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Abstract: Metabolomics is a powerful tool in diverse research areas, enabling an understanding of the
response of organisms, such as plants, to external factors, their resistance and tolerance mechanisms
against stressors, the biochemical changes and signals during plant development, and the role of
specialized metabolites. Despite its advantages, metabolomics is still underused in areas such as
nano-plant interactions. Nanoparticles (NPs) are all around us and have a great potential to improve
and revolutionize the agri-food sector and modernize agriculture. They can drive precision and
sustainability in agriculture as they can act as fertilizers, improve plant performance, protect or
defend, mitigate environmental stresses, and/or remediate soil contaminants. Given their high
applicability, an in-depth understanding of NPs’ impact on plants and their mechanistic action is
crucial. Being aware that, in nano-plant interaction work, metabolomics is much less addressed than
physiology, and that it is lacking a comprehensive review focusing on metabolomics, this review
gathers the information available concerning the metabolomic tools used in studies focused on
NP-plant interactions, highlighting the impact of metal-based NPs on plant metabolome, metabolite
reconfiguration, and the reprogramming of metabolic pathways.

Keywords: impact on plants; metabolic pathways; metabolite content; metallic nanoparticles

1. Introduction

Currently, nanotechnology has a key role in many fields and is a multi-million-dollar
industry, with a global market size valued at 1.76 billion dollars in 2020 and estimated to
reach $33.63 billion by 2030 [1]. Nanoparticles (NPs), the forefront of nanotechnology, can
be found in many daily products such as cosmetics, food, textiles, and pharmaceutics, with
additional uses in medicine, energy, electronics, construction, environmental remediation
of contaminated soil and water, and agriculture [2–7]. This wide use of NPs makes it
impossible to avoid the interaction of living organisms with such materials, which is crucial
for understanding the impact that NPs may have on plants, animals, and humans.

The interaction of metal-based NPs with plants has been analyzed, at the first stage,
using a toxicological point of view [8–12]. However, lately it has changed towards a per-
spective of plant fortification, stress mitigation, and plant response modulation [4,13–17].
On the other hand, modern agriculture is changing into precision agriculture to maximize
the gains from available resources. Given their characteristics, NPs can play an important
role in achieving the precision and sustainability that modern agriculture requires as they
can reduce nutrient losses, reduce the amounts of agrochemicals used in plant protection
and nutrition, reduce environmental risks, and minimize production costs [17]. Never-
theless, one should not put aside the potential negative impacts of NPs on agricultural
systems as NPs are prone to induce phytotoxicity under certain exposure conditions. Thus,
several factors, such as NP physiochemical properties, concentration, treatment duration,
exposure route, and crop species must be considered for efficient, safe and sustainable use
of agro-nanotechnologies.
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The impact of NPs on plants has been extensively evaluated using agronomical and
physiological traits and less using metabolomic and molecular tools, despite the increas-
ing number of studies on metabolomics in recent years, thus limiting the mechanistic
understanding of NPs’ mode of action and plants’ response to them [18]. Metabolomics
reflects the plant status at a given point, enables the detection of changes imperceptible by
phenotype-based biomarkers, and, as metabolites are the final product of gene and pro-
tein expression despite the metabolome not being fully associated with the plant genome,
enlightens about NP impact on gene/protein regulation [19–21]. Metabolomics can be
used for targeted (monitor specific metabolites) or untargeted (global metabolite detection)
analysis and the most common analytical techniques used in assessing NP impact on
plants are Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS)
coupled with chromatographic separation [20].

The potential application of metallic NPs in agriculture [4,22,23] has been recently
reviewed, as well as their positive/negative impacts on plants in terms of plant physiol-
ogy and biochemistry [12,15,24–27]; nevertheless, it is missing a review centered on NP
impact on plant metabolomics. Thus, here we review the works available focused on plant
metabolic rearrangement induced by metallic NPs, highlighting the altered metabolites and
the modified metabolic pathways to unveil the NPs’ mode of action. This approach will
allow readers to gain comprehensive knowledge about the metabolic pathways targeted by
the metal-based NPs in diverse plant species, and key knowledge to understanding the
real impact of metallic NPs on plants.

2. Metabolomics Applied to Understand the Biochemistry of Nano-Plant Interaction

The successful application of nanoparticles in quite a few areas contributes to their
environmental release [28] and, consequently, to their interaction with plants. Moreover,
conventional agriculture will soon be substituted by more sustainable agriculture. In
that regard, the use of NPs is a good approach and is emerging [29–31]. These factors
prompted some authors to investigate the effects of NPs on plants [32–36] as well as any
adverse effects that can arise for human health [32,34,37]. Consequently, several researchers
focused their research on methodologies to measure nanoparticles in the environment [38],
particularly in soil and plants [39,40], and evaluate their impact on plant morphology
and physiology [41–43]. Although these topics are of extreme importance, our primary
focus is the NPs’ effect on specialized metabolite production [44] and, consequently, their
impact on the plant’s response to the stressor, NP elicitation, and nutritional or medicinal
value. As it is known, these metabolites are produced by plants to ensure their adaptation
and/or survival to the surrounding conditions [45], but they are also associated with
health-promoting bioactivities [46]. Therefore, metabolomics [21,47–49], a technique that
identifies and quantifies all low-weight metabolites, is an excellent technique to study the
nanoparticles’ impact on plant-specialized metabolite production. At the moment, the most
common analytical tools for metabolomics involve NMR spectroscopy and MS, the last one
coupled with chromatographic techniques such as gas and liquid chromatography [50,51].

2.1. Analytical Methods

NMR is a nondestructive technique that can be used in qualitative and quantitative
analysis and has high reproducibility [52–54]. The main advantages of NMR include the
easy handling of the samples, the release of crucial structural information that allows the
identification of the metabolites, and the performance of in vivo studies through isotope
tracing [53–55]; it is also not limited to liquid samples [56]. Different NMR experiments
with several levels of correlation can be performed simultaneously with the analysis of
different nuclei, including some that are biologically relevant such as 1H, 13C, and 15N.
Some important experiments used in metabolomic analyses include 1D and 2D NMR,
correlated spectroscopy, total correlation spectroscopy, and heteronuclear single-quantum
spectroscopy. The main disadvantage is its low sensitivity, thus requiring high concen-
trations [57]. However, 2D techniques can improve the NMR sensitivity and reduce the
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acquisition times [54,55]. Although several nuclei can be analyzed and used to establish
the sample profile, the most common one is 1H [52], primarily due to its abundance and
easy use in quantifications; furthermore, the NMR coupling with LC allows the separation
of the sample compounds simultaneously with 1H spectrum acquisition, which improves
the phytochemical analysis [55].

Although MS is destructive [58], it is the most common analytical technique for
metabolomic analysis, due to its high sensitivity and suitability for high-throughput analy-
sis [59]. MS-based methods are based on the monitoring of mass-to-charge ratios (m/z) of
all ionizable molecules present in a sample, and quantification is usually performed using
standard calibration curves [60]. In addition, different separation techniques can be coupled
to MS, such as LC, GC, and capillary electrophoresis. However, LC-MS and GC-MS are the
most common due to their versatility and robustness. The main advantages of GC-MS over
LC-MS are the high chromatographic resolution and reproducible retention times [51].

GC is usually coupled to hard ionization sources such as electron impact ionization,
allowing in-source fragmentation and identification of the molecular ion with the extensive
databases available for GC-MS [61]. However, the use of GC-MS is limited to volatile
analytes; to detect nonvolatile compounds such as amino acids, sugars, and organic acids;
derivatization is required before GC-MS can analyze them [62]. Alternatively, LC-MS
provides high sensitivity and selectivity for analyzing nonvolatile compounds. However,
separation by LC is susceptible to retention time shifts [63]. The use of 2D LC and GC has
also been implemented for metabolomics to minimize interferences from complex matrices
to increase chromatographic resolution and peak capacity [64].

