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Abstract. We study the possibility of the existence of a deconfined quark matter in the
core of neutron star (NS)s and its relation to non-radial oscillation modes in NSs and hybrid
star (HS)s. We use relativistic mean field (RMF) models to describe the nuclear matter
at low densities and zero temperature. The Nambu–Jona-Lasinio (NJL) model is used to
describe the quark matter at high densities and zero temperature. A Gibbs construct is used
to describe the hadron-quark phase transition (HQPT) at large densities. Within the model,
as the density increases, a mixed phase (MP) appears at density about 2.5 times the nuclear
matter saturation density (ρ0) and ends at density about 5ρ0 beyond which the pure quark
matter phase appears. It turns out that a stable HS of maximum mass, M = 2.27M� with
radius R = 14 km (for NL3 parameterisation of nuclear RMF model), can exist with the
quark matter in the core in a MP only. HQPT in the core of maximum mass HS occurs
at radial distance, rc = 0.27R where the equilibrium speed of sound shows a discontinuity.
Existence of quark matter in the core enhances the non-radial oscillation frequencies in HSs
compared to NSs of the same mass. This enhancement is significantly large for the g modes.
Such an enhancement of the g modes is also seen for a density dependent Bayesian (DDB)
parmeterisation of the nucleonic EOS. The non-radial oscillation frequencies depend on the
vector coupling in the NJL model. The values of g and f mode frequencies decrease with
increase the vector coupling in quark matter.
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1 Introduction

Neutron Star (NS)s are exciting cosmic laboratories to study the behavior of matter at extreme
densities. The properties of NSs not only open up many possibilities related to composition,
structure and dynamics of cold matter in the observable universe but also throws light on the
interaction of matter at a fundamental level [1]. Such compact stars, observed as pulsars, are
believed to contain matter of densities few times nuclear saturation density (ρ0 ' 0.158 fm−3)
in its core. To explain and understand the properties of such stars, one needs to connect dif-
ferent branches of physics like low energy nuclear physics, qunatum chromodynamics (QCD)
under extreme conditions, general theory of relativity (GTR) etc [2–6].

The macroscopic properties of such a compact star like its mass, radius, moment of
inertia, tidal deformability in a binary merging system and different modes of oscillations etc.
depend crucially on its composition that affect the variation of pressure with energy density
or equation of state (EOS). Indeed, recent radio, x-ray and gravitational wave observations
of NSs have provided valuable insights into the EOS of dense matter [7–9]. The observations
of high mass pulsars like PSR J1614−2230 (M = 1.928± 0.017M�) [10], PSR J0348−0432
(M = 2.01 ± 0.04 M�) [11] and PSR J0740 + 6620 (M = 2.08 ± 0.07 M� ) [12] and very
recently PSR J1810 + 1714 with a mass (M = 2.13 ± 0.04 M� ) [13] have already drawn
attention on nuclear interactions at high densities with questions regarding the possible pres-
ence of exotic matter in them. To constrain the nature of EOS more stringently, simultaneous
measurements of NS mass and radius are essential. The precise determinations of NS radii is
difficult due to inaccurate modeling the x-ray spectra emitted by the atmosphere of a NS. The
high-precision x-ray space missions, such as the Neutron star Interior Composition ExploreR
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(NICER) have already shed some light in this direction. Of late, NICER has come up with
a measurement of the radius 12.71+1.14

−1.19 km, for NS with mass 1.34+0.15
−0.16 M� [14], and other

independent analyses show that the radius is 13.02+1.24
−1.06 km for an NS with mass 1.44+0.15

−0.14 M�
[15]. Further, the recent measurement of the equatorial circumferential radius of the highest
mass (2.072+0.067

−0.066 M�) pulsar PSR J0740+6620 is 12.39+1.30
−0.98 km [16, 17] by NICER will play

an important role in this domain.
The core of the NS can, in principle, support various possible exotic phases of QCD.

While perturbative QCD (pQCD) predicts deconfined quark matter at large densities, their
applicability is rather limited in the sense that these conclusions are applicable only to very
large baryon densities i.e. ρB ≥ 40ρ0 [18]. The most challenging region to study theoreti-
cally is, however, at intermediate densities i.e. few times nuclear matter saturation density
which is actually relevant for the matter in the core of NSs. The first principle Lattice QCD
(LQCD) calculation in this connection is also difficult due to the sign problem in lattice sim-
ulations at finite densities. At present such calculations are limited to low baryon densities
only i.e. µB/T ≤ 3.5 [19]. On the otherhand, many effective models predict possibilities
of various exotic phases of quark matter at such intermediate density region. These include
pion superfluidity [20–22], various colour superconducting phases like 2-flavour colour super-
conductivity [23–25], colour flavour locked phase (CFL) [26], Larkin-Ovchinkov-Fulde-Ferrel
(LOFF) [27, 28] phase, crystalline superconductivity phase etc. However, the signature of such
phases in quark matter from the study of NSs have been rather challenging. The GW170817
[9] event explored the constraints on the EOS using tidal deformability extracted from the
phase of the gravitational waveforms during the late stage of inspiral merger [29–34]. Though
not conclusive, it is quite possible that one or both the merging NSs could be Hybrid Star
(HS)s i.e. with a core of quark matter or a Mixed Phase (MP) core of quark and hadronic
matter [35, 36]. Within the current observational status, it is difficult to distinguish between
a canonical NS without a quark matter core from a HS with a core of pure quark matter
or a core of quark matter in a MP with hadronic matter. This calls for exploring other
observational signature to solve this “masquerade” problem [37, 38].

In this context, it has been suggested that the study of the non-radial oscillation modes
of NSs can have the possibility of providing the compositional information regarding the
matter in the interior of the NSs. This includes the NSs with a hyperon core [39–41], a
quark core or a MP core with quark and hadronic matter [38, 42–47]. This is because the
non-radial oscillations not only depend upon the EOS i.e. p(ε) but also on the derivatives
dp
dε and ∂p

∂ε [48]. Since the appearance of hyperons does not involve any phase transition, their
effects on the non-radial oscillation modes can be milder compared to a hadron-quark phase
transition (HQPT) at finite densities whose effect can be more pronounced. The non-radial
oscillation modes can be studied within the framework of GTR [49, 50]. Here, the fluid
perturbation equations can be decomposed into spherical harmonics leading to two classes
of oscillations depending upon the parity of the harmonics. The even parity oscillations
produce spheroidal (polar) deformation while the odd parity oscillations produce toroidal
deformation. The polar quasi-normal mode (QNM)s can further be classified into different
kinds of modes depending upon the restoring force that acts on the fluid element when it gets
displaced from its equilibrium position [51]. These oscillations couple to the gravitational
waves and can be used as the diagnostic tools in studying the phase structure of the matter
inside NSs. The important modes for this are the pressure (p) modes, fundamental (f)
modes and gravity (g) modes. The frequency of the g modes is lower than that of p modes
while the frequency of f modes lie in between. These are the fluid oscillation modes to be
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distinguished from w modes which are associated with the perturbation of space-time metric
itself [52]. In the present work, we focus on g and f modes oscillations arising from dense
matter from both neutron star matter (NSM) and hybrid star matter (HSM). For nuclear
matter, the existence of such low frequency g modes was shown earlier in Refs. [53, 54]. The
origin of g mode is related to the convective stability i.e. stable stratification of the star.
When a parcel of the fluid is displaced, the pressure equilibrium is restored rapidly through
sound waves while compositional equilibrium, decided by the weak interaction takes a longer
time causing the buoyancy force to oppose the displacement. This sets in the oscillations.
The g mode oscillation frequencies are related to the Brunt-Väisäla frequency (ωBV) which
depends on the difference between the equilibrium sound speed (c2

e) and adiabatic or the
constant composition sound speed (c2

s) i.e. ω2
BV ∝ (1/c2

e−1/c2
s) as well as on the local metric.

Such g modes without any phase transition have been studied earlier for the nuclear matter,
hyperonic matter, superfluidity [39, 40, 55–63].

It may be mentioned that much of the recent works on the estimation of ωBV are based
on the parameterised form of β-equilibrated nuclear matter EOS [43, 48]. In the present work,
on the otherhand, we use Relativistic Mean Field (RMF) model to estimate the ωBV and use
it to calculate the g modes oscillation frequencies. In the core of HSs with quark matter core
(either in a MP or in a pure quark matter phase), the ωBV can become large enough inside
of the star at a radial distance rc from the center where HQPT takes place and drive the g
mode oscillations.

It may be noted that g modes oscillations have been studied earlier in the context of
the HQPT [38, 42–48, 64]. In most of these investigations, the hadronic matter description
is through a parameterized form of nuclear matter EOS and the quark matter description is
through a bag model or an improved version of the same. In the present investigation, for
the nuclear matter sector we use a RMF theory involving nucleons interacting with scalar
and vector meson mean fields along with self-interactions of the mesons leading to reasonable
saturation properties of nuclear matter. For the description of quark matter we use a two
flavour Nambu–Jona-Lasinio (NJL) model where the parameters of the model are fixed from
the physical variables like pion mass, pion decay constant and light quark condensate that en-
codes the physics of the chiral symmetry breaking. The phase transition from hadronic matter
to quark matter can be considered either through a Maxwell construct or a Gibbs construct
leading to a MP [65]. It ought to be noted that the kind of phase transition depends crucially
on the surface tension [66–72] of the quark matter which, however, is poorly known. Gibbs
construct is relevant for smaller value of surface tension while Maxwell construct becomes
relevant for large values of surface tension [73, 74].

We organize this paper as follows. In section 2.1 we discuss salient features of RMF
models describing the nuclear matter. Specifically, we consider two different RMF models -
namely, the NL3 parameterized RMF with constant couplings along with nonlinear mesonic
interactions and a RMF model with density dependent couplings of baryon meson interaction.
Such a model has been quite successful in describing nuclear matter properties and finite
nuclei[75]. Recently, using a a Bayesian Inference framework in conjunction with minimal
constraints on nuclear saturation properties , the maximum mass of neutron stars exceeding
2M�, and low density equation of state (EOS) calculated using chiral effective theory for pure
neutron matter,the density dependent coupling parameters have been investigated [76, 77].
Such a density dependent Bayesian (DDB) model will be the other RMF model for hadronic
matter that we shall use in the analysis for the HQPT. In section 2.2, we discuss the NJL
model and write down the EOS for the quark matter. In section 2.3 we discuss the HQPT
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using Gibbs construct when there are multiple chemical potentials to describe the system. In
section 3, we discuss the stellar structure equations as well as the non-radial fluid oscillations
of the compact stars. We give here, in some detail, the derivation of the pulsation equations.
In section 4, we discuss the estimation of the equilibrium and adiabatic speed of sound in
different phases of matter. In section 5 we discuss the results of the present investigation
regarding thermodynamics of the dense matter, MP construction, HS structure and the non-
radial mode oscillations. Finally in section 6, we summarize the results and give an outlook
for the further investigation. We use natural units here where ~ = c = G = 1.

