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Abstract: Motivated by the classical model for the binary alloy solidification
(crystallization) problem, we show the local in time existence and uniqueness of
solutions to a parabolic system strongly coupled through free boundary conditions
of Stefan type. Using a modification of the standard change of variables method
and coercive estimates in a weighted Hölder space (the weight being a power of t)
we obtain solutions with maximal global regularity (having at least equal regularity
for t > 0 as at the initial moment).
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1. Introduction

The classical Stefan problem is a simplified model for the solid-liquid phase
transition in a pure material taking into account the heat diffusion in each
phase with latent heat at the sharp transition interface, which is supposed
kept at a given constant temperature [R, M2]. The melting or the crystalliza-
tion of a two component material, like a binary alloy, differs in an essential
way from that free boundary model problem in several aspects. Firstly, the
temperature of the mixture at the interface is not constant and depends on
the relative concentration of each component, since each one having a dif-
ferent melting temperature determine the former through a thermodynamic
phase diagram. Secondly, in a mixture of two components, one constituent is
allowed to diffuse in the interior of each phase and its concentration exhibits
a discontinuity across the solid-liquid interface.

Although qualitatively there is a fairly good understanding of these phe-
nomena, there are several physical approaches to its modelling. For instance,
using the theory of nonequilibrium thermodynamics a mathematical analysis
has been proposed in terms of weak formulations (see [V], Chapt. V and its

Received December 30, 2004.
Partially supported by Project POCTI/MAT/34471/2000 of the Portuguese FCT (Fundação

para a Ciência e a Tecnologia).

1



2 G.I. BIZHANOVA AND J.F. RODRIGUES

references). As in the simpler case of the Stefan problem (see [M2] and its
bibliography) these generalized solutions admit the degeneracy of the inter-
face into a mushy zone, giving place, even in a one dimensional alloy problem,
to non-uniqueness results as described in [Go].

In this work we are interested in the mathematical analysis of the multidi-
mensional case of the sharp interface model for the temperature-concentration
system with a smooth free boundary arising from a phenomenological model
suggested first in [R]. We shall show that, similarly to the classical two phase
Stefan problem for one equation (see [M1, M2] or [S2]), the corresponding
classical free boundary problem for the coupled system, under certain non-
degeneracy conditions, is well-posed locally in time. As far as we are aware,
this problem as been considered previously only from a numerical point of
view by several authors (see [CO, BeS, AWS, SAW], for instance) without any
rigorous mathematical analysis background, except a local existence result
in one dimensional case in [P].

Nowadays there are several methods to obtain classical solutions to free
boundary problems of parabolic type, but here we follow the approach of
Solonnikov [S2]. This method uses a suitable modification of a standard
change of variables, considered by Hanzawa for the one phase Stefan prob-
lem, that allows the transformation of the free boundary problem into an
equivalent highly nonlinear parabolic problem in a fixed known domain. This
method, and in special that modification, is very useful for keeping the solu-
tion locally in time without loss of smoothness with respect to the regularity
of the initial conditions. For the transformed problem in the fixed domain,
a linearization procedure combined with sharp (coercive) estimates for solu-
tions of the linear problem permits us to obtain local (in time) solutions by
the contraction mapping principle. For parabolic equations with free bound-
aries of two-phase Stefan and Muskat–Verigin type this method has been
developed in [BS], where rigorous proofs of the classical solvability of the
corresponding problems were given keeping the maximal regularity of the
solutions.

An important tool, that was also used previously in [B2, B4], with partic-
ular geometries of the domains, is the use of coercive estimates for the linear
parabolic problems in weighted Hölder spaces, where the weight is a power
of t. This allows to reduce the initial compatibility conditions to a minimum.
Although the second order parabolic theory is now well understood in space-
time weighted Hölder spaces (see [L], for instance), we use here a special
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class of weight introduced in [BZ] and studied in [S1]. For our system, the
transformed problem is of the type of a nonlinear system of parabolic type
with nonstandard transmission conditions at the initial interface, which has
been treated with precise estimates for the solutions to the corresponding
equations of second order in [B1, B3]. We notice that this approach can also
be extended to other problems like the ones considered in [RSY], yielding
improvements in the assumptions on the initial data.

In this paper after introducing the precise formulation of the free boundary
problem for the coupled parabolic linear system of second order, in Section 2,
we state the (local in time) existence and uniqueness results in weighted
Hölder spaces, including in particular, the local solvability in classical Hölder
spaces under more restrictive assumptions on the initial data. In Section 3
we reduce the problem to a nonstandard transmission problem for a non-
linear parabolic system in the fixed known domain by means of a suitable
transformation of variables, that reduces the free boundary to the initial
given interface, together with a translation of unknown functions in order to
work with functions with zero initial conditions. In Section 4 we show the
existence and uniqueness of the solution of the linearized problem, for which
we state precise estimates that are based in a model transmission problem
that is solved in Appendix B and in [B3]. The application of the contrac-
tion mapping principle to the nonlinear problem is done in Section 5 and it
is based on explicit estimates of the inverse Jacobian matrix of the domain
transformation, which are shown in Appendix A.

2. Statement of the problem and results

Let Ω be a bounded domain in Rn, n ≥ 2, with a smooth boundary ∂Ω.
Suppose there is a closed surface γ(t) in Ω, 0 ≤ t ≤ T , dividing Ω into two
subdomains Ω1(t) and Ω2(t) such that ∂Ω1(t) = ∂Ω ∪ γ(t), ∂Ω2(t) = γ(t).
At the initial time γ(0) = Γ and Ωj(0) = Ωj, j = 1, 2. We assume that
the subdomains Ω1 and Ω2 are not degenerate, for instance, by assuming the
smooth initial interface Γ satisfies a uniform ball property from both sides.

Let

QjT = {(x, t) : x ∈ Ωj(t), t ∈ (0, T )}, ΩjT = Ωj×(0, T ) , j = 1, 2 ,

ΩT = Ω×(0, T ) , ΣT = ∂Ω×[0, T ] , ΓT = Γ×(0, T ) .
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We consider a multidimensional two phases problem with unknown func-
tions uj(x, t), cj(x, t), j = 1, 2, and a common free boundary γ(t) satisfying
the diffusion equations for j = 1, 2, (∂t = ∂/∂t and ∆ = ∂2

x1
+ · · ·+ ∂2

xn
)

∂tuj − aj ∆uj = 0 in QjT , (2.1)

∂tcj − bj ∆cj = 0 in QjT , (2.2)

with initial and boundary conditions

γ(t)|t=0 = Γ , (2.3)

uj|t=0 = u0j(x), cj|t=0 = c0j(x) in Ωj, j = 1, 2 , (2.4)

u1|∂Ω = p(x, t), c1|∂Ω = q(x, t) , t ∈ (0, T ) , (2.5)

and the following conditions on the free boundary γ(t)

u1 = u2 , cj = σj(uj), j = 1, 2 , (2.6)

λ1 ∂νu1 − λ2 ∂νu2 = −κVν , (2.7)

k1 ∂νc1 − k2 ∂νc2 = −(c1 − c2) Vν , t ∈ (0, T ) . (2.8)

Here κ, aj, bj, λj, kj, j = 1, 2, are positive constants, ν(x, t) the normal
vector to γ(t) directed to Ω2(t), ∂ν denotes the normal derivative, Vν the
normal velocity of γ(t) and σ2 ≥ σ1 are continuous functions given as in
Figure 1.

This problem may describe the melting or the cristallization of a two com-
ponent system. The domain Ω1(t) is occupied by the liquid phase with the
temperature u1(x, t) and the concentration of the mixture c1(x, t); u2(x, t),
c2(x, t) are the temperature and concentration of the mixture in the solid
phase occupying Ω2(t); γ(t) is the free boundary separating the liquid and
solid phases. The phase transition is described by the Stefan condition (2.7)
with constant latent heat κ > 0.

On the free boundary γ(t) the temperature u is continuous, but the con-
centration c is discontinuous and determined by a phase equilibrium diagram
of the type shown in Figure 1, implying the jump [[c]]γ(t) = (c2 − c1)|γ(t) > 0.

The differential equation (2.8) represents the mass balance of the mixture
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and may be regarded as a Stefan type condition with variable “latent heat”.

c

1

c2

c1

0 u∗ u u∗∗ u

c2 = σ2(u)

c1 = σ1(u)

Figure 1

Here the functions σ1(u), σ2(u) are defined on the interval U = (u∗, u∗∗),
with u∗ < u∗∗, and their graphs represent the liquidus and solidus lines, re-
spectively, in the temperature-concentration plane.

In the classical Stefan problem for a monocomponent material, in addition
to (2.7) we have the following condition on free boundary γ(t):

u1 = u2 = θ ,

where θ is the phase transition temperature, which is given by a known
constant.

The Stefan problem describes physically the equilibrium process of melting
or solidification of a pure substance and in each phase it holds always

u1 ≥ θ in Ω1(t) , u2 ≤ θ in Ω2(t) . (2.9)

The phase transition process described by problem (2.1)–(2.8) is not in equi-
librium, as in the Stefan problem, and the melting (cristallization) temper-
ature θ is a priori unknown and condition (2.9) does not hold in general.
The presence of the unknown concentration c and unknown phase transition
temperature on γ(t) makes the problem a much more complex and difficult
one.