2.2. Metabolite Extraction and Analytical Methods Used in Metallic NP Studies

Several metabolomic techniques have been used to unravel the metabolite changes
induced by metallic NPs in plants. Nevertheless, the main analytical methods rely on
LC-MS and GC-MS, which can be or not be coupled with a time-of-flight mass spectrometer
(TOF-MS). Most of the works use fresh [18,65–69], dry [70–72], freeze-dried [73–77], or
frozen sample material [19,78–80] that is then homogenized with the solvent for metabolite
extraction. For LC-MS analysis, most of the studies used methanol: formic acid [73,76] or
methanol: water [13,65], or only methanol [79] or water [81]. Sun et al. [82] used perchloric
acid: NaOH: benzoyl chloride: NaCl: anhydrous ether: methanol or chloroform: methanol
as solvents for targeted metabolomics. For GC-MS, the metabolite extraction is usually
performed using a mixture of methanol: chloroform: water [19,77,78,80,83], methanol:
water [68,71,84], chloroform: hexane: methanol [85], isopropanol: acetonitrile: water [74,75],
or only methanol [67,69], or hexane [66]. For the analysis of root exudates, metabolites
were extracted with water: ethyl acetate: chloroform [86]. After metabolite extraction for
GC-MS, samples are usually derivatized using a two-step procedure: oximation followed
by silylation [74,78,84,86].

3. Understanding the Impact of Metal-Based Nanomaterials on Plant
Metabolite Reconfiguration

NPs cover a wide range of materials, but few have been extensively studied. For
instance, the ones most investigated for their impact on plants are the NPs most commonly
used in industries (such as metal and metal oxide NPs of titanium dioxide, silver, zinc
oxide, cerium dioxide, copper, copper oxide, aluminum, nickel, and iron) [4,27]. These NPs
can act as abiotic stressors inducing stimulatory effects or phytotoxic symptoms, depending
on their origin/material and concentration [79,87]. They can affect plants at several levels,
inducing metabolite reconfiguration, physiological and morphological alterations, and
genotoxic changes [4,27,78,88].

Within the metabolite adjustments, metabolomic studies on the effects of NPs have
yet to be addressed; moreover, the few studies available indicate changes in primary and
secondary metabolism [78,79,89]. These changes are mostly related to the overproduction
of reactive oxygen species (ROS) induced by the nanomaterials [90], which can induce
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oxidative stress, depending on several factors such as plant stress tolerance, age, vegetative
stage, and type of tissues [26].

3.1. The Tenuous Line between the Potential Toxicity and the Benefits of Metal-Based NPs

Metal-based NPs have been reported to cause phytotoxic effects on plants, decreasing
their growth and performance [88,91]. One of the most commonly described symptoms of
NP phytotoxicity is the accumulation of ROS and secondary signaling messengers, leading
to transcriptional regulation of several metabolic pathways [29]. In turn, the overproduction
of ROS can result in oxidative stress and, directly or indirectly, affect primary and secondary
metabolite production [89]. Yet, the toxicity of the NPs depends on several factors, such as
the nature of the material, their size, the concentration used, and the exposure scenario [90].

Despite the adverse effects caused by the exposure of plants to NPs, several works have
highlighted the positive impact on plant growth and stress tolerance [4,92]. For instance,
treating several species, including crops and ornamentals, with metal-NPs is reported to
modulate the profile of primary and secondary metabolites [89]. This metabolite reconfigu-
ration can promote photosynthetic reactions and growth, improve the plant antioxidant
defense response [4,87], and increase plant tolerance to abiotic stresses [68,93,94].

Considering the contrasting effects on plants is thus critical to accurately assess the
potential risks vs. benefits of engineered nanomaterial application in agrosystems. With
that said, omics is an indispensable tool to fully understand the mode of action of the NPs
and the molecular and metabolic targets that lead to the contrasting morphological and
physiological effects described in the literature.

3.1.1. Titanium Dioxide Nanoparticles (nTiO2)

Titanium dioxide nanoparticles (nTiO2) are widely used and explored by distinct
industries such as pharmaceutics, medicines, coating, inks, plastics, food, cosmetics, tex-
tiles, solar cells, agriculture, environmental remediation, and more applications are being
pursued [95]. A range of morphological, physiological, and biochemical effects on plants,
sometimes conflicting, were already described: growth impairment [77,96] vs. improve-
ment [97–99], an increase in chlorophyll content [11,97] vs. decrease [11,100]; photosyn-
thesis decay [91] vs. stimulation [98]; ROS accumulation and/or antioxidant response
disturbance [11,77,88] vs. redox status maintenance [99]; no physiological alterations [101]
vs. geno/cytotoxicity [10,11,102]. Titanium dioxide nanoparticles (nTiO2) are one of the
most studied metallic NPs in terms of its phytotoxicity and potential to alleviate plant stress.
Thus, it is not surprising that metabolomic studies are also some of the most addressed, as
summarized in Table 1.

Table 1. Main Effects of nTiO2 on plant metabolome.

Particle
Primary

Size (nm)
Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

21 5, 50 and
150 mg L−1 Wheat

Together with
nutritive
solution

Hydroponics

Up-regulated the aspartate pathway, serine,
alanine and valine metabolisms, and the

glycerolipids’ biosynthesis; down-regulated
citrate and glyoxylate metabolisms

[78]

20 100, 250 and
500 mg L−1 Rice

Together with
nutritive
solution

Hydroponics

Increased glucose-6-phosphate,
glucose-1-phosphate, succinic and isocitric

acid concentration; up-regulated the
tricarboxylic acid cycle and the pentose

phosphate pathway; increased fatty acids,
amino acids and secondary metabolites;

decreased sucrose, isomaltulose, and
glyoxylic acid levels; down-regulated

arbohydrate synthesis metabolism including
starch and sucrose metabolism, and

glyoxylate and dicarboxylate metabolism

[77]
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Table 1. Cont.

Particle
Primary

Size (nm)
Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

20
25, 50, 150, 250,

500, and
750 mg kg−1

Rice Soil
amendment Soil

750 mg kg−1 increased the levels of proline,
aspartic acid, glutamic acid, palmitic acid,
glycerol, inositol, ribitol, phosphoric acid,

glycerol-3-phosphate proline, aspartic acid
and glutamic acid; decreased the levels of

overall fatty acids (linoleic and oleic acids),
organic acids and sugars

[68]

5–10 100 mg kg−1 Maize Soil
amendment Soil

Increased 4-aminobutyric acid, succinate
semialdeyde, putrescine, α-ketoglutaric acid,
hexenedioic acid, threonic acid, 2-ketobutiric

acid, palatinito and,
1-hydroxyanthraquinone;

decreased succinic acid, benzoylformic acid,
manose, phosphate and adenine

[19]

5–10 2.7 and
27 mg plant−1 Cucumber Foliar spray Soil

Changed the profile of 31 metabolites:
increased the abundance of amino acids such

as 3-hydroxy-L-proline, norvaline,
N-ethylglycine, glutamine, 5-aminovaleric
acid, and phenylacetaldehyde; increased

2-ketobutyric acid, 3-hydroxyflavone,
2-furoic acid, phytanic acid, and pelargonic

acid; decreased
N-acetyl-5-hydroxytryptamine and

2-amino-2-norbornanecarboxylic acid levels;
reduced succinic acid, tartaric acid and

glucoheptonic acid

[80]