2 Formalism

2.1 Equation of state for nuclear matter

We discuss briefly the general RMF framework to construct the EOS of the NSM in Hadronic
Phase (HP). In this framework, the interaction among the baryons is realized through the
exchange of mesons. We confine our analysis for the NSM constituting of baryons (neutron
and proton) and leptons (electron and muon). The relevant mesons for this purpose are the
σ, ω and ρ mesons [78–81]. The scalar σ mesons create a strong attractive interactions, the
vector ω mesons on the otherhand are responsible for the repulsive short range interactions.
The neutron and proton do only differ in terms of their isospin projections. The isovector ρ
mesons are included to distinguish between baryons. The Lagrangian including baryons as
the constituents of the nuclear matter and mesons as the carriers of the interactions is given
as [82, 83]

L =
∑
b

Lb + Ll + Lint, (2.1)

where,

Lb =
∑
b

Ψ̄b(iγµ∂
µ − qbγµAµ −mb + gσσ − gωγµωµ − gργµ~Ib~ρµ)Ψb, (2.2)

Ll = ψ̄l(iγµ∂
µ − qlγµAµ −ml)ψl, (2.3)

Lint =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − V (σ)− 1

4
ΩµνΩµν +

1

2
m2
ωωµω

µ,

−1

4
~Rµν ~Rµν +

1

2
m2
ρ~ρµ~ρ

µ − 1

4
FµνFµν , (2.4)

and,

V (σ) =
κ

3!
(gσNσ)3 +

λ

4!
(gσNσ)4. (2.5)

Where Ωµν = ∂µων − ∂νωµ, ~Rµν = ∂µ~ρν − ∂ν~ρµ and Fµν = ∂µAν − ∂νAµ are the mesonic and
electromagnetic field strength tensors. ~Ib denotes the isospin operator. The Ψb and ψl are
baryon and lepton doublets. The σ, ω and ρ meson fields are denoted by σ, ω and ρ and their
masses are mσ, mω and mρ, respectively. The parameters mb and ml denote the vacuum
masses for baryons and leptons. The meson-baryon couplings gσ, gω and gρ are the scalar,
vector and isovector coupling constants, respectively. In RMF approximation, one replaces
the meson fields by their expectation values which then act as classical fields in which baryons
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move i.e. 〈σ〉 = σ0, 〈ωµ〉 = ω0δµ0, 〈ρaµ〉 =δµ0δ
a
3ρ

0
3. The mesonic equations of motion can be

found by the Euler-Lagrange equations for the meson fields using the Lagrangian Eq. (2.1)

m2
σσ0 + V ′(σ0) =

∑
i=n,p

gσn
s
i , (2.6)

m2
ωω0 =

∑
i=n,p

gωni, (2.7)

m2
ρρ

0
3 =

∑
i=n,p

gρI3ini, (2.8)

where, I3i is the third component of the isospin of a given baryon. We have taken I3(n,p) =(
−1

2 ,
1
2

)
. The baryon density, nB, lepton density, nl, and scalar density, ns, at zero tempera-

ture are given by

nB =
∑
i=n,p

γk3
Fi

6π2
≡
∑
i=n,p

ni, (2.9)

nl =
k3
Fl

3π2
, (2.10)

and

ns =
γ

(2π)3

∑
i=n,p

∫ kFi

0

m∗

E(k)
d3k ≡

∑
i=n,p

nsi , (2.11)

where, E(k) =
√
m∗2 + k2 being the single particle energy for nucleons with a medium

dependent mass given as
m∗ = mb − gσσ0. (2.12)

Further, kFi =
√
µ̃2
i −m∗2 is the Fermi momenta of the nucleons defined through an effective

baryonic chemical potential, µ̃i given as

µ̃i = µi − gωω0 − gρI3iρ
0
3. (2.13)

Similarly, kFl is the leptonic Fermi momenta i.e. kFl =
√
µ2
l −m2

l . Further γ = 2 correspond
to the spin degeneracy factor for nucleons and leptons and µl denotes the chemical potential
for leptons.

The total energy density, εHP, within the RMF model is given by

εHP =
m∗4

π2

∑
i=n,p

H(kFi/m
∗) +

∑
l=e,µ

m4
l

π2
H(kFl/ml)

+
1

2
m2
σσ

2
0 + V (σ0) +

1

2
m2
ωω

2
0 +

1

2
m2
ρρ

0
3

2
. (2.14)

The pressure, pHP, can be found using the thermodynamic relation as

pHP =
∑
i=n,p,l

µini − εHP. (2.15)
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Table 1. The nucleon masses (mb), σ me-
son mass (mσ), ω meson mass (mω), ρ meson
mass (mρ) and couplings gσ, gω, gρ, κ, λ in
NL3 parameterisation [84].

Parameters Values
mb (MeV) 939
mσ (MeV) 508.194
mω (MeV) 782.501
mρ (MeV) 763.000
g2
σ 104.387
g2
ω 165.585
g2
ρ 79.6
κ (fm−1) 3.86
λ -0.0159

Table 2. The nucleon masses (mb), meson
masses, mi (i = σ, ω, ρ) and coupling con-
stants gi0, ai (i = σ, ω, ρ) and the saturation
nuclear density n0 in DDB model [76, 77].

Parameters Values
mb (MeV) 939
mσ (MeV) 508.194
mω (MeV) 782.501
mρ (MeV) 763.000
aσ 0.071
aω 0.046
aρ 0.666
gσ0 9.690
gω0 11.756
gρ0 8.281
n0 (fm−3) 0.147

In Eq. (2.14) we have introduced the function H(z) which is given as

H(z) =
1

8

[
z
√

1 + z2(1 + 2z2)− sinh−1 z
]
, (2.16)

In the present investigation, we consider two different parameterisation for the nucleonic
EOS - (i) the NL3 parameterisation of RMF model as discussed in Ref. [84]. The correspond-
ing parameters are listed in Table 1. The other parameterisation of the RMF model is DDB
[76, 77] consistent with the phenomenology of the saturation properties of nuclear matter
as well as the gravitational wave data regarding tidal deformation [9]. In case of DDB, the
couplings are density dependent and defined as

gσ = gσ0 e
−(xaσ−1), (2.17)

gω = gω0 e
−(xaω−1), (2.18)

gρ = gρ0 e
−aρ(x−1), (2.19)

where, x = nB/n0. The DDB parameters gi0, ai, (i = σ, ω, ρ) and n0 are given in Table
2. In DDB parameterisation, the cubic and quartic terms in Eq. (2.1) are taken to be zero
so that V (σ) = 0. We mention here that these parameter set lies within the the 90 percent
confidence inference (CI) of the R1.4 of NS with mass 1.4M� as analysed in Ref. [76, 77]

Due to the density dependent couplings, the effective baryon chemical potential as in
Eq. (2.13) gets redefined as

µ̃i = µi − gωω0 − gρI3iρ
0
3 − Σr, (2.20)

where, Σr is the “rearrangement term” which is given as [75]

Σr =
∑
i=n,p

{
− ∂gσ
∂nB

σ0n
s
i +

∂gω
∂nB

ω0ni +
∂gρ
∂nB

ρ0
3I3ini

}
. (2.21)
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The NSs are globally charge neutral as well as the matter inside the core is under β-
equilibrium. So the chemical potentials and the number densities of the constituents of NSM
are related by the following equations,

µi = µB + qiµE , (2.22)∑
i=n,p,l

niqi = 0, (2.23)

where, µB and µE are the baryon and electric chemical potentials and qi is the charge of the
ith particle.

2.2 Equation of state for quark matter

We note down here, for the sake of completeness, the salient features of the thermodynamics
of NJL model with two flavours that we use to describe the EOS of the quark matter. The
Lagrangian of the model with four point interactions is given by

L = ψ̄q(iγ
µ∂µ −mq)ψq +Gs

[
(ψ̄qψq)

2 + (ψ̄qiγ
5τψq)

2
]

+Gv
[
(ψ̄qγ

µψq)
2 + (ψ̄qiγ

µγ5τψq)
2
]
. (2.24)

Here, ψq is the doublet of u and d quarks. We have also taken here a current quark mass,
mq which is that we have taken as same for u and d quarks. The second term describes
the four point interactions in the scalar and pseudo-scalar channel. The third term is a
phenomenological vector interaction giving rise to repulsive interaction for Gv > 0 which
can make the EOS stiffer. Except for the explicit symmetry breaking term proportional to
current quark mass, the Lagrangian is chirally symmetric. Using the standard method of
thermal field theory one can write down the thermodynamic potential Ω within a mean field
approximation at a given temperature, (T = β−1) and quark chemical potential, (µq = µB/3)
[85] as

Ω(M,T, µ) = −2Nc

∑
i=u,d

∫
dk

(2π)3
×
{
Ek +

1

β
log
(
1 + exp

(
− β(Ek − µ̃i)

))
+

1

β
log
(
1 + exp

(
− β(Ek + µ̃i)

))}
+Gsρ

2
s −Gvρ2

v. (2.25)

Where, Nc = 3 is the colour degrees of freedom and Ek =
√
k2 +M2 is the on shell single

particle energy of the quark with constituent quark mass M and µ̃i being an effective quark
chemical potential in the presence of the vector interaction. The constituent quark mass, M ,
satisfies the mass gap equation

M = mq − 2Gsρs, (2.26)

and the effective quark chemical potential satisfies

µ̃i = µi − 2Gvρv. (2.27)

Here, we focus our attention to T = 0 which is applicable to the cold NSs. Using the
relation limβ→∞

1
β log

(
e−βx + 1

)
= −xΘ(−x), the thermal factors in Eq. (2.25) go over into

step functions and the mean field thermodynamic potential Eq. (2.25) becomes in the limit
T → 0

Ω(M, 0, µ) = −2Nc

∑
i=u,d

∫
dk

(2π)3

{
Ek + (µ̃i − Ek) Θ (µ̃i − Ek)

}
+Gsρ

2
s −Gvρ2

v.

(2.28)
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The scalar density, ρs, and vector density, ρv, are given as

ρs = −2Nc

∑
i=u,d

∫
dk

(2π)3

M

Ek

(
1−Θ (µ̃i − Ek)

)
= −NcM

3

π2

∑
i=u,d

[
G(Λ/M)−G(kFi/M)

]
, (2.29)

and

ρv = 2Nc

∑
i=u,d

∫
dk

(2π)3
Θ (µ̃i − Ek) = 2Nc

∑
i=u,d

k3
Fi

6π2
. (2.30)

In Eq. (2.29), we have introduced the function G(z) which is defined as

G(z) =
1

2

[
z
√

1 + z2 − tanh−1

(
z√

1 + z2

)]
. (2.31)

The difference of the vacuum energy densities between the non-perturbative vacuum
(characterized by the constituent quark mass, M) and energy density of the perturbative
vacuum (characterized by current quark mass, mq) is the bag constant, B, i.e.

B = Ω(M,T = 0, µ = 0)− Ω(mq, T = 0, µ = 0). (2.32)

This bag constant is to be subtracted from Eq. (2.28) so that the thermodynamic potential
vanishes at vanishing temperature and density. The pressure, pNJL, i.e. the negative of the
thermodynamic potential of the quark matter in NJL model is given as

pNJL = pvac + pmed +B, (2.33)

where the vacuum, pvac, and the medium, pmed, contributions to the pressure are given by

pvac =
4Nc

(2π)3

∫
|k|≤Λ

dk
√
k2 +M2 ≡ 2Nc

π2
M4 H(Λ/M), (2.34)

and,

pmed =
2Nc

(2π)3

∑
i=u,d

∫ kFi

0
dk
[√

k2 +M2 − µ̃i
]

+Gsρ
2
s −Gvρ2

v

=
Nc

π2

∑
i=u,d

M4 [H(kFi/M)− µ̃iρi] +Gsρ
2
s −Gvρ2

v, (2.35)

where, kFi = Θ(µ̃i −M)
√
µ̃2
i −M2 is the fermi-momenta of i = u, d quark and Λ is the

three momentum cut-off. The function H(z) is already defined in Eq. (2.16). From the
thermodynamic relation, the energy density, εNJL, is given as

εNJL =
∑
i=u,d

µiρi − pNJL. (2.36)
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where, ρi =
γk3Fi
6π2 , (i = u, d, e) with the degeneracy factor γ = 6 for quarks and γ = 2 for

electron. NSM is charge neutral as well as β-equilibrated. So the chemical potentials of the u
and d quarks can be expressed in terms of quark chemical potential, µq, and electric chemical
potential, µE , as µi = µq + qiµE (i = u, d). qi’s are the electric charges of u and d quarks.
The condition of charge neutrality is

2

3
ρu −

1

3
ρd − ρe = 0. (2.37)

Since the typical electric charge chemical potential is of the order of MeV, one can neglect the
electron mass so that kFe = |µe|. The total pressure and the energy density for the charge
neutral quark matter are then given by

pQP = pNJL + pe, (2.38)
εQP = εNJL + εe, (2.39)

where, εe ' µ4e
4π2 and pe ' εe/3.

