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Abstract: The systematic design of exact optimal designs of experiments is typically challenging, as it
results in nonconvex optimization problems. The literature on the computation of model-based exact
optimal designs of experiments via mathematical programming, when the covariates are categorical
variables, is still scarce. We propose mixed-integer semidefinite programming formulations, to find
exact D-, A- and I-optimal designs for linear models, and locally optimal designs for nonlinear
models when the design domain is a finite set of points. The strategy requires: (i) the generation of a
set of candidate treatments; (ii) the formulation of the optimal design problem as a mixed-integer
semidefinite program; and (iii) its solution, employing appropriate solvers. For comparison, we use
semidefinite programming-based formulations to find equivalent approximate optimal designs. We
demonstrate the application of the algorithm with various models, considering both unconstrained
and constrained setups. Equivalent approximate optimal designs are used for comparison.

Keywords: factorial experiments; exact designs; mixed-integer semidefinite programming;
model-based optimal designs

MSC: 62K05; 90C47

1. Motivation
We consider the problem of systematically constructing exact optimal designs of

experiments for surface response models. The innovation of the paper is that it proposes a
mixed-integer semidefinite programming (MISDP) formulation for such a purpose, and
demonstrates its application to D-, A- and I-optimality criteria. MISDP enables the obtaining
of globally optimal designs, and the addressing of both constrained and unconstrained
design setups. Because equivalent approximate designs serve to assess the optimality of
the exact designs, they are obtained with semidefinite-programming-based formulations.

Optimal design of experiments seeks to generate efficient plans for experiments used
to conduct experimental work for model parametrization and model discrimination, and is
an interesting field for the application of optimization algorithms. The topic has gained
importance due to the need to judiciously choose the most informative experiments, given
the resources available, mainly due to budget constraints. Optimal design of experiments
allows important cost savings in scientific studies, by determining the most efficient design
from which to make an accurate inference [1]. Applications range from biostatistics to
engineering, social sciences and marketing. The paradigm behind optimal design of
experiments is that, given a statistical model, a fixed total number of observations N and an
optimality criterion, we seek the optimal number of design points, k, their locations from a
pre-specified compact design space and the number of replicates at each design point.

There are two types of designs: (i) continuous or approximate designs; (ii) discrete or
exact designs. In both kinds of designs, the relative effort at each experimental point xi, also
designated weight, is represented by wi = ni/N, where ni is the number of replications taken
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at the ith experimental point, and N is the number of observations of the experimental plan.
Approximate designs have all the ni’s constrained to the set of non-negative real numbers.
Exact designs appear when all the ni’s are non-negative integer numbers, i.e., ni ∈ N0,
where N0 is the set of non-negative integer numbers [2]. In both cases, the weights form
a discrete probability measure (i.e., ∑k

i=1 wi = 1): they are limited to [0, 1] for continuous
designs, and to the set of rational numbers in [0, 1] for discrete designs, which is finite
for a given N. The resulting optimization problem to find approximate designs is convex
(or can be reformulated as convex) if the design criterion is a convex function of the
Fisher Information Matrix (FIM). Consequently, global optimality is guaranteed [3,4] by
equivalence theorems, and tailored-based optimization algorithms can be employed [5].

Exact designs are characterized by an integer number of observations for all design
points whose sum is exactly N. Thus, the optimal design problem can be cast as a combina-
torial (non-convex) problem. Consequently, they are computationally more challenging
than approximate optimal designs [6]. This complexity explains why finding and studying
properties of exact optimal designs is harder than for approximate optimal designs [7].
However, exact optimal designs are important in their own right because they are the only
practically useful designs, in the sense that: (i) simply rounding the number of observations
at each point from the corresponding approximate optimal design to an optimal exact
design may cause the loss of substantial efficiency when N is small [8]; (ii) even with a
moderate sample size, finding an approximate optimal design does not assure that it can
be implementable when some of the optimal proportions at some design points are small.
The systematic algorithms to handle exact optimal designs are still scarce, and mathemati-
cal programming-based tools provide sophisticated state-of-the-art algorithms to address
the problem at hand. Algorithms for convex optimization are desirable, as they run in
polynomial time. Even considering exact designs require two levels of optimization (one
for solving the relaxed semidefinite programming (SDP) problems, and the other for integer
variables) a tool including an inner solver relying on SDP (a convex class of problems) may
be beneficial. Thus, we believe there is room to exploit MISDP to handle exact designs,
especially in problems where the number of candidate points is limited, as is the case with
factorial experiments.

Our aim in this paper was to develop/adapt systematic general MISDP formulations
to find D-, A- and I-exact optimal factorial designs for linear models and locally optimal
factorial designs for nonlinear models. We believe this is the first time that MISDP formu-
lations have been proposed and applied to finding exact optimal designs. Our approach
required the previous construction of all candidate treatments: the subsequent resolution
found the number of replicates at each one. The applicability of the proposed methodology
is demonstrated by considering the A-, D- and I-optimal factorial designs for different
polynomial models, where both constrained and unconstrained setups are considered.
The use of a mathematical programming-based approach enabled finding optimal designs
for every possible number of experiments, and including additional constraints into the
design problem that could, for instance, represent non-regular domains or forbidden levels.

1.1. Algorithms for Finding Optimal Experimental Designs
There are several deterministic algorithms for finding approximate designs of exper-

iments, where by “deterministic” we mean algorithms that use a sequential set of rules
to evolve the solution to the optimum. Those algorithms do not include randomness
sources, and a proof of convergence can be theoretically derived. Equivalence theorems
are used to assess the optimality of the solutions, and to iteratively choose new candi-
date points. Common examples are the Wynn–Fedorov algorithm [9,10] and the exchange
algorithm [11]. Overall, they are found to be effective. Two common types of exchange algo-
rithms are: (i) the point exchange algorithm [11]; (ii) the coordinate exchange algorithm [12].
Another approach to finding continuous optimal designs is based on multiplicative al-
gorithms, which have found broad application due to their simplicity [13,14]. Recently,
cocktail algorithms, that rely on both exchange and multiplicative algorithms, have been
proposed [15,16].

Mathematical programming methods provide alternative approaches to generating
approximate designs. Some examples for finding approximate designs include linear
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programming [17], second-order cone programming [18], semidefinite programming [5,19],
semi-infinite programming [20], and nonlinear programming (NLP) [21].