25 10 and
100 mg L−1 Stevia

Together with
nutritive
solution

Hydroponics Increased proline levels; up-regulated
rebaudioside A and stevioside glucosides [103]

6.5

100 and
250 mg L−1

along with
50 µM Cd

Maize

Together with
nutritive

solution or
foliar sprayed

Hydroponics

Up-regulated alanine, aspartate and
glutamate metabolism, as well as glycine,

serine and threonine metabolism, galactose
metabolism and citrate cycle; promoted Cd

tolerance

[104]

21

10–1000 mg L−1

along with Cd
(10 and

20 mg L−1)

Rice Nutritive
solution Hydroponics

Altered the profile of indole-3-acetic acid,
methyl jasmonate, isopentenyl adenosine,

and zeatin riboside
[93]

20–30 100 and
200 mg L−1

Moldavian
balm

Root
application Soil Decreased geraniol levels [105]

Metabolomic studies conducted with wheat plants grown in hydroponics and exposed
to nTiO2 (5, 50, and 150 mg L−1) confirmed that metabolic and physiological changes were
associated with oxidative stress and antioxidant defense system activation [78,88]. These
NPs acted on the phenylalanine and tryptophan pathways, amino acids, and glycerolipid
biosynthesis in the glutathione-ascorbate cycle and also up-regulated tocopherol produc-
tion. High doses of TiO2-NPs affected the biosynthesis of sugars and, consequently, the
tricarboxylic acid (TCA) cycle to a greater extent. In rice (Oryza sativa L.) plants grown
hydroponically, higher nTiO2-NPs doses (100, 250 and 500 mg L−1) shifted the metabolism
towards the energy metabolism and the synthesis of antioxidants to cope with nTiO2
toxicity [77]. This metabolite adjustment resulted in an increase in glucose-6-phosphate,
glucose-1-phosphate, succinic acid, and isocitric acid, but in inhibition of sucrose, isoma-
ltulose, and glyoxylic acid production [77]. Nevertheless, most of the amino acids, fatty
acids, and secondary metabolites that correlated with crop quality increased [77].

In Cucumis sativus plants, a foliar spray with 2.7 or 27 mg plant−1 nTiO2 reported an
improvement of the photosynthetic rate, together with the decrease in leaf lipid peroxida-
tion, the increase in total phenolic content, and alterations in the leaf metabolite profile of
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amino acids, organic acids, fatty acids, sugars, and alcohols [80]. The lowest dose had a
minimal impact on cucumber metabolism; nevertheless, a total of 31 metabolites were up-
or down-regulated in the highest dose, demonstrating a dose-related response [80]. The
relative abundance of amino acids such as 3-hydroxy-L-proline, norvaline, N-ethylglycine,
glutamine, 5-aminovaleric acid, and phenylacetaldehyde was increased, whereas N-acetyl-
5-hydroxytryptamine and 2-amino-2-norbornanecarboxylic acid were reduced, suggesting
adjustments in protein biosynthesis and nitrogen metabolism [80]. Authors also pinpointed
alterations in carbohydrate metabolism, nutrient transport and transformation, and photo-
synthesis as a consequence of organic and fatty acid reconfiguration, where 2-ketobutyric
acid, 3-hydroxyflavone, 2-furoic acid, phytanic acid, and pelargonic acid were enhanced,
and succinic acid, tartaric acid, and glucoheptonic acid reduced [80]. These results clearly
show how nTiO2 can disturb plant metabolism and induce stress responses involving
several metabolic pathways.

Soil amended with 25–750 mg kg−1 nTiO2 promoted rice plant growth and significantly
altered the metabolite profile in grains of plants grown under 750 mg kg−1 nTiO2 [68].
Several compounds augmented (proline, aspartic acid, glutamic acid, palmitic acid, glycerol,
inositol, ribitol, phosphoric acid, and glycerol-3-phosphate proline, aspartic acid and
glutamic acid), whereas overall fatty acids (linoleic and oleic acid), organic acids, and sugar
contents decreased [68]. Changes in carbohydrate metabolism were also described in Zea
mays plants grown in soil amended with 100 mg kg−1 nTiO2, as well as alterations in the
inositol phosphate metabolism, ascorbate/aldarate, methane, glyoxylate and dicarboxylate,
and TCA cycle, apart from alterations in nitrogen metabolism with changes in amino acid
pools and nitrogen-containing compounds (e.g., 4-aminobutyric acid and its precursor
glutamic acid, and putrescine) [19].

3.1.2. Cerium (IV) Oxide Nanoparticles (nCeO2)

Cerium (IV) oxide nanoparticles (nCeO2) are highly manufactured NPs with extensive
commercial applications, have residual dissolution in the environment, and thus are pre-
dicted to persist in soil, interacting with plants in their nano-sized form [106]. It is known
that nCeO2 can alter plant growth [107,108], plant physiology, namely the antioxidant re-
sponse [109–111], photosynthesis [43,112], and nutritional composition [113]. Furthermore,
they can be assimilated and accumulated in plants [114,115]. Besides physiology, nCeO2
can also readjust the metabolome in plants, as listed in Table 2.

Table 2. Main Effects of nCeO2 on plant metabolome.

Particle
Size
(nm)

Concentration Species Application
Method

Growth
Medium Main Metabolic Effects Ref.

231 62.5, 125, 250,
and 500 mg L−1 Rice Seed

application Petri dishes

Increased lauric (at 62.5 and 125 mg L−1) and
valeric (150 mg L−1) acids, and 500 mg L−1

reduced lignin; decreased the content fatty acids
(palmitic, oleic, stearic, linoleic and linolenic),

and myristic acid

[66]

231 125, 250, and
500 mg kg−1 Wheat Soil

amendment Soil

125 mg kg−1 increased the content of amino
acids (arginine, aspartic acid, glycine, histidine,

and lysine) and linolenic acid; decreased linoleic
acid decrease

[85]

231 500 mg kg−1 Wheat Soil
amendment Soil

Generationally-exposed plants showed alteration
in 180 metabolite levels, including DNA/RNA

metabolites (thymidine, uracil, adenosine
monophosphate and deoxyguanosine), sugars

and sugar alcohols, organic acids, among others;
decreased nicotianamine and Fe simultaneously;
the changes were dependent on N content in soil

[67,106]
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Table 2. Cont.

Particle
Size
(nm)

Concentration Species Application
Method

Growth
Medium Main Metabolic Effects Ref.

10–30 25, 50, and
100 mg L−1 Bean Foliar spray Agar

Increased of terpenes and terpenoids (e.g.,
steroids, steroid hormones, di and triterpenes,

and carotenoids); alkaloids such as
1-O-caffeoyl-ß-D-glucose, esculin, and

(+)-sesamolinol; flavonoids profile was altered
and was dose-dependent; accumulation of
compounds involved in the glucosinolate

pathway and phytoalexin biosynthesis; increased
gibberellins, auxins and brassinosteroids

[79]

10 400 and
800 mg Kg−1 Cucumber Soil Soil amended

400 mg kg−1 increased globulin and decreased
glutelin; 800 mg kg−1 decreased phenolic content

and increase of total sugar content
[116]

In rice seedlings germinated in 5 mL nCeO2 suspensions, Rico et al. [66] reported
an increment in lauric and valeric acid content in plants treated with 150 mg L−1 nCeO2
together with an increment in lipid peroxidation. In the same seedlings, but now treated
with 500 mg L−1, nCeO2 decreased lignin content and increased H2O2 content despite
the marked increment in peroxidases and glutathione reductase activity. On the other
hand, in seedlings treated with 62.5 mg L−1 nCeO2, lauric acids increased and membrane
damage was maintained under control. These results highlight the potential of nCeO2 in
inducing oxidative stress for doses above 150 mg L−1 [66,117]. Another study analyzed the
effect of nCeO2 on the compositional fingerprint of root xylem in wheat, rice, and barley
seedlings germinated in 5 mL nCeO2 suspensions [118]. It was found that the exposure
to 125–500 mg L−1 nCeO2 in rice and wheat, and to 62.5–250 mg L−1 in barley, induced
significant spectral variability in xylem with compounds such as protein, cellulose, and
lipids being the most affected [118].