We may note that NJL model has four parameters − namely, the current quark mass,
mq, the three momentum cutoff, Λ, and the two coupling constants, Gs and Gv. The values
of the parameters are usually chosen by fitting the pion decay constant, fπ = 92.4 MeV, the
chiral condensate, 〈−ψ̄qψq〉u = 〈−ψ̄qψq〉u = (240.8 MeV)3 and the pion mass, mπ = 135 MeV.
This fixes mq = 5.6 MeV, GsΛ2 = 2.44 and Λ = 587.9 MeV. As mentioned Gv is not fitted
from any other physical constraint and we take it as a free parameter. We shall show our
results for the two values of Gv namely Gv = 0 and Gv = 0.2Gs. With this parameterisation,
the constituent quark mass, M , comes 400 MeV, the critical chemical potential, µc for the
chiral transition turns out to be µc = 1168 MeV for the vector coupling constant Gv = 0 in
NJL model.

2.3 Hadron-quark phase transition and mixed phase

The baryon number density or the quark chemical potential at which the hadronic-quark
phase transition occurs is not known precisely from the first principle calculations in QCD
but it is expected from various model calculations to occur at a density which is few times the
nuclear matter saturation density. In the context of NSs, two types of phase transitions can
be possible depending upon the surface tension [66–72] of the quark matter. If the surface
tension is large then there will be sharp interface and one can have a Maxwell construct for
the phase transition. On the otherhand, if the surface tension is small we can have a Gibbs
construct for the phase transition, where there is a MP of nuclear and quark matter. It ought
to be mentioned, however, the estimated values of the surface tension for quark matter vary
over a wide range and is very much model dependent. As the value of the surface tension is not
precisely known yet both the scenarios, (Maxwell and Gibbs) are plausible. We adopt here the
Gibbs construct for the HQPT as nicely outlined in Ref. [86]. In this case, one can achieve the
charge neutrality with a positively charged hadronic matter mixed with a negatively charged
quark matter in necessary amount leading to a global charge neutrality where the pressures
of the both phases are the functions of two independent chemical potentials µB and µE . The
Gibbs condition for the equilibrium at the zero temperature between the two phases for such
a two component system is given by [65]

pHP(µB, µE) = pQP(µB, µE) = pMP(µB, µE), (2.40)
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Figure 1. Pressure is plotted as a function of µn(µB) and µe(−µE) for HP and QP. The green
surface is for HP and the purple surface is for the QP. The two surfaces intersect along the curve AB.
The along the dashed portion on this line, the electrical charge neutrality is maintained. Along the
red dashed line and magenta dashed line charge neutrality is maintained in HP and QP respectively.
The quark matter fraction χ increases monotonically from χ = 0 to χ = 1 along the curve AB. We
have considered here the NL3 parameterisation of RMF for the description of HP matter.

where, the pressure for HP, pHP, is given in Eq. (2.15) and the pressure for the Quark Phase
(QP), pQP, is written down in Eq. (2.38). In Fig. 1 we illustrate this calculation, where the
pressure is plotted as a function of baryon chemical potential, µB(= µn), and the electric
chemical potential, −µE(= µe). The green surface denotes the pressure in the HP estimated
from the RMF model using NL3 parameters. The purple surface denotes the pressure in the
QP estimated in NJL model. The two surfaces intersect along the curve AB satisfying the
global charge neutrality condition,

χ ρQP
c + (1− χ) ρHP

c = 0, (2.41)

where, ρHP
c and ρQP

c denote the total charge densities in HP and QP respectively and χ defines
the volume fraction of the quark matter in MP defined as,

χ =
VQP

VQP + VHP
. (2.42)

Explicitly, for a given µB, we calculate the electric charge chemical potential µE such
that the pressure in both the phases are equal satisfying the Gibbs condition Eq. (2.40). This
gives the intersection line (AB) of the two surfaces as shown in Fig. 1. Further imposing
the global charge neutrality condition Eq. (2.41) one obtains the volume fraction χ occupied
by the quark matter in MP. Thus along the line AB in Fig. 1, the volume fraction occupied
by quark matter increases monotonically from χ = 0 to χ = 1. This gives the pressure
for the charge neutral matter in MP. Below χ < 0, EOS corresponds to the charge neutral
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Figure 2. The particle fractions normalized with respect to baryon density for the charge neutral
matter are plotted as a function of the baryon number density. The plot is for Gv = 0.2Gs. At
ρB = 2.75ρ0 the quark matter starts appearing and at ρB = 5.72 ρ0 the hadronic matter melts
completely to the quark matter. The HP is described by RMF model with NL3 parameterisation.

hadronic matter EOS shown as the red dash curve while for χ > 1 EOS corresponds to
the charge neutral quark matter EOS shown as the purple dash curve in Fig. 1. With
the present parametrisation of the RMF model for hadronic matter and NJL model for the
quark matter, MP starts at (µB, µe, p) = (1423MeV, 289.26MeV, 144.56MeV/fm3) and ends
at (µB, µe, p) = (1597MeV, 102.40MeV, 266.23MeV/fm3). This corresponds to the starting
of MP at baryon density ρB = 2.75ρ0 and ending of MP at baryon density ρB = 5.72ρ0.
For NJL model we have taken here Gv = 0.2Gs. For Gv = 0, MP starts little earlier i.e.
ρB = 2.36ρ0 and ends at ρB = 5.22ρ0. After MP, as baryon density increases the matter is
in pure charge neutral QP. We can find the energy density in the MP as follows,

εMP = χεQP + (1− χ)εHP. (2.43)

We display the particle content as a function of density for the charge neutral matter
for Gv = 0.2Gs in Fig. 2. In the HP, the neutron density dominates with a small fraction
of proton and a small fraction of electron is also appeared to get the charge neutral HP. At
ρB ∼ 2.76ρ0, the MP starts and the nucleon fraction decreases while quark fraction start
increasing. Finally, at densities ρB ∼ 5.56ρ0 and above, the pure QP takes over with d-quark
densities roughly becoming twice that of the u-quarks to maintain the global charge neutrality.

Similar to Eq. (2.43) the baryon number density in MP

ρBMP = χρBQP + (1− χ)ρBHP. (2.44)

In MP region, nuclear matter fraction decreases while quark matter fraction increases with
increasing ρB. As ρB increases further the nuclear matter melts completely to quark matter
which occurs for densities beyond ρB = 5.72ρ0.

MP construction using DDB parameterisation of the hadronic EOS is also similar except
that the MP starts at (µB, µe, p, ρB) = (1416.5 MeV, 204.58 MeV, 181.76 MeV/fm3, 3.93ρ0)
and ends at (µB, µe, p, ρB) = (1504 MeV, 108.42 MeV, 245.51 MeV/fm3, 6.98ρ0) beyond
which we find QP as the stable phase.
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3 Non-radial fluid oscillation modes of compact stars

In this section, we outline the equations governing the oscillation modes of the fluid comprising
NSM. The most general metric for a spherically symmetric space-time is given by

ds2 = gαβdx
αdxβ

= e2νdt2 − e2λdr2 − r2(dθ2 + sin2 θdφ2), (3.1)

where, ν and λ are the metric functions. It is convenient to define the mass function, m(r)
in the favour of λ as

e2λ =

(
1− 2m

r

)−1

. (3.2)

Starting from the line element Eq. (3.1) one can obtain the equations governing the structure
of spherical compact objects, the Tolman-Oppenheimer-Volkoff (TOV) equations, as

dp

dr
= − (ε+ p)

dν

dr
, (3.3)

dm

dr
= 4πr2ε, (3.4)

dν

dr
=
m+ 4πr3p

r(r − 2m)
. (3.5)

In the above set of equations ε, p are the energy density and the pressure respectively. m(r)
is the mass of the compact star enclosed within a radius r. To solve these equations, one has
to supplement these equations with an equation relating pressure and energy density i.e. an
EOS. Further, one has to set the boundary conditions at the center and surface as

m(0) = 0 and p(0) = pc, (3.6)
p(R) = 0, (3.7)

e2ν(R) = 1− 2M

R
, (3.8)

where, the total mass of the compact object is given by M = m(R) 1, R being it’s radius
which is defined as the radial distance where the pressure vanishes while integrating out Eqs.
(3.3, 3.4 and 3.5) from the center to the surface of the star. One can solve these equations
along with a boundary conditions Eqs. (3.6, 3.7 and 3.8) for a set of central densities εc or
corresponding pressure pc to obtain the mass-radius, (M −R) curve.

For the sake of completeness, we give below a succinct derivation of pulsating equations
in the context of NS within a relativistic setting [53, 87]. The Einstein field equation that
relates the curvature of space time to the energy momentum tensor is given as

Rαβ −
1

2
gαβR = 8πTαβ, (3.9)

with Tαβ being the stress energy tensor, which for a perfect fluid is given by

Tµν = (p+ ε)uµuν − pgµν , (3.10)
1In this section, M denotes the mass of the compact stars to be distinguished from the constituent quark

mass defined in Sec 2.2.
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with p and ε being the pressure and energy density respectively and uµ is the four-velocity.
Taking (covariant) divergence of the Einstein equation, Eq. (3.9), the left hand side of Eq.
(3.9) vanishes using Bianchi identity leading to covariant conservation equation of the energy
momentum tensor i.e. Tµν;µ = 0. With Tµν given in Eq. (3.10), this reduces to

(p+ ε)uµuν;µ = ∂νp− uνuµ∂µp (3.11)

which is the relativistic Euler equation [87]. Next, to derive the equation of motion, we use the
conservation of baryon number. This is similar to using continuity equation in non-relativistic
case which follows from mass conservation. The baryon number conservation equation is given
by

dn

dτ
= −nuµ;µ, (3.12)

where, n is the baryon number density.
We shall derive the equations in spherical coordinates and the perturbations will be

expanded in terms of vector spherical harmonics. The position (t, r, θ, φ) of a fluid element
in space time as a function of proper time τ is given by the position four-vector ξ(τ) as

ξ(τ) =


ξt

ξr

ξθ

ξφ

 . (3.13)

