation σ ∈ St. Instead,
we find that shuffling together the rows of a key always leads to a congruent word.
The permutations σ ∈ St whose plactic classes of associated keys are described by
shuffling together their rows, are identified. For σ ∈ S4, we show that we may
describe the plactic class of any associated key, in terms of shuffling, by adding, in
those cases where the rows of the key are not enough, just one single word.

1. Introduction
Given σ ∈ St, let Hσ be an associated key [6, 7, 11, 12]. That is, a (strictly

row) tableau with rows pairwise comparable for the inclusion order, by taking
a sequence of left reordered factors of σ, considered as a word, by decreasing
order of lengths. Given the pair of Young tableaux (strictly row) (T ,Hσ),
where T is a skew-tableau with same evaluation as Hσ, we consider the
problem of a matrix realization, over a local principal ideal domain, for the
pair (T ,Hσ) [Section 5, Definition 5.1].

When σ is the identity [1, 2], the reverse permutation in St [4], or any
permutation in S3 [3], it has been shown that (T ,Hσ) has a matrix realization
if and only if the word of T is in the plactic class of Hσ. In the first two
cases, this means that T is a Littlewood-Richardson and a dual Littlewood-
Richardson skew-tableau, respectively. For these permutations, the elements
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of the plactic class of Hσ are shuffles of the rows of Hσ and this property has
been used to exhibit a matrix realization (T ,Hσ).

Here, in Theorem 5.3, we show that, for any σ ∈ St, t ≥ 1, (T ,Hσ) has a
matrix realization only if the word of T is in the plactic class of Hσ. This
amounts to give, in Theorem 3.10, a recursive criterion, which extends a
word congruent with the key of evaluation (m1, . . . , mi−1,mi+1, . . . , mt), to
one congruent with the key of evaluation (m1, . . . , mi−1,mi, mi+1, . . . , mt).
Moreover, our matrix problem verifies that criterion.

Due to the embedding of the symmetric group in the set of tableaux, orig-
inally defined Ehresmann in [6], the symmetric group acts on set of keys Hσ,
σ ∈ St, in the obvious way. This action coincides with that one defined by
operations on words described by A. Lascoux and M. P. Schutzenberger in
the plactic monoid [10, 13]. On the other hand, these operations involve
a special parentheses matching on words of a two-letters alphabet. In [3],
we have generalized these operations considering more general parentheses
matchings [Section 3]. Corollary 3.11 presents a recursive characterization of
those which are compatible with the plactic classes of Hσ, σ ∈ St. Again our
matrix problem verifies those generalized operations and their action on the
plactic classes of Hσ, σ ∈ St.

Two rows commute (in the plactic sense) if and only if they are comparable
for the inclusion order. In fact, when t = 2, 3, the words of the plactic class
of Hσ are shuffles of their rows [3]. For t ≥ 4, this property does not remain
true, in general. Nevertheless, it is shown, in Theorem 4.1, that shuffling
together the rows of Hσ always leads to a word in the plactic class of Hσ. We
characterize the permutations σ ∈ St, t ≥ 1, for which the plactic class of
Hσ may be described in terms of shuffling together their rows. The identity
and the reverse permutations in St, t ≥ 1, are simple examples of such
permutations. Finally, for σ ∈ S4, we show that we may describe the plactic
class of any associated key, in terms of shuffling, by adding, in those cases
where the rows of the key are not enough, one single word 434121.

The paper is organized as follows. In the next section we collect some
notation and background necessary in the sequel. The relationship between
shuffling and Knuth operations on words is discussed. The following question
is addressed: if the rows u1, . . . , uk are pairwise comparable for the inclusion
order, under what conditions Sh(u1, . . . , uk) is the plactic class of u1 . . . uk?
Some preliminary results are given.
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In Section 3, the set of keys, that is, the tableaux with pairwise comparable
rows for the inclusion order, is considered. In fact, they are introduced as
the image of the embedding of the symmetric group in the set of tableaux,
originally defined by Erhesmann [6]. σ- Yamanouchi words are introduced
as words congruent with a key of the permutation σ, and their relationship
with the action of the symmetric group, defined by the operations on words
described by A. Lascoux and M. P. Schutzenberger in the plactic monoid
[10, 13], is shown. A recursive criterion to characterize σ- Yamanouchi words
is presented to answer the question: given I = [t] \ {i}, with i ∈ [t], and u ∈
I∗ congruent with the tableau of evaluation (m1, . . . , mi−1,mi+1, . . . , mt) and

shape
∑i−1

j=1(1
mj)+

∑t
j=i+1(1

mj), under what conditions can u be a subword of
a word w ∈ [t]∗ congruent with the tableau of evaluation (m1, . . . , mi−1, mi,
mi+1, . . . , mt) and shape

∑t
j=1(1

mj)? Considering more general parentheses
matchings in the operations on words, defined by A. Lascoux and M. P.
Schutzenberger, that criterion also characterizes those which are compatible
with the plactic classes of Hσ, σ ∈ St.

In Section 4, the answer to question addressed in Section 2 is given. In the
case of S4, a full description of the plactic classes of the associated keys, in
terms of shuffling, is shown. In Section 5, the matrix problem is considered,
and the answer, using the recursive criterion for σ-Yamanouchi words, given
in Section 3, is presented. Finally, in Appendix, the permutations in S5 and
S6 giving a positive answer to question addressed in Section 2, are listed.

2. Words, shuffles and plactic congruence
2.1. Words and tableaux. Let N be the set of nonnegative integers with
the usual order ” ≤ ”. Given i ≤ j ∈ N, [i, j] is an interval in N with the
usual order. If t ∈ N, [t] denotes the set {1, . . . , t}.

Let t be an element of N. We denote by [t]∗ the free monoid in the alphabet
[t]. That is, the collection of all finite words over the alphabet [t], with the
concatenation operation. The neutral element is the empty word denoted by
λ.

Given w = x1 · · · xk over the alphabet [t], we denote by |w|j the multiplicity
of the letter j ∈ [t] in the word w. The sequence (|w|1, . . . , |w|t) is called
the evaluation of w. Here k is the length of w, denoted by |w|. We have
|w| = |w|1 + · · · + |w|t and the length of λ is zero. Let I be a subset of [t].
We denote by w|I the word xi1 · · · xik, if I = {i1 < i2 < · · · < ik}. Such a
word w|I is called a subword of w.
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Let q words u1, . . . , uq ∈ [t]∗ of lengths k1, . . . , kq respectively. Put k = k1+
· · ·+kq and let [k] = ∪q

j=1Ij, where (I1, . . . , Iq) is a q-tuple of pairwise disjoint
subsets of [k] with |Ij| = kj, j = 1, . . . , q. Then the word w|(I1, . . . , Iq) is
defined by w|Ij = uj, for j = 1, . . . , q [16].

If the letters in w are by strictly decreasing order, that is, xi > xi+1, 1 ≤
i ≤ k, w is called a row in [t]∗. The underlying set of a row defines a bijection
w → {w} = {x1, . . . , xk} between the set of rows in [t]∗ and the family 2[t]

of subsets of [t] [12]. Two rows w = x1 · · · xk and v = y1 · · · ys are said
comparable with respect to the inclusion order if the sets {w} = {x1, . . . , xk}
and {v} = {y1, . . . , ys} are comparable with respect to the inclusion order.
That is either v is a subrow of w or vice-versa.

We define another order B on rows by putting wBv if k ≥ s and xk−i ≤ ys−i,
0 ≤ i ≤ s − 1. That is, there is a decreasing injection of {v} into {w}. For
example, 5321 B 41 B 2 B 4.

A standard or permutation word is a word without repeated letters.
Given B a subalphabet of [t], w|B (not to be confused with w|B) denotes

the word obtained by erasing the letters not in B.
A partition is a sequence of nonnegative integers a = (a1, a2, . . .), all but

a finite number of which are non zero, such that a1 ≥ a2 ≥ · · · The number
|a| :=

∑
i ai is called the weight of a and the maximum value of i for which

ai > 0 is called the length of a. The null partition a = (0, 0, . . .) is the
partition of length zero. If l(a) = k, we shall often write a = (a1, . . . , ak).
Sometimes it is convenient to use the notation

a = (am1

1 , am2

2 , ..., amk

k ),

where a1 > a2 > ... > ak and ami

i , with mi ≥ 0, means that ai appears mi

times as a part of a.
Suppose a = (a1, . . . , ak) is a partition of weight n. The Young diagram of

a is an array of n boxes having k left-justified rows with row i containing ai

boxes for 1 ≤ i ≤ k. We shall identify a partition with its Young diagram.
For example, the Young diagram of a = (4, 2, 2, 1) is:

...............................................................................................................................................

...............................................................................................................................................

...........................................................................................................

....................................

....................................

...............................................................................................................................................

...............................................................................................................................................

........................................................................

........................................................................

.................................... .
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Given two partitions a and c, we write a ⊆ c to mean ai ≤ ci, for all
i. Graphically, this means that the Young diagram of a is contained in
the Young diagram of c. A skew diagram c/a is the diagram obtained by
removing the smaller diagram of a from the diagram of c. For example, if
a = (4, 2, 2, 1) and c = (5, 4, 4, 3, 2), the following shows the skew diagram
c/a:

....................................

....................................

........................................................................

...............................................................................................................................................

...........................................................................................................

...........................................................................................................