Let Γ ∈ C2+α, N(ξ) = (N1, ..., Nn) be a unit vector field on Γ such that
N(ξ) ∈ C2+α(Γ) and

ν0(ξ) ·N(ξ) = ν0(ξ) NT (ξ) ≥ d1 > 0 ∀ ξ ∈ Γ , (2.10)

where ν0(ξ) is the unit normal to Γ directed to Ω2.
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For small t ≤ t0 we can represent free boundary γ(t) in the form ([BS])

x = ξ + ρ(ξ, t) N(ξ) , ξ ∈ Γ, t ∈ [0, t0] , (2.11)

where ρ|t=0 = 0 and x = ξ at the initial moment. In particular, if N(ξ) =
ν0(ξ) we obtain the following equation to the free boundary:

x = ξ + ρ(ξ, t) ν0(ξ) , ξ ∈ Γ, t ∈ [0, t0] ,

which is the representation of γ(t) used earlier by A.M. Meirmanov [M1] and
E.I. Hanzawa [H].

Let the following assumptions hold:

A) σj(u) ∈ C5(U), j = 1, 2, σj are strictly increasing functions in U =
(u∗, u∗∗), σj(u

∗) = 0, σj(u
∗∗) = 1, j = 1, 2, σ1(u) < σ2(u) ∀u ∈ U (see

Figure 1);

B)
(c02(x)− c01(x))|Γ ≥ d2 > 0 , (2.12)

(∂ν0
c0j(x)− σ′j(u0j(x)) ∂ν0

u0j(x))|Γ ≥ d2 , j = 1, 2 , (2.13)

|κ| ≤ δ0 , |∇u01(x)−∇u02(x)| |Γ ≤ δ0 , |λ1 − λ2| ≤ δ0 , (2.14)

where δ0 is a small positive number;

C)
δj ≤ c0j(x) ≤ 1− δj in Ωj, 0 < δj <

1

2
, j = 1, 2 .

Now we formulate the local existence results for problem (2.1)–(2.8) in the
weighted Hölder spaces C`

s(ΩT ), s ≤ ` (with a power of t as the weight), of
functions u(x, t) with the norm ([BZ, S1]):

|u|(`)s,ΩT
= sup

t≤T
t

`−s
2 [u]

(`)
Ω′t

+
∑

s<2k+|j|<`

sup
t≤T

t
2k+|j|−s

2 |∂k
t ∂

j
xu|Ω +

{
|u|(s)ΩT

, s ≥ 0,

0, s < 0 ,
(2.15)

where Ω′
t = Ω×( t

2 , t), |v|Ω = supx∈Ω |v|,

[u]
(`)
Ωt

=
∑

2k+|j|=[`]

[∂k
t ∂

j
xu]

(`−[`])
x,Ωt

+
∑

0<`−2k−|j|<2

[∂k
t ∂

j
xu]

( `−2k−|j|
2 )

t,Ωt
,
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[v]
(α)
x,ΩT

= sup
(x,t),(z,t)∈ΩT

|v(x, t)− v(z, t)| |x− z|−α ,

[v]
(α)
t,ΩT

= sup
(x,t),(x,t1)∈ΩT

|v(x, t)− v(x, t1)| |t− t1|−α , α ∈ (0, 1) ,

|u|(s)ΩT
denotes the norm of the classical Hölder space C

s,s/2
x t (ΩT ) ([LSU])

|u|(s)ΩT
=

∑

2k+|j|≤[s]

|∂k
t ∂

j
xu|ΩT

+

{
0, s is integer,

[u]
(s)
ΩT

, s is noninteger ,

|v|ΩT
= sup

(x,t)∈ΩT

|v| ;

and C`
s(ΩT ) ≡ C

`,`/2
x t (ΩT ), if s = `. Similarly we define C`

s(ΓT ).
The solution to the problem in this space permits us to decrease the

smoothness of the data and to reduce the order of their compatibility condi-
tions up to [s2 ].

We write now the compatibility conditions that the data must satisfy at
initial time.

The conditions of the zero order (for 0 < s < 1) reads

u01|∂Ω = p(x, 0) , c01|∂Ω = q(x, 0) , (2.16)

u01|Γ = u02|Γ , c0j|Γ = σj(u0j)|Γ, j = 1, 2 , (2.17)

and (for 1 ≤ s < 2), with the notation [[λ ∂ν0
u0]] = λ2 ∂ν0

u02 − λ1 ∂ν0
u01,

1

κ
[[λ ∂ν0

u0]] |Γ =
1

[[c0]]|Γ
[[k ∂ν0

c0]] |Γ ; (2.18)

the conditions of the first order (for 2 ≤ s ≤ 2 + α) are given by:

a1∆u01|∂Ω = ∂tp(x, 0) , b1∆c01|∂Ω = ∂tq(x, 0) , (2.19)
(
[[a ∆u0]]− 1

[[c0]]
[[∂ν0

u0]] [[k ∂ν0
c0]]

) ∣∣∣
Γ
= 0 , (2.20)

(
bj ∆c0j−aj σ′j(u0j) ∆u0j− 1

[[c0]]
[[k ∂ν0

c0]] (∂ν0
c0j−σ′j(u0j) ∂ν0

u0j)
) ∣∣∣

Γ
= 0 ,

(2.21)
for j = 1, 2.

Equations (2.16)–(2.18) are obtained from (2.5)–(2.8) with the initial con-
ditions (2.4); differentiating the conditions (2.5),(2.6) with respect to t and
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applying of (2.1), (2.2), (2.7), (2.8), (2.4) leads to the compatibility condi-
tions (2.19)–(2.21).

Theorem 2.1. Let α ∈ (0, 1), 1 < s ≤ 2 + α. Let ∂Ω, Γ ∈ C2+α and the
assumption A) hold.

Then for each functions u0j, c0j ∈ Cs(Ωj), j = 1, 2, p, q ∈ C2+α
s (ΣT )

satisfying conditions B), C) and the compatibility conditions of [s2 ]-th or-
der there exists T0 > 0, such that, problem (2.1)–(2.8) has unique solutions
uj, cj ∈ C2+α

s (QjT0
), j = 1, 2, ρ ∈ C2+α

s (ΓT0
), ∂tρ ∈ C1+α

s−1 (ΓT0
) and the fol-

lowing estimate holds
2∑

j=1

(|uj|(2+α)
s,Qjt

+ |cj|(2+α)
s,Qjt

) + |ρ|(2+α)
s,t

+ |∂tρ|(1+α)
s−1,Γt

≤

≤ C1

( 2∑
j=1

(|u0j|(s)Ωj
+ |c0j|(s)Ωj

) + |p|(2+α)
s,Σt

+ |q|(2+α)
s,Σt

)
, for 0 < t ≤ T0. (2.22)

Putting, in particular, s = 2 + α we obtain also the local solvability of
the alloy free boundary problem in classical Hölder spaces [LSU] under more
restrictive assumptions on the initial data.

Theorem 2.2. Let α ∈ (0, 1), ∂Ω, Γ ∈ C2+α, and the assumption A) hold.

Then for any functions u0j, c0j ∈ C2+α(Ωj), j = 1, 2, p, q ∈ C
2+α,1+α/2
x t (ΣT )

satisfying B), C) and the compatibility conditions (2.16)–(2.21), there ex-
ists T0 > 0, such that, problem (2.1)–(2.8) has unique solutions uj, cj ∈
C

2+α,1+α/2
x t (QjT0

), j = 1, 2, ρ ∈ C
2+α,1+α/2
x t (ΓT0

), ∂tρ ∈ C
1+α, 1+α

2
x t (ΓT0

) and the
following estimate holds:

2∑

j=1

(|uj|(2+α)
Qjt

+ |cj|(2+α)
Qjt

) + |ρ|(2+α)
Γt

+ |∂tρ|(1+α)
Γt

≤

≤ C2

( 2∑
j=1

(|u0j|(2+α)
Ωj

+ |c0j|(2+α)
Ωj

) + |p|(2+α)
Σt

+ |q|(2+α)
Σt

)
,

for 0 < t ≤ T0.

Remark 2.1. Here cj(s, t) represents the concentration of the mixture in the
alloy in phase j = 1, 2. The condition C) guarantees that cj ∈ (0, 1) for small
t ≤ T0. Condition (2.12) means that the concentration of the mixture c0(x)
at the initial time is a discontinuous and increasing function across Γ.
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Remark 2.2. Condition (2.13) is physically compatible because σ′j(u) > 0,
∀u ∈ (u∗, u∗∗) and ∂ν0

u0j(x)|Γ < 0, j = 1, 2, due to the decrease of the tem-
perature from the liquid phase into the solid one.

Remark 2.3. In (2.14) we suppose that the latent heat of melting κ and the
jump of the initial temperature |[[∇u0]]|Γ|, as well as the difference of heat
conductivity coefficients |λ1−λ2|, are small values. These two last conditions
lead to the condition |[[λ ∂ν0

u0]]|Γ| ≤ C3 δ0. We note also that the requirements
(2.14) are adjusted in the compatibility condition (2.18).