Consider a fluid element located at ξ0 as its equilibrium position is displaced to ξ(ξ0, τ) =
ξ0+ζ(ξ0, τ). This results perturbation in pressure p, in energy density ε and in baryon number
density n as

p = p0 + δp, (3.14)
ε = ε0 + δε, (3.15)
n = n0 + δn, (3.16)

where, the subscript ‘0’ refers to the corresponding quantities in equilibrium. To derive the
equations of motion for the perturbation, one has to linearize the Euler equation, Eq. (3.11)
in the perturbation. For this we need the four velocities of the fluid elements uµ = dξµ

dτ =
dζµ

dτ . Further, we shall confine ourselves to performing the analysis for spherical harmonic
component with the azimuthal index m = 0. For the displacement vector ζµ we take the
ansatz 

ζt

ζr

ζθ

ζφ

 =


t

e−λQ(r, t)

r2
Pl(cos θ)

−Z(r, t)

r2
∂θPl(cos θ)

0

 , (3.17)

where, Q(r, t) and Z(r, t) are the perturbing functions. We choose a harmonic time depen-
dence for the perturbation i.e. ∝ eiωt with frequency ω. Further, we do not consider here
toroidal deformations. From the normalisation condition for the velocity uµuµ = 1, and keep-
ing up to linear terms in the perturbation, we have ut = dζt/dτ = e−ν . The other components
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of the four-velocity are given as 
ut

ur

uθ

uφ

 =


e−ν

e−ν ζ̇r

e−ν ζ̇θ

0

 , (3.18)

where, the dot on the perturbed coordinate denotes the derivative with respect to time ‘t’.
Similarly, the contravarient velocity components are given using the metric given in Eq. (3.1)
and Eq. (3.18) as 

ut
ur
uθ
uφ

 =


eν

−e2λ−ν ζ̇r

−r2e−ν ζ̇θ

0

 . (3.19)

Now we simplify the Euler equation i.e. Eq. (3.11) by substituting the expressions for
pressure, energy density and the fluid four-velocity and linearize in terms of the perturbing
functions. The ν = t component of the Euler equation, Eq. (3.11), reduces to

(p0 + ε0)ν ′(r) = −p′0(r), (3.20)

where, the superscript ‘prime’ corresponds to derivative with respect to ‘r’. To obtain Eq.
(3.20), we have used in the LHS of Eq. (3.11), with ν = t, uµut;µ = ν ′ζ̇r and in RHS we
have used the fact that p0 is isotropic so that ṗ0 − utuµ∂µp ∼ −ζ̇rp′0(r). Let us recognise
that the Eq. (3.20) is essentially a part of the TOV equations (Eq. (3.3)) relating pressure
gradient and the metric function gradient. Next, the ν = r component of the Euler equation,
Eq. (3.11), reduces to

ω2(ε0 + p0)e2(λ−ν)ζr − (δε+ δp)ν ′(r)− d

dr
(δp) = 0. (3.21)

Similarly, the ν = θ component of the Euler equation, Eq. (3.11), by using uµuθ;µ =

ut∂tuθ = −e−2νr2ζ̈θ, is given as

ω2(ε0 + p0)e−2νr2ζθ − ∂θδp = 0. (3.22)

Having written down the Euler equation to linear order in the perturbation, let us next
consider the baryon number conservation equation i.e. Eq. (3.12). With the velocity compo-
nents given in Eqs. (3.18, 3.19) and Eq. (3.17) for the perturbation,the number conservation
equation, Eq. (3.12) can be written in terms of the radial and azimuthal perturbing functions
Q(r) and Z(r) as

dn

dτ
= − n

r2

[
e−(λ+ν)

∂2Q(r, t)

∂r∂t
+ e−ν l(l + 1)Ż

]
Pl(cos θ). (3.23)

We might note here that, since the proper time derivative is taken along the world
line of the fluid parcel, we can write dn

dτ = d∆n
dτ , where, ∆n is the Lagrangian perturbation.

Further, using the relation ∂/∂t = e−ν∂/∂τ , we can integrate Eq. (3.23) over dτ to obtain
the Lagrangian perturbation in number density ∆n in terms of the perturbing functions Q
and Z as

∆n

n0
= − 1

r2

[
e−λQ′ + l(l + 1)Z

]
Pl(cos θ). (3.24)
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To write down the equations in terms of the perturbing functions Q(r) and Z(r), we
need to express the energy density perturbation δε and pressure perturbation δp occurring in
Eqs. (3.20, 3.21) in terms of the functions Q(r) and Z(r). The strategy is to use the Euler
equation Eq. (3.11) to write δε in terms of δn and use definition of bulk modulus (κ = n∆p

∆n)
to write δp in terms of δn. One can then use the baryon number conservation equation Eq.
(3.23) to write δε and δp in terms of the perturbing functions.

Thus, using the Euler equation Eq. (3.11) to eliminate uµ;µ in the baryon number con-
servation Eq. (3.12), we have

dn

dτ
=

n

p+ ε

∂ε

∂τ
, (3.25)

which leads to
∆ε ' ε0 + p0

n0
∆n. (3.26)

Further, using the relation between the Lagrangian perturbation and the Eulerian per-

turbation i.e. ∆ε = δε+ ζr
dε0
dr

and using Eq. (3.24), we have

δε = −
[
ε0 + p0

r2

{
e−λQ′ + l(l + 1)Z

}
+
e−λ

r2
Q
dε0
dr

]
Pl(cos θ). (3.27)

Next, let us find out the relation between δp and ∆n. The Eulerian variation δp and
the Lagrangian variation ∆p are related as

δp = ∆p− ζr dp0

dr
. (3.28)

Thus, using Eq. (3.17) and Eq. (3.24), we have

δp = −
[
κ

r2

(
e−λQ′ + l(l + 1)Z

)
+
e−λ

r2

dp0

dr
Q

]
Pl(cos θ). (3.29)

Further, ∆p is related to ∆n, through bulk modulus κ i.e.

κ = n
∆p

∆n
.

In the relativistic Cowling approximation, the metric perturbations are neglected. This will
mean the energy and pressure perturbations should also vanish. In the relativistic Cowling
approximation, the energy density perturbation δε is set to zero but pressure perturbation is
not set to zero. As shown in Ref.[53], such an approximation leads to qualitatively correct
result which we shall also follow. Setting δε = 0 in Eq. (3.21), and using Eq. (3.29), we have

ν ′δp+
dδp

dr
= −ν ′κX − d(κX)

dr
− ν ′(p0 + ε0)l(l + 1)

Z

r2
+ (p0 + ε0)Q

d

dr

(
e−λν ′

r2

)
,

(3.30)

where, we have defined for the sake of brevity X = (e−λQ′ + l(l + 1)Z)/r2.Using this, the
radial Euler equation, Eq. (3.21) becomes

ω2(ε0 + p0)eλ−2ν Q

r2
+
d [κX]

dr
+ ν ′κX + ν ′(ε0 + p0)l(l + 1)

Z

r2
− (ε0 + p0)

d

dr

(
e−λν ′

r2

)
= 0.

(3.31)
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Similarly, the azimuthal component of the Euler equation Eq. (3.22) becomes

ω2(p0 + ε0)e−2νZ − κX − p′0
e−λQ

r2
= 0. (3.32)

It can be shown that the Eq. (3.31) through a rearrangement of terms is identical to
that obtained earlier by McDermott et. al. [53] with an appropriate change of factor 2 in
the metric functions ν(r) and λ(r). Few more comments here may be in order. In literature,
sometimes the adiabatic index γ is used instead of κ and is defined as [42]

γ =

(
∂ ln p0

∂ lnn0

)
s

=
n0∆p

p0∆n
(3.33)

so that κ = γp0. Further, the same can be related to adiabatic speed of sound as follows. By
using the definition of Jacobian and standard thermodynamic relation(

∂ ln p0

∂ lnn0

)
s

=
n2

0

p0χµµ
(3.34)

in the zero temperature limit. The adiabatic speed of sound at zero temperature is defined
as [88]

c2
s =

(
∂p0

∂ε0

)
s

=
n

µχµµ

so that
γ =

p0 + ε0
p0

c2
s. (3.35)

Let us note that Eq. (3.31) is a second order differential equation for the perturbing
function Q(r). We now use Eq. (3.32) to write down two coupled first order equation for the
perturbing functions. Using Eq. (3.32) and Eq. (3.35), we have the equation for perturbation
as

Q′ − 1

c2
s

[
ω2r2eλ−2νZ + ν ′Q

]
+ l(l + 1)eλZ = 0. (3.36)

Next one can calculate the combination d[Eq.(3.32)]/dr+[Eq.(3.31)] and substitute Eq.
(3.32) again which leads to the first order differential equation for Z ′ as

Z ′ − 2ν ′Z + eλ
Q

r2
− ν ′

(
1

c2
e

− 1

c2
s

)(
Z + ν ′e−λ+2ν Q

ω2r2

)
= 0. (3.37)

In the above equation c2
e = dp0

dε0
=

p′0
ε′0

is the equilibrium speed of sound. It may be noted
that Eq. (3.40) can be rewritten as

ω2eλ
Q

r2
+ ω2Z ′ +A−e

λω2Z −A+e
2ν p′0
p0 + ρ0

q

r2
= 0. (3.38)

where, A+ = e−λ(ε′0/(p0 + ε0)+ν ′/c2
s) and A− = A+−2ν ′e−λ. It is reassuring to see that the

Eq. (3.36) and Eq. (3.38) are identical to the corresponding equations Eq.(3b) and Eq.(4a)
given in Ref. [53]. The gravity mode (g mode) oscillation frequencies are closely related to
the Brunt-Väisäla frequency, ωBV [53]. The relativistic generalisation of ωBV is given by

ω2
BV = ν ′

2
e2ν

(
1− 2m

r

)(
1

c2
e

− 1

c2
s

)
. (3.39)
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This also reduces to the expression for the ωBV in Newtonian limit [54].
The equation for the perturbation function Z(r) can be rewritten in terms of the Brunt-

Väisäla frequencies as

Z ′ − 2ν ′Z + eλ
Q

r2
−

ω2
BV e

−2ν

ν ′
(
1− 2m

r

) (Z + ν ′e−λ+2ν Q

ω2r2

)
= 0. (3.40)

The two coupled first order differential equations for the perturbing functions Q(r, t)
and Z(r, t), Eqs. (3.36),(3.40), are to be solved with appropriate boundary conditions at the
center and the surface. Near the center of the compact stars the behavior of the functions
Q(r) and Z(r) are given by [42]

Q(r) = Crl+1 and Z(r) = −Crl/l (3.41)

where, C is an arbitrary constant and l is the order of the oscillation. The other boundary
condition is the vanishing of the Lagrangian perturbation pressure, i.e. ∆p = 0 at the stellar
surface. Using equations Eqs. (3.28, 3.29 and 3.36), we have the Lagrangian perturbation
pressure ∆p given as

∆p = −(p0 + ε0)

r2

[
ω2r2eλ−2νZ + ν ′Q

]
e−λ. (3.42)

Thus the vanishing of ∆p at the surface of the star (r = R) leads to the boundary condition
[89]

ω2r2eλ−2νZ + ν ′Q
∣∣∣
r=R

= 0. (3.43)

Further, in case one considers stellar models with a discontinuity in the energy density,
one has to supplement additional condition at the surface of discontinuity demanding ∆p to
be continuous i.e. ∆p(r = rc−) = ∆p(r = rc+). Where, rc is the radial distance of the surface
of energy density discontinuity from the center. This leads to [42, 89]

Q+ = Q−, (3.44)

Z+ =
e2ν

ω2rc

{
ε0− + p0

ε0+ + p0

(
ω2r2

ce
−2νZ− + e−λν ′Q−

)
− e−λν ′Q+

}
, (3.45)

where, the −(+) subscript corresponds to the quantities before(after) the surface of disconti-
nuity. In case of a Maxwell construct for phase transition, there is a discontinuity in energy
density while in Gibbs construct of phase transition the energy density is continuous at the
phase boundary as considered here.