....................................

...........................................................................................................

........................................................................

...........................................................................................................

...........................................................................................................

........................................................................

• • • •
• •
• •
•

.
We write |c/a| := |c|− |a|. A skew-diagram is called a vertical m-strip, where
m > 0, if it has m boxes and at most one box in each row.

For convenience we shall consider strictly row tableaux. This will be clear
in the last section.

Let a and c be partitions such that a ⊆ c, and (m1, ..., mt) a sequence
of nonnegative integers. A Young tableau (strictly row) T of evaluation
(m1, ..., mt) and shape c/a is a sequence of partitions [14]

T = (a0, a1, ..., at) (1)

where a = a0 ⊆ a1 ⊆ ... ⊆ at = c, such that for each k = 1, ..., t, the skew-
diagram ak/ak−1 is a vertical strip labelled by k, with mk = |ak/ak−1|. When
a0 6= 0, T is often called a skew tableau. For example,

....................................

....................................

........................................................................

...............................................................................................................................................

...........................................................................................................

...........................................................................................................

....................................

...........................................................................................................

........................................................................

...........................................................................................................

...........................................................................................................

........................................................................

2
1 3
1 3

1 2
1 2

• • • •
• •
• •
•

(2)

is a (skew) tableau of evaluation (4, 3, 2), and shape (5, 4, 4, 3, 2)/ (4, 2, 2, 1).
The word w(T ) of the (skew) tableau T (1) is the word in [t]∗ obtained

by listing the labels from right to left in each row, starting in the top and
moving to bottom. The evaluation of w(T ) equals the evaluation of T . In
example (2), we have w(T ) = 2 31 31 21 21.

When a = 0, the Young tableau T is the planar representation of the word
w(T ) = w1 . . . wk, where wi are rows satisfying w1 B . . . B wk. Such a word
is called a tableau, and is identified with its planar representation. Note that
the shape of T is (|w1|, . . . , |wk|). For example, the planar representation of
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the word 5421 521 2 is
1 2 4 5
1 2 5
2

.

(For simplicity, we have dropped the boxes’ frame of the labelled diagram.)
Given the tableau T , (1), let(

π1 · · · πk

u1 · · · uk

)
, (3)

be the biword where the bottom word is w(T ) = u1 · · ·uk, and the top word
π1π2 · · · πk is such that π1 ≤ π2 ≤ · · · ≤ πk with πj the row indices of the
box in c/a labelled with uj, 1 ≤ j ≤ k. Let Ji be the set of the row indices
of the boxes in c/a labelled with i, 1 ≤ i ≤ t. Then, by sorting the biletters(

πj

uj

)
in (3), we obtain the biword

(
J1 J2 · · · Jt

1m1 2m2 · · · tmt

)
, (4)

where

(
Ji

imi

)
means the biword with bottom word imi and top word a

standard word yi
1 . . . yi

mi
such that Ji = {yi

1, . . . , y
i
mi
}.

Identifying the biwords with the same billeters, a tableau determines a
unique biword. For example, the biword of the tableau (2) is(

1 2 2 3 3 4 4 5 5
2 3 1 3 1 2 1 2 1

)
=

(
2 3 4 5 1 4 5 2 3
1 1 1 1 2 2 2 3 3

)
.

2.2. Shuffles and plactic congruence. Now suppose u, v are words in
[t]∗ of lengths r and s, respectively. Take any set P ⊆ N with the following
properties

P ⊆ [r + s], |P | = r. (5)

Let P ′ = [r + s] \ P the complement of P in [r + s] [8, 16].

Definition 2.1. Let P satisfying (5). The word w|(P, P ′) defined by w|P = u
and w|P ′ = v, is called a shuffle of u and v, denoted by shP (u, v).

Clearly, shP (u, v) = shP ′(v, u).
For example, if u = x1x2, v = y1y2y3 ∈ [t]∗, we may take for P any 2-

element subset of [5], say P = {2, 5}. Then, shP (u, v) is the word of length
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5, having x1, x2 in places 2, 5 respectively, and y1, y2, y3 in the remaining
places 1, 3, 4. Thus,

shP (u, v) = y1x1y2y3x2 = shP ′(v, u).

If P = ∅, then u = λ and sh∅(u, v) = v. The order of the letters in u is
preserved in each shuffle shP (u, v), and similarly for v. Note that distinct
sets, say P and Q, may give the same shuffle shP (u, v) = shQ(u, v). For
example, if u = xx and v = xxx for some element x ∈ [t], then all the 10
shuffles of u and v are equal to xxxxx [8].

There are (r+s
r ) sets P which satisfy (5), and each of these gives a shuffle

shP (u, v) of u and v. For example, if u = 1 2 and v = 1 3 there are 6 sets P .
These sets give rise to all shuffles of u and v, namely {1213; 1123; 1132; 1312},
where the words 1123 1132 have multiplicity 2.

We define Sh(u, v) = {shP (u, v) : P ⊆ [r + s], |P | = r}. When there is
no danger of confusion, we drop the P in the notation shP (u, v) and write
sh(u, v). We have the following properties:

Sh(u, v) = Sh(v, u), (6)

Sh(u|[t−1], v|[t−1]) = Sh(u, v) ∩ [t− 1]∗. (7)

Given q words u1, . . . , uq ∈ [t]∗ of lengths k1, · · · , kq respectively, put k =
k1 + · · · + kq. We define the set of all words obtained by shuffling together
these q words

Sh(u1, . . . , uq) =

= {w|(I1, · · · , Iq) : ∪q
j=1Ij = [k], |Ij| = kj, w|Ij = uj, 1 ≤ j ≤ q},

where the q-tuple (I1, · · · , Iq) is pairwise disjoint. When q = 2, this is con-
cordant with definition 2.1. In particular, Sh(u1) = {u1}.

The elements of Sh(u1, . . . , uq) are denoted by sh(u1, . . . , uq). The evalu-
ation of a word in Sh(u1, . . . , uq) is the sum of the evaluations of u1, . . . , uq

respectively.
Given a finite set A = {u1, . . . , uq}, q ≥ 0, over the alphabet [t], we define

Sh(A) = Sh(u1, . . . , uq), with Sh(∅) = ∅, if q = 0. If C is another finite set,
we have

Sh(A ∪ C) = Sh(Sh(A), Sh(C)).

Knuth’s congruence ≡ [9] on words over the alphabet [t] is the congruence
generated by the so-called elementary transformations, where x, y, z are
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letters and u, v are words in [t]:

uxzxv ≡ uzxxv, uzzxv ≡ uzxzv, x < z, (8)

uxzyv ≡ uzxyv, x < y < z, (9)

uyzxv ≡ uyxzv, x < y < z. (10)

These relations (8),(9),(10), also called plactic, are the algebraic version of
the plactic congruence [7, 9, 13].

C. Schensted [7, 17] has described an algorithm, known as Schensted’s
insertion algorithm, which associates to each word w a tableau P (w). The
elementary step, in our version, consists in the insertion of a letter x into a
strictly row tableau T , denoted P (x.T ). It takes a positive integer x and a
tableau T and puts x in a new box at the end of the first row if possible, that
is, if x is strictly larger than all the entries of the row. If not, it bumps the
smallest entry of that row that is larger or equal to x. This bumped entry
moves to the next row, going to the end if possible, and bumping an element
to the next row, otherwise. The process continues until the bumped entry
can go at the end of the next row, or until it becomes the only entry of a
new row. Here is an example of the insertion of 3 in a tableau:

3 →
1 2 4 5
1 2 5
2

4 →
1 2 3 5
1 2 5
2

5 →
1 2 3 5
1 2 4
2

1 2 3 5
1 2 4
2 5

.

For an arbitrary word w = x1 · · · xk in [t], one defines P (w) as the result
of inserting xk−1 into the unitary tableau xk = P (xk), then inserting xk−2
into the resulting tableau P (xk−1.P (xk)), and so on. As an example of the
general case, the successive steps of the calculation of P (434231) are:

1 → 1 3 → 1 2
3

→ 1 2 4
3

→ 1 2 3
3 4

→ 1 2 3 4
3 4

. (11)

Two words w,w′ are plactic equivalent if and only if P (w) = P (w′) [7, 9,
13]. For example, the word 434231 and the tableau 4321 43 in (11) are plactic
equivalent. The set of all tableaux is a section of the plactic congruence. This
means that every word can be obtained by a finite sequence of elementary
Knuth transformations on a tableau.

Let u1, . . . , uk in [t]∗ be rows by decreasing order of length. If T = u1 . . . uk

is a tableau, then T is the unique tableau of Sh(u1, . . . , uk) only if the rows
of the tableau T are pairwise comparable for the inclusion order. That is
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{uk} ⊆ · · · ⊆ {u1}. Note, for instance, that Sh(41, 3) = {3 41, 41 3, 431} has
two tableaux 41 3 and 431.

An elementary Knuth transformation (8), (9) or (10) on a shuffle of rows,
say u1, · · · , uk, involves at least two of these rows. If an elementary Knuth
transformation (9) or (10) involves three distinct letters x < y < z of
sh(u1, · · · , uk), each one belonging to a different row ui, then the output
word is still a shuffle of u1, . . . , uk.