Rounding approaches are the most common way to convert approximate designs, that
are numerically easier to compute, to equivalent exact designs (see [22]). For an implementa-
tion based on the cocktail algorithm, the reader is referred to de la Calle-Arroyo et al. [23].

Various numerical algorithms specifically developed for the construction of exact de-
signs are based on exchange methods, and were initially proposed for the D-optimality crite-
rion [9,10,24]: they are initialized with a feasible initial design, and iteratively delete/include
new points from a grid of candidates, until a convergence criterion is attained. The al-
gorithm does not assure global optimality, and to overcome this issue the search is run
from various starting points. Later refinements of this approach include the DETMAX
algorithm [25], the modified Fedorov algorithm [11], and the KL-exchange algorithm [26].
Point-exchange algorithms have been used to construct response surface designs in random
blocks [27], D-optimum split-plot designs [28] and crossover designs [29]. The coordinate-
exchange algorithm [12] overcomes some of the problems of point-exchange, by avoiding
the explicit enumeration of candidate design sets for discrete factors: nevertheless, as with
other exchange algorithms, it has the tendency to get trapped in locally optimal designs.

Recently, mixed-integer (linear) programming has been extensively used to find fac-
torial designs for screening purposes, specifically in the construction of mixed-level or-
thogonal and two-level orthogonally blocked designs [30], orthogonal fractional factorial
split-plot designs [31], trend robust run-order designs [32] and for breaking the symmetry
of blocking two-level orthogonal experimental designs, which helps in finding optimal
orthogonal blocking patterns [33].

Application examples of mathematical programming for solving the exact optimal
design problem for model parametrization are more scarce, due to the additional complexity
involved. In Welch [34], the design space was discretized, and a convex optimization
algorithm based on branch-and-bound was used, to ensure that optimal replicates of D-
exact designs were integer. Similarly, Harman and Filová [35] and Sagnol and Harman [36]
used, respectively, mixed-integer quadratic programming and mixed-integer second-order
cone programming techniques to find exact D-optimal designs. Both methods required
discretizing the design space, ensuring that the global optimal design was found in the
discretized space. The extension of the mixed-integer second-order cone programming
formulation to nonlinear models of the Generalized Linear Model class, using Bayesian
frameworks combined with quasi-Monte Carlo integration techniques, is addressed in
Duarte and Sagnol [37].

The resulting optimization problems can be solved efficiently by using state-of-the-
art solvers employing branch-and-bound techniques, such as Mosek [38] and PICOS [39].
Potential issues with the aforementioned methods include the exponential increase of the
optimization problem with the model dimension and candidate points. Although coarser
grids could reduce the size of the optimization problems, they lead to designs with lower
efficiency, because the discretized design space may not capture all the model features in
the original space.

Esteban-Bravo et al. [40] showed that NLP formulations can be used to find uncon-
strained and constrained exact designs, and Newton-based methods using Interior Point or
Filter techniques perform well in this context: their formulation for exact designs considers
that an appropriate probability measure, formed by rational numbers, is to be obtained for
an approximate design. Duarte et al. [41] have developed explicit mixed-integer nonlinear
programming (MINLP) formulations, based on algebra-based strategies, that enable the
construction of exact optimal designs for linear and nonlinear models within constrained
and unconstrained design domains. An issue of NLP and MINLP formulations is that they
require setting the number of support points of the design.

1.2. Novelty and Organization
This paper contains three elements of novelty: (i) MISDP formulations for finding D-,

A- and I-exact optimal factorial designs or locally optimal factorial designs of experiments
for linear models (within the parameters), and nonlinear models, respectively; (ii) the
extension of the formulations to include additional linear constraints on the replicates;
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(iii) the comparison of exact designs obtained with MISDP and equivalent approximate
designs obtained with SDP.

The paper is organized as follows: Section 2 presents the statistical background, and
reviews the general problem; in Section 3, we provide the formulations for exact D- and
A-optimal design problems, and discuss the modifications required to find constrained
designs; Section 4 implements the algorithm to generate exact optimal full and fractional
factorial designs, and extends the formulation to the I-optimality criterion; Section 5
concludes with a summary.

2. Background
This Section provides the background material required by the mathematical formula-

tion for obtaining approximate and exact optimal designs for factorial experiments using
SDP and MISDP (see Section 2.1). Section 2.2 introduces the fundamentals of the two
classes of problems.

Here and throughout, we use bold-face lowercase letters to represent vectors, bold-
face capital letters for continuous domains, blackboard bold capital letters for discrete
domains, and capital letters for matrices. Let JkK = {1, · · · , k} be the set containing all
integer elements from 1 to k. The acronyms used throughout the paper are identified in
back part.

2.1. Nomenclature and Design Setup
All the regression models addressed in this study are linear, and have a univariate

response, with nx independent variables x ∈ X, where X is a discrete set containing all
possible combinations of covariates, and the mean response at x is

E[y|x, p] = pᵀ f(x). (1)

Here, p ∈ P ⊂ Rnp is a vector of unknown model parameters, where np is the number
of parameters of the model, f(•) is an np-size vector of functions limited to polynomials
on the covariates and constant terms and E[•] is the expectation operator with respect to
the error distribution. In Section 4.1, we determine locally optimal designs for nonlinear
models which, after linearization, fall into Equation (1).

We focus on factorial designs where each covariate xi varies over a finite (ordered)
set of values that correspond to different levels in the experimental design. Specifically,
the covariates are ordinal variables. Let us assume that the ith covariate xi has li levels, i.e.

xi ∈ Λi ≡ {αi, · · · , βi︸ ︷︷ ︸
li

}

where αi and βi are the lower and upper levels, respectively, at which xi can be set in the
experiment. The ordered set Λi contains all the possible levels for the ith covariate, and the
jth level of covariate i is denoted by λi,j. A treatment is a vector containing a combination
of values λi,j for each covariate, and the design space is x ∈ X ≡ ⊗nx

i=1 xi, xi ∈ Λi.
To distinguish the covariates’ mathematical representation from the specific values they
have in X, we use zj =

⊗nx
i=1{∃!xi : xi = λi,j, j ∈ JliK} to designate each treatment j.