Phaseolus vulgaris plants, grown in agar medium supplemented with low doses of
nCeO2 (25, 50, and 100 mg L−1), were positively impacted by all NP doses, improving plant
fresh and dry weight, were responsive to 25 mg L−1 nCeO2 regarding proline (increased in
shoots but not in roots), and showed a metabolic response dependent on the dose in both
roots and leaves [79]. This study reported the stimulation of the secondary metabolism:
terpenes and terpenoids were responsive to the treatments (steroids, steroid hormones,
di and triterpenes, and carotenoids best represented the isoprenoid family); alkaloids
such as 1-O-caffeoyl-ß-D-glucose, esculin, and (+)-sesamolinol were particularly affected;
flavonoid profile was severely altered and was dose-dependent; compounds involved in
the glucosinolate pathway and phytoalexin biosynthesis were up-accumulated [79]. These
results show that the response induced by nCeO2 exposure can be related to oxidative stress,
a hypothesis supported by the increase in glutathione andδ-tocotrienol, both involved in the
antioxidant response, and of jasmonates, known to be involved in plant defense responses
and secondary metabolite increase [79]. Nevertheless, hormones such as gibberellins,
auxins, and brassinosteroids were also up-accumulated, which can justify the changes
in phenotype as they are involved in plant physiological responses, and support the
presence of stress induced by nCeO2, since brassinosteroids in particular are involved in
the regulation of signal transduction pathways to stimulate stress tolerance [79,119].

Soil amendment with nCeO2 altered the protein content in C. sativus fruits exposed
to 400 mg kg−1 nCeO2: globulin increased, while glutelin decreased [116]. On the other
hand, when exposed to 800 mg kg−1 nCeO2, a decrease in phenolic content together with
the increase in total sugar content was detected, impacting the nutritional quality of the
fruit [116]. In T. aestivum plants, soil amendment with 125–500 mg kg−1 nCeO2 promoted
plant growth and improved yield parameters under the highest dose, whereas the lowest
dose changed the amino acid and fatty acid profiles in grains: 125 mg kg−1 nCeO2 increased
the content of arginine, aspartic acid, glycine, histidine, and lysine, showing a trend in
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improvement of amino acid content in wheat grains; linolenic acid abundance increased
simultaneously with linoleic acid decrease, showing disturbance in fatty acid synthesis
and storage [85]. Later, the same group evaluated the impact of continuous generational
exposure to 500 mg kg−1 nCeO2 on wheat grains and found that it affected DNA/RNA
metabolites (e.g., thymidine, uracil, deoxyguanosine, adenosine monophosphate), as well
as the levels of numerous metabolites such as nicotianamine, sugars (fructose-6-phosphate,
glucose-6-phosphate, mannose-6-phosphate, hexose-6-phosphate, ribose, isomaltose and
melibiose), sugar alcohols (erythritol, maltotriose, 6-deoxyglucitol, ribitol, 1-hexadecanol,
and 6-deoxyglucitol), and diverse organic acids, such as fatty acids, among others [67,106].
In particular, the observed simultaneous decrease in nicotianamine, a metabolite involved
in nutrient storage, with Fe decrease shows putative implications of nCeO2 exposure on
grain nutritional value [67]. Interestingly, they also found that the impact of nCeO2 on
metabolite levels/composition and plant growth depended on the offspring environment
(e.g., N level in soil), modulating the influence of parental exposure [67,106]. These findings
pinpoint that continuous exposure to nCeO2 and other NPs may have implications on
ecosystem processes and that omics-based studies on generationally-exposed plants are
key in deciphering the real impact on plants of NPs in soil and the environment.

3.1.3. Silver Nanoparticles (nAg)

Despite not being the most produced worldwide, nanosilver has been considered
the most used metal-based nanomaterial in consumer products [120]. Silver nanopar-
ticles (nAg) are largely known and used due to their antimicrobial properties, leading
to nAg use in medicine, cosmetics, pharmaceutics, agriculture, and textiles. However,
nAg applications go beyond that, and they are also used in electronics, sensors, and solar
cells [121]. In the agricultural sector, nAg have been explored as plant-stimulants [122],
stress mitigators [123], and fungicides [124], despite the diverse studies also demonstrating
their potential phytotoxicity [25,125,126]. The effects of nAg on plant metabolome are
summarized in Table 3.

Table 3. Main Effects of nAg on plant metabolome.

Particle
Size
(nm)

Concentration Species Application
Method

Growth
Medium Main Metabolic Effects Ref.

<100 25, 50, 100, and
200 ppm Rosemary Foliar spray Hydroponics Increased carnosic acid production [72]

8–21 1 µg mL−1 Fenugreek Seed
application Soil Increased the production of diosgenin [70]

5–10 10, 20 and
40 mg L−1 Wheat Seed

application Petri dishes

Decreased glucose, galactose and malate, and
increased sucrose, 1-kestose, citrate, fumarate,

proline and aspartate/asparagine in roots;
decreased glucose, fructose, and 1-kestose

(40 mg L−1) in coleoptile, but increased galactose;
decreased carbohydrates in the endosperm and

citrate and lactate

[71]

29 4 and
40 mg plant −1 Cucumber Foliar spray Soil

Down-regulated acetanilide, p-benzoquinone,
5,6-dihydrouracil, dibenzofuran, oxalic acid,

oxamic acid, and lactamide, and up-regulated
carbazole, raffinose, lactulose, citraconic acid,

aspartic acid, dithioerythritol,
D-erythronolactone, and N-methyl-L-glutamic
acid contents; decreased linoleic and linolenic

acids, and increased pentadecanoic acid

[18]

13–15 10 mg L−1 Wheat
Seed incubation

during
germination

Hydroponics +
soil

Altered the phytohormones profile and
proportion: increased GA6 and decreased

cis-zeatin riboside; increased the content of
transport of sugars such as sucrose, raffinose,

and sorbitol

[81]
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Table 3. Cont.

Particle
Size
(nm)

Concentration Species Application
Method

Growth
Medium Main Metabolic Effects Ref.

10 12.5 mg kg−1 Arabidopsis Soil
amendment Soil

Increased TCA (e.g., malic, fumaric and threonic
acids) and sugar metabolism (e.g., galactonic acid

and tagatose), decreased amino acids (valine,
serine, and aspartate), sugar alcohols (e.g.,

glycerol and ribitol), and
shikimate-phenylpropanoid-related metabolites

(e.g., scopoletin and melatonin)

[69]

Under hydroponics, the foliar spray of Rosmarinus officinalis plants with AgNP at the
concentrations 0, 25, 50, 100, and 200 ppm improved the levels of carnosic acid production, a
metabolite related to antioxidant protection [72]. The treatment of Trigonella foenum-graecum L.
plantlets with 1 mg L−1 of nAg prior to transplantation to soil played a dual role, increasing
plant growth and the synthesis of diosgenin involved in stress response [70].