With these boundary conditions the problem becomes an eigen-value problem for ‘ω’.
To calculate the eigen frequencies ω, we proceed as follows. For a given central density εc,
we first solve the TOV equations Eqs. (3.3 - 3.5) to get the profile of the unperturbed metric
functions λ(r), ν(r) and also the mass M and the radius R of the spherical star. For a given
ω, we solve the pulsating equations Eqs. (3.36 and 3.40) to determine the fluid perturbing
functions Q(r) and Z(r) as a function of r. To solve these equations, we take the initial values
for Q and Z consistent with Eq. (3.41). Specifically we took C of the order 1. The solutions
of Q and Z are independent of this choice. We then calculate LHS of Eq. (3.43). The value
of ω is then varied such that the boundary condition, Eq. (3.43), is satisfied. This gives the
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frequency, ω as function of mass and radius. It may be noted that there can be multiple
solutions of ω satisfying the pulsating equations and the boundary conditions corresponding
to different initial trail values for ω. These different solutions for ω correspond to frequencies
of different modes of oscillations of the compact star.

4 Equilibrium and adiabatic sound speeds

In this section we discuss both equilibrium and adiabatic sound speeds which are needed to
solve the pulsating equations Eqs. (3.36) and (3.40). We present the expressions of both
sound speeds for matter in HP, QP and MP. The equilibrium speed of sound is given by

c2
e =

dp

dε
=
dp/dr

dε/dr
. (4.1)

where, p and ε are the total pressure and energy density. The equilibrium sound speed in NS
can be evaluated numerically as a function of radial distance from the center of the star while
keeping the NSM in β-equilibrium. Using the above definition (4.1), we find the equilibrium
speed of sound in HP, QP and MP.

The characteristic time scale of the QNM is about 10−3 sec which is much smaller than
the β-equilibrium time scale. Therefore, during the oscillations the composition of the matter
can be assumed to be constant. Such adiabatic approximation means the adiabatic speed of
sound corresponds to the constant composition i.e.

c2
s =

(
∂p

∂ε

)
yi

=
(∂p/∂nB)yi
(∂p/∂nB)yi

, (4.2)

where, yi = (ni/nB)’s are the fractions of the constituents of the matter which need to be held
fixed while taking the derivatives. Once the derivatives are taken, we apply the β-equilibrium
condition and get the adiabatic speed of sound in different phases. In the following subsections
we present the analytical expressions for the adiabatic speeds of sound in HP, QP and MP.

4.1 Speed of sound in hadronic phase

In the following we estimate the adiabatic speed of sound of hadronic matter within the RMF
model as

c2
s,HP =

(
∂pHP
∂nB

)
yi(

∂εHP
∂nB

)
yi

. (4.3)

The total energy density and total pressure of matter in HP are given in Eqs. (2.14) and
(2.15). Using these equations we find the partial derivative of pressure and energy density
with respect to baryon number density at constant composition (fixed yi) as(

∂pHP

∂nB

)
yi

=
∑
i=n,p,l

[
µiyi +

(
∂µi
∂nB

)
yi

nB

]
−
(
∂εHP

∂nB

)
yi

, (4.4)

and,(
∂εHP

∂nB

)
yi

=
1

2π2

∑
i=n,p,e,µ

[
EFik

2
Fi

(
∂kFi
∂nB

)
yi

+m∗
(
EFikFi −m∗2 log xi

)(∂m∗
∂nB

)
yi

]

+(m2
σσ0 + V ′(σ0))

(
∂σ0

∂nB

)
yi

+m2
ωω0

(
∂ω0

∂nB

)
yi

+m2
ρρ

0
3

(
∂ρ0

3

∂nB

)
yi

. (4.5)
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Here, xi =
EFi + kFi

m∗
. The derivatives of the meson fields at constant composition, using

Eqs. (2.6-2.8) are given as(
∂σ0

∂nB

)
yi

=
gσ(ap + an)

m2
σ + V ′′(σ0)− gσ(bp + bn)

, (4.6)(
∂ω0

∂nB

)
yi

=
gω(yp + yn)

m2
ω

, (4.7)(
∂ρ0

3

∂nB

)
yi

=
gρ(yp − yn)

2m2
ρ

, (4.8)

where, V ′′(σ0) is the second derivative of Eq. (2.5) with respect to σ0. The quantities ai and
bi, (i = n, p) are given by

ai =
m∗yi
EFi

, (4.9)

bi =
gσ
2π2

[
3m∗2 log xi − EFikFi −

2m∗2kFi
EFi

]
. (4.10)

Eqs. (4.4 and 4.5) lead, inturn, to the derivatives of the medium dependent mass (m∗) and
the chemical potential (µi) with respect to baryon number density at constant composition
is given as (

∂m∗

∂nB

)
yi

= −gσ
(
∂σ0

∂nB

)
yi

, (4.11)(
∂µi
∂nB

)
yi

=

(
∂µ̃i
∂nB

)
yi

+ gω

(
∂ω0

∂nB

)
yi

+ gρI3i

(
∂ρ30

∂nB

)
yi

, (4.12)

where, µ̃i =
√
k2
Fi +m∗2. Further, we have on direct evaluation, using nB =

∑
i=n,p

k3Fi
3π2 ,

(
∂kFi
∂nB

)
yi

=
kFi
3nB

. (4.13)

Thus the partial derivatives of pressure, Eq. (4.4) and energy density Eq. (4.5) gets completely
defined. This gives the adiabatic speed of sound in hadronic matter in the RMF model.

Similarly, one can determine the sound speeds in DDB model. The expressions of the
partial derivatives of pressure and energy density in DDB model are similar to Eq. (4.4) and
Eq. (4.5) except that there are additional terms due to the density dependent couplings.
Here we give the expressions with the incorporation of corresponding changes arising from
the density dependent couplings. The derivatives of the meson fields in DDB model is given
as follows (

∂σ0

∂nB

)
yi

=
1

m2
σ − gσ(bp + bn)

(
gσ(a′p + a′n) +

(
∂gσ
∂nB

)
yi

(nsp + nsn)

)
, (4.14)(

∂ω0

∂nB

)
yi

=
1

m2
ω

(
gω(yp + yn) +

(
∂gω
∂nB

)
yi

(np + nn)

)
, (4.15)(

∂ρ0
3

∂nB

)
yi

=
1

2m2
ρ

(
gρ(yp − yn) +

(
∂gρ
∂nB

)
yi

(np − nn)

)
, (4.16)
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where, with ai and bi as given in Eqs. (4.9 and 4.10),

a′i = ai +
biσ0

gσ

(
∂gσ
∂nB

)
yi

, (4.17)

and, the derivatives of the density dependent couplings are given as(
∂gσ
∂nB

)
yi

= −gσaσ
ρ0

xaσ−1, (4.18)(
∂gω
∂nB

)
yi

= −gωaω
ρ0

xaω−1, (4.19)(
∂gρ
∂nB

)
yi

= −gρaρ
ρ0

. (4.20)

The derivatives of the medium dependent mass and the effective chemical potential at constant
composition is defined as(

∂m∗

∂nB

)
yi

= −gσ
(
∂σ0

∂nB

)
yi

−
(
∂gσ
∂nB

)
yi

σ0, (4.21)

and, (
∂µi
∂nB

)
yi

=

(
∂µ∗i
∂nB

)
yi

+

(
∂gω
∂nB

)
yi

ω0 + gω

(
∂ω0

∂nB

)
yi

+

(
∂gρ
∂nB

)
yi

I3iρ
0
3 + gρI3i

(
∂ρ0

3

∂nB

)
yi

+

(
∂Σr

∂nB

)
yi

. (4.22)

The last term on the RHS above is due to the extra ‘re-arrangement term’ in the effective
baryon chemical potential, µ̃i, given in Eq. (2.21) and can be written as(

∂Σr

∂nB

)
yi

=
∑
i=p,n

[
−σ0n

s
i

(
∂2gσ
∂n2

B

)
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(
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)
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(
∂gσ
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)
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−
(
∂σ0
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)
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(
∂gσ
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)
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+ ω0ni

(
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∂n2

B

)
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(
∂ni
∂nB

)
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(
∂gω
∂nB

)
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+

(
∂ω0
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(
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3I3ini
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∂n2

B

)
yi

+ ρ0
3I3i

(
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∂nB

)
yi

(
∂gρ
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)
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+

(
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3
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)
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I3ini

(
∂gρ
∂nB

)
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]
.

(4.23)

In the above, using Eqs. (4.18-4.20) the second derivatives of the couplings are directly given
as (

∂2gσ
∂n2

B

)
yi

= −
(
∂gσ
∂nB

)
yi

aσx
aσ − aσ + 1

x ρ0
, (4.24)(

∂2gω
∂n2

B

)
yi

= −
(
∂gω
∂nB

)
yi

aωx
aω − aω + 1

x ρ0
, (4.25)(

∂2gρ
∂n2

B

)
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= −
(
∂gρ
∂nB

)
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aρ
ρ0
. (4.26)
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Finally the derivative of the scalar condensate in Eq. (4.23) is given by, using Eq. (2.11)(
∂nsi
∂nB

)
yi

= a′i + bi

(
∂σ0

∂nB

)
yi

. (4.27)

Thus, the speed of sound in DDB is found using Eqs. (4.4-4.5) with the relevant derivatives
in the DDB model defined in Eqs. (4.14-4.27).

4.2 Speed of sound in quark phase

In an identical manner one can estimate the adiabatic speed of sound in QP by taking the
partial derivatives of total pressure and total energy density which are collected in Eqs. (2.38)
and (2.39). In this subsection we present the analytic expression for the adiabatic speed of
sound for the quark matter in NJL model. The partial derivatives of the pressure with respect
to baryon number density using the Eq. (2.33) is given by(

∂pNJL

∂nq

)
yi

=

(
∂pvac

∂nq

)
yi

+

(
∂pmed

∂nq

)
yi

, (4.28)

where, (
∂pvac

∂nq

)
yi

= −NcM
4

π2

∑
i=u,d

[
H(zΛ)

4

M

(
∂M

∂nq

)
yi

+H ′(zΛ)

(
∂zΛ

∂nq

)
yi

]
, (4.29)

and, (
∂pmed

∂nq

)
yi

=
NcM

4

π2

∑
i=u,d

[
H(zi)

4

M

(
∂M

∂nq

)
yi

+H ′(zi)

(
∂zi
∂nq

)
yi

]

−Nc

3

∑
i=u,d

[
yiµ̃i + ni

(
∂µ̃i
∂nq

)
yi

]
− 2gvnq + 2gsρs

(
∂ρs
∂nq

)
yi

. (4.30)

The partial derivative of the energy density using Eq. (2.36) with respect to the baryon
number density is given as(

∂εNJL

∂nq

)
yi

=
∑
i=u,d

[
yiµi + ni

(
∂µi
∂nq

)
yi

]
−
(
∂pNJL

∂nq

)
yi

, (4.31)

where, zi = kFi/M and zΛ = Λ/M . The function H(z) is given in Eq. (2.16) and H ′(z) is
its derivative with respect to z. The derivative of the constituent mass is given by

(
∂M

∂nq

)
yi

= −

2Ncgs
π2

M2(Bu +Bd)

1 +
2Ncgs
π2

M2(Au +Ad)
(4.32)

where

Ai = 3G(zi)− 3G(zΛ)−G′(zi)zi +G′(zΛ)zΛ (4.33)

Bi = G′(zi)
∂kFi
∂nq

(4.34)
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Here i = u, d. The function G(z) is given in Eq. (2.31) and G′(z) is its derivative with respect
to z. Using these relations we can find the adiabatic speed of sound of quark matter in QP
as

c2
s,QP =

(
∂pQP

∂nq

)
yi(

∂εQP

∂nq

)
yi

. (4.35)

4.3 Speed of sound in mixed phase

Once we have the expressions for the different sound speeds in HP and QP then it is state
forward to get the sound speeds in MP by using the quark matter fraction χ as given in Eq.
(2.42) in MP. In case of equilibrium sound speed, the total pressure and the total energy
density of the MP is calculated by using the Eqs. (2.40) and (2.43). We take the numerical
derivative of pressure with respect to energy density and get the equilibrium sound speed in
MP. To estimate the adiabatic sound speed in MP we take the corresponding quantities in
HP and QP and hence c2

s,MP is given as [48]

1

c2
s,MP

=
χ

c2
s,HP

+
1− χ
c2
s,QP

(4.36)

5 Results and discussion

In this section, we present the structural properties and non-radial oscillations of NSs and
HSs. We consider two RMF models, one with NL3 [84] parameterized and other is DDB
[76, 77] for nucleonic matter EOS (see sec. 2.1) and a two flavour NJL model for the quark
matter EOS (see sec. 2.2) with parameters, (GsΛ

2,Λ,m) = (2.24, 587.6MeV, 5.6MeV) [85].
The MP is calculated using Gibbs construction, as outlined in sec. 2.3.