Proposition 2.1. Let u1, . . . , uk, k ≥ 3, be rows in [t]∗, and x, y, z, u and
v as in (9), (10) such that each letter x, y and z appears in a distinct row.
Then

uxzyv ∈ Sh(u1, . . . , uk) ⇔ uzxyv ∈ Sh(u1, . . . , uk);

uyzxv ∈ Sh(u1, . . . , uk) ⇔ uyxzv ∈ Sh(u1, . . . , uk).

For instance, in the alphabet [5], consider the word 5 2 4 4 1 2 2 1 1 ∈
Sh(5421, 421, 21), where the underlined letters define the word 421, the over-
lined letters define the word 21, and the remaining letters define the word
5421. The application of the elementary Knuth transformation 4 1 2 ≡ 1 4 2
to 5 2 4 4 1 2 2 1 1 gives the word w = 5 2 4 1 4 2 2 1 1, which is still a shuffle
of 5421, 421 and 21.

If the Knuth transformation involves only two distinct letters of sh(u1 . . . ,
uq), it is also clear that the output word is still a shuffle of u1 . . . , uq.

Proposition 2.2. Let u1 . . . , uk, k ≥ 2, be rows in [t]∗, and x, z, u and v as
in (8). Then

uzxxv ∈ Sh(u1, . . . , uk) ⇔ uxzxv ∈ Sh(u1, . . . , uk);

uzzxv ∈ Sh(u1, . . . , uk) ⇔ uzxzv ∈ Sh(u1, . . . , uk).

Corollary 2.3. Let u1 . . . , uk, k ≥ 2, be rows in [2]∗, and w ∈ Sh(u1, . . . , uk)
of evaluation (p, q). Then

(a) P (w) ∈ Sh(u1, . . . , uk).
(b) Sh(u1, . . . , uk) is either
(i) the plactic class of P (w) = (21)q1p or P (w) = (21)p2q, if the rows ui

are pairwise comparable for the inclusion order, for i = 1, . . . , k;
(ii) or the union of the plactic classes of P (w) = (21)r1s2v, r + s = p,

r + v = q, and P (w) = (21)p+q, otherwise.

Let x < y < z ∈ [t]. The rows z y and y x, in the elementary Knuth
transformations x z y ≡ z x y (9), and y z x ≡ y x z (10), respectively,
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are not broken by these transformations and, therefore, the shuffle of z y
and x, and y x and z is preserved. The only row that is broken by these
Knuth transformations is zx which is transformed into xz. Consider again
the rows 41 and 3. We have Sh(41, 3) = {3 41, 41 3, 431} but 3 41 ≡ 31 4 /∈
Sh(41, 3) and 41 3 ≡ 143 /∈ Sh(3, 41). Therefore, considering, for example,
the tableau 4321 41, the Knuth transformation 341 ≡ 314 implies 434 121 =
sh(4321, 41) ≡ 431 421, but 431 421 can not be obtained by a shuffle of the
rows 4321 and 41.

Supposing that u1 B . . . B uk are pairwise comparable for the inclusion
order, we address the question: Under what conditions Sh(u1, . . . , uk) equals
the plactic class of the tableau T = u1 . . . uk?

Over a two or three letters alphabet we have equality [3]. This question
will be full answered in section 4.

3. Keys and σ-Yamanouchi words
3.1. Parentheses matchings and actions of the symmetric group on
words. Given a set I we let SI be the set of all bijections on I, and St := S[t]
the symmetric group of order t.

The symmetric group St, t ≥ 1, is generated by the simple transpositions
si = (i i + 1), i = 1, . . . , t− 1, which satisfy the Moore-Coxeter relations:

(I) s2
i = s0, (II) sisj = sjsi, if |i− j| 6= 1, and (III) sisi+1si = si+1sisi+1,

where s0 denotes the identity.
Let w be a word over the alphabet [t] and i, i + 1 ∈ [t]. An operation θi

on w [3] consists of (a) a longest matching on w|{i,i+1} between letters i + 1
and letters i to their right, by putting a left parenthesis on the left of each
letter i + 1, and a right parenthesis on the right of each letter i, such that
the unmatched right and left parentheses indicate a subword of the form
is(i + 1)r; (b) this subword will be replaced in w|{i,i+1} with ir(i + 1)s.

We convention θ0 to be the identity operator.
Let w = 31314221412 be a word over the alphabet [4]. For example,

inserting parentheses on the right of the letters 1 and on the left of the 2 of
the word w|{1,2} = 1122211, we get w|{1,2} = 1)1)(2(2(21)1). We may match
the two left most letters 2 with the letters 1 to their right. The unmatched
letters indicates the subword w′ = 112 = 1221. Thus, θ1(w|{1,2}) = 1222211,
where the underlined word is the subword w′ replaced with 1122. Finally,
θ1(w) = 3 1 3 2 4 2 24 1 1.
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A. Lascoux and M. P. Schutzenberger [10, 13] have introduced the following
involutions θ∗i , for i = 1, . . . , t − 1, on words over the alphabet [t], a special
case of operations θi. Let w be a word over the alphabet [t]. To compute
θ∗i (w), first extract from w the subword v containing the letters i and i + 1
only. Second, bracket every factor i + 1 i of v. The letters which are not
bracketed constitute a subword v1 of v. Then bracket every factor i + 1 i of
v1. There remains a subword v2. Continue this procedure until it stops, giving
a word vk of type ir (i + 1)s. Then, replace it with the word is (i + 1)r and,
after this, recover all the removed letters of w, including the ones different
from i and i + 1. Moreover, the operations θ∗i , 1 ≤ i ≤ t − 1, satisfy the
Moore-Coxeter relations [10, 13] and define an action of St over [t]∗.

Let w = 31314221412 as above. To compute θ∗1(w), we get v = 112(21)12,
v1 = 11(21)2 and v2 = 112 = 1221. Thus,

θ∗1(w) = 3 1 3 2 4 2 2 1 4 1 2,

where the underlined word is the subword v2 replaced with 1122. To compute
θ∗2(w), we get v = (3(32)2)2) and v1 = 2 = 2130. Thus,

θ∗2(w) = 3 1 3 1 4 2 2 1 4 1 3,

where the underlined word is the subword v1 replaced with 2031. Clearly,
θ∗3(w) = w, since in this case v = 3344 = 3242.

The operations θ∗i , 1 ≤ i ≤ t − 1, are compatible with the plactic equiva-
lence.

Proposition 3.1. [10, 13] Let w, w′ be words in [t]∗, and let i ∈ [t]. Then,
w ≡ w′ if and only if θ∗i w ≡ θ∗i w

′. In particular, P (θ∗i (w)) = θ∗i (P (w)).

3.2. Keys and σ-Yamanouchi words. By definition, a key is a tableau
such that its rows are pairwise comparable for the inclusion order [12]. For
instance, 65431 641 41 is a key.

Let (lt, . . . , l2, l1) be a sequence of nonnegative integers. Then, m = (l1 +
· · · + lt, . . . , lt−1 + lt, lt) is a partition and (tlt, . . . , 2l2, 1l1) its conjugate. For
instance, (1, 1, . . . , 1) defines the self-conjugate partition (t, t− 1, . . . , 1).

Let σ ∈ St written as a word a1 · · · at in [t]∗. For k = 1, . . . , t, denote by rσ,k

the row with underlying set {a1, . . . , ak}. In particular, when σ = 12 · · · t,
we get rk = k . . . 21. Clearly, {rt} ⊇ {rσ,t−1} ⊇ . . . ⊇ {rσ,1}.

Denote by Rl
σ,k the set of all shuffles of l rows rσ,k, for σ ∈ St, k ∈ [t], and

l ≥ 1. When l = 1, R1
σ,k = {rσ,k}, and when σ = 12 · · · t, we simply write Rl

k.
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Definition 3.1. Key of a permutation [12]. To each pair consisting of a per-
mutation σ ∈ St and a sequence of nonnegative integers (lt, . . . , l1), Ehres-
mann [6] associated a key of shape (tlt . . . , 2l2, 1l1), here noted by Hσ(lt,...,l1),

by taking the sequence (rt)
lt, (rσ,t−1)

lt−1, . . . , (rσ,1)
l1 of left reordered factors

of σ. That is,

Hσ(lt,...,l1) := (rt)
lt (rσ,t−1)

lt−1 · · · (rσ,1)
l1,

is the key of σ of shape (tlt . . . , 2l2, 1l1). In particular,

H(lt,...,l1) = (t · · · 21)lt · · · (21)l2(1)l1.

For i = 1, . . . , t, the letter ai appears only in the rows rt, . . . , rσ,i. Hence,

the multiplicity of ai in Hσ(lt,...,l1) = (rt)
lt (rσ,t−1)

lt−1 . . . (rσ,1)
l1 is

∑t
k=i lk, for

i = 1, . . . , t. We put σm = (m1, . . . , mt), where mi =
∑t

k=σ−1(i) lk, i =
1, . . . , t.

Hence Hσ(lt,...,l1) := (rt)
lt (rσ,t−1)

lt−1 . . . (rσ,1)
l1 is also the key of σ with evalu-

ation (
∑t

k=σ−1(1) lk, . . . ,
∑t

k=σ−1(t−1) lk,
∑t

k=σ−1(t) lk); equivalently, the unique

tableau of evaluation σm and shape
∑t

i=1(1
mi).