A recent study analyzed the impact of 10–40 mg L−1 bio-synthesized nAg on germina-
tion and early seedling development and metabolic profile in T. aestivum, incubating the
seeds in the suspensions during the germination [71]. It was found that these NPs altered
the primary metabolism, the mobilization of storage materials, sugars, and amino acid
translocation from the endosperm to the seedlings. The nAg decreased the total content of
soluble sugars, total amino acids, and total organic acids in coleoptile while increasing the
content of total soluble sugars and decreased the total content of organic acids in roots; nAg
decreased glucose and galactose, while increasing sucrose and 1-kestose in roots; in the
coleoptile, glucose, fructose, and 1-kestose (40 mg L−1) were reduced whereas galactose
increased, which may have led to the inhibition of coleoptile growth as galactose acts as a
coleoptile growth inhibitor; in the endosperm, nAg decreased the levels of most carbohy-
drates, suggesting a reduction in starch mobilization in the endosperm induced by nAg, as
well the reduction in the use of released sugars [71]. Apart from this, nAg also accumulated
proline and aspartate/asparagine in roots, contrary to the coleoptile, which is in line with
the rise of ROS in roots; in the TCA cycle, malate decreased in roots while citrate and
fumarate increased; all identified organic acids decreased in the coleoptile, and only citrate
and lactate were reduced in the endosperm [71]. In T. aestivum seedlings for which seeds
had been treated with 10 mg L−1 nAg, changes in the three main groups of phytohormones,
i.e., cytokinins, gibberellins, and auxins, were reported [81]. These authors described a high
increment of GA6 and a strong decrease in cis-zeatin riboside in nAg treated plants. These
changes were related to plant growth promotion and to the acceleration of the transition
between the vegetative and reproductive stages, which coincided with the increase in
sucrose, raffinose, and sorbitol, leading to superior yields [81].

In C. sativus plants grown in soil and treated with nAg (4 or 40 mg plant−1), it was
demonstrated that foliar-sprayed NPs increased lipid peroxidation together with metabolite
profile changes, with some of them being similar to those also induced by Ag2+ exposure
while others were specific to the NPs, thus indicating a nanoscale size-specific effect [18].
Both Ag2+ and nAg increased metabolites related to antioxidant responses, for example,
phytol, arbutin and salicin, 4-hydroxyquinazoline, and pyrogallol. Together with the up-
regulation of sugars and sugar alcohols, these are important for stress-related responses [18].
Changes in fatty acids (e.g., pentadecanoic acid, linoleic and linolenic acids) also reveal
membrane remodeling to adapt to adverse conditions, and the particular increase in
salicylic acid highlights the broad defense-related response of cucumbers [18]. The nAg-
specific-related response included the down-regulation of acetanilide, p-benzoquinone,
5,6-dihydrouracil, dibenzofuran, oxalic acid, oxamic acid, and lactamide, and the up-
regulation of carbazole, raffinose, lactulose, citraconic acid, aspartic acid, dithioerythritol, D-
erythronolactone, and N-methyl-L-glutamic acid [18]. In another study, the soil amendment
with 12.5 mg kg−1 nAg up-regulated the tricarboxylic acid (TCA) cycle (e.g., malic acid
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and fumaric acid) and sugar metabolism (e.g., galactonic acid and tagatose) in Arabidopsis
thaliana, increasing the energy and accelerating the stress response while reducing the plant
growth [69]. On the other hand, the levels of amino acids (valine, serine, and aspartate) and
the shikimate-phenylpropanoid biosynthesis were down-regulated, while some metabolites
of the aspartate pathway increased, suggesting up-regulation of the aspartate family to
feed the TCA cycle for energy supply [69]. Recently, it was found that foliar application of
nAg (5, 7.5, and 10 mg L−1) can alter the essential oil composition of leaves and peels of
lemon trees [127].

3.1.4. Copper Nanoparticles (nCu)

Among the copper nanoparticles (nCu), copper oxide nanoparticles (nCuO) are the
most common, being used in areas such as environmental remediation and environmen-
tal sensing, biomedical applications, agriculture, catalysis, electrochemistry, and energy
storage, among others [128,129]. In agriculture, nCuO are commonly associated with their
fungicidal and bactericidal properties and are highlighted as a more sustainable strategy
for pest control when compared to their ionic or bulk counterparts [130–132]. Lately, the
potential of nCuO/nCu for the mitigation of metal/metalloid toxicity in plants [133–135]
and climate/environmental stresses such as drought [136,137] and salinity [138] has been
explored. Nevertheless, nCuO show the potential to be phytotoxic [139] to several plant
species, raising questions about their safety in agricultural systems. Among the species
that showed some level of vulnerability to nCuO are Vigna radiata [140], Glycine max [141],
C. sativus [142], T. aestivum [143], Coriandrum sativum [144], Brassica rapa [145], Lactuca
sativa [146], and O. sativa [147]. Metabolic studies conducted with nCu in plants are still
very limited, nevertheless those available suggest nCu’s ability to induce metabolic recon-
figuration, as shown in Table 4.

Table 4. Main Effects of nCu on plant metabolome.

Particle Size
(nm) Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

40 10 and
20 mg L−1 Cucumber

Together with
nutritive
solution

Hydroponics

In leaves, up-regulated 4-aminobutyrate,
acetylglucosamine, phenyllactate, nicotinurate and

glutaric acid monomethyl ester, and
down-regulated N-carbamoylaspartate

desaminotyrosine, N-acetyltyrosine,
N-carbamoyl-beta-alanine, thymidine, cytidine,

melatonin, kynurenine, caprate, O-acetylcarnitine,
carnosine, NADH, ribofavin, urea, epicatechin,

chlorogenate; altered the metabolite profile of root
exudates: increased amino acids (alanine, ß-alanine,

glycine, isoline, leucine, lysin, phenylalanine,
proline, serine, threonine and valine), salycilic and
benzoic acids, pelargonic acid, and decreased citric

acid and dehydroascorbic acid

[86]

50 100 mL L−1 Wheat Foliar
application

Water-
saturated

vermiculite

Disturbed 34 metabolites in leaves and 27 in roots,
mostly down-regulated, with a total of 17

pathways being perturbed in leaves and 17 in roots;
glyoxylate/dicarboxylate metabolism and

stilbenoid/diarylheptanoid/gingerol biosynthesis
were disturbed in leaves, and glutathione
metabolism and valine/leucine/isoleucine

biosynthesis in roots

[73]

~50 to >1000 10 and
100 mg Maize Foliar spray Soil

Increased phenolic acids 1,3,4-benzenetriol,
4-hydroxycinnamic acid; 100 mg increased amino

acids phenylalanine, tyrosine and proline
[75]
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Table 4. Cont.

Particle Size
(nm) Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

~50 to >1000 1050 and
1555 mg L−1 Lettuce Foliar spray Hydroponics

Decreased total antioxidant capacity; altered 39
metabolites, carboxylic acids (decreased fumaric
acid, aconitic acid, threonic acid and oxalic acid,

and increased malic acid), amino acids (decreased
alanine, GABA, oxoparoline and lysine, and

increased aspartic acid, glutamine, tryptophan,
citrulline, glycine, and asparagine), and secondary

metabolites such as polyamines, polyphenols
(cis-caffeic acid, 3,4-dihydroxy-cinnamic acid and

chlorogenic acid decreased) and the vitamin
dehydroascorbic acid (reduced)

[74]

In C. sativus grown in a hydroponic system, nCu at concentrations of 10 and 20 mg L−1

supplemented with a nutritive solution confirms that plant defense mechanisms against
NPs-toxicity are related to several metabolic adjustments, in particular with an up-regulation
of the metabolism of amino acids, amines, sugars, and carboxylic acids (4-aminobutyrate,
acetylglucosamine, phenyllactate, nicotinurate, and glutaric acid monomethyl ester) in
leaves [86]. Besides leaves, nCu exposure also changed the metabolite profile in root ex-
udates, up-regulating several amino acids (alanine, ß-alanine, glycine, isoline, leucine,
lysin, phenylalanine, proline, serine, threonine, and valine), salicylic and benzoic acids,
pelargonic acid, while down-regulating citric acid and dehydroascorbic acid [86].