3. Reduction to a problem in a fixed domain

Let λ0 > 0 be a sufficiently small number, such that, every point y ∈ Ω
being situated in a 2λ0-neighbourhood O of Γ can be represented in the form

y = ξ + λN(ξ) , ξ ∈ Γ, |λ| < 2λ0 , (3.1)

y = ξ, if λ = 0. Let χ(λ) be a smooth cut-off function, such that, χ = 1,
|λ| < λ0, χ = 0, |λ| ≥ 2λ0. We define the coordinates transformation
eρ : y → x [BS], which is the modification of Hanzawa mapping [H], by the
formulas:

x = y + χ(λ) ρ(ξ, τ) N(ξ) , y ∈ O, ξ ∈ Γ ,
(3.2)

x = y , y ∈ Ω\O, t = τ ,

where ρ|τ=0 = 0.
This mapping transforms the surface Γ: λ = 0, y = ξ into the free bound-

ary

γ(t) : x = ξ + ρ(ξ, t) N(ξ) , ξ ∈ Γ, t ∈ [0, t0] ,

and the given fixed domains Ωj into the unknown ones Ωj(t), j = 1, 2.
To every point y ∈ O there correspond unique coordinates ξ = ξ(y), λ =

λ(y) and inversely, every coordinates (ξ, λ), ξ ∈ Γ, |λ| < 2λ0 determine a
unique point y ∈ O. So, formula (3.1) sets a one to one correspondence
between the coordinates y and (ξ, λ) of every point in O. Therefore, from
the equation (3.1) we can express the coordinates (ξ, λ) via coordinates y:
ξ = ξ(y) = (ξ1(y), ..., ξn(y)), λ = λ(y), where ξk(y), λ(y) ∈ C2+α(O), k =
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1, ..., n, because Γ ∈ C2+α. Thus, we can write the transformation (3.2) in
the form

x = y + χ(λ(y)) ρ(ξ(y), τ) N(ξ(y)) , y ∈ O ,
(3.3)

x = y , y ∈ Ω\O, t = τ ,

Remark 3.1. We note that the coordinate transformation (3.3) with N ≡ ν0
was used by Hanzawa [H]

x = y + χρ ν0, y ∈ O , x = y, y ∈ Ω\O (3.4)

but leads to the loss of smoothness of one unit, because the normal ν0(ξ) to Γ
in (3.4) is expressed via the first partial derivatives of a function setting the
surface Γ. The mapping (3.3) is due to Solonnikov (see also [S2] and [BS])
and permits to avoid this loss.

The Jacobian matrix of the transform (3.3) with respect to n variables
x1, ..., xn has the form

J =

{
∂xi

∂yj

}

1≤i, j≤n

=




1 + ∂y1
(N1 χρ) · · · ∂yn

(N1 χρ)

· · · · · · · · ·
∂y1

(Nn χρ) · · · 1 + ∂yn
(Nn χρ)




(3.5)
= {δij + ∂yj

(Ni χρ)}1≤i, j≤n = I + (∇T (Nχρ))
T

.

Here ρ|t=0 = 0, J |t=0 = I, that is, at least, for small t ≤ t1 the inverse matrix
J−1 exists. In Appendix A we prove this.

In the new coordinates {y} the differential operators, the normal ν to γ(t)
and the normal velocity of the free boundary γ(t) are expressed, respectively,
by the formulas:

∇x
T |x=y+χρN = J−T ∇y

T , ∇x|x=y+χρN = (J−T ∇y
T )T , (3.6)

∂t − a ∆x|x=y+χρN
t=τ

= ∂τ − χ∂τρN ∇x
T − a∇x∇x

T |x=y+χρN

= ∂τ − χ∂τρNJ−T ∇y
T − a(J−T ∇y

T )T J−T ∇y
T , (3.7)

ν|x=ξ+ρN
t=τ

= ν0 J−1 |ν0 J−1|−1 , (3.8)

∂ν|x=ξ+ρN
t=τ

= ν0 J−1J−T ∇y
T |ν0 J−1|−1 , (3.9)



SOLUTIONS TO PARABOLIC SYSTEMS WITH FREE BOUNDARY OF STEFAN TYPE 11

Vν|x=ξ+ρN
t=τ

= ν0 J−1NT∂τρ |ν0 J−1|−1 . (3.10)

Remark 3.2. For the sake of convenience we use again variables t and ξ
instead of τ and ξ(y).

We apply the coordinate mapping (3.3) in problem (2.1)–(2.8) with the
help of formulas (3.7), (3.9), (3.10). Then we obtain a nonlinear problem
involving the unknown function ρ(ξ, t),

uj(y + χρN, t) = ûj(y, t) ,
(3.11)

cj(y + χρN, t) = ĉj(y, t) ,

in the fixed given domains Ωj, for j = 1, 2:

∂tûj − χ∂tρNJ−T ∇T ûj − aj(J
−T ∇T )TJ−T ∇T ûj = 0 in ΩjT , (3.12)

∂tĉj − χ∂tρNJ−T ∇T ĉj − bj(J
−T ∇T )TJ−T ∇T ĉj = 0 in ΩjT , (3.13)

with initial and boundary conditions

ρ|t=0 = 0 on Γ, ûj|t=0 = u0j(y), ĉj|t=0 = c0j(y) in Ωj , (3.14)

û1|∂Ω = p(y, t), ĉ1|∂Ω = q(y, t) , t ∈ (0, T ) , (3.15)

and with the following transmission conditions on the initial interface

û1 = û2 , ĉj = σj(ûj) on ΓT , j = 1, 2 , (3.16)

ν0 J−1J−T (λ1∇T û1 − λ2∇T û2) = −κ ν0 J−1NT ∂tρ on ΓT , (3.17)

ν0 J−1J−T (k1∇T ĉ1 − k2∇T ĉ2) = (ĉ1 − ĉ2) ν0 J−1NT ∂tρ on ΓT . (3.18)

Although this highly nonlinear system has the advantage of being set in
known domains, it will be treated in a more convenient form after a reduction
to new unknowns with zero initial conditions.

We determine the auxiliary functions ρ0(ξ, t) on ΓT under the conditions

ρ0|t=0 = 0 , ∂tρ0|t=0 ≡ ∂tρ|t=0 = − [[k ∂ν0
c0]]|Γ

ν0NT [[c0]]|Γ
(3.19)

and Vj(y, t), Zj(y, t), j = 1, 2, as the solutions of the Cauchy problems

∂tVj − aj ∆Vj − χ∂tρ0N ∇TVj = 0 in Rn
T , Vj|t=0 = ũ0j(y) , (3.20)

∂tZj − bj ∆Zj − χ∂tρ0N ∇TZj = 0 in Rn
T , Zj|t=0 = c̃0j(y) , (3.21)
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where j = 1, 2, symbol “˜” denotes the smooth extension of a function into
the entire space Rn and Rn

T = Rn×(0, T ).

Lemma 3.1 ([S1, BS, B2, B3, RSY]). Let 1 < s ≤ 2 + α, α ∈ (0, 1).
For arbitrary functions u0j, c0j ∈ Cs(Ωj), j = 1, 2, each one of the problems

(3.19)–(3.21) has a unique solution ρ0 ∈ C3+α
1+s (ΓT ), Vj, Zj ∈ C2+α

s (Rn
T ), j =

1, 2, satisfying

|ρ0|(3+α)
s+1,ΓT

≤ C1

2∑

k=1

|c0k|(s)Ωk
, (3.22)

|Vj|(2+α)
s,Rn

T
≤ C2

(
|u0j|(s)Ωj

+
2∑

k=1

|c0k|(s)Ωk

)
, (3.23)

|Zj|(2+α)
s,Rn

T
≤ C3

2∑

k=1

|c0k|(s)Ωk
, j = 1, 2 . (3.24)

Now using the functions ρ0, Vj, Zj, j = 1, 2, we transform problem (3.12)–
(3.18) into a more suitable form. We make use of the following substitutions:

ρ(ξ, t) = ρ0(ξ, t) + ψ(ξ, t) , (3.25)

ûj(y, t) = uj(y + χρN, t) = vj(y, t) + Vj(y, t) ,
(3.26)

ĉj(y, t) = cj(y + χρN, t) = zj(y, t) + Zj(y, t) , j = 1, 2 ,

where ρ, vj, zj are new unknown functions satisfying zero initial conditions

∂k
t vj|t=0 = 0, ∂k

t zj|t=0 = 0, ∂k1
t ψ|t=0 = 0 ,

k =

{
0, 1<s<2,

0, 1, 2≤s≤2+α ,
k1=0, 1, j =1, 2 .

We represent the composition of the functions σj(vj+Vj) in (3.16) as follows

σj(vj + Vj) = σj(Vj) + σ′j(Vj) vj + v2
j

∫ 1

0
(1− λ) σ′′j (Vj + λvj) dλ .