The complete set of candidate treatments is obtained from permutation of the levels of the
covariates, and is represented by Z ≡ {zj, j ∈ JkK}, where k = ∏nx

i=1 li is the number of
candidate treatments.

For convenience, let us consider a general design of experiments represented by a
probability measure ξ on a continuous domain X. By definition, ξ satisfies the equality∫

X ξ(dx) = 1. Equivalently, probability measures supported on a finite (discrete) subset of X
validate the equality ∑xj∈X ξ(xj) = ∑k

j=1 wj = 1, where ξ(xj) = wj, ∀j ∈ JkK is the relative
experimental effort at xj [42] (Chapter 1). In our context, approximate designs, ξa, are discrete
probability measures that allocate a weight wj ≥ 0 to jth treatment zj ∈ Z. A design ξa on Z
is described by a vector of non-negative weights w summing to 1, where each element repre-
sents the relative replication of the treatments in Z. Hence, the set of all feasible approximate
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designs, Ξa, is the k− 1-dimensional simplex
{

w ∈ Rk : wj ≥ 0, ∀j ∈ JkK, ∑k
j=1 wj = 1

}
where ξa = {(zᵀj , wj)}, j ∈ JkK.

By using the same rationale, an N−point exact design on Z, ξe
N , is also a discrete

probability measure, where the weights wj = nj/N are constrained to rational values
in [0, 1]. In practice, the number of replications nj ∈ N0 at zj ∈ Z satisfy the constraint

∑k
j=1 nj = N. The set of feasible N−point exact designs ξe

N = {(zᵀj , wj)}, j ∈ JkK is

Ξe
N ≡

{
w ∈ Rk : ∃n1, . . . , nk ∈ N0, wj =

nj

N
,

k

∑
j=1

nj = N

}
.

The worth of the design ξa (or ξe
N) is measured by a convex functional of its FIM.

The elements of the normalized FIM obtained after adjusting for the sample size are the
negative of the expectation of the second order derivatives of the log-likelihood of (1), given
the set of candidate treatments Z, L(ξa|Z), with respect to the parameters. This matrix is
proportional to

M(ξ|Z) =−E
[

∂

∂p

(
∂L(ξ|Z)

∂p

)]
=
∫

x∈X
M(x|Z) d ξ(x)

=
k

∑
j=1

wj f(zj) fᵀ(zj), (2)

whereM(ξ|Z) is the global FIM of the design ξ, and M(x|Z) is the elemental FIM at x.
When errors are normally and independently distributed, the volume of the con-

fidence region for the model parameters p is inversely proportional to det[M1/2(ξ|Z)].
Consequently, maximizing the determinant of the FIM, or equivalently its geometric mean,
by choice of a design, leads to the most accurate estimates for the parameters. If the interest
is in finding the exact D-optimal design, the optimization problem is

ξD = arg max
ξ∈Ξe

N

{det[M(ξ|Z)]}1/np . (3)

Other design criteria optimize the FIM in different ways: for example, if the goal is
minimizing the sum of the lengths of the axes of the confidence ellipsoid, one minimizes
the nuclear norm of the parametric covariance matrix which, in turn, is proportional to the
inverse of the FIM. This criterion is commonly designated A-optimality, and is formalized
as the minimization of the trace of the inverse of the FIM [4]:

ξA = arg min
ξ∈Ξe

N

{
tr[M(ξ|Z)−1]

}
. (4)

The formulations for approximate designs are constructed similarly. For linear models,
which we have, the FIM is independent of the unknown parameters p, and the optimal
design does not depend on p; otherwise, the optimal design is locally optimal, as it depends
on p, which we want to estimate (see Model 5 in Section 4).

2.2. Semidefinite Programming and Mixed-Integer Semidefinite Programming
Semidefinite Programming and MISDP are employed to solve the optimal design

problems for D- and A-optimality criteria, over a given treatment candidate set Z. In this
section, we introduce the fundamentals of these classes of mathematical programs.

Let Snp
+ be the space of np × np symmetric positive semidefinite matrices, and Snp the

space of np × np symmetric matrices. A convex set S ∈ Rn is semidefinite representable
(SDr) if all elements ζζζ ∈ S can be projected on to a higher dimensional set Sexp, which can
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be described by linear matrix inequalities (LMIs) [43]: that is, S is SDr if and only if there
exists some symmetric matrices, M0, · · · , Mm1 , · · · , Mm1+m2 ∈ Snp , such that [44]

Sexp ≡ {(ζζζ, v) ∈ Rm1 ×Rm2 : M0 +
m1

∑
i=1

ζi Mi +
m2

∑
j=1

vj Mm1+j � 0}(⊂ Rm1+m2). (5)

Here, � is the semidefinite operator, i.e., A � 0 ⇐⇒ 〈A, Ω〉 ≥ 0, ∀Ω ∈ Snp
+ , where 〈., .〉 is

the Frobenius inner product operator, ζζζ ∈ Rm1 is an element of the original set S, and v is a
point of the incremental subspace Rm2 .

On its turn, a convex (or concave) function ϕ : Rm1 7→ R is SDr if and only if the
epigraph of ϕ, {(t, ζζζ) : ϕ(ζζζ) ≤ t} (or the hypograph, represented by {(t, ζζζ) : ϕ(ζζζ) ≥ t})
is SDr, and can be cast by LMIs [45,46]. The optimal values, ζζζ, of SDr functions are then
formulated as a semidefinite program, with the form:

max
ζζζ

(or min
ζζζ

)

{
cᵀ ζζζ,

m1

∑
i=1

ζi Mi −M0 � 0

}
. (6)

In our design context, c is a vector of known constants that depends on the design
problem, and matrices Mi, i = {0, . . . , m1} contain local FIMs and other matrices produced
by the reformulation of the functions ϕ(ζζζ) into LMIs. The decision variables in vector ζζζ
are the weights wj, j ∈ JkK of the optimal design and the other auxiliary variables required.
The problem of calculating a design for a pre-specified set Z of treatments is solved by
formulation (6) complemented with the linear constraints on w (w ≥ 0 and 1ᵀ w = 1) that
assure the feasibility of the probability measure. In the remaining sections of the paper,
the problem of (6) is the general SDP problem, which can be adapted to find experimental
designs employing different optimality criteria.