Note that Hσ(ljej) = (rσ,j)
lj , and Hσ(lt,...,l1) = (Hσ(ltet))

lt . . . (Hσ(l1e1))
l1, with

ej = (δi,j), j = 1, . . . , t. Also notice that Hop(lt,...,l1), where op denotes the
reverse permutation, is congruent with the dual of H(lt,...,l1).

On the other hand, if T = qt B . . . B q2 B q1 is a key, with qt = t . . . 2 1 and
|qt−1| > . . . > |q1|, we get that row qk is such that {qk} = {qt}\{at, . . . , ak+1}
with {at, . . . , ak+1} ⊆ {1, . . . , t}, 1 ≤ k ≤ t − 1. Putting σ := a1 . . . at

this shows Hσ(1,...,1) = T . Therefore, given a sequence (lt, . . . , l1) of positive
integers,

σ −→ Hσ(lt,...,l2,l1) = (rt)
lt (rσ,t−1)

lt−1 . . . (rσ,1)
l1,

defines an embedding of St into the set of tableaux of shape (tlt, . . . , 2l2, 1l1).
For example, with σ = 3124 ∈ S4, we have r4 = 4321, rs2,3 = 321, rs2,2 = 31,

rs2,1 = 3, and
(a)

1 2 3 4
Hσ(1,1,1,1) = 1 2 3

1 3
3

.
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(b)

Hσ(1,1,2,0) = (4321)1(321)1(31)2(3)0 =

1 2 3 4
1 2 3
1 3
1 3

,

and with s2 = 1324, we have r4 = 4321, rs2,3 = 321, rs2,2 = 31, rs2,1 = 1,
and

Hs2(1,1,2,0) = (4321)1(321)1(31)2(1)0 =

1 2 3 4
1 2 3
1 3
1 3

= Hσ(1,1,2,0).

Let I := [t] \ {i}, with i ∈ [t], and let σ|I := a1 . . . at|I ∈ SI . If σ−1(i) = p,
then letter ap = i appears only in rows rt . . . , rσ,p. Hence, when we erase
letter i in row rσ,p, we obtain row rσ,p−1, and we have

Hσ(lt,...,l1)|I = H(σ|I)(lt,...,lp+1,lp+lp−1,...,l1).

With σ = s4 = 12354, we have r5 = 54321, rs4,4 = 5321, rs4,3 = 321,
rs4,2 = 21, rs4,1 = 1 and

Hs4(0,1,1,2,1) = (54321)0(5321)1(321)1(21)2(1)1 =

1 2 3 5
1 2 3
1 2
1 2
1

;

and with I = [5] \ {2},

(Hs4(0,1,1,2,1))|I = H(s4|I)(0,1,1,2+1) = (5431)0(531)1(31)1(1)3 =

1 2 5
1 2
1
1
1

.

Proposition 3.2. Let θ∗ ∈< θ∗1 . . . θ∗t−1 > and σ ∈ St with same reduced
decomposition. Then

(a) θ∗(rk) = rσ,k, 1 ≤ k ≤ t.
(b) θ∗(H(lt,...,l1)) = Hσ(lt,...,l1) = (θ∗(rt))

lt (θ∗(rt−1))
lt−1 · · · (θ∗(r1))

l1.

Proof: Follows from proposition 3.1. ¤
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When there is no danger of confusion, we will drop the ”(lt, . . . , l1)” in the
notation Hσ(lt,...,l1), to denote a key of σ.

An operation θi may not act on the set {Hσ : σ ∈ St}. For example,
consider H = 4321 21, and θ2(H) = θ2(4321 21) = 433121 /∈ {Hσ : σ ∈ St}.
Although 433121 ≡ 4321 31 = Hs2

, we may have even worse w = 314321 ≡
Hs2s1

and θ2(w) = 314221 ≡ 321B14B2 /∈ {Hσ : σ ∈ St}. We will comeback
to this in the next section.

We define the union of keys, associated to a permutation σ, in the obvious
way, Hσ(lt,...,l1) ∪Hσ(l′t,...,l′1) := Hσ(lt+l′t,...,l1+l′1).

A word w over the alphabet [t] is said Yamanouchi [13] if any right factor
v of w satisfies |v|1 ≥ |v|2 ≥ · · · ≥ |v|t. This is equivalent to say that
w ∈ Sh(Rlt

t , . . . , Rl1
1 ), where the evaluation (|v|1, |v|2, · · · , |v|t) = (l1 + . . . +

lt, . . . , lt−1 + lt, lt). Thus, for each (lt, . . . , l2, l1), the tableau H(lt,...,l2,l1) is
a Yamanouchi word. Clearly, any shuffle of Yamanouchi words is still a
Yamanouchi word.

Proposition 3.3. [13, Lemma 5.4.7] The set of Yamanouchi words with
evaluation m forms a single plactic class, whose representative word is the
tableau H(lt,...,l2,l1).

Thus, the set of words obtained by shuffling together the rows of H(lt,...,l2,l1)
and the one obtained by applying a finite sequence of Knuth transformations
on the tableau H(lt,...,l2,l1) are the same. The characterization of Yamanouchi
words given by proposition 3.3, leads to the following definition.

Definition 3.2. Let t ≥ 1 and σ ∈ St. A word w over the alphabet [t]
is said σ-Yamanouchi if w ≡ Hσ. In particular, when σ is the identity, w
is a Yamanouchi word, and when σ is the reverse permutation, w is a dual
Yamanouchi word.

Since operations θ∗i are compatible with the plactic equivalence [10, 13], we
may characterize σ-Yamanouchi words using operations θ∗i as well.

Proposition 3.4. Let t ≥ 1 and σ ∈ St. Let w be a word over the alphabet
[t]. Then, w is a σ-Yamanouchi word iff θ∗ir · · · θ∗i1(w) is a Yamanouchi word,
where si1 · · · sir is a reduced decomposition of σ.

Proof: We have w ≡ Hσ iff θ∗(w) ≡ θ∗(Hσ) = H, where θ∗ = θ∗ir · · · θ∗i1. ¤
Proposition 3.5. [12, 13] If B is an interval of [t], then

w ≡ w′ ⇒ w|B ≡ w′
|B.
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Corollary 3.6. Let w be a word over the alphabet [t]. Then, P (w|[t−1]) =
P (w)|[t−1].

Proof: From the previous proposition, we have w|[t−1] ≡ P (w)|[t−1]. Thus
P (w|[t−1]) is obtained from P (w) removing the letters t. ¤

If w is a σ-Yamanouchi word then the word w|{i,i+1} ≡ Hσ |{i,i+1} and, thus,
w|{i,i+1} is either a Yamanouchi or dual Yamanouchi word for 1 ≤ i ≤ t− 1.
Moreover, if w has evaluation (m1, . . . , mt), then w = sh(u, tmt) with u ≡
Hσ(lt,...,l2,l1)|[t−1] and w|{t−1,t} a Yamanouchi or dual Yamanouchi word.

The word 3121 ≡ 321 B 1 is a s1-Yamanouchi word and 434 a dual Ya-
manouchi word. Nevertheless, considering the words in {w ∈ Sh(3121, 44) :
w|{3,4} = 434} except 434121, 431421 ≡ 4321B41, the words 431241, 431214 ≡
4321 B 1 B 4 are not σ-Yamanouchi words, whatever σ ∈ {4213; 2413; 2143;
2134} ⊆ S4.

This leads to the following question: given I = [t]\{i}, with i ∈ [t], and u ∈
I∗ congruent with the tableau of evaluation (m1, . . . , mi−1,mi+1, . . . , mt) and

shape
∑i−1

j=1(1
mj) +

∑t
j=i+1(1

mj), under what conditions can u be a subword
of a word w ∈ [t]∗ congruent with the tableau of evaluation (m1, . . . , mt) and
shape

∑t
j=1(1

mj)?
The answer is given by

Proposition 3.7. Let w ∈ [t]∗ and σ ∈ St. Given i ∈ [t], let I = [t] \ {i},
and suppose w|I ≡ Hσ |I. Then, w is a σ-Yamanouchi word if and only if
w|{j,j+1} is either a Yamanouchi or a dual Yamanouchi word, for j = i− 1, i,
and θ∗j (w)|[j] ≡ Hsjσ |[j], for j = i− 1, . . . , t− 1.

Proof: The conditions are clearly necessary. Suppose now that w|{j,j+1} is
either a Yamanouchi or a dual Yamanouchi word, for j = i − 1, i, and
θ∗j (w)|[j] ≡ Hsjσ |[j], for j = i− 1, . . . , t− 1.

We start with the case i = t, and thus, I = [t− 1]. Consider (m1, . . . , mt)
the evaluation of w, and assume without loss of generality that mt−1 ≥ mt.
Noticing that from the equality P (w|[t−1]

) = P (w)|[t−1] = Hσ |[t−1], we find that
the letters t− 1 of w are inserted in the first mt−1 rows of P (w).

Since w|{t−1,t} ≡ P (w)|{t−1,t} is a Yamanouchi word, the mt letters t of w
are displayed in the first mt−1 rows of P (w). On the other hand, the tableau
P (θ∗t−1(w)|[t−1]) is obtained by erasing the mt−1 letters t in the first mt−1 rows
of the tableau P (θ∗t−1(w)) = θ∗t−1(P (w)). So if the letters t in tableau P (w)
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are not in the first mt rows, the letters t − 1 are not in the first mt rows of
P (θ∗t−1(w)|[t−1]) = Hst−1σ |[t−1]. This is absurd.