5.1 Equation of state and properties of neutron/hybrid star

In Fig. 3 we display the EOS with a Gibbs construct for the HQPT with the NJL EOS describ-
ing the QP. The left figure corresponds to the HP described by RMF with NL3 parametri-
sation while in right figure the HP is described by RMF with DDB parametrisation for the
couplings. We note here that for the QP, the vector interaction induces additional repulsion
among quarks and makes the EOS stiffer which is reflected in the left figure for the two values
of Gv. As may be seen from Eq. (2.27); the effective chemical potential decreases for non
vanishing and positive Gv. This results in a chiral transition occurring at a higher chemical
potentials as Gv increases along with a corresponding higher critical energy density. As a
matter of fact, with DDB EOS, we get a HQPT for Gv = 0 for stable NS/HS configuration.
For Gv = 0.2Gs, the corresponding critical energy density is much too high to have a stable
star with a quark matter core. Therefore, in all the results that follow, we consider only
Gv = 0 for describing HSs when the corresponding HP is described by DDB EOS. In the
left of Fig.3, we have plotted the MP EOS for two different vector couplings for the NJL
model description while RMF with NL3 parametrisation for the HP. In the case of Gv = 0,
the MP starts at baryon density ρB ∼ 2.36ρ0 with corresponding energy density being about
400 MeV/fm3 and ends at densities ρB ∼ 5.22ρ0 with the corresponding energy density being
about 1000 MeV/fm3. As mentioned, increasing Gv results in a stiffer EOS with the higher
Gv corresponding to a larger critical energy density at which the mixed phase starts to occur.

– 22 –



0 500 1000 1500
 (MeV fm 3)

0

250

500
p 

(M
eV

 fm
3 )

Hadronic Phase

Mixed Phase
Quark P

hase
NL3+NJL (Gv = 0)
NL3+NJL (Gv = 0.2Gs)

0 500 1000 1500
 (MeV fm 3)

0

250

500

p 
(M

eV
 fm

3 )

Hadronic Phase

Mixed Phase Quark Phase

DDB + NJL

Figure 3. The EOSs of the charge neutral matter including the MP for both nuclear models in
HP and the NJL model in QP. The left figure corresponds to the EOS with the NL3 parameterized
hadronic matter while the right figure corresponds to the DDB parameterized hadronic matter. At
high density, the NJL model is considered for the quark matter EOS with different vector couplings.
In left figure, the EOSs correspond to the vector couplings Gv = 0 (upper curve) and Gv = 0.2Gs
(lower curve) in quark sector. In the right figure, the quark matter EOS corresponds to the vector
coupling Gv = 0. In both the figures, the sky blue curve refers to the HP and the dark blue curve refers
to the QP while the red curve corresponds to the MP. The open square corresponds to the central
energy density of a NS of mass 1.4M�. The triangles denote the starting of the MP and correspond
to NSs of mass 2.17M� (Gv = 0) and 2.50M�(Gv = 0.2Gs) for NL3+NJL and 2.18M� (Gv = 0) for
the DDB+NJL. The circles indicate the central pressure and energy density of the maximum mass
stars which are 2.27M�(Gv = 0) and 2.55M�(Gv = 0.2Gs) for NL3+NJL and 2.20M�(Gv = 0) for
the DDB+NJL HSs. The pure quark matter phase is not achieved prior to the maximum mass in all
the cases

In Fig. 3 (right), we show the EOS where the nuclear matter is described by the DDB model
and the quark matter is described by the NJL model with Gv = 0. In this case, the MP
starts at baryon density ρB ∼ 3.93ρ0 density and ends at ρB ∼ 6.98ρ0. The open and filled
circles in the EOSs denote the central energy densities of the maximum mass stars for the
corresponding EOSs in Fig. 3. These circles lie in MP region indicating no pure quark matter
core is realized within the present modelling of EOS. It can also be seen in Fig. 4, where we
plot the quark matter fraction χ as a function of density for different Gvs and nuclear matter
EOSs. The open (filled) circle in Fig. 3(left) corresponds to the maximum mass star denotes
χ = 0.482 (0.438) which means 48.2% (43.8%) of quark matter fraction present in the core
of HS of NL3+NJL type with Gv = 0 (0.2Gs). On the otherhand, in Fig. 3 (right) the open
circle correspond to the maximum mass star has χ = 0.506 i.e. 50.6% of quark matter present
in the core of HS of DDB+NJL in a MP. It is further observed that for the HSs considered
here, there is no pure quark matter core. Quark matter is only realised in a MP in the HSs
within the models considered here for the EOSs.

In Fig. 5 (left) we show the variation of the squared sound speeds, c2
e and c2

s with the
normalised baryon density ρB/ρ0. On the left, we show this behaviour for the HSM described
by RMF with NL3 parametrisation and NJL model. On the right the same is shown for
the HSM described by RMF with DDB parametrisation and NJL model. As the density
increases in the HP, the squared speeds of both the sounds increase monotonically for either
cases. The maximum value of the square of speeds of sound are 0.608 in NL3+NJL model
and 0.564 in DDB+NJL at the critical density after which the MP starts. In either case, the
square of two sound speeds behave very differently in the MP. The square of equilibrium sound
speed c2

e decreases discontinuously at the onset of MP to a value 0.08 (0.09) beyond which
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Figure 4. In the left figure, the quark fraction as a function of baryon density for the NL3 parame-
terized EOSs in HP and NJL model in QP while in the right figure, the quark fraction as a function
of baryon density for the DDB parameterized EOS in HP and NJL model in QP as shown in Fig. 3.
In the left figure, the open (dark) circle indicates the central density of the maximum mass star i.e.
ρB,max ' 3.5ρ0(3.8ρ0) corresponding to Mmax = 2.27M�(2.55M�) for Gv = 0 (Gv = 0.2Gs). In the
right figure, the open circle indicates the central density of the maximum mass star i.e. ρB,max ' 5.5ρ0

.

it shows a continuous behaviour till the end of MP where it again discontinuously increases
from 0.06 (0.08) to 0.33 (0.33) for NL3+NJL (DDB+NJL) case. The square of the adiabatic
sound speed c2

s, on the otherhand does not show similar discontinuous behaviour. It has an
important consequence for the g modes as we shall see later. While the difference between the
squared sound speeds is small in HP, at the onset of MP, this difference become large leading
to large Brunt-Väisäla frequency giving rise to an enhancement of g mode frequency. We may
note here that the difference between the two squared sound speeds turns out to be vanishing
for the present case of two flavor NJL model. This is similar to the case of bag model EOS
[38]. For massless two flavors, the charge neutrality and β-equilibrium condition renders the
electron density to be constant which makes the difference between the two squared sound
speeds to be vanishing. On the otherhand, this need not be the same for 3 quark flavors
as the electron chemical potential µe ∼ m2

s/(4µq) leading to electron density depending on
quark mass and quark chemical potential leading to a non-vanishing value for the difference
between the two speeds of sound.

Apart from enhancing the g mode frequency, the existence of the sudden rise of equi-
librium sound speed has also important consequence regarding the mass and radius relation
in NS. One actually needs a rise in speed of sound in a narrow region of densities, for an
explanation of the compact stars to have large mass and small radius [90]. To achieve this
possibility, a quarkyonic phase [90] or a vector condensate phase along with pion superfluidity
[91] have been proposed recently. On the other hand, such a steep rise in the speed of sound
can also arise in a MP construct within the model for hadronic matter and quark matter as
used here.

In Fig. 6, we show the mass-radius relations for our models. For pure nucleonic
matter the maximum mass turns out to be 2.77M� (2.35M�) and radius turns out to
be 13.26 km (11.87 km) when the nuclear matter is describes in NL3 (DDB). If one uses
MP EOS the maximum mass reduces to 2.27M� for Gv = 0 with the corresponding ra-
dius R = 14.39 km and to 2.55M� for Gv = 0.2Gs with the radius being R = 14.17km in
NL3+NJL case while the same decreases to 2.20M� with corresponding radius 12.71 km. This
is essentially due to the fact that the quark matter EOS is softer compared to the nuclear mat-
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Figure 5. The variation of the square of sound speeds, (c2e and c2s) as a function of baryon number
density for the charge neutral matter. The brown dashed (blue dot-dashed) curve corresponds to the
equilibrium (adiabatic) sound speed in the different phases like HP, QP and MP for the hybrid EOSs
described by NL3+NJL in the left figure and DDB+NJL in the right figure. The vector coupling
strength in NJL model is Gv = 0 in the case of the both hybrid models.

ter EOS. The central energy densities for the maximum mass HSs are εmax
c = 656 MeV/fm3

(Gv = 0) and εmax
c = 738 MeV/fm3 (Gv = 0.2Gs) in NL3+NJL case while εmax

c = 948
MeV/fm3 (Gv = 0) in DDB+NJL. As central energy density is increased further, HSs become
unstable i.e. dM/dε < 0. Thus, within the present models, we do not find stable HSs with the
pure quark matter core. The quark matter, if it is present in the core, is always in MP. As Gv
increases in NL3+NJL case, the MP starts at higher energy density and hence larger fraction
of hadronic matter contributes to the total mass of the star as we have seen in Fig. 4 (left).
This leads to an increase of the maximum mass of HS. With increasing Gv further we might
expect NSs without any quark matter in the core. The radius R1.4 for the canonical mass of
1.4M� NSs turns out to be 14.52 km in NL3+NJL case while same turns out to be 13.21 km
in DDB+NJL case. It may be noted that the x-ray pulse analysis of NICER data from PSR
J0030 + 0451 by Miller et.al. found R = 13.02+1.14

−1.19 km for M = 1.44± 0.15M� [15]. Such a
star will not have a quark core within these present models for the EOS of dense matter. Such
a conclusion, however, should be taken with caution as this is very much dependent upon the
EOSs both in hadronic and quark phase. In particular, more exotic phases of quark matter
could also be possible including various color superconducting phases, various inhomogeneous
phases for dense quark matter which have not been considered here.