Ben-Tal and Nemirovski [45] (Chapters 2 and 3) have provided a list of SDr functions
useful for solving continuous optimal design problems—see Boyd and Vandenberghe [46]
(Section 7.3) for specific applications. Recently, Sagnol [47] showed that each criterion in
the Kiefer’s class of optimality criteria defined by

Φδ[M(ξ)] =

[
1

np
tr(M(ξ)δ)

]1/δ

(7)

is SDr for all rational values of δ ∈ (−∞,−1], and that general SDP formulations exist:
this result also applies to cases where δ→ 0, and both criteria addressed in this work (i.e.,
problems (3) and (4)) fall into this class. Practically, the problem of optimally designing
approximate plans of experiments for the most common (convex) criteria can be formulated
as a semidefinite programming problem falling into the general representation category
(5)—see Vandenberghe and Boyd [5], Duarte and Wong [19], among others.

The extension of formulations (3) and (4) to handle exact designs is straightforward,
except that the feasibility domain Ξa is replaced by Ξe

N , the weights w = n/N must be
chosen, so that all the elements in n are integers, and 1ᵀk n = N: consequently, some of
the variables in ζζζ are integers, and the resulting problem is of an integer conic nature.
Typically, MISDP falls outside of the scope of traditional convex mixed-integer nonlinear
programming, because (i) the SDP constraints are not differentiable everywhere; (ii) the
MISDP problems are more efficiently solvable by using cone optimization algorithms, even
requiring branch-and-bound techniques to handle integer variables, as the relaxed (inner)
problems are convex. Due to the specificities of MISDP, and the advantages it offers in
handling well-characterized design problems, it is currently getting increased attention
(see Gally et al. [48]). Several applications of MISDP have been addressed, including: the
truss topology design [49]; the optimal placement of metering systems in distribution
grids [50], where the authors solve the measurement placement problem by exploiting
the M-optimality design criterion; and optimal sensor placement, using the A- and D-
optimality criteria (see Schäfer [51]). Here, we consider another related application of
MISDP: the construction of exact optimal designs of experiments. As in the construction of
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approximate optimal designs of experiments, the problem falls into (6), except that some of
the variables are constrained to integer values.

3. MISDP Formulations for Exact Optimal Design of Experiments
This section presents the formulations for finding exact optimal designs via MISDP. The

D-optimality criterion is addressed in Section 3.1, and the A-optimal designs in Section 3.2.
In Section 3.3, we overview the approach followed to solve the MISDP problems, describing
the optimal design of experiments.

In Section 4, we compare the exact optimal designs obtained from MISDP with equiva-
lent approximate designs obtained using SDP formulations. The SDP formulations for linear
models are currently state-of-the-art, and are presented in Vandenberghe and Boyd [5],
Vandenberghe et al. [52], and Boyd and Vandenberghe [46] (Section 7.5), among others.
Due to space limitations, we have centered our discussion on MISDP formulations.

3.1. Exact D-Optimal Designs
Here, we recall the exact D-optimal design problem (3). We extended the formulation

proposed by Vandenberghe and Boyd [5] for approximate designs, to determine exact opti-
mal designs: that is, given a statistical model, the set of candidate treatments Z, the elemental
FIMs for each candidate treatment and the total number of experiments N, the formulation
for finding exact D–optimal designs on Ξe

N was formulated as follows:

max
n,B

np

∏
j=1
B1/np

j,j (8a)

s.t.M(ξ|Z) =
k

∑
j=1

nj

N
M(zj|Z) (8b)(

M(ξ|Z) B
Bᵀ diag(B)

)
� 0 (8c)

k

∑
j=1

nj = N (8d)

nj ∈ N0, ∀j.

Equation (8b) represents the generation of the global FIM. Equation (8c) is the linear
matrix inequality (LMI) representing the LDL factorization ofM(ξ|Z) [45]. B ∈ Rnp×np is
a lower-triangular matrix, and diag(B) is a positive definite diagonal matrix containing
the (ordered) elements ofM(ξ|Z). Equation (8d) restricts the total number of observations
to N. The determinant root in Equation (8a) is represented as the geometric mean of the
diagonal elements of B, which is also an SDr function, and can, in turn, be expressed as a
series of 2× 2 LMIs [53,54]. The FIMs of the candidate treatments, M(zj|Z), zj ∈ Z , are
constructed with Equation (2).

3.2. Exact A-Optimal Designs
Now, we propose a MISDP formulation for determining exact A-optimal designs solv-

ing problem (4), where tr[M(ξ|Z)−1] is minimized. We extend the formulation of Fedorov
and Lee [55], proposed for approximate designs. The complete MISDP for computing the
A-optimal designs is

min
n,F

np

∑
j=1
Fj,j (9a)

s.t.M(ξ|Z) =
k

∑
j=1

nj

N
M(zj|Z) (9b)

(M(ξ|Z) Inp

Inp F

)
� 0 (9c)
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k

∑
j=1

nj = N (9d)

nj ∈ N0, ∀j.

Equations (9b) and (9d) are similar to those in the D-optimal design problem.
Equation (9c) is an LMI representing the Schur complement, and holds if and only if
M(ξ|Z)− InpF−1 Inp � 0; F ∈ Rnp×np , being a positive definite matrix, and Inp the np-size
identity matrix; then, F �M−1(ξ|Z). Consequently, the nuclear norm of F is larger than
that ofM−1(ξ|Z). As the nuclear norm of a matrix is the sum of its eigenvalues, the upper
bound of the nuclear norm ofM−1(ξ|Z) is tr(F ), which we want to minimize by choosing
n. Finally, Equation (9a) represents the objective function, which is equivalent to the sum
of all the elements in the diagonal of F .

3.3. Numerical Strategy
Here, we describe the numerical approach employed to handle the optimal design

problems previously formulated as MISDPs. The formulations (8) and (9) were applied,
to find unconstrained optimal designs in Ξe

N . An advantage of our formulations is that
when there are additional constraints, such as restrictions on the number of replicates at
each design point, they can be incorporated into the design problems. Here, we limited
the constraints to linear inequalities or equalities; hence, our method could also find
constrained exact optimal designs from the set Ξe

N ∩ {(n|Z) : Anᵀ ≤ bᵀ
in, Bnᵀ = bᵀ

eq},
where A ∈ Rnin×k and B ∈ Rneq×k were user-specified matrices containing the coefficients
of linear inequalities and equalities, respectively, on the replicates space, where bin ∈ Rnin

and beq ∈ Rneq were vectors of constants, and where nin was the number of inequalities
and neq the number of equality constraints of the problem.