The expansion formulas (A.1), (A.2), (A.5) of Appendix A of the matri-
ces J−1, J−1

0 = J−1|ρ=ρ0
and the change (3.25),(3.26) of unknown functions
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permit us to extract linear principal terms with respect to the unknown func-
tions, known functions and the remainder nonlinear terms. Thus, we obtain
problem (3.12)–(3.18) in the form, for j = 1, 2:

∂tvj − aj ∆vj − (∂tψ − aj ∆ψ) χNJ−T
0 ∇TVj = fj(y, t) + Fj(vj, ψ) in ΩjT ,

(3.27)

∂tzj − bj ∆zj − (∂tψ − bj ∆ψ) χNJ−T
0 ∇TZj = gj(y, t) + Gj(zj, ψ) in ΩjT ,

(3.28)
with zero initial data, translated Dirichlet boundary conditions

v1|∂Ω = p1(y, t), z1|∂Ω = q1(y, t) , t ∈ (0, T ) , (3.29)

and the corresponding transmission conditions

(v1 − v2)|Γ = η0(y, t) , (3.30)

(zj − σ′j(Vj) vj)|Γ = (ηj(y, t) + Rj(vj))|Γ , j = 1, 2 , (3.31)

(λ1 ∂ν0
v1 − λ2 ∂ν0

v2)|Γ = (ϕ1(y, t) + π1(v1, v2, ψ))|Γ , (3.32)
(
k1 ∂ν0

z1 − k2 ∂ν0
z2 − (Z2 − Z1) NJ−T

0 νT
0 ∂tψ −

− ν0 NT [(k1∇Z1 − k2∇Z2) J−1
0 J−T

0 + (Z1 − Z2) NJ−T
0 ∂tρ0]∇Tψ

) ∣∣∣
Γ

=

= (ϕ2(y, t) + π2(z1, z2, ψ))|Γ , t ∈ (0, T ) . (3.33)

We note that in condition (3.33) on Γ we have used the relation

ν0(ξ)∇Tψ(ξ, t) = 0, ξ ∈ Γ,

and in (3.32) we did not single out such term.
Thus, we have reduced the free boundary problem (2.1)–(2.8) in the un-

known domains Ω1(t) and Ω2(t) to the nonlinear problem (3.27)–(3.33) in
given domains Ω1, Ω2 with unknown functions v1, v2, z1, z2, ψ satisfying zero
initial data. In the left-hand side of equations (3.27), (3.28) and conditions
on ∂Ω and Γ (3.29)–(3.33) there are linear terms. The functions fj, gj, p1,
q1, η0, ηj, ϕj, j = 1, 2, are known; Fj, Gj, Rj, πj, j = 1, 2, are nonlin-
ear functions — the rests of the expressions in (3.12), (3.13), (3.16)–(3.18)
of problem (3.12)–(3.18) after separating linear terms and known functions,
which expressions (see Appendix A for notations) are given by

fj = χ∂tρ0NJ−T
0 ∇TVj − ∂tVj + aj(J

−T
0 ∇T )TJ−T

0 ∇TVj , (3.34)

gj = χ∂tρ0NJ−T
0 ∇TZj − ∂tZj + bj(J

−T
0 ∇T )TJ−T

0 ∇TZj , (3.35)



14 G.I. BIZHANOVA AND J.F. RODRIGUES

Fj = χ∂t(ρ0 + ψ) NJ−T (∇Tvj − J−T
1 J−T

0 ∇TVj)

− aj[∇(JT
01 + JT

1 ) + ((JT
01 + JT

1 ) J−T ∇T )
T
]J−T ∇Tvj

− aj(∇ψ)∇T (χNJT
0 ∇TVj)

+ aj[∇(JT
01 + JT

1 ) + ((JT
01 + JT

1 ) J−T ∇T )
T
] J−TJT

11 J−T
0 ∇TVj

− aj[(J
−T
0 JT

1 J−T ∇T )T + (J−T ∇T )TJ−TJT
12] J

−T
0 ∇TVj

= F (Vj, vj, ψ; aj) , (3.36)

Gj = F (Zj, zj, ψ; bj) , (3.37)

p1 = (p(y, t)− V1(y, t))|∂Ω , q1 = (q(y, t)− Z1(y, t))|∂Ω , (3.38)

η0 = (V2(y, t)− V1(y, t))|∂Ω , (3.39)

ηj = (−Zj + σj(Vj))|Γ , (3.40)

Rj = v2
j

∫ 1

0
(1− λ) σ′′j (Vj + λ vj) dλ , (3.41)

ϕ1 = −ν0 J−1
0 [J−T

0 (λ1∇TV1 − λ2∇TV2) + κNT∂tρ0] |Γ , (3.42)

ϕ2 = −ν0 J−1
0 [J−T

0 (k1∇TZ1 − k2∇TZ2) + (Z1 − Z2) NT∂tρ0] |Γ , (3.43)

π1 = ν0(J01 + J1 + J−1(J01 + J1))J
−T (λ1∇Tv1 − λ2∇Tv2)

+ ν0 J−1
0 (J−T

0 JT
1 + J1J

−1) J−T (λ1∇TV1 − λ2∇TV2)

− κ ν0(J
−1NT∂tψ − J−1

0 J1J
−1NT∂tρ0), (3.44)

π2 = −ν0 J−1(z1 − z2) NT∂t(ρ0 + ψ)

+ ν0((J
T
01 + JT

1 ) + J−1(J01 + J1)) J−T (k1∇Tz1 − k2∇Tz2)

− (Z1 − Z2) ν0 J−1[((J01 + J1) J11 − J12) J−1
0 NT∂tρ0 − J1J

−1
0 NT∂tψ]

− ν0M(k1∇TZ1 − k2∇TZ2) , (3.45)

M = J−1[(J01 + J1) JT
11 + JT

01J
−T
0 JT

11 − J−T
0 JT

12] J
−T

+ J−1((J01 + J1) J11 − J12) J−1
0 J−T

0 . (3.46)

For the sake of convenience, we write problem (3.27)–(3.33) conventionally
in operator form

A[w] = h +N [w] , (3.47)
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where w = (v1, v2, z1, z2, ψ), h = (f1, f2, g1, g2, p1, q1, η0, η1, η2, ϕ1, ϕ2), A[w] is
a linear operator determined by the expressions in the left-hand sides of the
four equations (3.27), (3.28) and seven boundary conditions (3.29)–(3.33),
N [w] = (F1, F2, G1, G2, 0, 0, 0, R1|Γ, R2|Γ, π1|Γ, π2|Γ) is a nonlinear operator.
Moreover,

A : B(ΩT ) → H(ΩT ) , N : B(ΩT ) → H(ΩT )

where

B(ΩT ) =
◦
C

2+α
s (Ω

(1)
T )× ◦

C
2+α
s (Ω

(2)
T )× ◦

C
2+α
s (Ω

(1)
T )× ◦

C
2+α
s (Ω

(2)
T )× ◦

D2+α
s (ΓT )

represents the space of functions w = (v1, v2, z1, z2, ρ) with the norm:

‖w‖B(ΩT ) =
2∑

j=1

(|vj|(2+α)
s,ΩjT

+ |zj|(2+α)
s,ΩjT

) + |ρ|(2+α)
s,ΓT

+ |∂tρ|(1+α)
s−1,ΓT

;

H(ΩT ) =
◦
C

α
s−2(Ω

(1)
T )× ◦

C
α
s−2(Ω

(2)
T )× ◦

C
α
s−2(Ω

(1)
T )× ◦

C
α
s−2(Ω

(2)
T )× ◦

C
2+α
s (ΣT )×

× ◦
C

2+α
s (ΣT )× ◦

C
2+α
s (ΓT )× ◦

C
2+α
s (ΓT )× ◦

C
2+α
s (ΓT )× ◦

C
1+α
s−1 (ΓT )× ◦

C
1+α
s−1 (ΓT )

denotes the space of functions h = (f1, f2, g1, g2, p1, q1, η0, η1, η2, ϕ1, ϕ2) with
the norm:

‖h‖H(ΩT ) =
2∑

j=1

(|fj|(α)
s−2,ΩjT

+ |gj|(α)
s−2,ΩjT

) + |p1|(2+α)
s,ΣT

+ |q1|(2+α)
s,ΣT

+ |η0|(2+α)
s,ΓT

+
2∑

j=1

(|ηj|(2+α)
s,ΓT

+ |ϕj|(α)
ΓT

) .

Here,
◦
C`

s(ΩT ) is the subset of C`
s(ΩT ) consisting of functions u(x, t), such

that, ∂k
t u|t=0 = 0, 2k ≤ s, if s ≥ 0,

◦
C`

s(ΩT ) = C`
s(ΩT ), if s < 0; and

◦
D2+α

s (ΓT ), α ∈ (0, 1), s ≤ 2 + α, is the space of functions ρ(ξ, t) ∈ ◦
C2+α

s (ΓT ),

∂tρ ∈
◦
C1+α

s−1 (ΓT ).

We consider first the vector-function h. We see from formulas (3.34), (3.35),
(3.38)–(3.40), (3.42), (3.43) they are expressed via the auxiliary functions Vj,
Zj, j = 1, 2, ρ0 and the inverse matrix J−1

0 . In Theorem A.2 of Appendix we
prove the existence of J−1

0 for t ≤ t2. Now we show that h ∈ H(Ωt2).
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Lemma 3.2. Let the conditions of Theorem 2.1 be fulfilled. Then the vector-
function h = (f1, f2, g1, g2, p1, q1, η0, η1, ϕ1, ϕ2) belongs to the space H(Ωt2)
and satisfies the estimate:

‖h‖H(Ωt) ≤ C4

(
2∑

j=1

(|u0j|(s)Ωj
+ |c0j|(s)Ωj

) + |p|(2+α)
s,Σt

+ |q|(2+α)
s,Σt

)
, t ≤ t2. (3.48)

Proof : To show that h ∈ H(Ωt2) and to obtain an estimate (3.48) we take into
consideration the estimates (A.12), (A.56) and (3.22)–(3.24) of the product
of functions in weighted Hölder spaces; using matrix J−1

0 and functions ρ0,
Vj, Zj, j = 1, 2, respectively, we derive the required inequality (3.48).

We prove that the components — functions of the vector h satisfy zero
initial conditions. The functions fj, gj, j = 1, 2, are equal to 0 at t = 0, if
s ≥ 0, by the condition J−1

0 |t=0 = I and equations (3.20), (3.21).
On the basis of the initial data (3.19)–(3.21) and compatibility conditions

(2.16), (2.17) we have p1|t=0 = 0, q1|t=0 = 0, η0|t=0 = 0, ηj|t=0 = 0, ϕj|t=0 = 0,
j = 1, 2.