In Fig. 7, we show the energy density and pressure profiles i.e. energy density and
pressure as the functions of the radial distance from the center of the maximum mass HSs
described in the present models. In the left we show for the NL3+NJL model while in the
right we show for the DDB+NJL model. As mentioned earlier, the cores of the such stars are
in the MP with about the 50% of quark matter and 50% of nuclear matter (see Fig. 4). The
radius of the MP core is about 3.8 km (2.7 km) with the total radius of 14.17 km (12.71 km)
for the HS described in NL3+NJL (DDB+NJL). We have taken here the vector coupling
Gv = 0.2Gs in NL3+NJL model and Gv = 0 in DDB+NJL model. For Gv = 0, in NL3+NJL,
the MP core radius slightly larger i.e. 4.2 km while the star’s radius being about 14.39 km.
At r = rc, the critical radial distance, where the matter goes from a MP to HP or vice-versa,
the energy density becomes non-differentiable while pressure shows smooth behavior as may
be observed in Fig. 7.

The variation of the squared sound speeds c2
e and c2

s are shown in Fig. 8 as a function of
radial distance from the center of the stars for both HS as well as NS. In Fig. 8 (left) we show
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Figure 6. The mass-radius curves are plotted for the compact stars described by the models NL3,
NL3+NJL in the left figure and DDB and DDB+NJL in the right figure for the different values of the
vector couplings, Gv in the NJL model. In case of DDB and DDB+NJL model, the vector coupling
is taken zero i.e. Gv = 0. The circles denote the maximum mass HSs having quark matter inside
their cores for different values of vector interaction in NJL model. While the triangles represents the
maximum mass NSs having hadronic matter inside the core. In the left figure, the maximum mass of
HSs described by NL3+NJL hybrid model are 2.27M� where Gv = 0 and 2.55M� where Gv = 0.2Gs.
In the right figure, the maximum mass HS described by DDB+NJL is 2.20M�.
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Figure 7. The energy density, ε (blue dot-dashed) and pressure, p (red dashed) profiles as a function
of radial distance from the center of the maximum mass HSs described by the hybrid models NL3+NJL
(left) and DDB+NJL (right). In case of NL3+NJL hybrid model, the vector coupling is none-zero
i.e. Gv = 0.2Gs while in case of DDB+NJL hybrid model, the vector coupling is zero i.e. Gv = 0.
The transition from MP to HP happens at ρB = 2.75ρ0 (ρB = 3.95ρ0) corresponding with the radial
distance rc = 0.27RMax (rc = 0.21RMax) in the NL3+NJL (DDB+NJL) model.

the profiles of both c2
e and c2

s for the maximum mass stars described in NL3 and NL3+NJL
models while in Fig. 8 (right) we display the same for the maximum mass stars described in
DDB and DDB+NJL models. In both the cases, we have taken here Gv = 0. The HQPT
in HSs is reflected in the variation of the square of the equilibrium sound speed, c2

e which
changes abruptly from c2

e = 0.08 to c2
e = 0.608 in NL3+NJL model and from c2

e = 0.06 to
c2
e = 0.564 for the DDB+NJL model at the critical radius rc where the transition from a MP
to a HP takes place. Such an abrupt change in c2

e while a smooth behaviour of c2
s makes the

Brunt-Väisäla frequency, (ω2
BV ∼ (c−2

e − c−2
s )), becoming significant at the boundary of the

MP core in the HSs. As may be observed from Eq.(3.37) or Eq.(3.40), a nonvanishing ωBV
will affect the fluid perturbation functions Z(r) and Q(r) and hence will have its effect on
the oscillation frequency ω. In particular this leads to an enhancement of g-mode frequencies
for the HSs. We discuss more of this in subsection5.3.
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Figure 9. The Brunt-Väisäla frequency (ωBV) profile in the maximum mass stars as a function of the
radial distance from the center of the star. In the left figure, the ωBV profile is plotted as a function
of radial distance in the stars described by the NL3 and NL3+NJL model while in the right we plot
same in the stars described by the DDB and DDB+NJL models. Red solid (blue dot-dashed) curve
shows the ωBV profile in the NS (HS where the vector coupling is considered to be zero i.e. Gv = 0).
The little kink in the profiles near the surface of the stars shows the threshold for the appearance of
muons in the all the models.

In Fig. 9 (left), we show the profile of Brunt-Väisäla frequency, ωBV, in the stars of
maximum masses described in NL3 and NL3+NJL while in Fig. 9 (right), we show the same
described in DDB and DDB+NJL where the vector coupling Gv = 0 in NJL model. The steep
rise of ωBV at the onset of MP may be noted. The Brunt-Väisäla frequency, ωBV, depends on
the both the speeds of sound, see Eq. (3.39). In the core of maximum mass HS, the variation
of the both sound speeds are different which is reflected in the ωBV profile. The onset of
muons is shown by a little kink in the figure with a slight increase in ωBV.

5.2 Tidal deformability

The tidal distortion of neutron stars in a binary system links the EOS to the gravitational
wave emissions during the inspiral [92]. Next we discuss the results for the tidal deformability
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with the equation of state considered here. In Fig. 10 (left) shows the dimensionless tidal
deformability parameters Λ1 and Λ2 of the NSs involved in the Binary Neutron Star (BNS)
with masses m1 and m2, respectively, for the hadronic EOSs DDB, NL3 and corresponding
mixed phase EOS with NJL model DDB+NJL, NL3+NJL. In the GW170817 event, the chirp
mass, Mchirp = (m1m2)3/5(m1 + m2)−1/5, was measured as 1.186M� [9] and these curves
were calculated based on the masses involve in the BNS merger by varying m1 in the observed
range 1.365 < m1 < 1.60. We may note here that the quark matter core occurs for NSs of
masses at around 2M�. Thus the tidal deformability Λ1 and Λ2 as shown in the Fig. 10 (left)
will correspond to hadronic phase only. We also show the constraint imposed on Λ1 − Λ2

plane from GW170817 event in the same plot. Based on a marginalized posterior for the
tidal deformability of the two binary components of GW170817, the gray solid (dot-dashed)
line represents the 90%(50%) confidence interval (CI) for the tidal deformability of these two
components. There are magenta solid (blue dashed) lines representing 90%(50%) confidence
intervals for the constraints from GW170817: marginalized posterior using a parameterized
EOS with a maximum mass requirement of at least 1.97M�. In this regard, GW170817 and its
electromagnetic counterpart disfavour NL3 parameterisation of the RMF model. The DDB,
however, is less stiff than NL3, so it satisfies those constraints well. The stiffness of the EOS
may be attributed to either its symmetric nuclear part or its density-dependent symmetry
energy. While NL3 and DDB exhibit similar symmetric nuclear matter (SNM), DDB has
a softer symmetry energy than NL3. For the models NL3 and DDB, the nuclear matter
incompressibility K0 is 271 MeV, and 269 MeV and the slope of the symmetry energy L0 is
118 MeV, 32 MeV, at saturation density respectively. Fig. 10 (right) shows the dimensionless
tidal deformability as a function of NS mass of the EOS models adopted here. The blue
horizontal bar indicates the 90% CI obtained for the tidal deformability of a 1.36M� or the
combined tidal deformability in the BNS for q = m1/m2 = 1 [9]. It is clear that the NL3 is
outside of the 90% CI constraint whereas DDB is within the acceptable range. As discussed
above the NSs masses below 2.18M� and 2.17M� correspond to the only hadronic phase
EOSs for DDB and NL3 mixed phases EOSs, respectively. It can be seen from the figure that
the tidal deformability Λ bifurcate from the same NS masses for those EOSs.

5.3 Oscillation modes in hybrid stars

We next show, here, the results for f and g modes for NSs and HSs in different models
presented in this study. We shall focus our attention to the quadruple mode (l = 2) only. It
may be expected from the coupled Eqs. (3.36 and 3.40) for the fluid perturbation functions
Q(r) and Z(r) the two sound speeds c2

s and c2
e play an important role in the determination of

different solutions for these functions and hence on the frequencies of the oscillation modes.
The typical frequency of g modes lies in the range from few 100 Hz up to 1 kHz while that of
f modes lies in the range 1− 3 kHz. As mentioned in Sec. 3, we solve Eqs. (3.36 and 3.40)
in a variational method to determine the oscillation frequencies. As this is computed using
a variational method, the final solutions depend upon the initial guesses for the frequencies.
To get a solution of the f mode, we give the initial guess for the frequency (f = ω/2π) of
the order of few kHz. On the other hand, to look for a g mode we give the initial guess for
the same in the range of few hundred Hz. In Fig. 11, we show the f mode frequencies as a
function of mass of compact stars for the both NS and HS described by NL3 and NL3+NJL
models in the left figure while same as described by DDB and DDB+NJL model in the right
figure. In the left figure, the blue curves refer to the f mode frequencies for HSs with Gv = 0
(blue dotted) and with Gv = 0.2Gs (blue dot-dashed) while the magenta curve refers to
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Figure 11. The oscillation frequencies of f mode f = ω/2π in kHz as a function of the star’s masses
which are described by NL3 and NL3+NJL models in the left figure and same as a function of the
star’s masses which are described by DDB and DDB+NJL models in the right figure. The magenta
dashed curve corresponds to NSs i.e. without any quark matter core. (left) The blue dot-dashed (blue
dotted) curves correspond to the f mode frequencies of the HSs which are described by NL3+NJL
hybrid model for Gv = 0(Gv = 0.2Gs). (right) The blue dotted curve corresponds to the f mode
frequencies of the HSs which are described by DDB+NJL hybrid model for Gv = 0. The appearance
of the quark matter in the core enhances the oscillation frequencies.

the f mode frequencies for NSs described by NL3+NJL and NL3, respectively. In the right
figure, we show same as the left figure but for the DDB+NJL and DDB model, respectively
where the vector coupling is zero i.e. Gv = 0. We may observe here that there is a mild rise
in the frequencies for the f modes for stars with a quark matter core. Such a rise of non-
radial oscillation frequencies due to the quark matter core was also observed in Ref. [38, 48].
However for f modes, the rise due to the quark matter in the core, is very small. Eg. for a
HS star, described by NL3+NJL where Gv = 0, of mass M = 2.27M�, the f mode frequency
becomes 2 kHz from a value of 1.97 kHz of a NS of same mass.

In Fig. 12, we plot the g mode frequencies as a function of the mass of the compact
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stars for the both NS and HS described by NL3 and NL3+NJL models in the left figure while
same as described by DDB and DDB+NJL model in the right figure. For NSs, the compact
stars without any quark matter core, the g mode frequencies lie in the range of (322 − 341)
Hz (139− 148) Hz for the stars of masses larger than 2 M� described by NL3 (DDB) model.
On the otherhand, in the presence of quark matter in MP, the frequencies rise sharply to
about 589 Hz (Gv = 0) and 589 Hz (Gv = 0.2Gs) in the case of NL3+NJL model while
same rises sharply to about 303 Hz (Gv = 0) in the case of DDB+NJL. Let us note that
at the onset of the MP in case of NSs, c2

e decreases abruptly. This is due to the fact that
the electron chemical potential falls at the onset of MP. This is due to the fact that the
charge neutral nuclear matter undergoes a phase transition to one component of HP which is
positively charged and the other component of QP which is negatively charged. This sudden
change in the lepton number density at MP threshold leads to sudden drop of c2

e as shown in
Fig. 8. This leads to an abrupt rise of the ωBV which enhances the g mode frequency. As Gv
increases the MP core decreases and hence its contribution to the g mode enhancement also
decreases.