Assume now that i 6= t. Then, w|[i−1] ≡ Hσ |[i−1], and since w|{i−1,i} is either
a Yamanouchi or a dual Yamanouchi word, and θ∗i−1(w)|[i−1] ≡ Hsi−1σ |[i−1], by

the case i = t we find that
w|[i] ≡ Hσ |[i].

Next, note that w|{i,i+1} is either a Yamanouchi or a dual Yamanouchi word,
and that θ∗i (w)|[i] ≡ Hsiσ |[i]. Thus, again by the case i = t, we must have

w|[i+1] ≡ Hσ |[i+1].

Noticing that since w|I ≡ Hσ |I , the word w|{j,j+1} is either Yamanouchi or
dual Yamanouchi, for j = i+1, . . . , t−1, we may repeat the process described
above for j = i + 1, . . . , t− 1, obtaining w|[t] ≡ Hσ |[t]. ¤

For instance, in the alphabet [5], let I := [5] \ {3}, σ = 51324 ∈ S5,
and consider the key Hσ(1,0,2,0,1) = 54321 531 531 5, associated with σ and
(1, 0, 2, 0, 1), and the word w|I := 555415211 ≡ Hσ(1,0,2,0,1)|I . Define w =

553541352131. Since w|{2,3} = 3323 is dual Yamanouchi, w|{3,4} = 3433 is
Yamanouchi, θ∗2w|[2] = 212121 ≡ Hs2σ |[2], θ∗3w|[3] = 13211 ≡ Hs3σ |[3], and
θ∗4w|[4] = 44341342131 ≡ Hs4σ |[4], by the previous theorem the word w is

σ-Yamanouchi, and has w|I as a subword. Consider now the word w′ =
533554135211, which also has w|I has a subword. Although w′

|{2,3} = 3332 is

dual Yamanouchi, w′
|{3,4} = 3343 is Yamanouchi, θ∗2w|[2] = 221211 ≡ Hs2σ |[2],

and θ∗3w|[3] = 13211 ≡ Hs3σ |[3], w′ is not a σ-Yamanouchi word since θ∗4w
′
|[4] =

43344134211 is not in the plactic class of Hs4σ |[4].

Corollary 3.8. Let w = shP (tr, u) ≡ Hσ with u ∈ [t−1]∗. If w′ = shQ(tr, u)
with Q ≤ P , then w′ ≡ Hσ.

Proof: By induction on t. If t = 1, 2 it is obvious. Let t ≥ 3 and write

θ∗t−1(w)|[t−1] = shP̃ ((t− 1)r, w|[t−2]) ≡ Hst−1σ |[t−1],

θ∗t−1(w
′)|[t−1] = shQ̃((t− 1)r, w|[t−2]).

Clearly, we must have Q̃ ≤ P̃ . Then, by induction, it follows θ∗t−1(w
′)|[t−1] ≡

Hst−1σ |[t−1], and by previous proposition, we find that w′ ≡ Hσ. ¤

The criterion given by previous proposition can be generalized to operations
θi.
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Lemma 3.9. Let w ∈ [t]∗ and w|{t−1,t} a Yamanouchi or dual Yamanouchi
word. Let u = θt−1(w), z = θ∗t−1(w) and v = w|[t−2]. Then

w|[t−1] = shP (u|{t−1}, v) and w|[t−1] = shQ(z|{t−1}, v), with Q ≤ P.

Proof: It is enough to consider the cases w|{t−1,t} = t t−1 t−1 and w|{t−1,t} =
t t t− 1. Therefore, if θt−1 6= θ∗t−1, we have

θt−1(t t− 1 t− 1) = t t t− 1,

θ∗t−1(t t− 1 t− 1) = t t− 1 t,

and

θt−1(t t t− 1) = t t− 1 t− 1,

θ∗t−1(t t t− 1) = t− 1 t t− 1.

¤

Theorem 3.10. Let w ∈ [t]∗ and σ ∈ St. Given i ∈ [t], let I = [t] \ {i}, and
suppose w|I ≡ Hσ |I. Then, w is a σ-Yamanouchi word if and only if w|{j,j+1}
is either a Yamanouchi or a dual Yamanouchi word, for j = i − 1, i, and
θj(w)|[j] ≡ Hsjσ |[j], for some operation θj, j = i− 1, . . . , t− 1.

Proof: Attending to previous lemma and corollary, if θj(w)|[j] ≡ Hsjσ |[j], then

θ∗j (w)|[j] ≡ Hsjσ |[j], for j = i−1, . . . , t−1. By previous proposition, it follows

w ≡ Hσ. ¤

Corollary 3.11. Let w ∈ [t]∗, t ≥ 2, and σ ∈ St. If w ≡ Hσ, then
θi(w) ≡ Hsiσ if and only if (θiw)|{i+1,i+2} is either a Yamanouchi or a dual
Yamanouchi word, θi(w)|[i] ≡ Hsiσ |[i], and θj(θi(w))|[j] ≡ Hsjsiσ |[j], for some

operation θj, j = i + 1, . . . , t− 1.

Proof: Taking θj = θ∗j , j = i + 1, . . . , t − 1, we find that the conditions are
clearly necessary. Assume now that w|{i+1,i+2} is either a Yamanouchi or a
dual Yamanouchi word, θi(w)|[i] ≡ Hsiσ |[i], and θj(θi(w))|[j] ≡ Hsjsiσ |[j], for

j = i + 1, . . . , t− 1.
Since θi(w)|[i] ≡ Hsiσ |[i], θiw|{i,i+1} is either a Yamanouchi or a dual Ya-

manouchi word, and θi(θi(w)|[i]) = w|[i] ≡ Hσ |[i], by the previous theorem we
must have

θi(w)|[i+1] ≡ Hsiσ |[i+1].
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Now, since (θiw)|{i+1,i+2} is either a Yamanouchi or a dual Yamanouchi word,
and there is an operation θi+1 such that θi+1(θi(w))|[i+1] ≡ Hsi+1siσ |[i+1], again

by the previous theorem, we find that

θi(w)|[i+2] ≡ Hsiσ |[i+2].

Finally, note that since θi(w)|{j,j+1} = w|{j,j+1}, the word θi(w)|{j,j+1} is either
a Yamanouchi or a dual Yamanouchi word, for j = i+2, . . . , t−1. Therefore,
repeating the process above for j = i + 2, . . . , t − 1, we obtain θi(w)|[t] ≡
Hsiσ |[t]. ¤
Remark 3.1. In particular, it follows from previous theorem and the cor-
responding statement for dual words, that θ1(w) ≡ Hs1σ if and only if
θ1(w)|[2,t] ≡ Hs1σ |[2,t].

Consider w = 43143213321 a σ-Yamanouchi word, where σ = 3124, and
the keys Hσ(2,0,1,1) = 4321 4321 31 3 and Hs2σ(2,0,1,1) = 4321 4321 21 2. We
have θ∗2(w) = 42143212321 ≡ Hs2σ, but θ2(w) = 43142213221 is not a s2σ-
Yamanouchi word. Note that although θ2(w)|{3,4} = 4343 is Yamanouchi,
θ2w|[2] = 1221221 is not in the plactic class of Hs2σ |[2]. The word θ′2w =

42143213221 is a s2σ-Yamanouchi word, since θ′2w|{3,4} = 4433 is Yamanouchi,
θ′2w|[2] = 2121221 ≡ Hs2σ |[2], and θ∗3(θ

′
2w)|[3] = θ′2w|[2] = 213213221 ≡ Hs3s2σ |[3].

4. σ-Yamanouchi words as shuffles of rows of a key
It has been shown in [3] that, when t ≤ 3, a word in [t]∗ of evaluation m

is σ-Yamanouchi iff it is a shuffle of the rows of Hσ(lt,...,l1). For t ≥ 4 this is
no longer true, in general. For example, consider the Yamanouchi tableau
4321 21 and 421321 = sh(4321, 21). We have θ∗3θ

∗
2(421321) = θ∗3(431321) =

431421 ≡ sh(4321, 41) but 431421 is not a shuffle of the rows of s3s2-
Yamanouchi tableau 4321 41. For t ≥ 4, we shall see that a word in [t]∗

of evaluation m is σ-Yamanouchi if and only if it is plactic equivalent to a
shuffle of the rows of Hσ(lt,...,l1).

Next proposition shows that a shuffle of σ-Yamanouchi words is still a
σ-Yamanouchi word, for σ ∈ St.

Proposition 4.1. Let σ ∈ St. If w and w′ are σ-Yamanouchi words over
the alphabet [t], then sh(w,w′) is also a σ-Yamanouchi word.

Proof: By induction on t. When t = 1 there is nothing to prove, and the
case t = 2 is trivial [3]. Let t > 2 and w, w′ be σ-Yamanouchi words over the
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alphabet [t], with evaluations σm and σm′, respectively, for some partitions
m,m′ with indices (lt, . . . , l1) and (l′t, . . . , l

′
1).