The active ingredient of the commercial nanopesticide Kocide 3000, nCu(OH)2, was
tested in T. aestivum plants by foliar application of 100 mg L−1 nCu(OH)2 (as Cu con-
tent) [73]. The metabolomic analysis showed that nCu(OH)2 disturbed 34 metabolites
in leaves and 27 in roots, with the great majority being down-regulated and a total of
17 pathways being perturbed in leaves and 17 in roots; glyoxylate/dicarboxylate metabolism
and stilbenoid/diarylheptanoid/gingerol biosynthesis were disturbed only in leaves, while
alterations in the glutathione metabolism and valine/leucine/isoleucine biosynthesis were
specific to roots [73]. In another study, the effect of 10 and 100 mg nCu(OH)2 nanopesticide
Kocide 3000 (leaf sprayed) on the levels of 12 low-molecular-weight antioxidants was
evaluated in Z. mays plants grown in soil; the vitamins γ-tocopherol, α-tocopherol, and
ascorbic acid, the nonprotein amino acid 4-aminobutyric acid, and the phenolic compound
benzoic acid were not affected; nevertheless; the amino acids phenylalanine and tyrosine
were up-regulated in response to 100 mg and proline was up-regulated in a dose-dependent
manner, and the phenolic acids 1,3,4-benzenetriol, 4-hydroxycinnamic acid increased [75].
The metabolic changes observed indicate an up-regulation of phenolic biosynthesis as a
protective mechanism against Cu-induced ROS, which may play a superior role in detoxi-
fying ROS than enzymatic antioxidants [75]. Using the same nanopesticide, Zhao et al. [74]
evaluated the leaf spray on L. sativa plants grown in hydroponics and found that together
with K content increase, nCu(OH)2 nanopesticides decreased the total antioxidant capacity
and altered 39 metabolites, including carboxylic acids (fumaric acid, aconitic acid, thre-
onic acid, and oxalic acid were down-regulated, while malic acid and other 3 more were
up-regulated), amino acids (alanine, GABA, oxyproline, and lysine were down-regulated
and aspartic acid, glutamine, tryptophan, citrulline, glycine, and asparagine were up-
regulated), and secondary metabolites such as polyamines and polyphenols (cis-caffeic
acid, 3,4-dihydroxycinnamic acid, and chlorogenic acid decreased), and the vitamin de-
hydroascorbic acid (reduced). These findings showed that the application of nCu(OH)2
nanopesticides may affect the overall nutritional value of lettuce leaves, therefore the im-
portance of defining the appropriate level of nCu(OH)2 to be used without decreasing crop
nutritional value or limiting its antifungal activity [74].
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3.1.5. Zinc Oxide Nanoparticles (nZnO)

The antimicrobial properties of zinc oxide nanoparticles (nZnO) and their potential in
the agricultural sector justify the high attention on these NPs; nevertheless, their potential
as a nutrient fortifier and abiotic stress modulator also makes these NPs a subject of interest
and research [148]. Indeed, diverse studies have reported nZnO capability in controlling
several phytopathogens [149–154]. Zinc oxide nanoparticles (nZnO) have shown the ability
to decrease environmental stresses on plants [22], such as metals [13,155,156], salt [84,157],
and drought [158,159], and of being a nanofertilizer by slowly releasing Zn2+ [160,161].
Despite these benefits, nZnO may also be phytotoxic, mainly when high concentrations
are used [76,148].

In terms of the impact of nZnO on the plant metabolome (Table 5), the foliar application
of 50 mg L−1 nZnO on tobacco plants grown in hydroponics up-regulated30 metabolites
(e.g., three alkaloids, nine flavonoids, and three phenylpropanoids) and down-regulated
22 metabolites (e.g., one alkaloid, three flavonoids, five amino acids and derivatives) in
roots, while in leaves 12 metabolites were increased (e.g., alkaloids, four amino acids and
their derivatives, one flavonoid) and 17 were reduced (e.g., two alkaloids, five flavonoids,
two nucleotides, and their derivates) [13].

Table 5. Main Effects of nZnO on plant metabolome.

Particle Size
(nm) Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

~30 50 mg L−1 Tobacco Foliar spray Hydroponics

Increased 30 metabolites (e.g., three alkaloids, nine
flavonoids, and three phenylpropanoids) and

decreased 22 metabolites (e.g., one alkaloid, three
flavonoids, five amino acids and derivatives) in

roots; in leaves increased 12 metabolites
(e.g., alkaloids, four amino acids and their
derivatives, one flavonoid) and decreased

17 metabolites (e.g., two alkaloids, five flavonoids,
two nucleotides and their derivates)

[13]

10 400 and
800 mg kg−1 Cucumber Soil Soil 400 mg kg−1 increased globulin content, while

800 mg kg−1 increased glutelin
[116]

20 100 mg mL−1 Cucumber Foliar spray Soil

Increased methionine, tryptamine, tryptophan,
isoleucine, valine, phenylalanine, and tyrosine in
leaves, while in roots decreased tryptophan and

up-regulated tyrosine; in leaves increased
4-hydroxyproline galactoside and

L-galacto-2-heptulose, and decreased
dihydrozeatin-O-glucoside, isorhamnetin

3-rutinoside 4′-rhamnoside, apigenin
7-rhamnoside-4′-rutinoside, quercetin, rutin, and

quercetin 3-O-glucoside

[65]

20–45 50 or
100 mg L−1 Kudouzi Foliar spray Hydroponics

Increased dehydroascorbic acid and malonic acid
and decreased the amino acids asparagine,

tryptophan, phenylalanine and
N-methyl-DL-alanine in leaves; in roots increased
L-malic acid, gentiobiose, 3,6-anhydro-D-galactose,
ribose, α-ketoglutaric acid, 4-hydroxybutyrate, and
ascorbate, and decreased asparagine, aspartic acid,

acycloleucine, L-allothreonine, 3-cyanoalanine,
tryptophan, lactose and meliobiose

[84]
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Table 5. Cont.

Particle Size
(nm) Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

10–30
250, 500,
1000 and

2000 mg L−1
Bean Foliar spray or

irrigated Soil

Foliar application (2000 mg L−1) decreased
flavonoids (e.g., 2′-O-methylisoliquiritigenin,

pinostrobin, and (—)-medicarpin, and the terpene
oleanolate 3-β-D-glucuronoside-28-glucoside) and

increased lipids
(e.g., (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate
and sphinganine 1-phosphate), phenolics such as

salicin and humulone, and the hormones
gibberellins and indole-3-butyryl glucose; root
application increased carotenoids, flavonoids
(e.g., luteolin, kaempferol, bracteatin, tricetin,

quercetin, delphinidin and
4′-methoxyisoflavan-2′,4,7-triol), jasmonic

acid and shikonin

[76]

20 100 mg L−1 Maize Root
application Soil Increased the production of melatonin, starch and

sugars biosynthesis, and glycolysis metabolism [82]