Let s ≥ 2. We show that the time derivatives ∂tp1, ∂tq1, ∂tη0, ∂tηj, j = 1, 2,
are also equal to zero at t = 0. We consider the functions

∂tp1|t=0 = (∂tp− ∂tV1 |∂Ω)|t=0 ,
(3.49)

∂tq1|t=0 = (∂tq − ∂tZ1 |∂Ω)|t=0 .

From equations (3.20), (3.21) we obtain

∂tV1|t=0 = a1 ∆u01 , ∂tZ1|t=0 = b1 ∆c01 ,

by the assumption on the initial interface Γ and the definition of χ. Then,
from (3.49) on the basis of the compatibility conditions (2.19) we find ∂tp1|t=0
= 0, ∂tq1|t=0 = 0.

We consider the time derivatives of the functions η0, ηj (j = 1, 2)

∂tη0 = ∂tV2 − ∂tV1 |Γ , ∂tηj = −∂tZj + σ′j(Vj) ∂tVj |Γ .

We substitute here ∂tVj, ∂tZj, ∂tρ0 found from formulas (3.19)–(3.21)

∂tη0|t=0 = −[a ∆u0]|Γ + (∂Nu01 − ∂Nu02)
[[k ∂ν0

c0]]

ν0NT [[c0]]

∣∣∣
Γ

, (3.50)

∂tηj|t=0 = −bj ∆c0j |Γ + aj σ′j(u0j) ∆u0j |Γ
+ (∂Nc0j− σ′j(u0j) ∂Nu0j)

[[k ∂ν0
c0]]

ν0NT [[c0]]

∣∣∣
Γ
, j = 1, 2 . (3.51)
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We express the derivatives on the direction N via normal derivatives. Let
ξ ∈ Γ be an arbitrary point. The vector N(ξ) may be represented in the
form

N(ξ) = α1 ν0(ξ) + α2 τ(ξ) , (3.52)

where ν0(ξ) and τ(ξ) are normal and tangential unit vectors at the point
ξ1 and α1, α2 denote some numbers. Multiplying both parts of the identity
(3.52) by the vector νT

0 (ξ) we obtain α1 = NνT
0 ≥ d1 (see (2.10)) and N(ξ) =

NνT
0 ν0 + α2 τ .

Then we can write

(∂Nu01 − ∂Nu02)|Γ = ν0 NT (∂ν0
u01 − ∂ν0

u02)|Γ + α2(∂τu01 − ∂τu02)|Γ, (3.53)

(∂Nc0j − σ′j(u0j) ∂Nu0j)|Γ = ν0 NT (∂ν0
c0j − σ′j(u0j) ∂ν0

u0j)|Γ
+ α2(∂τc0j − σj(u0j) ∂τu0j)|Γ . (3.54)

We differentiate the compatibility conditions (2.17) with respect to the
tangential direction τ

(∂τu01 − ∂τu02)|Γ = 0 , (∂τc0j − σ′j(u0j) ∂τu0j)|Γ = 0 , j = 1, 2 .

On the basis of these identities from (3.53), (3.54) we find the formulas

(∂Nu01 − ∂Nu02)|Γ = ν0 NT [[∂ν0
u0]]|Γ ,

(∂Nc0j − σ′N(u0j) ∂Nu0j)|Γ = ν0 NT (∂ν0
c0j − σ′j(u0j) ∂ν0

u0j)|Γ , j = 1, 2 .

We substitute these expressions into (3.50), (3.51) and, by the compatibility
conditions (2.20), (2.21), we finally have ∂tη0|t=0 =0, ∂tηj|t=0 =0, j =1, 2.

4. The linear problem

In order to solve the nonlinear problem (3.47) we consider first the linear
operator A : B(ΩT ) → H(ΩT ) and the equation

A[w] = h

with unknown functions w = (v1(x, t), v2(x, t), z1(x, t), z2(x, t), ψ(ξ, t)) satis-
fying zero initial data, so that for j = 1, 2:

∂tvj − aj ∆vj − χ(λ(x)) αj(x, t) (∂tψ − aj ∆ψ) = fj(x, t) in ΩjT , (4.1)

∂tzj − bj ∆zj − χ(λ(x)) βj(x, t) (∂tψ − bj ∆ψ) = gj(x, t) in ΩjT , (4.2)
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with Dirichlet and transmission boundary conditions for t > 0:

v1|∂Ω = p1(x, t) , z1|∂Ω = q1(x, t) , (4.3)

(v1 − v2)|Γ = η0(x, t) , (4.4)

(zj − γj(x, t) vj)|Γ = ηj(x, t) , j = 1, 2 , (4.5)

(λ1 ∂ν0
v1 − λ2 ∂ν0

v2)|Γ = ϕ1(x, t) , (4.6)

(k1 ∂ν0
z1 − k2 ∂ν0

z2 + d(x, t)∇Tψ − κ1(x, t) ∂tψ)|Γ = ϕ2(x, t) , (4.7)

where χ(λ(x)) is a cut-off function; aj, bj, λj, kj, j = 1, 2, are positive
constants; and d = (d1, ..., dn) is a given vector function.

Let the following assumptions hold:

a) ∂Ω, Γ ∈ C2+α, ∂Ω ∩ Γ = ∅;

b) αj ∈ C1+α
s−1 (ΩT ), γj ∈ C2+α

s (ΓT ), κ1, di ∈ C1+α
s−1 (ΓT ), j = 1, 2, i = 1, ..., n;

c) κ1(x, 0)|Γ ≥ d3 > 0 , (4.8)

βj(x, 0)− γj(x, 0) αj(x, 0) |Γ ≥ d3 , j = 1, 2 , (4.9)

|α1(x, 0)− α2(x, 0) |Γ| ≤ δ0 , (4.10)

where δ0 is sufficiently small value.
The conditions in c) correspond, respectively, to the conditions (2.12),

(2.13) and to the second condition (2.14).

Theorem 4.1. Let α ∈ (0, 1), s ∈ (1, 2 + α]. We assume that conditions
a)–c) hold.

Then for every functions fj, gj ∈
◦
Cα

s−2(ΩjT ), p1, q1 ∈
◦
C2+α

s (ΣT ), η0, ηj ∈
◦
C2+α

s (ΓT ), ϕj ∈
◦
C1+α

s−1 (ΓT ), j = 1, 2, problem (4.1)–(4.7) has a unique so-

lution vj, zj ∈
◦
C2+α

s (ΩjT ), j = 1, 2, ψ ∈ ◦
C2+α

s (ΓT ), ∂tψ ∈ ◦
C1+α

s−1 (ΓT ), which
satisfies the estimate
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‖w‖B(ΩT ) =
2∑

j=1

(|vj|(2+α)
s,ΩjT

+ |zj|(2+α)
s,ΩjT

) + |ψ|(2+α)
s,ΓT

+ |∂tψ|(1+α)
s−1,ΓT

≤ C1

(
2∑

j=1

(|fj|(α)
s−2,ΩjT

+ |gj|(α)
s−2,ΩjT

+ |ηj|(2+α)
s,ΓT

+ |ϕj|(2+α)
s,ΓT

)

(4.11)

+ |p1|(2+α)
s,ΣT

+ |q1|(2+α)
s,ΣT

+ |η0|(2+α)
s,ΓT

)

= C1 ‖h‖H(ΩT ) .

Proof : We rewrite the equations (4.1)2, (4.2)2 in the form

∂tv2 − a2 ∆v2 − χα1(x, t) (∂tψ − a2 ∆ψ) =

= f2 − χ(α1(x, t)− α2(x, t)) (∂tψ − a2 ∆ψ) in Ω2T , (4.12)

∂tz2 − b2 ∆z2 − χ[β2(x, t) + γ2(x, t) (α1(x, t)− α2(x, t))] (∂tψ − b2 ∆ψ) =

= g2 − χγ2(x, t) (α1(x, t)− α2(x, t)) (∂tψ − b2 ∆ψ) in Ω2T . (4.13)

By condition (4.10) the terms containing the difference α1(x, t) − α2(x, t)
are small. We have written equations (4.1)2,(4.2)2 in the form (4.12),(4.13)
to obtain the model problem (B.1)–(B.7) for convenience.

We construct a regularizer to prove the solvability of problem (4.1)–(4.7)
and apply Schauder’s method to find the estimate (4.11). Since this is a
standard procedure (see [LSU], for instance) we give only the sketch of a
proof.