From corollary 3.6, we find that w|[t−1], w
′
|[t−1] ≡ Hσ |[t−1]. Therefore, by the

inductive step, sh(w|[t−1], w
′
|[t−1]) = sh(w,w′)|[t−1] ≡ Hσ |[t−1]. We consider the

case, mt−1 ≥ mt (and thus, m′
t−1 ≥ m′

t). The other case is similar.
The subwords w|{t−1,t}, w′

|{t−1,t} are both Yamanouchi words and, thus, us-

ing step t = 2, we find that sh(w|{t−1,t}, w′
|{t−1,t}) = sh(w, w′)|{t−1,t} is also

a Yamanouchi word. Since w, w′ are σ-Yamanouchi words, θ∗t−1(w), θ∗t−1(w
′)

must be st−1σ-Yamanouchi words. Thus, by corollary 3.6,

(θ∗t−1(w))|[t−1], (θ
∗
t−1(w

′))|[t−1] ≡ Hst−1σ |[t−1]

and, again by the inductive step, the word

sh((θ∗t−1(w))|[t−1], (θ
∗
t−1(w

′))|[t−1]) = sh(θ∗t−1(w), θ∗t−1(w
′))|[t−1] ≡ Hst−1σ |[t−1]

Finally, note that there is a operation θt−1 satisfying

θt−1(sh(w, w′)) = sh(θ∗t−1(w), θ∗t−1(w
′)),

and, therefore,

[θt−1(sh(w, w′))]|[t−1] = sh(θ∗t−1(w), θ∗t−1(w
′))|[t−1] ≡ Hst−1σ |[t−1].

By proposition 3.7 we may conclude that sh(w, w′) ≡ Hσ(lt,...,l1)∪ Hσ(l′t,...,l′1),
that is, a σ-Yamanouchi word. ¤
Corollary 4.2. Let i ∈ {1, . . . , t − 1}, w = sh(rt, . . . , r1) ∈ Sh(Rlt

t , . . . Rl1
1 )

and let θi(w) := sh(θ∗i (rt), . . . , θ
∗
i (r1)). Then θi(w) is a si-Yamanouchi word.

By induction, we may easily extend proposition 4.1 to a shuffle of k σ-
Yamanouchi words, for every k ∈ N.

By proposition 3.2, the word rσ,k is a σ-Yamanouchi word for all k ∈ [t].

Thus we find that sh(Rlt
t , R

lt−1

σ,t−1, . . . , Rl1
σ,1) is also a σ-Yamanouchi word, with

li ≥ 0. Therefore,

Theorem 4.3. Sh(Rlt
t , R

lt−1

σ,t−1, . . . , Rl1
σ,1) ⊆ {w ∈ [t]∗ : w ≡ Hσ(lt,...,l1)}.

¿From this theorem, we find that shuffling together the rows of Hσ has the
same effect as performing Knuth transformations on the tableau Hσ. The
reciprocal is not true in general. In what follows, we will determine the
permutations σ ∈ St for which Knuth transformations on the tableau Hσ

and shuffling together the rows of Hσ leads to the same words.
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Let w be a word obtained by applying an elementary Knuth transformation
to sh(u1, . . . , uk), k ≥ 2, where u1, . . . , uk are rows pairwise comparable for
the inclusion order. From propositions 2.1, 2.2 and the discussion therein, we
may assume w obtained by applying an elementary Knuth transformation,
involving three distinct letters x < y < z, to a shuffle of two of these rows,
say u and v, with zx a factor of v and y a letter of u. Since the letter y is in
u, but not in v, and u and v are comparable for the inclusion order, we have
{v} ⊆ {u}.
Lemma 4.4. Let u1, u2 be rows in [t]∗, and x, z ∈ [t] such that zu1u2x is a
row. Then,

(i) sh(u2, u1u2x) ∈ Sh(u2x, u1u2).
(ii) sh(u1, zu1u2) ∈ Sh(zu1, u1u2).

Proof: (i) Write u2 = a1 · · · ar, and sh(u2, u1u2z) = c1 · · · cl. For each j =
1, . . . , r, let pj := min{i : ci = aj}, and let p′ ∈ [l] such that cp′ = z. Then,
it is clear that

sh(u2, u1u2z) = shP (u2z, u1u2),

where P := {p1, . . . , pr, p
′}.

(ii) Write u1 = a1 · · · ar, and sh(u1, xu1u2) = c1 · · · cl. For each j = 1, . . . , r,
let pj := max{i : ci = aj}, and let p′ ∈ [l] such that cp′ = x. Then, we have

sh(u1, xu1u2) = shP (xu1, u1u2),

where P := {p1, . . . , pr, p
′}. ¤

Lemma 4.5. Let u and v be rows in [t]∗ such that u = u1u2zyxu3u4 and
v = u2zxu3, where z > y > x are consecutive letters in [t], and u1 = s(s −
1) · · · (r + 1)l, u2 = (r− 1)(r− 2) · · · (z− 1), u3 = (x− 1)(x− 2) · · · (q + 1)l′,
and u4 = (q−1)(q−2) · · · b, with either l = r and l′ = λ, or l = λ and l′ = q,
or l = r and l′ = q, where t ≥ s ≥ r ≥ z > y > x ≥ q ≥ b ≥ 1. Then,
the word obtained by a single elementary Knuth transformation on sh(u, v)
is still a word in Sh(u, v).

Proof: As before, the only cases to consider is the application of the ele-
mentary Knuth transformations zxy ≡ xzy and yzx ≡ yxz, respectively, to
sh(u, v) = w1 z x y w2 and sh(u, v) = w1 y z x w2, where y is a letter of u, zx
a factor of v, w1 = sh(u2, u1u2z) and w2 = sh(xu3u4, u3).

In the case of the elementary Knuth transformation zxy ≡ xzy, we have

sh(u, v) = w1z x yw2 ≡ w1x z yw2, (12)
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where w1 = sh(u2, u1u2z), w2 = sh(xu3u4, u3). By lemma 4.4 (i), we must
have w1 = shP (u2z, u1u2), for some set P . Thus, we may write the right side
of (12)

w1xzyw2 = sh(u2zxu3, u1u2z y xu3u4) ∈ Sh(u, v).

The case of the elementary Knuth transformation yzx ≡ yxz is analogous
to the previous one. ¤

As an illustration of the lemma above, consider, in the alphabet [6], the
rows u = 654321 and v = 542, and let sh(u, v) = 5 6 5 4 (4 2 3) 2 1, where
the underlined letters define the word v, and the remaining letters define u.
Applying the Knuth transformation 423 ≡ 243, to sh(u, v), we get the word
5 6 5 4 (2 4 3) 2 1, which is also a shuffle of u and v.

Next, we identify the permutations in St for which Knuth transforma-
tions on the tableau Hσ(lt,...,l1) are equivalent to shuffling together the rows
of Hσ(lt,...,l1). We start with the analysis of the case lt > 0 and li ≥ 0,
i = 1, . . . , t− 1.

Proposition 4.6. Let σ ∈ St and Hσ = (rσ,t)
lt . . . (rσ,1)

l1, with lt > 0, and

li ≥ 0, 1 ≤ i ≤ t − 1. The plactic class of Hσ is Sh(Rlt
σ,t, . . . , Rl1

σ,1) if and
only if, for k = 2, . . . , t− 1 with lk > 0, either rσ,k is

s(s− 1) · · · (z + 1)(z − 1)(z − 2) · · · b (13)

or s(s− 1) · · · (z + 1) (14)

or (z − 1)(z − 2) · · · b, (15)

for some t ≥ s ≥ z + 1 > z − 1 ≥ b ≥ 1.

Proof: If li = 0 for i = 2, . . . , t−1, there is nothing to prove. Consider li > 0,
for some i ∈ {2, . . . , t− 1}.

The if part. Assume that for each lk > 0, {rσ,k} is either (13) or (14) or
(15), and let w be a σ-Yamanouchi word. By proposition 4.3, w ≡ sh((rσ,t)

lt

. . . (rσ,1)
l1), and we may assume, without loss of generality, that w is ob-

tained performing a single elementary Knuth transformation (i) xzy ≡ zxy,
or (ii) yzx ≡ yxz, with x < y < z, on a shuffle of two rows of Hσ, say u and
v, such that zx is a factor of v and y is a letter of u.

Note that {v} ⊆ {u}, so there exist k > k′ such that u = rσ,k = u1u2zyxu3u4,
and v = rσ,k′ = u2zxu3, with x < y < z consecutive letters in [t], and u1 =
s(s−1) · · · (r+1)l, u2 = (r−1)(r−2) · · · (z−1), u3 = (x−1)(x−2) · · · (q+1)l′,
and u4 = (q− 1)(q− 2) · · · b, with either l = r and l′ = λ, or l = λ and l′ = q,
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or l = r and l′ = q, where t ≥ s ≥ r ≥ z > y > x ≥ q ≥ b ≥ 1. By lemma
4.5, if we perform a Knuth transformation (i) or (ii) on sh(u, v), we do still
obtain a shuffle of u and v. Therefore, we find that w ∈ Sh((rσ,t)

lt · · · (rσ,1)
l1).