On the other hand, the same species treated with 400 mg kg−1 soil of nZnO increased
globulin content, while 800 mg kg−1 enhanced glutelin content, both proteins responsive to
(a)biotic stress [116]. Li et al. [65] reported that the foliar application of nZnO in C. sativus
at concentrations of 100 mg L−1 increased the contents of several metabolites, leading to
growth-promoting effects and at the same time increasing defense and stress responses.
For instance, nZnO changed the metabolism of the amino acids in leaves, increasing the
contents of methionine, tryptamine, tryptophan, isoleucine, valine, phenylalanine, and
tyrosine, while in roots it negatively correlated with tryptophan and up-regulated tyro-
sine. Beside the biosynthesis of the amino acids, these NPs also modulated the carbon
metabolism (increased the levels of e.g., 4-hydroxyproline galactoside and L-galacto-2-
heptulose, while reducing the levels of e.g., dihydrozeatin-O-glucoside in leaves; in roots
most of the compounds were down-regulated) and down-regulated the flavonoid path-
way in leaves (decreased the levels of isorhamnetin 3-rutinoside 4′-rhamnoside, apigenin
7-rhamnoside-4′-rutinoside, quercetin, rutin, and quercetin 3-O-glucoside) [65]. The pro-
duction of some organic acids, such as salicylic acid, was also stimulated in leaves, while
in roots all were down-regulated by these NPs in C. sativus. In hydroponics, foliar spray
of Sophora alopecuroides seedlings with 50 or 100 mg L−1 nZnO increased the levels of
dehydroascorbic acid and malonic acid and decreased the amino acids asparagine, trypto-
phan, phenylalanine, and N-methyl-DL-alanine in leaves. In roots, nine metabolites were
increased (e.g., L-malic acid, gentiobiose, 3,6-anhydro-D-galactose, ribose, α-ketoglutaric
acid, 4-hydroxybutyrate, and ascorbate) and nine also decreased, including the amino acids
asparagine, aspartic acid, acycloleucine, L-allothreonine, 3-cyanoalanine, and tryptophan,
lactose and meliobiose [84].

In Phaseolus vulgaris grown in soil, plants were foliar sprayed or irrigated with nZnO
suspensions (250, 500, 1000, and 2000 mg L−1) and revealed that the mode of applica-
tion and the dose differently affected the morphology and physiology of the plants, e.g.,
photosynthesis, the enzymatic antioxidant response, and the proline level (increased in
a dose-dependent manner when plants were foliar sprayed, while decreased or was not
altered in soil application) [76]. The metabolomic analysis was performed only in plants
treated with the highest dose. It revealed that the application method differently affected
the metabolite profile: Foliar spray down-regulated seven metabolites, including flavonoids
such as 2′-O-methylisoliquiritigenin, pinostrobin, and (−)-medicarpin, and the terpene
oleanolate 3-β-D-glucuronoside-28-glucoside, while it up-regulated 13 metabolites such
as lipids (e.g., (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate and sphinganine 1-phosphate),
phenolics such as salicin and humulone, and the hormones gibberellins and indole-3-
butyryl glucose. Root applications did not negatively affect the metabolite contents and
even up-regulated diverse carotenoids, flavonoids such as luteolin, kaempferol, bracteatin,
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tricetin, quercetin, delphinidin and 4′-methoxyisoflavan-2′,4,7-triol, the hormone jasmonic
acid, and shikonin [76]. These results showed that foliar application targeted photosyn-
thesis and had a dose-dependent effect, contrary to root irrigation, which did not show
dose-related responses and targeted the antioxidant response [76]. It is noteworthy that this
study also highlighted that nZnO and ZnSO4 induced distinct toxic effects on plants [76].

3.1.6. Magnetic Iron Oxide Nanoparticles (nFe3O4)

Magnetic iron oxide nanoparticles (nFe3O4) are widely used in catalysis, medical
science (e.g., magnetic resonance imaging, biosensor, drug delivery, etc.), separation tech-
nology, in the agri-food sector (e.g., fertilizer, antimicrobial, slow-release system, additives,
protein immobilization, storage, etc.), and environmental/water remediation [5,162,163].
In terms of the interaction of nFe3O4 with plants, improvement in plant growth [164–166]
and photosynthesis [167,168], antioxidant response activation, defense response elici-
tation against viruses [169] and fungi [170], metal toxicity mitigation [13,167,171,172],
drought [173], salinity [174], and Fe-deficiency stress alleviation [175] have been reported.
Nevertheless, it should not be forgotten that as with other NPs, under some conditions,
nFe3O4 can also be detrimental to plant species [175,176].

Much of the physiological alterations induced by these NPs result from induced
metabolic rearrangements, as can be confirmed by the still scarce metabolomic studies
available with nFe3O4 in plants (Table 6). For example, the application of nFe3O4 on Nicotiana
tabacum plants grown hydroponically up-regulated 16 metabolites (e.g., perakine–alkaloid,
farrerol and quercetin–flavonoids, and p-coumaryl alcohol–phenylpropanoids) and down-
regulated 24 metabolites (e.g., riddeline, echimidine, 3-(carboxymethylamino)propanoic acid–
alkaloids, cyanin, (+)-afzelechin, hyperoside–flavonoids, 3-hydroxy-4-methoxycinnamic acid–
phenylpropanoid) in roots, while in leaves 26 metabolites were increased (e.g., 5 alkaloids,
cysteinylglycine, glutathione, L-homoglutamic acid, L-homoserine, L-threonine, L-arginine,
4-aminobutyric acid–amino acids and their derivatives, three flavonoids) and 19 reduced
(e.g., two alkaloids, two flavonoids, one phenylpropanoid) [13].

Table 6. Main Effects of Fe3O4 on plant metabolome.

Particle
Size (nm) Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

20 50 mg L−1 Tobacco Foliar spray Hydroponics

Increased 16 metabolites (such as
perakine–alkaloid, farrerol and

quercetin–flavonoids, and ρ-coumaryl
alcohol–phenylpropanoids) and decreased

24 metabolites (such as riddeline, echimidine,
3-(carboxymethylamino)propanoic

acid–alkaloids, cyanin, (+)-afzelechin,
hyperoside–flavonoids,

3-hydroxy-4-methoxycinnamic
acid–phenylpropanoid) in roots; in leaves

increased 26 metabolites (such as five
alkaloids, cysteinylglycine, glutathione,

L-homoglutamic acid, L-homoserine,
L-threonine, L-arginine, 4-aminobutyric

acid–amino acids and their derivatives, three
flavonoids) and decreased 19 metabolites

(such as two alkaloids, two flavonoids, one
phenylpropanoid)

[13]
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Table 6. Cont.

Particle
Size (nm) Concentration Species Application

Method
Growth
Medium Main Metabolic Effects Ref.