We note that the g modes that we obtained for NSs or HSs are driven by the Brunt-
Väisäla frequency which quantifies the mismatch between the mechanical and chemical equi-
librium rates of a displaced fluid parcel and is expressed by the local equilibrium and adiabatic
speeds of sound. Such core g mode solutions in sub-kHz frequency range can also arise due to
a sharp discontinuity in energy density in a first order phase transition [93, 94]. Such low fre-
quency g modes due to quark-hadron discontinuity has also been shown to be a feature of HSs
that distinguish hadronic stars or strange quark stars based on non-radial oscillation modes
[43]. On the otherhand non-radial oscillation modes with a MP of quark-hadron matter was
explored by Sotani etal [42]. It was shown here that including finite size effects in the mixed
phase it is possible to distinguish between the existence or absence of density discontinuity
in NS interior from gravitational waves of the f mode [42]. In an interesting later work of
Ranea-Sandoval etal explored different non-radial oscillation modes (f , p and g modes) with
an interpolating function relating hadron and quark phases unlike a Gibbs construct as has
been attempted here [45]. We might note that for the phase transition considered here with
NJL model, a Gibbs construct is consistent as the recent calculation using effective models like
linear sigma model [68]; Polyakov quark meson model [70] as well as NJL model [69] suggest
a lower value of surface tension ∼ 5− 20MeV/fm2 justifying the use of a Gibbs construct.

Next, we discuss the solution of the perturbing functions Q(r) and Z(r). In Fig. 13, we
have plotted the functions Q(r) and Z(r) as a function of radial distance from the center for
both g and f modes. Let us first discuss the solutions of perturbing functions Q(r) and Z(r)
for NSs. The angular function Z(r) is plotted as a solid red line (Zf) for f mode and as a
solid blue line (Zg) for g mode. For f modes, Z(r) decreases monotonically starting from a
vanishing value at r = 0 consistent with the initial condition given in Eq. (3.41). As may be
clear from Eq. (3.40), for vanishing ωBV, Z ′(r) is negative and therefore Z(r) decreases as r
increases. When the Brünt-Väisala frequency, ωBV becomes significant, the forth term in Eq.
(3.40) starts to become important. However, if ω is large (as in the case with f modes) the
contribution of the second term in the parenthesis of Eq. (3.40) is suppressed so that Z(r)
decreases monotonically as seen (red solid line) in Fig 13. On the otherhand, for the g mode
with the lower ω, the second term in the parenthesis becomes dominant. This makes the
forth term in Eq. (3.40) negative and significant near the surface as ωBV becomes significant
here. It turns out that the overall sign of Z ′(r) becomes positive near the surface resulting
eventually in the change of sign of Z(r) as shown (blue solid line) in Fig. 13. Thus the f
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Figure 12. The oscillation frequencies of g mode f = ω/2π in kHz as a function of the star’s masses
which are described by NL3 and NL3+NJL models in the left figure and same as a function of the
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dotted) curves correspond to the g mode frequencies of the HSs which are described by NL3+NJL
hybrid model for Gv = 0(Gv = 0.2Gs). (right) The blue dotted curve corresponds to the g mode
frequencies of the HSs which are described by DDB+NJL hybrid model for Gv = 0. The appearance
of the quark matter in the core enhances the oscillation frequencies.
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Figure 13. The solutions of the fluid perturbation functions Q(r) and Z(r) as a function of the radial
distance for the maximum mass (M = 2.77M�) neutron star obtained from the NL3 parameterized
EOS. The solid (dashed) line corresponds to the angular function, Z(r) (radial function, Q(r)). Both
perturbing functions for f modes (Qf and Zf) show monotonic behavior while for g modes these
function do not and have nodes near the surface of the NS.

mode shows no node for Z(r), the g mode solution shows a node. We have taken through out
l = 2. The dashed lines show the behaviour of the perturbing function Q(r) as Qf and Qg

for f and g modes respectively. Both these functions start from vanishing values and start to
increase with r. Q(r) for f mode (Qf) increases monotonically while Q(r) for g mode (Qg)
starts to decrease when Z(r) changes sign and eventually become negative near the surface
consistent with the boundary condition given in Eq. (3.43). Thus similar to Z(r), Q(r) also
does not show any node for f modes while the solutions of the Q(r) for the g modes, (Qg)
has a node near the surface.

We, next, display the perturbing functions Q(r) and Z(r) for HSs in Fig. 14. On the
left, we show the functions Q(r) and Z(r) for g modes while on the right display the same
functions associated with the f modes. Let us first discuss the g mode perturbing functions.
We first observe that the Brunt-Väisäla frequency, ωBV is significant near the center as well
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Figure 14. The solutions for the fluid perturbation functions Q(r) and Z(r), for the hybrid star
of mass M = 2.27M� as a function of radial distance. The NL3 parameterized EOS is taken for
hadronic matter while NJL model is taken for the quark matter EOS and Gibbs construction to find
the mixed EOS. The left figure shows the perturbing functions associated with the g−modes while the
right figure shows the same functions corresponding to f modes. The oscillatory behavior of Zg(r)
near the core may be noted in the contrast to the Fig. 13

as at the surface as may be seen in Fig. 9 in contrast to the hadronic matter (relevant for
NSs) for which it becomes significant only near the surface. Therefore there are additional
nodes for Zg in case of HSs as compared to NSs. This is also reflected in the behaviour of the
functions Q(r) and Z(r) as shown in the left figure. As was the case with NS, for g mode
the dominating contribution arises from the second term of the parenthesis of equation Eq.
(3.40). The quantity in the parenthesis has a canceling effect on the other two terms in the
Eq. (3.40). This leads to a slight oscillatory behaviour for the functions Z(r) depending upon
whether Z ′(r) is positive or negative up to rc. Beyond it, ωBV becomes significant only near
the surface and the behaviour of Z(r) and Q(r) are similar to that of NS. In the right figure,
we have shown the same functions for the f mode. The behaviour of these functions Q(r)
and Z(r) associated to the f-modes are essentially similar to NSs.

6 Summary and conclusion

Let us summarize the salient features of the present investigation. We have looked into
possible distinct features of HSs with a quark matter in the core and a NS without a quark
matter in the core. This is investigated by looking into non-radial oscillations of compact
stars. The EOS for HS is constructed using a RMF theory for nuclear matter and NJL
model for quark matter. Gibbs criterion for MP is used to construct MP with two chemical
potentials (µB and µE) imposing global charge neutrality condition. It is observed that the
core of HSs can accommodate a mixture of nucleonic and quark matter, the pure quark matter
phase being never achieved. In comparison to a NS without quark matter, the inclusion of
MP of matter softens EOS, resulting in lower values for the maximum masses and bigger
corresponding radii. Determining the composition of NS through observables it is necessary
to break the degeneracy between normal and hybrid star. To this end, we looked into non-
radial oscillation modes of such compact stars for this purpose. Unlike M-R curves for which
EOS is sufficient, the analysis of oscillation modes requires the speed of sound of the charge
neutral matter. Using a MP structure, it is observed that the equilibrium speed of sound
shoots up at the transition between MP and HP in such a construct. It may be noted that
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such a steep rise in the velocity of sound in a narrow region of density as one comes from
the core towards the surface was also seen in a quarkyonic to hadronic matter transition [90]
as well as in an EOS with ω condensate and fluctuations in pion condensate [91]. Such a
steep rise in velocity in sound speed is generated naturally here through MP construct. This
EOS is used to determine the frequencies of non-radial oscillations in NS within a relativistic
Cowling approximation that neglects the fluctuation of the space time metric and results
in a much simpler equation to solve and analyze. While this is not strictly consistent with
the fully relativistic treatment, the impact of such simplified approximation is not severe,
typically affecting the g modes at the 5 − 10% level while f modes are more sensitive to
Cowling approximation [87]. Within the RMF model for nuclear matter, we estimated the
f and g modes frequencies. The g mode solution for NS arises due to ωBV when become
significant towards the surface of NS. On the otherhand for HSs the ωBV become significant
near the core where the HQPT occurs. Due to the quark matter core both the ωBV and g
mode frequency get enhanced as compared to a normal NS.

We have focused our attention in the present investigation to non-radial oscillation modes
corresponding to the quadruple fundamental modes and the gravity modes. In the presence
of quark matter in a mixed phase with charge neutral nuclear matter, both these modes are
enhanced with the effect being more for the g modes as compared to the high frequency
f modes. The g modes that we have considered here are driven by nonvanishing Brunt-
Väisäla frequency resulting from a chemical stratification and depends upon the compositional
characteristics rather than a density discontinuity. This enhancement is due to the sharp drop
of the equilibrium speed of sound at the on onset of the MP and is a distinct feature of HS as
compared to a NS. In the context of gravitational wave from BNS merger, it is known that g
modes can couple to tidal forces and can draw energy and angular momentum from the binary
to the NS and cause an associated phase shift in gravitational wave signal [95]. With distinct
enhancement of this mode for HS as compared to NS, one might expect a distinguishing
signal from GW observations. However, the resulting phase shifts for NSs and HSs turns
out to be similar order due to the longer merger times for the NSs [48]. Such conclusions
are of course limited by the uncertainties arising from the value of tidal coupling. When
these uncertainties are reduced through improved theoretical estimations, the high frequency
g modes of HS can possibly be distinguished from those of NSs. The detection of g modes in
BNS mergers by current detectors is challenging. Nonetheless, one hopes that with the third
generation detectors like Einstein telescope or Cosmic explorer, one can possibly have direct
detection of these modes and have conclusive signatures regarding the composition of the NS
interior.

One of the novel feature of the present investigation has been the use of hadronic EOS
modeled through RMF models with their parameters determined from the nuclear matter
properties at saturation density with the NL3 parameterisation as well DDB parameterisation.

Unlike meta models [48], mean field model EOS are derived from a microscopic model
described in terms of nucleons and mesons and quite successful in describing various properties
of finite nuclei as well as NSs. The derivation for ωBV as described here is rather general
and can be used for any mean field model for nuclear/hyperonic matter. Similarly for quark
matter NJL model is used which captures the important features of chiral symmetry breaking
in strong interactions. It may be noted that these models can be extended to include strange
quark matter. The calculational method developed here can be applied to the various other
sophisticated models like 3 flavour NJL model, quark-meson model or Polyakov loop extension
of such model describing the quark matter.
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We have given in some detail the derivation of the relativistic pulsating equations in-
volving Brunt-Väisäla frequency in which such a MP EOS as derived here. In addition we
have discussed the behavior of the fluid perturbing functions in some details both with and
without the HQPT which adds an understanding of the enhancement of oscillation frequen-
cies for HSs. In future we would like to include the effects of the strange quarks in quark
matter sector and correspondingly hyperons in the hadronic sector. It will also be interesting
and important to include the effects of strong magnetic field for the structure of NSs [92] and
its effect on the non-radial oscillation modes. We have focused our attention for NSM which
is at zero temperature and vanishing a neutrino chemical potential. However, to study the
proto-neutron stars we should take into account the thermal effects on the oscillations includ-
ing the effects of neutrino trapping on the phase structure of matter. This will be relevant
for the studying the oscillation modes from merging NS and detecting in future experimental
facilities like advanced LIGO/Virgo and Einstein telescope.
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