To handle the approximate designs via SDP there are user-friendly interfaces, such as
cvx [54] or YALMIP [56], that automatically transform the constraints into a series of LMIs,
before passing them to SDP solvers, such as SeDuMi [57] or Mosek [38]: this is possible if
Φδ is SDr, which was true for our design criteria of interest. In our work, we solved all
approximate design problems using the cvx environment combined with the solver Mosek,
which uses an efficient interior-point-based algorithm. The reason cvx was chosen was
because it is a high-level environment for convex programming, which includes parser
functions that convert the optimality criteria in SDP formulations into a series of LMIs, and
it supports the explicit modeling of the remaining (linear and conic) constraints. Mosek
offers a significant speed-up relative to other alternatives.

A similar approach was used to solve the MISDP problems that represented exact
optimal designs. The computational tool employed to solve this class of programs was
implemented in Matlab, using YALMIP. A branch-and-bound method was used for handling
the integer variables, and an SDP solver for handling the problems at the-branch and-
bound nodes constructed by relaxing the integer variables. Here, we used BNB [58] for
branch-and-bound, and Mosek [38] for solving the SDP relaxed problems. We chose BNB
because it includes a MISDP solver standing on a branch-and-bound method that can be
combined with a convex solver. The code is available by request.

All computations in Section 4 were done using an Intel Core i7 machine running a
64 bits Windows 10 operating system with a 2.80 GHz processor. In all problems, the relative
and absolute tolerances used to solve the SDP and MISDP problems were set to 1× 10−5.

4. Numerical Results
We now report the D- and A-exact optimal designs for the linear and nonlinear models

found from our formulations in Section 3. The literature on the construction of factorial
designs is vast, and methods different to those based on the maximization of information
criteria are described in various references, such as Cheng [59], and Atkinson et al. [60].
Various practical examples similar to our models can be found in applied textbooks (see
Antony [61], Goos and Jones [62], Box [63] among others). The models used for testing are
presented in Table 1. We note that the regression factors were inherently ordinal variables,
each one having multiple levels.



Mathematics 2023, 11, 854 9 of 17

Model 1 was linear (in its parameters), and included only two factors with three
levels; it is considered herein to assess the accuracy of the algorithm as it was solved
in Atkinson [64]. Models 2–4 were also linear (in their parameters), and demonstrated
the application of the formulations to find factorial designs for response surface mod-
els restricted to second-order interactions with four and three factors, respectively.
Models 2 and 3 had two levels, and they only differed because the discrete design space
for Model 3 included the center point (0, 0, 0, 0), also known as the star point. Model 4
represented a three-level response surface including three factors, and Model 5 was a non-
linear form (i.e., a logistic model with three factors). For this last example, we determined a
two-level factorial locally optimal design, where the vector of the parameters considered in
the linearization was below the model representation. Section 4.1 reports unconstrained
designs, and in Section 4.2 we consider constrained designs in the replicates domain, i.e.,
when additional constraints on the replicates number are included in the design. Finally,
in Section 4.3, we extend the formulation to an I–optimality criterion. Herein, designs that
have equal masses k/N at every design point are called uniform designs [4] (Chapter 4).

Table 1. Statistical models used for testing the MISDP formulations.

Model Regression Function Design Space (X)

1 a β0 + β1 x1 + β2 x2 + β3 x2
1 + β4 x2

2 + β5 x1 x2 {−1, 0,+1}2

2 b β1 x1 + β2 x2 + β3 x3 + β4 x4 + β5 x1 x2 + β6 x1 x3 + β7 x1 x4 + β8 x2 x3+ {−1,+1}4

+β9 x2 x4 + β10 x3 x4
3 c β1 x1 + β2 x2 + β3 x3 + β4 x4 + β5 x1 x2 + β6 x1 x3 + β7 x1 x4 + β8 x2 x3+ {−1,+1}4 ∪ (0, 0, 0, 0)

+β9 x2 x4 + β10 x3 x4
4 d β1 x1 + β2 x2 + β3 x3 + β4 x1 x2 + β5 x1 x3 + β6 x2 x3 {−1, 0,+1}3

5 e [1 + exp(φ(x))]−1 {−1,+1}3

φ(x) = β1 x1 + β2 x2 + β3 x3 + β4 x1 x2 + β5 x1 x3 + β6 x2 x3
β1 = 0.8, β2 = 1.2, β3 = −1.0, β4 = 0.1, β5 = −0.15, β6 = −0.08

a—Two-factor surface response model with three levels (see Atkinson [64]). b—Four-factor surface response
model. c—Four-factor surface response model including the star treatment. d—Three-factor surface response
model. e—Logistic model with three factors and all pairwise interactions.

4.1. Unconstrained Exact Optimal Designs
In this section, we determine optimal designs for all the models in Table 1, using

the formulations (8) and (9) for the D- and A-optimality design criteria, respectively. For
comparison, we report the approximate and the exact optimal designs for each model,
and use different N values to analyze the effect of different sample sizes on the design.

Table 2 presents the optimal designs for Model 1. The design was represented by the
complete set of candidate treatments (in the first two columns), followed by the respective
weights if approximate designs were sought, and the replicates when exact designs were
obtained. We observe that: (i) the use of approximate designs to construct exact designs by
rounding N ×wi may lead to slightly sub-optimal experimental plans; and (ii) the exact de-
signs obtained for the D-optimality criterion were equal to those obtained by Atkinson [64]
with the KL algorithm [60] (Chapter 12), for N = {9, 13}. Similarly, the results for A-optimal
designs obtained for these values of N reproduce those obtained with the KL algorithm:
this finding demonstrates the accuracy of MISDP formulations.

For Models 2–5, the rules used to set N were: (i) N = 2 k, where the number of
experiments was a multiple of the candidate treatments; (ii) N = k + 4; (iii) N = k + 7, when
that did not occur. Typically, the last two rules put additional challenges to solvers, as the
resulting designs are not uniform, and the optimization problems may have multiple optima.
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Table 2. D- and A-optimal designs for Model 1, where k = 9 and N = {9, 13, 17}.