The only if part. Suppose that there exists an integer k ∈ {2, . . . , t − 1}
with lk > 0 such that the row rσ,k fails (13), (14) and (15). Without loss of
generality, assume that rσ,k has one of the following forms:

(i) rσ,k = u2dau3, where u2 = s(s − 1) · · · d + 1, u3 = (a − 1) · · · (r + 1)r,
with s, r, d, a ∈ [t] such that d− a = 3;

(ii) rσk
= u2fdu3cau4, where u2 = s(s−1) · · · (f +1), u3 = (d−1) · · · (c+1),

and u4 = (a− 1) · · · (r + 1)r, with f − d, c− a = 2.
In case (i), write rt = u1u2dcbau3u4. Since rσ,k and rt are rows of Hσ, the

word

sh(rt, rσ,k) = u2 u1 u2 d c (d a b) a u3 u4 u3 (16)

is a σ-Yamanouchi word, where the overlined letters define the word rσ,k.
Applying the elementary Knuth transformation dab ≡ adb on (16), we obtain

(16) ≡ u2 u1 u2 d c (a d b) a u3 u4 u3. (17)

Clearly, the right member of (17) is a σ-Yamanouchi word, but not a shuffle
of the rows rt and rσ,k.

In case (ii), write rt = u1u2fedu3cbau4u5, and consider the following σ-
Yamanouchi word

sh(rt, rσ,k) = u1 u2 f e d u3 c u2 f d u3(c a b) u4 a u4 u5, (18)

where the overlined letters define the word rσ,k. Performing the elementary
Knuth transformation cab ≡ acb on (18), we obtain the word

(18) ≡ u1 u2 f e d u3 c u2 f d u3(a c b) u4 a u4 u5,

which is a σ-Yamanouchi word, but not a shuffle of the rows rt and rσ,k. ¤

In order to state the general characterization, we need the following defi-
nition.

Definition 4.1. Let A be a nonempty subset of N. If j, j +k ∈ A with k ≥ 1
are such that [j + 1, j + k − 1] ∩A = ∅, then we say that [j + 1, j + k − 1] is
a gap of A of length k− 1. A word is said to have a gap if the underlying set
has a gap.
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Theorem 4.7. Let σ = a1 . . . at ∈ St such that the left reordered factor of
length q, {a1, . . . , aq} = ∪s

j=1Xj, with Xj, 1 ≤ j ≤ s, pairwise disjoint
nonempty subintervals of [t], has s − 1 gaps of length 6= 0. Let {q > p >
· · · > f} ⊆ [t] and Hσ = (rσ,q)

lq (rσ,p)
lp · · · (rσ,f)

lf , with lq, lp, . . . , lf > 0. The

plactic class of Hσ is Sh(R
lq
σ,q, R

lp
σ,p, · · · , Rlf

σ,f) if and only if, for k = f, . . . , p,

j = 1, . . . , s, {a1, . . . , ak} ∩Xj 6= ∅ has at most a gap of length 1.
In particular, the plactic class of Hσ(1,...,1) is the set Sh(rt, rσ,t−1, . . . , rσ,1)

if and only if every left factor of σ has at most a gap of length 1.

Corollary 4.8. [3] If σ = s0 or the reverse permutation t t−1 · · · 21, a word
over the alphabet [t] is a σ-Yamanouchi word if and only if it is a shuffle of
the rows of Hσ.

Corollary 4.9. [3] If σ ∈ St, t = 2, 3, a word over the alphabet [t] is a
σ-Yamanouchi word if and only if it is a shuffle of the rows of Hσ.

Given σ ∈ St, let a1 · · · at be the word of σ in the alphabet [t]. We may give
a planar representation for σ by exhibiting the underlying sets of all its left
factors in an array of t + (t− 1) + · · ·+ 1 bullets having t rows with t− i + 1
bullets in row i, for 1 ≤ i ≤ t, displayed as follows: put a bullet in the first
t columns of row 1; and, for i = 2, . . . , t, row i is obtained by erasing in row
i− 1 the dot in column ai.

For instance, the planar representation of σ = 75416832 ∈ S8 is

1 2 3 4 5 6 7 8
1 • • • • • • • •
2 • • • • • • •
3 • • • • • •
4 • • • • •
5 • • • •
6 • • •
7 • •
8 •

(19)

The planar representation of σ = 75416832 ∈ S8 (19) shows a gap of length
1 in row 2, 6 and 7, a gap of length 2 in row 3, 4, and two gaps in row 5, one
of length 1 and the other one of length 2. There are no gaps in the remaining
rows.
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Since the planar representation of σ = 75416832 ∈ S8, given in (19), has
a gap of length 2 in row 3, the shuffling of the rows of r8, rσ,7, rσ,6, . . . , rσ,2,
rσ,1 are not enough to give the entire plactic class of Hσ(1,1,...,1). Nevertheless,
the plactic class of Hσ(0,1,1,1,0,1,1,1) = rσ,7 rσ,6 rσ,5 rσ,3 rσ,2 rσ,1 is Sh(rσ,7, rσ,6,
rσ,5, rσ,3, , rσ,2, rσ,1), and the plactic class of Hσ(1,1,0,0,0,0,1,1) = rσ,8 rσ,7 rσ,2 rσ,1
is Sh(rσ,8, rσ,7, rσ,2, rσ,1) as well.

Consider now the permutation σ = 35476182 ∈ S8, whose planar represen-
tation is given below.

1 2 3 4 5 6 7 8
1 • • • • • • • •
2 • • • • • • •
3 • • • • • •
4 • • • • •
5 • • • •
6 • • •
7 • •
8 •

(20)

Notice that each row of the planar representation of σ = 35476182 has, at
most, one gap of length 1: rows 1, 4, 6, and 8 have no gaps, and the remaining
rows have one and only one gap of length 1. Thus, by previous lemma, we
find that the plactic class of Hσ(1,...,1) is the set Sh(Hσ(1,...,1)).

As we have seen in the example above, in St, t > 3, there are permutations
that do not satisfy the conditions of theorem 4.7. For s3s2 = 1423 ∈ S4
we have Hs3s2

= (4321)l4(421)l3(41)l21l1 and row 41 has a gap of length 2.
The word w = 431421 is a s3s2-Yamanouchi word and is not a shuffle of the
rows of the tableau Hs3s2

= 432141. It is easy to check that in S4, the only
permutations that fail to satisfy the conditions of theorem 4.7 are 1423, 1432,
4123, and 4132.

Corollary 4.10. Let σ ∈ S4 and (l4, l3, l2, l1) a sequence of positive integers.
The plactic class of Hσ(l4,l3,l2,l1) is Sh(Rl4

4 , Rl3
σ,3, Rl2

σ,2, R
l1
σ,1) if and only if σ is

in S4 \ {1423, 1432, 4123, 4132}.

In Appendix the permutations of S5 and S6 such that the set Sh(Rlt
t , R

lt−1

σ,t−1,

. . . , Rl2
σ,2, Rl1

σ,1), with li > 0, i = 1, . . . , t, t = 5, 6, is not the whole plactic
class of Hσ, are listed.
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For t > 3 the rows of Hσ are not enough to characterize the σ-Yamanouchi
words in terms of shuffling together those rows. In the case of S4, next
theorem shows that it is necessary and sufficient to include the word 431421
in the set of the rows of Hσ(l4,...,l1) to characterize by shuffle operations the

σ-Yamanouchi words over the alphabet [4], for any σ ∈ S4. Denote by Rl
5

the set of all shuffles of l words 431421.

Theorem 4.11. Let σ ∈ S4 and (l4, . . . , l1) a sequence of positive integers.
Then, the plactic class of Hσ(l4,...,l1) is

Sh(Rl4
4 , Rl3

σ,3, R
l2
σ,2, R

l1
σ,1), if σ ∈ S4 \ {1423, 1432, 4123, 4132}, (21)

and, otherwise,

Sh(Rl4
4 , Rl3

σ,3, R
l2
σ,2, R

l1
σ,1) ∪ Sh(Rn5

5 , Rn4
4 , Rn3

σ,3, R
n2
σ,2, R

n1
σ,1), (22)

where
∑4

j=1 lj|rσ,j|i = n5|431421|i +
∑4

j=1 nj|rσ,j|i, for i = 1, 2, 3, 4.

Proof: When σ ∈ S4 \ {1423, 1432, 4123, 4132}, we have already proved in
corollary 4.10 that the plactic class of Hσ(l4,...,l1) if the set

Sh(Hσ(l4,...,l1)) = Sh(Rl4
4 , Rl3

σ,3, R
l2
σ,2, R

l1
σ,1).

Assume now that σ ∈ {1423, 1432, 4123, 4132}. Note that rσ,2 = 41.
As discussed before, the only case to consider when analyzing the effect of

a single Knuth transformation on a shuffle of the rows of Hσ(lt,...,l1), is when
the Knuth transformation zxy ≡ xzy or yzx ≡ yxz involves three distinct
letters, z > y > x, with zx a factor of a row , and y a letter of another row of
Hσ. Thus, using lemma 4.5, we find that any word obtained by application
of a single Knuth transformation on a shuffle of two rows of Hσ(l4,...,l1), other
than sh(r4, rσ,2) = 43 4 1 21, is still a shuffle of the rows of Hσ(l4,...,l1).

In the case of the shuffle sh(r4, rσ,2) = 43 4 1 21, the application of the
transformation 341 ≡ 314 or 412 ≡ 142 gives the word 431421, which is not
a shuffle of the rows of Hσ(l4,...,l1).

Now, an exhaustive analysis of the effect of a single Knuth’s transformation
on all possible shuffles between any two words from the set {431421, r4, rσ,3,
rσ,2, rσ,1}, shows that the resulting word is still a shuffle of two, or more,
words of this set.