We cover the domain Ω with balls Ki,δ and Ki,2δ of radia δ and 2δ, re-
spectively, and with a common center x(i). Let {ζi(x)}, {µi(x)} be the sets
of the smooth functions subordinated to this overlapping by the balls, such
that, ζi = 1, if |x − x(i)| ≤ 8 and ζi = 0, if |x − x(i)| ≥ 2δ, supp µi = K i,2δ,∑

i ζiµi = 1 and |∂mζi|, |∂mµi| ≤ Cm,i δ
−|m|, m = (m1, ..., mn). Let O = {x ∈

Ω: x = ξ + λN(ξ), ξ ∈ Γ, |λ| < 2λ0}, be the 2λ0-neighbourhood of Γ.
We define a regularizer R by the formula

Rh = {R1h,R2h,R3h,R4h,R5h}
=

{∑

i

µi v1,i ,
∑

i

µi v2,i ,
∑

i

µi z1,i ,
∑

i

µi z2,i ,
∑

i

µi ψi

}
,(4.14)
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where the functions vj,i, zj,i, ψi, j = 1, 2, are found as follows.
Let a ball Ki,δ intersect the surfaces Γ (i ∈ I1) or ∂Ω (i ∈ I2), the point

ξ(i) belongs to Γ ∩ Ki,δ or ∂Ω ∩ Ki,δ. We pass to the local coordinates {y}
with the center in ξ(i) and the axis yn directed on the normal ν0(ξ

(i)) to the
surface Γ into Ω2 or ∂Ω into Ω1. We choose a radius δ sufficiently small so
that the boundary Γ ∩Ki,2δ or ∂Ω ∩Ki,2δ can be expressed by the equation
yn = qi(y

′), where qi ∈ C2+α and qi(0) = 0, ∇′qi = 0.
Here we set y = (y1, ..., yn) and y′ = (y1, ..., yn−1).
We denote by q̃i(y

′) the extension of qi(y
′) into Rn−1 which preserves reg-

ularity. Then we “straighten” the boundary yn = q̃i by the formulas y′ = y′,
yn = yn − q̃i. Let y = Yi(x) be the transformation of the coordinates {x}
to the coordinate {y} consisting of the rotation of a coordinate system {y}
around the point ξ(i) to turn an axis yn on a normal ν0(ξ

(i)) and “straight-
ening” of a boundary yn = q̃i. We put ζifj, ζigj|x=Y −1

i (y)= fj,i(y, t), gj,i(y, t);

ζiηk, ζiϕj, ζip1, ζiq1|x=Y −1
i (y)

yn=0
=ηk,i(y

′, t), ϕj,i(y
′, t), p1,i(y

′, t), q1,i(y
′, t), j =1, 2,

k = 0, 1, 2, and extend by zero the functions fj,i, gj,i into Sj (i ∈ I1) and
f1,i, g1,i into S2 (i ∈ I2) and ηk,i, ϕj,i, p1,i, q1,i into Rn−1 retaining the pre-
ceding notations and we set

S1 = Rn
− , S2 = Rn

+ and SjT = Sj×(0, T ), j = 1, 2 .

1. We define the functions v′j,i(y, t), z′j,i(y, t), j = 1, 2, ψ′i(y
′, t), i ∈ I1,

satisfying zero initial data, as the solution to the following problem:

∂tv
′
j,i − aj ∆yv

′
j,i − χ(λ(ξ(i))) α1(x

(i), 0) (∂tψ
′
i − aj ∆′ψ′i) = fj,i(y, t)

in SjT , j = 1, 2, (4.15)

∂tz
′
1,i − b1 ∆z′1,i − χ(λ(ξ(i))) β1(x

(i), 0) (∂tψ
′
i − b1 ∆′ψ′i) = g1,i(y, t) in S1T ,

(4.16)

∂tz
′
2,i − b2 ∆z′2,i − χ(λ(ξ(i))) [β2(x

(i), 0) + γ2(x
(i), 0) (α1(x

(i), 0)− α2(x
(i), 0))]

× (∂tψ
′
i − b2 ∆′ψ′i) = g2,i(y, t) in S2T , (4.17)

(v′1,i − v′2,i)|yn=0 = η0,i(y
′, t) , (4.18)

(z′j,i − γj(ξ
(i), 0) v′j,i)|yn=0 = ηj,i(y

′, t) , j = 1, 2 , (4.19)

(λ1 ∂yn
v′1,i − λ2 ∂yn

v′2,i)|yn=0 = ϕ1,i(y
′, t) , (4.20)
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(k1 ∂yn
z′1,i − k2 ∂yn

z′2,i)|yn=0 + d′i∇′Tψ′i − κ1(ξ
(i), 0) ∂tψ

′
i = ϕ2(y

′, t) ,(4.21)

where

χ(λ(ξ(i))) = 1, d′i = (di,1, ..., di,n−1),

d′i∇′T
y ψ′i = d(ξ(i), 0)∇T

x ψi(x, t)|x=Y −1
i (y)

x=ξ∈Γ
.

Here we consider the equations (4.15)2, and (4.17) in accordance with the
representation of the original equations (4.1)2,(4.2)2 in the form (4.12),(4.13)
respectively. We have also used the standard notations ∆′ = ∂2

y1
+ · · ·+ ∂2

yn−1

and ∇′ = (∂y1
, ..., ∂yn−1

).

2. If i ∈ I2, we find the functions v′1,i(y, t), z′1,i(y, t) as the solutions to the
first boundary value problems

∂tv
′
1,i − a1 ∆v′1,i = f1,i(y, t) in S2T , v′1,i|t=0 = 0, v′1,i|yn=0 = 0 (4.22)

∂tz
′
1,i − b1 ∆z′1,i = g1,i(y, t) in S2T , z′1,i|t=0 = 0, z′1,i|yn=0 = 0. (4.23)

We note that (4.15)–(4.21) is the model problem (B.1)–(B.7) studied in Ap-

pendix B. So, by Theorem B.1, it has a unique solution v′j,i, z
′
j,i ∈

◦
C2+α

s (SjT ),

j = 1, 2, ψ′i ∈
◦
C2+α

s (RT ), ∂tψ ∈ ◦
C1+α

s−1 (RT ), i ∈ I1, and it satisfies the esti-
mate (B.9) (here R is the plane yn = 0). The solutions v′1,i, z

′
1,i, i ∈ I2, to

the problems (4.22),(4.23) exist and belong to the space
◦
C2+α

s (S2T ) [S1].
The estimates for the solutions to problem (4.15)–(4.21) and to the first

boundary value problems (4.22),(4.23) in coordinates {x} take the form

2∑
j=1

(|vj,i|(2+α)

s,K
(i)
i,T

+ |zj,i|(2+α)

s,K
(i)
i,T

) + |ψi|(2+α)
s,Γi,T

+ |∂tψ|(1+α)
s−1,Γi,T

≤

≤ C

[
2∑

j=1

(|ζifj|(α)

s−2,K
(j)
i,T

+ |ζigj|(α)

s−2,K
(i)
i,T

+ |ζiηj|(2+α)
s,Γi,T

+ |ζiϕj|(1+α)
s−1,Γi,T

)+ |ζiη0|(2+α)
s,Γi,T

]
,

i∈I1, (4.24)
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|v1,i|(2+α)

s,K
(1)
i,T

≤ C(|ζif1|(α)

s−2,K
(1)
i,T

+ |ζip1|(2+α)
s,Σi,T

) , i ∈ I2 ,

(4.25)

|z1,i|(2+α)

s,K
(1)
i,T

≤ C(|ζig1|(α)

s−2,K
(1)
i,T

+ |ζip1|(2+α)
s,Σi,T

) , i ∈ I2 ,

where v′j,i, z′j,i |y=Yi(x) = vj,i(x, t), zj,i(x, t), i ∈ I1 ∪ I2, ψ′i|y=Yi(x)
yn=0

= ψi(ξ, t),

ξ ∈ Γ ∩ Ki,2δ, i ∈ I1, where K
(j)
i,T = (Ki,2δ ∩ Ωj)×(0, T ), j = 1, 2, and

Γi,T = (Γ ∩Ki,2δ)×[0, T ], Σi,T = (∂Ω ∩Ki,2δ)×[0, T ].

3. Let the ball Ki,δ, i ∈ I3, be entirely inside Ω1 or Ω2, but Ki,δ ∩ O 6= ∅
(here O is 2λ0-neighbourhood of Γ). We determine the functions vj,i(x, t),
zj,i(x, t), i ∈ I3, as the solution of a Cauchy problem

∂tvj,i − aj ∆vj,i = ζifj(x, t) + χ(λ(x(i))) α1(x
(i), 0) (∂tψi − aj ∆ψi)

in Rn
T , vj,i|t=0 = 0 , (4.26)

where j = 1, 2, x(i) ∈ Ki,δ ∈ Ki,δ ∩ O, Rn
T = Rn×(0, T );

∂tz1,i − b1 ∆z1,i = ζig1(x, t) + χ(λ(x(i))) β1(x
(i), 0) (∂tψi − b1 ∆ψi)

in Rn
T , z1,i|t=0 = 0 , (4.27)

∂tz2,i − b2 ∆z2,i =

= ζig2(x, t) + χ(λ(x(i)))[β1(x
(i), 0) + γ2(x

(i), 0) (α1(x
(i), 0)− α2(x

(i), 0))]

× (∂tψi − b2 ∆ψi) in Rn
T , z2,i|t=0 = 0 , (4.28)

here the functions fj, gj defined in Ωj ∩Ki,2δ are extended to Ki,2δ by pre-

serving its regularity
◦
Cα

s−2 and then the products ζifj, ζigj are extended by
zero into Rn (we keep the same notations for them).

In the right-hand sides of the equations of the problems (4.26)–(4.28) there
are functions ψi(ξ, t), i ∈ I3. We choose them as follows. Let x0 be an
arbitrary point in Ki,δ ∩ O, i ∈ I3, and ξ0 ∈ Γ be the origin of the vector
N(ξ0), on which the point x0 is situated. In the point ξ0 there is determined,
at least, one function ψj(ξ), j ∈ I1, because each point ξ0 ∈ Γ is contained,
at least, in one ball Ki,δ, j ∈ I1. For all x ∈ Ki,δ ∩ O, i ∈ I3, we have the
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corresponding functions ψj(ξ, t), j ∈ n(i) ⊂ I1, n(i) 6= ∅. For i ∈ I3 we set

ψi(ξ, t) =
∑

j∈n(i)

ψj(ξ, t) ζj(x)
( ∑

j∈n(i)

ζj(x)
)−1∣∣∣

Γ

and put it in the right-hand sides of the equations of problems (4.26)–(4.28).