30 100 mg Kg−1 Maize Soil
amendment Soil

In leaves, 11 pathways were altered, nitrogen
(particularly the amino acids serine, tyrosine,
valine, threonine, isoleucine, phenylalanine,
glutamic acid, proline and glutamine), TCA
cycle, glycolysis and gluconeogenesis, and

pyrimidine metabolism; in roots the
pathways related to inositol phosphate
metabolism, glycerolipid metabolism,

ascorbate and aldarate metabolism, and TCA
cycle were disrupted, increased

1-hydroxyanthraquinone,
4-hydroxycinnamic acid, caffeic acid,

ascorbate, phenylalanine and tyrosine

[19]

30 50 mg Kg−1 Maize Irrigation
water Soil

Decreased 20 metabolites, including sugars
(e.g., xylose, galactinol, levoglucosan,

1,5-anhydroglucitol, myo-inositol, and
threitol), amino acids (e.g., glutamine,
glutamic acid and proline), phenolics
(catechin, gallocatechin, benzoic acid,
hydroxybenzoic acid), organic acids

(e.g., fumaric acid), and aldarate
metabolic pathway

[83]

Zhao et al. [19] reported the metabolome readjustments induced by nFe3O4 at the
concentration of 100 mg kg−1 soil, in both leaves and roots of Z. mays, despite being
more pronounced in leaves. In leaves, 11 pathways were altered, including those related
to nitrogen metabolism (particularly the amino acids serine, tyrosine, valine, threonine,
isoleucine, phenylalanine, glutamic acid, proline, and glutamine), TCA cycle, glycolysis
and gluconeogenesis, and pyrimidine metabolism, in addition to the phenylalanine and
tyrosine up-regulation [19]. On the other hand, significantly fewer pathways were dis-
rupted in roots, accounting for only four: inositol phosphate metabolism, glycerolipid
metabolism, ascorbate and aldarate metabolism, and the TCA cycle. The up-regulation of
several ROS scavengers (1-hydroxyanthraquinone, 4-hydroxycinnamic acid, caffeic acid,
and ascorbate) was detected, as well as phenylalanine and tyrosine, also involved in defense
responses as precursors of defense-related secondary metabolites, which altogether suggest
that nFe3O4 induced a significant stress response [19]. In Z. mays plants grown in soil,
smaller doses of nFe3O4 (50 mg kg−1 soil) were able to re-program the root metabolome
despite no phenotypic changes being observed [83]. Among the 191 metabolites identi-
fied, 20 were significantly altered and all of them were down-regulated, including sug-
ars (e.g., xylose, galactinol, levoglucosan, 1,5-anhydroglucitol, myo-inositol, and threitol),
amino acids (e.g., glutamine, glutamic acid and proline), phenolics related with the antioxi-
dant response (catechin, gallocatechin, benzoic acid, and hydroxybenzoic acid), and organic
acids (e.g., fumaric acid). These changes reflected alterations in several metabolic pathways:
four of them were related to sugar metabolism, with particular relevance of the inositol
phosphate metabolism; five of them were related to amino acid metabolism, indicating
the re-programming of nitrogen metabolism to manage plant growth instead of a stress
response; one of them was related to oxidative stress, the ascorbate and aldarate metabolic
pathway [83]. Overall, in this case, it seems that nFe3O4 had a protective effect on Z. mays.

3.2. Metabolomics to Understand the Stress Tolerance Promotion

Concerning stress tolerance improvement, several studies highlighted the important
role of NPs in promoting plant defense under heavy metal, salinity, and drought condi-
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tions. For instance, the exposure of Z. mays plants (grown in hydroponics) to nTiO2 (100 or
250 mg L−1) via leaves exerted higher influence on the metabolic profile of maize than the
application via roots; it also had a stronger impact in alleviating Cd-induced (50 µM) toxic-
ity [104] (Table 1). The Cd tolerance was related with the activation of antioxidant responses,
synthesis of antioxidants (alanine, aspartate, and glutamate metabolism, as well as glycine,
serine, and threonine metabolism), and regulation of major metabolic pathways towards
the energy metabolism such as the galactose metabolism and citrate cycle [104]. In rice, the
content of hormones such as indole-3-acetic acid (IAA), methyl jasmonate (JA), isopentenyl
adenosine, and zeatin riboside were altered when treated with nTiO2 (10–1000 mg L−1) in
the presence of Cd (10 or 20 mg L−1) [93] (Table 1). The foliar application of 50 mg L−1

Fe3O4 and nZnO (Tables 5 and 6) showed great potential in alleviating Cd toxicity in
tobacco seedlings [13] under Cd-induced stress. These NPs stimulated the accumulation of
several metabolites, such as flavonoids (quercetin, isorhamnetin, isoquercitrin), alkaloids
(denudatine), terpenes (catalpalactone, kaurenoic acid, and limonin), and amino acids
(N6-acetyl-L-lysine and L-theanine) that were positively correlated with improved plant
growth (plant height and shoot fresh weight) under Cd-stress conditions.

As Wan et al. [84] demonstrated, nZnO also contributes to salt tolerance (Table 5). In
Sophora alopecuroides seedlings, the foliar application of 50 or 100 mg L−1 nZnO with a size
of 20–45 nm improves growth by modulating metabolite profile (increase in lactobionic acid,
4-hydroxypyridine, phenyl beta-D-glucopyranoside, glucose-6-phosphate, and L-malic acid
in leaves and roots). Moreover, the increase in glucose-6-phosphate, L-malic acid, fumaric
acid, and succinic acid in the leaves, and aconitic acid, citric acid, fructose-6-phosphate,
pyruvic acid, and α-ketoglutaric acid in the roots suggested that foliar application of ZnO
NPs promoted glycolysis and the TCA cycle to generate more energy [84]. The lipid
pathway is also modulated by ZnO NPs in response to salinity, inducing the accumulation
of linolenic acid in the leaves which contributes to maintaining membrane integrity under
salt stress. The application of nTiO2 in roots (100 and 200 mg L−1) modulates the growth
and secondary metabolism of Dracocephalum moldavica L. in response to salt stress [105]
(Table 1). These NPs decreased the negative effects of salt stress, increasing agronomic
traits and the amount of geraniol, a stress signaling molecule that regulates the expression
of several genes related to plant stress defense [105,177].

Plant drought negative effects can also be ameliorated by nTiO2 (Table 1), nZnO (Table 5),
and nMg. The application of nTiO2 (10 and 100 mg L−1) on leaves of Stevia rebaudiana
under water limitations induced a stress response by increasing proline levels, apart
from up-regulating rebaudioside A and stevioside steviol glucosides [103]. In maize
plants under drought conditions, the root application of nZnO (100 mg L−1) promoted
the melatonin synthesis and activated the antioxidant enzyme system, alleviating the
drought-induced damage to mitochondria and chloroplast [82]. Melatonin levels are
essential in regulating plant growth and morphogenesis and in the defense against abiotic
stress. In Z. mays, nZnO (100 mg L−1) also alleviated drought stress by promoting starch
and sucrose biosynthesis and glycolysis metabolism and endorsed drought tolerance by
increasing water use efficiency and photosynthesis [158]. In Achillea millefolium, nMg foliar
application at the concentration of 0.1, 0.3, and 0.5 g L−1 increased the levels of several
secondary metabolites (sesquiterpenes), a strategy to protect from the harmful effects of
drought stress [14].

4. Conclusions

All these studies demonstrated that metabolomic analysis is a powerful and needed
tool to understand the mode of action of metal-NPs on plants and the molecular mecha-
nisms involved in plant response to putative NP-induced stress. This mechanistic under-
standing of NP action is crucial for evaluating the risk of these materials in the environment
and to develop sustainable and safe nano-strategies for plant protection and fortification to
be further applied in agriculture. It became clear that metal-NPs induce ROS accumulation
and re-program several plant metabolic pathways, readjusting the levels of several metabo-
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lites that promote stress tolerance and growth. The action mechanism of NPs involves
stimulating the plant antioxidant defense system (increasing the synthesis of antioxidants
and antioxidant enzymes and the upregulation of stress-related genes), helping plants
overcome the adverse effects of NP-induced stress. Moreover, NPs regulate carbohydrate
(e.g., sucrose and starch biosynthesis) and nitrogen metabolism, modulate hormone pro-
file (e.g., IAA and methyl JA), and alter the TCA cycle and lipid pathway. However,
applying NPs as an elicitor requires in-depth knowledge to identify all the potential ef-
fects on humans and ecosystems. Moreover, field studies considering the interaction of
several stress factors and NPs are necessary to define doses, time, and type of exposure,
among other things.
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