Thus, if w ≡ Hσ(l4,...,l1), w is obtained by a finite number of Knuth’s
transformations on Hσ(l4,...,l1). Hence, it must be a shuffle of the words
431421, r4, rσ,3, rσ,2, and rσ,1, with appropriate multiplicities. ¤
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5. Matrix realizations of pairs of tableaux
Let Rp be a local principal ideal domain with maximal ideal (p). The

matrices under consideration have entries in Rp.
Let Un be the group of n × n unimodular matrices over Rp. Given n × n

matrices A and B, we say that B is left equivalent to A (written B ∼L A) if
B = UA for some unimodular matrix U ; B is right equivalent to A (written
B ∼R A) if B = AV for some unimodular matrix V ; and B is equivalent
to A (written B ∼ A) if B = UAV for some unimodular matrices U, V .
The relations ∼L, ∼R and ∼ are equivalence relations in the set of all n× n
matrices over Rp.

Let A be an n×n nonsingular matrix. By the Smith normal form theorem
[5, 15], there exist nonnegative integers a1, ..., an with a1 ≥ ... ≥ an such that
A is equivalent to the diagonal matrix

diag(pa1, ..., pan).

The sequence a = (a1, ..., an) of exponents of the p-powers in the Smith
normal form of A is a partition of length ≤ n uniquely determined by the
matrix A. The partition a is the invariant of the equivalence class containing
A and we call a the invariant partition of A. More generally, if we are given
a sequence (f1, ..., fn) of nonnegative integers, the following notation for p-
powered diagonal matrices will be used:

diagp(f1, ..., fn) := diag(pf1, ..., pfn).

Given A ⊆ [n], we write χA = (f1, ..., fn) with fi = 1 if i ∈ A and 0 otherwise,
thus, we put DA := diagp(χ

A). Given a partition a of length ≤ n, we write
∆a = diagp(a). If a = 0, ∆0 = I.

Let σ ∈ St, t ≥ 1, and let m be a partition of length t such that σm =
(m1, . . . , mt). In what follows, T will denote a skew-tableau of evaluation
(m1, ..., mt) and shape c/a where the length of c is ≤ n. Next we introduce
the definition of matrix realization of a pair of Young tableaux (T ,F), with
F a tableau of evaluation (m1, ..., mt) and shape b, following [2, 3, 4].

Definition 5.1. Let T = (a0, a1, ..., at) and F = (0, b1, ..., bt) be Young
tableaux both of evaluation (m1, ..., mt). We say that a sequence of n × n
nonsingular matrices A0, B1, ..., Bt is a matrix realization of the pair of Young
tableaux (T ,F) (or realizes (T ,F)) if:

I. For each r ∈ {1, ..., t}, the matrix Br has invariant partition (1mr ,
0n−mr).
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II. For each r ∈ {0, 1, ..., t}, the matrix Ar := A0B1...Br has invariant
partition ar.

III. For each r ∈ {1, ..., t}, the matrix B1...Br has invariant partition br.

(T ,F) is called an admissible pair of tableaux.

Conditions (I) and (II) alone are trivially feasible. But in conjunction
with condition (III) they impose a non trivial argument on the concept of
matrix realization. Here, we restrict ourselves to pairs (T ,Hσ(lt,...,l1)). Next
theorem, proved in [3, 4], shows that, without loss of generality, we may
consider matrix realizations of (T ,Hσ(lt,...,l1)) with a particular simple form.

Theorem 5.1. The following conditions are equivalent.

(a) (T ,Hσ(lt,...,l1)) is an admissible pair.
(b) There exists U ∈ Un such that ∆aU,D[m1], ..., D[mt] realizes the pair

(T ,Hσ(lt,...,l1)).

The characterization of σ-Yamanouchi words as shuffles of the rows Hσ has
been used to determine necessary and sufficient conditions for the admissibil-
ity of a pair of Young tableaux (T ,Hσ(lt,...,l1)), when t ≤ 3 [3]. Next theorem
extends the necessary condition of this result to any t ≥ 1, and verifies the
recursive criterion for σ-Yamanouchi words given in theorem 3.10. The proof
of this theorem needs the following proposition, proved in [3].

Proposition 5.2. [3] Let (m1,m2) be a partition. Let w,w′ be the words of
the tableaux realized by the sequences ∆aU,D[m1], D[m2] and ∆aU,D[m2], D[m1],
respectively. Then, there exists an operation θ1 such that w′ = θ1w.

Theorem 5.3. Let σ ∈ St. The pair (T ,Hσ(lt,...,l1)) is admissible only if
w(T ) ≡ Hσ(lt,...,l1).

Proof: By induction on t ≥ 1. When t = 1 there is nothing to prove, and the
case t = 2 has been proved in [2, 4]. Assume the claim for t− 1 ≥ 2. Thanks
to theorem 5.1 we may assume the existence of an unimodular matrix U ∈ Un

such that ∆a, UD[m1], . . . , D[mt] realizes (T ,Hσ(lt,...,l1)). Let w := w(T ) and
(4) the biword of T . By the inductive step, the word w|[t−1] of the tableau
realized by the sequence

∆a, UD[m1], . . . , D[mt−1]

satisfy P (w|[t−1]) = Hσ |[t−1].
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We consider the case mt−1 ≥ mt, the other one is similar. There exists an
unimodular matrix U ′ ∈ Un such that

∆aUD[m1] · · ·D[mt−1]D[mt] ∼L ∆′U ′D[mt−1]D[mt],

where ∆′ = diagp(a + χJ1 + · · ·+ χJt−2). Since mt−1 ≥ mt, by the case t = 2,
the sequence ∆′U ′, D[mt−1], D[mt] realizes a tableau whose word w|{t−1,t} is a
Yamanouchi word. Finally, consider the sequence

∆aU,D[m1], · · · , D[mt−2], D[mt],

and let w′ be the word of the corresponding tableau. Attending to previous
proposition, we must have w′ = (θt−1(w))|[t−1], for some operation θt−1, and
by the inductive step, P (w′) = Hst−1σ |[t−1]. By theorem 3.10, we find that w

is a σ-Yamanouchi word. ¤

6. Appendix

Below are listed the permutations σ in S5 and S6 for which the set Sh(Rlt
t ,

R
lt−1

σ,t−1, . . . , Rl2
σ,2, Rl1

σ,1), with li > 0, i = 1, . . . , t, t = 5, 6, is not the whole
plactic class of Hσ.
S5

w4w′, w ∈ S{2,5}, w′ ∈ S{1,3};
w3w′, w ∈ S{2,5}, w′ ∈ S{1,4};
ww′, w ∈ S{1,4,5}, w′ ∈ S{2,3};
ww′, w ∈ S{1,3,5}, w′ ∈ S{2,4};
w3w′, w ∈ S{1,4}, w′ ∈ S{2,5};
w2w′, w ∈ S{1,4}, w′ ∈ S{3,5};
ww′, w ∈ S{1,2,5}, w′ ∈ S{3,4}.
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S6

ww′w′′, w ∈ S{3,6}, w′ ∈ S{4,5}, w′′ ∈ S{1,2};
w4w′, w ∈ S{2,5,6}, w′ ∈ S{1,3};
w5w′, w ∈ S{2,4,6}, w′ ∈ S{1,3};
w46w′, w ∈ S{2,5}, w′ ∈ S{1,3};
w52w′, w ∈ S{3,6}, w′ ∈ S{1,4};
w3w′, w ∈ S{2,5,6}, w′ ∈ S{1,4};
w5w′, w ∈ S{2,3,6}, w′ ∈ S{1,4};
w36w′, w ∈ S{2,5}, w′ ∈ S{1,4};
w42w′, w ∈ S{3,6}, w′ ∈ S{1,5};
w3w′, w ∈ S{2,4,6}, w′ ∈ S{1,5};
w4w′, w ∈ S{2,3,6}, w′ ∈ S{1,5};
ww′w′′, w ∈ S{2,5}, w′ ∈ S{3,4}, w′′ ∈ S{1,6};
ww′, w ∈ S{1,4,5,6}, w′ ∈ S{2,3};
ww′, w ∈ S{1,3,5,6}, w′ ∈ S{2,4};
ww′, w ∈ S{1,3,4,6}, w′ ∈ S{2,5};
w3w′, w ∈ S{1,4,5}, w′ ∈ S{2,6};
w4w′, w ∈ S{1,3,5}, w′ ∈ S{2,6};
w35w′, w ∈ S{1,4}, w′ ∈ S{2,6};
ww′, w ∈ S{1,2,5,6}, w′ ∈ S{3,4};
ww′, w ∈ S{1,2,4,6}, w′ ∈ S{3,5};
w41w′, w ∈ S{2,5}, w′ ∈ S{3,6};
w2w′, w ∈ S{1,4,5}, w′ ∈ S{3,6};
w4w′, w ∈ S{1,2,5}, w′ ∈ S{3,6};
w25w′, w ∈ S{1,4}, w′ ∈ S{3,6};
ww′, w ∈ S{1,2,3,6}, w′ ∈ S{4,5};
w31w′, w ∈ S{2,5}, w′ ∈ S{4,6};
w2w′, w ∈ S{1,3,5}, w′ ∈ S{4,6};
w3w′, w ∈ S{1,2,5}, w′ ∈ S{4,6};
ww′w′′, w ∈ S{1,4}, w′ ∈ S{2,3}, w′′ ∈ S{5,6}.

There are a total of 52 permutations in S5 and 488 permutations in S6 that
fail to satisfy the conditions of theorem 3.19.
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