4. At last, if Ki,δ, i ∈ I4, is entirely inside Ω1 or Ω2 and Ki,δ ∩ O = ∅ we
find the functions vj,i(x, t), zj,i(x, t), i ∈ I4, j = 1, 2, as the solutions of the
Cauchy problems

∂tvj,i − aj ∆vj = ζifj(x, t) in Rn
T , vj,i|t=0 = 0 , (4.29)

∂tzj,i − bj ∆zj,i = ζigj(x, t) in Rn
T , zj,i|t=0 = 0 , (4.30)

for j = 1, 2, the functions ζifj, ζigj are extended into Rn as in problems
(4.26)–(4.28).

The Cauchy problems (4.26)–(4.30) have unique solutions

vj,i, zj,i ∈
◦
C

2+α
s (Rn

T ), i ∈ I3 ∪ I4, j = 1, 2,

and the following estimates hold

|vj,i|(2+α)

s,K
(j)
i,T

≤ C(|ζifj|(α)

s−2,K
(j)
i,T

+ |ψi|(2+α)
s,Γi,T

) ,

(4.31)
|zj,i|(2+α)

s,K
(j)
i,T

≤ C(|ζigj|(α)

s−2,K
(j)
i,T

+ |ψi|(2+α)
s,Γi,T

) , i ∈ I3, j = 1, 2 ,

|vj,i|(2+α)

s,K
(j)
i,T

≤ C |ζifj|(α)

s−2,K
(j)
i,T

,

(4.32)
|zj,i|(2+α)

s,K
(j)
i,T

≤ C |ζigj|(α)

s−2,K
(j)
i,T

, i ∈ I4, j = 1, 2 .

Thus, we have constructed the regularizer Rh in (4.14).
We introduce the norms [LSU]

{w}B(ΩT ) = sup
i
‖w‖B(Ki,T ) , (4.33)

{h}H(ΩT ) = sup
i
‖h‖H(Ki,T ) , (4.34)

where Ki,T = (Ki,2δ ∩ Ω)×(0, T ).
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The norms (4.33),(4.34) are equivalent to the norms ‖w‖B(ΩT ), ‖h‖H(ΩT )
determined in formula (4.11).

Lemma 4.1. The operator R : H(ΩT ) → B(ΩT ) is bounded

{Rh}H(ΩT ) ≤ C {h}H(ΩT ) .

This estimate holds on the basis of estimates (4.24), (4.25), (4.31), (4.32).

Lemma 4.2. For any vector h ∈ H(ΩT ) the following identity is fulfilled:

ARh = h + Ph ≡ (E + P )h , (4.35)

where Ph = {P1h, P2h, P3h, P4h, 0, 0, 0, P5h, P6h, P7h, P8h} is fully defined
vector and E the identity operator.

Proof : We substitute R1h −R5h (see (4.14)) into equations and conditions
of the problem A[w] = h instead of the functions v1, v2, z1, z2, ψ respectively.
After some computations taking into consideration that vj,i, zj,i, ψi are the
solutions of the model problems (4.15)–(4.21), i ∈ I1, (4.22),(4.23), i ∈ I2,
(4.26)–(4.28), i ∈ I3, (4.29),(4.30), i ∈ I4, we obtain formula (4.35), where
the functions P1h− P8h are the rests of ARh after extraction of the vector
h. We note also that a function P2h contains the additional term

χ(λ) (α1(x, t)−α2(x, t))
∑

i∈I1∪I2

[µi(∂tψi − a2 ∆ψi)− a2 ψi ∆µi − 2 a2∇ψi∇Tµi],

(4.36)
the term similar to (4.36) with β2(x, t) + γ2(x, t) (α1(x, t) − α2(x, t)) and b2
instead of α1 − α2 and a2 is included in P4h by the representations of the
equations (4.1)2,(4.2)2 in the form (4.12),(4.13).

Lemma 4.3. Under the assumptions of Theorem 4.1 there exists T1 > 0,
such that, the operator A has the right inverse bounded operator A−1

r =
R(E + P )−1 : H(ΩT1

) → B(ΩT1
).

Proof : With the help of the estimates (4.24), (4.25), (4.31), (4.32) for the
functions vj,i, zj,i, j = 1, 2, ψi, we estimate the norm of Ph. Choosing the
radius δ of the balls Ki,δ and t ≤ T1 sufficiently small and making use of
condition (4.10) we obtain the estimate

{Ph}H(Ωt) ≤ ε [h]H(Ωt) ∀ t ≤ T1 , (4.37)

where ε ∈ (0, 1) (see (4.34)).
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We consider an equation h + Ph = h1, where h1 ∈ H(ΩT ). By estimate
(4.37) it has a unique solution h ∈ H(ΩT1

) and {h}H(ΩT1
) ≤ 1

1−ε {h1}H(ΩT1
)

for every vector h1 ∈ H(ΩT1
), that is, the inverse operator (E + P )−1 exists

and is bounded on the space H(ΩT1
). Substituting h = (E + P )−1h1 into

the left-hand side of the identity (4.35) and taking into account that h +
Ph = h1, we obtain the identity AR(E + P )−1h1 = h1 for ∀h1 ∈ H(ΩT1

) or
AR(E + P )−1 = E.

From here it follows that an operator A has the inverse right bounded
operator A−1

r = R(E + P )−1 determined in the whole space H(ΩT1
).

Therefore, problem A[w] = h has a solution w = (v1, v2, z1, z2, ψ) ∈ B(ΩT1
)

for every vector h ∈ H(ΩT1
).

To find the estimate (4.11) to the solution we multiply both parts of the
equations (4.1), (4.12), (4.2), (4.13) and conditions (4.3)–(4.7) by a cut-off
function ζi(x). After some computations for the functions ζivj, ζizj, j = 1, 2,
ζiψ, we obtain a model transmission problem of the type (B.1)–(B.7), or
the first boundary value problem, or Cauchy problem in connection with
the position of the ball Ki,δ, i ∈ I =

⋃4
k=1 Ik. In the right-hand sides of

the equations and transmission conditions of these model problems we shall
have given functions multiplied by ζi and the operators similar to P1h−P8h,
depending on w. We write the estimates for the solutions to these model
problems. Evaluating the so obtained operators, choosing radius δ of balls
and t ≤ T2 sufficiently small, applying the estimate (4.10) and taking into
account that ζi(x) = 1 in Ki,δ, we can achieve the estimate

‖w‖B(ωi,t) ≤ C ‖h‖H(ωi,t) + ε ‖w‖B(ωi,t) ,

t ≤ T2, where ε ∈ (0, 1), i ∈ I, ωi,t = (Ω ∩Ki,δ)×(0, t). From here we find

{w}B(Ωt) = sup
i∈I

‖w‖B(ωi,t)

≤ C(1− ε)−1 sup
i∈I

‖h‖H(ωi,t)

= C(1− ε)−1 {h}H(Ωt) , t ≤ T2 .

By the equivalence of the norms (4.33),(4.34) to the norms ‖w‖B(Ωt) and
‖h‖H(Ωt) we derive the estimate (4.11) for t ≤ T2.

Thus, we have proven the Theorem for t ≤ min(T1, T2). We extend the
solution into segment [0, T ] as, for example, in [BS] and obtain Theorem 4.1
for t ≤ T .
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5. Proof of Theorem 2.1

We have transformed the free boundary problem (2.1)–(2.8) into the non-
linear problem (3.27)–(3.33) in fixed given domains:

A[w] = h +N [w] , (5.1)

where w = (v1, v2, z1, z2, ψ) is unknown and h is a given vector function.
In Theorem 4.1 we have proved the existence and uniqueness of the solution

to the linear problem A[w] = h defined by (4.1)–(4.7) in the space B(ΩT )
and established the estimate (4.11)

‖w‖B(ΩT ) ≤ C1‖h‖H(ΩT ) ∀h ∈ H(ΩT ) ,

that is the linear operator A has the inverse bounded operator A−1 inH(ΩT ).
Under the assumptions of Theorem 2.1 all the conditions of Theorem 4.1

hold, so we can write problem (5.1) in the form

w = A−1[h +N [w]] (5.2)

and apply the estimate (4.11)

‖w‖B(Ωt) ≤ C1(‖h‖H(Ωt) + ‖N [w]‖H(Ωt)) , t ≤ T ,

where A−1 is the inverse operator.
Let K(M) be the closed ball in the space B(ΩT ):

K(M) = {w ∈ B(ΩT0
) : ‖w‖B(ΩT0

) ≤ M} ,

where M = C1‖h‖H(ΩT0
)(1− q)−1, q ∈ (0, 1).

We shall prove that the nonlinear operator A−1[h+N [w]] acts from K(M)
into K(M) and is a contraction for small t ≤ T0. For that we shall estimate
the following norms:

I1 = ‖A−1[h +N [w]]‖B(Ωt) ≤ C1(‖h‖H(Ωt) + ‖N [w]‖H(Ωt)) , (5.3)

I2 = ‖A−1[h +N [w]]−A−1[h +N [w̃]]‖B(Ωt)

≡ ‖A−1[N [w]−N [w̃]]‖B(Ωt) ≤ C1 ‖N [w]−N [w̃]‖H(Ωt) (5.4)

∀w, w̃ ∈ K(M), t ≤ T0 .