Exact Design

Approximate Design N = 9 N = 13 N = 17

Treatment D-opt A-opt D-opt A-opt D-opt A-opt D-opt A-opt

−1 −1 0.1458 0.0940 1 1 2 1 2 1
−1 0 0.0802 0.0978 1 1 1 2 1 2
−1 1 0.1458 0.0940 1 1 2 1 2 1
0 −1 0.0802 0.0978 1 1 1 2 2 2
0 0 0.0962 0.2332 1 1 1 3 2 3
0 1 0.0802 0.0978 1 1 1 1 2 2
1 −1 0.1458 0.0940 1 1 2 1 2 2
1 0 0.0802 0.0978 1 1 1 1 2 2
1 1 0.1458 0.0940 1 1 2 1 2 2

Table 3 lists the optimal designs obtained for Model 2. The approximate designs were
uniformly distributed, as were the exact designs generated for N’s multiple of k. Both
designs required very small CPU times to generate (less than 1 s), and the formulation for
the exact designs was, in this case, very efficient. Contrarily, when N was not a multiple of
k, the CPU times increased to about 30 s, which was mainly due to difficulties in converging
the upper and lower bounds of the MISDP problem, which, in turn, indicated that the
branch-and-bound tree got larger. Specifically, it was harder to evolve the lower bound,
which was an indication of the difficulty of proving the optimality of the relaxed problems
or the occurrence of several optima with similar merit. In general, solving large-scale MISDP
problems is still challenging, as the MISDP solvers are not yet as mature as mixed-integer
linear programming solvers.

Table 3. D- and A-optimal designs for Model 2, where k = 16 and N = {20, 23, 32}.

Exact Design

Approximate Design N = 20 N = 23 N = 32

Treatment D-opt A-opt D-opt A-opt D-opt A-opt D-opt A-opt

−1 −1 −1 −1 1/16 1/16 1 1 1 2 2 2
−1 −1 −1 1 1/16 1/16 1 2 2 1 2 2
−1 −1 1 −1 1/16 1/16 1 1 1 1 2 2
−1 −1 1 1 1/16 1/16 1 1 2 2 2 2
−1 1 −1 −1 1/16 1/16 1 1 2 1 2 2
−1 1 −1 1 1/16 1/16 2 2 1 2 2 2
−1 1 1 −1 1/16 1/16 2 1 2 1 2 2
−1 1 1 1 1/16 1/16 1 1 2 1 2 2

1 −1 −1 −1 1/16 1/16 1 2 1 1 2 2
1 −1 −1 1 1/16 1/16 2 1 1 2 2 2
1 −1 1 −1 1/16 1/16 2 1 2 1 2 2
1 −1 1 1 1/16 1/16 1 1 1 2 2 2
1 1 −1 −1 1/16 1/16 1 2 2 2 2 2
1 1 −1 1 1/16 1/16 1 1 1 2 2 2
1 1 1 −1 1/16 1/16 1 1 1 1 2 2
1 1 1 1 1/16 1/16 1 1 1 1 2 2

Table 4 presents the results for Model 3, and in both the approximate and exact designs,
the candidate point (0, 0, 0, 0) had null replication. Consequently, the optimal design for
N = 34 had two treatments with replication 3, and no experiments at the star point.

Table 5 reports the optimal designs for Model 4. The approximate designs only
required 8 of the 27 candidate points, and the same held for the exact designs, i.e., the
optimal designs were saturated designs (characterized by having a number of support
points equal to the number of parameters in the model). The points of the exact designs
without replication were the same as those in the approximate design, having weights
equal to 0.0, as expected.
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Table 4. D- and A-optimal designs for Model 3, where k = 17 and N = {21, 24, 34}.

Exact Design

Approximate Design N = 21 N = 24 N = 34

Treatment D-opt A-opt D-opt A-opt D-opt A-opt D-opt A-opt

−1 −1 −1 −1 1/16 1/16 1 1 1 2 2 2
−1 −1 −1 1 1/16 1/16 1 2 1 1 3 2
−1 −1 1 −1 1/16 1/16 1 2 2 1 2 2
−1 −1 1 1 1/16 1/16 2 1 2 1 2 2
−1 1 −1 −1 1/16 1/16 1 2 1 2 2 3
−1 1 −1 1 1/16 1/16 2 1 1 2 2 2
−1 1 1 −1 1/16 1/16 1 1 1 1 2 2
−1 1 1 1 1/16 1/16 1 1 1 2 2 2

1 −1 −1 −1 1/16 1/16 1 1 2 2 2 2
1 −1 −1 1 1/16 1/16 1 1 1 2 2 2
1 −1 1 −1 1/16 1/16 1 1 2 1 3 2
1 −1 1 1 1/16 1/16 2 2 2 1 2 2
1 1 −1 −1 1/16 1/16 2 1 2 1 2 2
1 1 −1 1 1/16 1/16 2 2 2 2 2 2
1 1 1 −1 1/16 1/16 1 1 1 1 2 2
1 1 1 1 1/16 1/16 1 1 2 2 2 3
0 0 0 0 0 0 0 0 0 0 0 0

Table 5. D- and A-optimal designs for Model 4, where k = 27 and N = {31, 34, 54}.

Exact Design

Approximate Design N = 31 N = 34 N = 54

Treatment D-opt A-opt D-opt A-opt D-opt A-opt D-opt A-opt

−1 −1 −1 1/8 1/8 4 3 4 4 7 7
−1 −1 0 0 0 0 0 0 0 0 0
−1 −1 1 1/8 1/8 4 4 5 4 7 7
−1 0 −1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0
−1 1 −1 1/8 1/8 4 4 4 5 7 7
−1 1 0 0 0 0 0 0 0 0 0
−1 1 1 1/8 1/8 4 4 4 5 7 7

0 −1 −1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
1 −1 −1 1/8 1/8 4 4 4 4 7 7
1 −1 0 0 0 0 0 0 0 0 0
1 −1 1 1/8 1/8 3 4 4 4 7 7
1 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 1 −1 1/8 1/8 4 4 4 4 7 7
1 1 0 0 0 0 0 0 0 0 0
1 1 1 1/8 1/8 4 4 5 4 7 7

Now, we address Model 5, where E[y|x, p] = f (x, p), f (•) was the probability of
responding to a stimulus, and x was the set of ordinal covariates that influenced the
response. For demonstration, we considered that f (x, p) was the logistic model in the fifth
line of Table 1.
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The elemental FIM at the point zj depended on the vector p, and we circumvented
this roundabout by determining locally optimal designs that were common when previous
knowledge of the exact value of the parameters was available: thus, the elemental FIM at
zj is M(zj|Z, p) = h(zj|Z, p) h(zj|Z, p)ᵀ [60], where

h(zj|Z, p) =
1√

y(zj, p) (1− y(zj, p))

(
∂y(zj, p)

∂p

)
,

∂y(zj, p)
∂p

=


∂y(zj ,p)

∂p1
...

∂y(zj ,p)
∂pnp

,

and pj, j ∈ JnpK was the jth parameter in the model.
Table 6 contains the optimal designs for Model 5. Contrarily to the approximate

D-optimal design, the A-optimal design is not uniform. The exact designs obtained were in
good agreement with the trends observed for the approximate designs. Similarly to the
approximate D-optimal designs, the exact D-optimal designs were minimally supported, as
they had 6 support points and np = 6. This finding did not hold for the A-optimal designs.

Table 6. D- and A-optimal designs for Model 5 where k = 8 and N = {12, 15, 16}.

Exact Design

Approximate Design N = 12 N = 15 N = 16

Treatment D-opt A-opt D-opt A-opt D-opt A-opt D-opt A-opt

−1 −1 −1 0.1667 0.1577 2 2 3 2 3 2
−1 −1 1 0.0000 0.1130 0 1 0 2 0 2
−1 1 −1 0.1667 0.1280 2 2 3 2 2 2
−1 1 1 0.1667 0.1427 2 2 3 2 3 2

1 −1 −1 0.1667 0.1141 2 1 2 2 2 2
1 −1 1 0.1667 0.1788 2 2 2 2 3 3
1 1 −1 0.0000 0.0465 0 0 0 1 0 1
1 1 1 0.1667 0.1192 2 2 2 2 3 2

4.2. Constrained Exact Optimal Designs
Here, we tested the algorithm, to find D- and A-optimal designs when there were

linear constraints compactly represented by inequalities Anᵀ ≤ bᵀ
in or equalities Bnᵀ = bᵀ

eq.
We imposed constraints on the replicates, and searched in the (tightened) set of feasible
designs Ξe

N ≡ Ξe
N ∩ {(n|Z) : Anᵀ ≤ bᵀ

in, Bnᵀ = bᵀ
eq}. The constrained design problems

could be solved using the formulations (8) and (9), complemented with the respective
equality and inequality constraints.

To illustrate the application, we considered Model 3 (see Table 1). The model had
10 parameters, and the number of candidate treatments was 17, corresponding to 2np

factorial experiments plus the star treatment. First, we considered an equality constraint by
which the replicates of the star treatment were exactly 2, i.e.,

nk = 2. (10)

Here, the matrix B containing the coefficients of the equality constraints was 1× k, with
all entries except the kth being 0, and B1,k = 1.0. Vector beq had only a single element,
i.e., beq,1 = 2.

Now, we consider constrained designs with constraints of the inequality kind. Let
us consider that the experimental study has a limited budget, and that the cost of each
treatment includes: (i) a fixed cost term; (ii) a variable cost term that is proportional to
the level of the covariates. Furthermore, we assume that the total budget available for
implementing the complete design is fixed at, for example, 150, that the fixed cost of each
treatment is 1.8, and that the variable costs are linearly dependent on the levels of the
covariates in the experiments, where the slopes are 0.5, 0.6, 0.8 and 1.0 for x1, x2, x3 and x4,
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respectively. As an example, the cost of jth treatment is 1.8 + 0.5 (zj,1 + 1) + 0.6 (zj,2 + 1) +
0.8 (zj,3 + 1) + 1.0 (zj,4 + 1). Algebraic manipulations lead to a constraint of the kind:

Anᵀ ≤ bin (11)

where

A =
(
1.8, 3.8, 3.4, 5.4, 3.0, 5.0, 4.6, 6.6, 2.8, 4.8, 4.4, 6.4, 4.0, 6.0, 5.6, 7.6, 4.7

)
.

Furthermore, let bin,1 = 150 for N = 34, and bin,1 = 90 for N = 21.
The results for both constrained designs generated by including Equations (10) and (11) in

problems (8) and (9) are in Table 7. Now, the design obtained considering constraint (10) for
N = 34 is uniform, and the point (0, 0, 0, 0) has replication 2 as was imposed. The optimal
designs obtained by including constraint (11) concentrate the replicates at treatments
with lower cost. Similarly to unconstrained designs, no replication is required at the
star treatment.

Table 7. Constrained D- and A-exact optimal designs for Model 3, where k = 17, N = {21, 34} and
constraints (10) and (11).

Formulations (8) and (9) Formulations (8) and (9)
+ Constraint (10) + Constraint (11)

N = 21 N = 34 N = 21 N = 34

Treatment D-opt A-opt D-opt A-opt D-opt A-opt D-opt A-opt

−1 −1 −1 −1 1 1 2 2 2 2 4 4
−1 −1 −1 1 1 1 2 2 2 2 2 2
−1 −1 1 −1 1 1 2 2 2 2 2 3
−1 −1 1 1 1 1 2 2 1 1 2 2
−1 1 −1 −1 1 1 2 2 2 2 2 2
−1 1 −1 1 2 1 2 2 1 1 2 2
−1 1 1 −1 2 1 2 2 1 1 2 2
−1 1 1 1 1 2 2 2 1 1 2 2

1 −1 −1 −1 2 1 2 2 2 2 3 2
1 −1 −1 1 1 2 2 2 1 1 2 2
1 −1 1 −1 1 1 2 2 1 1 2 2
1 −1 1 1 1 1 2 2 1 1 2 2
1 1 −1 −1 1 1 2 2 1 1 2 2
1 1 −1 1 1 2 2 2 1 1 2 2
1 1 1 −1 1 1 2 2 1 1 2 2
1 1 1 1 1 1 2 2 1 1 1 1
0 0 0 0 2 2 2 2 0 0 0 0

One of the advantages of using mathematical-programming-based approaches to
finding exact designs is that they can easily handle additional constraints and assure
maximum efficiency in the feasibility domain of interest. As the rounding procedures are
not able to incorporate constraints, its use in this context may lead to inefficient or even
infeasible designs.

4.3. Exact I-Optimal Designs
In this section, we extend our framework to find I-optimal designs. Specifically, I-

optimal designs minimize the average variance of prediction: consequently, they are more
appropriate for a mixture experiments, as we may have, than the D- or A-optimality criteria,
the focus of which is on a precise model estimation rather than precise predictions [65]. The
I-optimality criterion is SDr, as it falls into A-optimality [36], and the formulation (9) can be
easily adapted to compute I-optimal designs.

I-optimal designs are sought, to minimize the integral of the variance of the best linear
unbiased estimator (BLUE) of the response over a design region X ⊆ Rnx of interest, with
respect to a given discrete probability measure, µ(x). Let us consider that for each x ∈ X
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there is a variance matrix V(x) ∈ Snp
+ , such that tr

[
M(ξ|Z)−1 V(x)

]
measures the total

variance of the linear estimator at x, given the FIM for the set of parameters of interest [66].
The variance matrix becomes V(x) = f(x) fᵀ(x). X is the continuous design space enclosing
the Cartesian box containing the complete set of treatments, and the probability measure
µ(x) is uniformly distributed in X: this leads to a generalized variance matrix (GVM):

V(X, µ) =
∫

X
V(x) d(µ(x)) =

∫
X

f(x) fᵀ(x) d(µ(x)),

which is required to be non-singular. Consequently, the design of the I–optimal experimen-
tal plans can be formulated as

ξe
N = arg min

ξ∈Ξe
N

{
tr[M(ξ|Z)−1 V(X, µ)]

}
. (12)

In its turn, the MISDP problem for I-optimal designs is obtained from (9), replacing
the objective function (9a) by

min
n,F

tr[F V(X, µ)], (13)

where V(X, µ) is computed a priori to minimize the model predictions.
Table 8 compares A- and I-optimal designs for Model 3 (in Table 1) obtained with

the formulations (9), and (13), (9b)–(9d), respectively. The GVM is, in this case, diagonal,
i.e., V(X, µ) = diag(v), with v = (2/3, 2/3, 2/3, 2/3, 2/9, 2/9, 2/9, 2/9, 2/9, 2/9)ᵀ.
The approximate designs for A- and I-optimality are uniform, with the star point requiring
no replicates. As expected, the A-optimal designs for both values of N are different from
those obtained for the I-optimality criterion.

Table 8. A- and I-optimal designs for Model 3, where k = 17 and N = {21, 24, 34}.

Exact Design

Approximate Design N = 21 N = 24 N = 34

Treatment A-opt I-opt A-opt I-opt A-opt I-opt A-opt I-opt

−1 −1 −1 −1 1/16 1/16 1 2 1 1 2 2
−1 −1 −1 1 1/16 1/16 2 1 1 2 2 2
−1 −1 1 −1 1/16 1/16 2 1 2 2 2 2
−1 −1 1 1 1/16 1/16 1 1 2 1 2 2
−1 1 −1 −1 1/16 1/16 2 1 2 1 3 2
−1 1 −1 1 1/16 1/16 1 1 1 1 2 3
−1 1 1 −1 1/16 1/16 1 2 1 2 2 2
−1 1 1 1 1/16 1/16 1 1 2 2 2 2

1 −1 −1 −1 1/16 1/16 1 1 2 2 2 2
1 −1 −1 1 1/16 1/16 1 2 2 1 2 2
1 −1 1 −1 1/16 1/16 1 2 1 2 2 3
1 −1 1 1 1/16 1/16 2 1 1 1 2 2
1 1 −1 −1 1/16 1/16 1 1 2 2 2 2
1 1 −1 1 1/16 1/16 2 1 1 1 2 2
1 1 1 −1 1/16 1/16 1 1 1 2 2 2
1 1 1 1 1/16 1/16 1 2 2 1 3 2
0 0 0 0 0 0 0 0 0 0 0 0

5. Conclusions and Discussion
This paper is the first to apply MISDP to find D-, A- and I-optimal factorial exact

designs for linear models, and locally optimal designs for nonlinear models. We developed
new MISDP formulations to systematically handle the experimental design problem. The
formulations proposed enable the handling of: (i) different optimality criteria; (ii) different
models and covariates with multiple levels; (iii) unconstrained and constrained setups. We
solved the MISDP by employing a branch-and-bound algorithm designed to handle the
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integer variables, coupled with an interior point-based solver that solved the relaxed SDP
problems. We compared the exact designs obtained for various N’s with the corresponding
approximate designs obtained with SDP. As an alternative to discrete optimization-based
techniques, exact designs can be obtained with rounding procedures, by using approximate
optimal designs: however, this technique may lead to slightly inefficient exact designs,
especially when the number of experiments of the plan is small. Practically, it can eas-
ily handle constrained designs, and in this context is advantageous over rounding, the
application of which may lead to inefficient or infeasible solutions.

The numerical experiments reported in this paper show that uniform exact designs
are easily computed, and they arise especially for the D-optimality criterion. Contrarily,
for non-uniform designs, the CPU time is larger, and most of it is needed to assure the global
optimality of the solution. On the other hand, it is common for these problems to have
multiple optima, which also increases their numerical complexity. All the exact designs
found are in good agreement with the equivalent approximate designs, which is a good
indication that the inefficiency induced by using rounding procedures in unconstrained
setups is small. Herein, we handled problems including various factors with a small
number of levels, but the formulation proposed is general, so it can handle problems where
the number of levels per factor is high, typical of other application areas.

Integer conic programming deserves increasing effort, as some problems can be
conveniently formulated within this framework—one example being the optimal design of
small-size experiments. Our paper is expected to contribute to the dissemination of this
class of problems, and to providing an additional application that can urge the development
of specific solvers able to handle it efficiently.
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Acronyms

Acronym Designation
FIM Fisher Information Matrix
LMI linear matrix inequality
MISDP mixed-integer semidefinite programming
MINLP mixed-integer nonlinear programming
NLP nonlinear programming
ODoE optimal design of experiments
SDP semidefinite programming
SDr semidefinite representable
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