We rewrite in details the norms in the right-hand sides of the inequalities
(5.3),(5.4) substituting there the corresponding functions from the right-hand
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sides of the equations and conditions of the problem (3.27)–(3.33)

I1 ≤ C1 ‖h‖H(Ωt)+C1

2∑

j=1

(|Fj|(α)
s−2,Ωjt

+|Gj|(α)
s−2,Ωjt

+|Rj|(2+α)
s,Γt

+|Pj|(1+α)
s−1,Γt

) , (5.5)

I2 ≤ C1

2∑

j=1

(
|Fj(vj, ψ)− Fj(ṽj, ψ̃)|(α)

s−2,Ωjt
+ |Gj(zj, ψ)−Gj(z̃j, ψ̃)|(α)

s−2,Ωjt

+ |Rj(vj)−Rj(ṽj)|(2+α)
s,Γt

+ |P1(v1, v2, ψ)− P1(ṽ1, ṽ2, ψ̃)|(1+α)
s−1,Γt

(5.6)

+ |P2(z1, z2, ψ)− P2(z̃1, z̃2, ψ̃)|(1+α)
s−1,Γt

)

∀w, w̃ ∈ K(M), where the functions Fj, Gj, Rj, Pj, j = 1, 2, are defined by
formulas (3.36), (3.37), (3.41), (3.44), (3.45).

To estimate the norms in (5.5),(5.6) we apply the estimates (A.7)–(A.12)
for the norms of the functions and their products, the estimates (A.13)–
(A.16), (A.19)–(A.29), (A.38)–(A.43), (A.44), (A.56) and (A.58),(A.59) for

the matrices J01, J1 = J11 + J12, J01J1, J−1, J−1
0 and J−1(ψ) − J−1(ψ̃) re-

spectively, then we obtain

|Fj|(α)
s−2,Ωjt

≤

≤ C

[(
t

1
2 +

{
t

s
2 , 1 < s < 2

t, 2 ≤ s ≤ 2 + α
+ t

s
2 |∂tψ|(1+α)

s−1,Γt
+ t

s−2
2 |ψ|(2+α)

s,Γt

)
|vj|(2+α)

s,Ωt

+

(
t

s−1
2 + t

s
2 + t

1+s
2 +

{
t

s
2 , 1 < s < 2

t, 2 ≤ s ≤ 2 + α

)
|∂tψ|(1+α)

s−1,Γt

]
(5.7)

the estimate for the function Gj is like (5.7) with zj instead of vj;

|Rj|(2+α)
s,Γt

≤ C t
s
2 (|vj|(2+α)

s,Ωt
)
2
, j = 1, 2 , (5.8)

|P1|(1+α)
s−1,Γt

≤ C

[({
t

s
2 , 1 < s < 2

t, 2 ≤ s ≤ 2 + α
+ t

s−1
2 |ψ|(2+α)

s,Γt

) 2∑

k=1

|vk|(2+α)
s,Ωt

+ δ0(|ψ|(2+α)
s,Γt

+ |∂tψ|(1+α)
s−1,Γt

)

]
(5.9)
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|P2|(1+α)
s−1,Γt

≤

≤ C

[((
t

s
2 +

{
t

s
2 , 1<s<2

t, 2≤s≤2+α

)
|ψ|(2+α)

s,Γt
+ t

s
2 |∂tψ|(1+α)

s−1,Γt

) 2∑

k=1

|zk|(2+α)
s,Ωt

+

({
t

s
2 , 1<s<2

t, 2≤s≤2+α
+ t + t

s−1
2 (|ψ|(2+α)

s,Γt
+ |∂tψ|(1+α)

s−1,Γt
)|ψ|(2+α)

s,Γt

)]
, (5.10)

the estimates for the norms of the differences of the functions Fj, Gj, Rj, Pj,
j = 1, 2, in (5.6) are analogous to the estimates (5.7)–(5.10), they contain

the norms |vj − ṽj|(2+α)
s,Ωt

, |zj − z̃j|(2+α)
s,Ωt

, |ψ − ψ̃|(2+α)
s,Γt

, |∂tψ − ∂tψ̃|(1+α)
s−1,Γt

. Here
C > 0 denotes some constant independent of t ∈ (0, T ).

We substitute those estimates into inequalities (5.5),(5.6), then we derive

I1 ≤ C1 ‖h‖H(Ωt) + r1(t) ‖w‖B(Ωt) and I2 ≤ r2(t) ‖w − w̃‖B(Ωt) ,(5.11)

where

rj(t) = C1+j

(
δ0 + t

1
2 +

(
t

s−1
2 + t

s
2 + t

1+s
2 +

{
t

s
2 , 1 < s < 2

t, 2 ≤ s ≤ 2 + α

)
M

)
,

j = 1, 2, and

‖w‖B(Ωt), ‖w̃‖B(Ωt) ≤ M = C1 ‖h‖H(ΩT0
) (1− q)−1 , q ∈ (0, 1), δ0 ¿ 1.

We find T3 > 0 from the inequalities

rj(t) ≤ q , q ∈ (0, 1), j = 1, 2 .

Then, from (5.11), we obtain

I1 ≤ C1 ‖h‖H(ΩT0
) + qM = M , I2 ≤ q ‖w − w̃‖B(Ωt) ∀ t ≤ T0 ,

where T0 = min(t0, t1, t2, t3, T3). We remind that the parametrization of the
free boundary by the equation (2.11) is valid for t ≤ t0; in Theorems A.1–A.3
we prove the existence of the inverse matrices J−1 and J−1

0 for t ≤ t1 and

t ≤ t2 respectively and the estimates of the difference J−1(ψ) − J−1(ψ̃) for
t ≤ t3.

Thus, we have

‖A−1[h +N [w]]‖B(Ωt) ≤ M ,

‖A−1[h +N [w]]−A−1[h +N [w̃]]‖B(Ωt) ≤ q ‖w − w̃‖B(Ωt)

for all w, w̃ ∈ K(M), t ≤ T0.



SOLUTIONS TO PARABOLIC SYSTEMS WITH FREE BOUNDARY OF STEFAN TYPE 29

Whence it follows that the operator A−1[h+N [w]] is a contraction from the
closed ball K(M) into itself. Therefore problem (5.1) (i.e. (3.27)–(3.33)) has
a unique solution w = (v1, v2, z1, z2, ψ) ∈ B(ΩT0

) and it satisfies the estimate

‖w‖B(Ωt) = ‖A−1[h +N [w]]‖B(Ωt) ≤ C1(1− q)−1 ‖h‖H(Ωt) ∀ t ≤ T0 . (5.12)

Now we return to the problem (2.1)–(2.8). From formulas (3.11), (3.25),
(3.26) we have

ρ = ρ0 + ψ ,

uj(x, t) = vj(x−Nχρ, t) + Vj(x−Nχρ, t) , (5.13)

cj(x, t) = zj(x−Nχρ, t) + Zj(x−Nχρ, t) , j = 1, 2 ,

where the auxiliary functions Vj, Zj and ρ0 belong to C2+α
s (Rn

T ) and C3+α
1+s (ΓT ),

respectively, and vj, zj ∈ ◦
C2+α

s (ΩjT0
), j = 1, 2, ψ ∈ ◦

C2+α
s (ΓT0

), ∂tψ ∈
◦
C1+α

s−1 (ΓT0
). Then the compositions of the functions vj, zj, Vj, Zj with ρ

belong to C2+α
s (QjT0

), j = 1, 2.
From formulas (5.13) we derive

2∑

j=1

(|uj|(2+α)
s,Qjt

+ |cj|(2+α)
s,Qjt

) + |ρ|(2+α)
s,Γt

+ |∂tρ|(2+α)
s,Γt

≤

≤ C8

(
‖w‖B(Ωt) +

2∑
j=1

(|Vj|(2+α)
s,Qjt

+ |Zj|(2+α)
s,Qjt

) + |ρ0|(3+α)
1+s,Γt

)
, t ≤ T0 , (5.14)

where w = (v1, v2, z1, z2, ψ) satisfies the estimate (5.12) with

h = (f1, f2, g1, g2, p1, q1, η0, η1, η2, ϕ1, ϕ2).

For this vector h we may use the estimates (3.46) of Lemmas 3.1 and 3.2 to
complete the proof of Theorem 2.1.

Appendix A.Expansions and estimates of the inverse
Jacobian matrix J−1

We consider a Jacobian matrix (3.5) J of the transformation of coordinates
(3.3)

J = {δij + ∂yj
(Ni ξ(ρ0 + ψ))}1≤i, j≤n = I + J01 + J1 ,
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with
J01 = {∂yj

(Ni χρ0)}1≤i, j≤n = (∇TNχ ρ0)
T

and
J1 = {∂yj

(Ni χψ)}1≤i, j≤n ,

where N(ξ) = (N1, ..., Nn), χ(λ(y)), Ni ∈ C1,α, i = 1, ..., n, ξ ∈ Γ.
We denote

J0 = I + J01 , J1 = J11 + J12 ,

J11 = {Ni χ∂yj
ψ}1≤i, j≤n = NTχ∇ψ , JT

11 = (∇Tψ) Nχ ,

J12 = ψ{∂yj
(Ni χ)}1≤i, j≤n = ψ(∇T (Nχ))T .

We note that J |t=0 = I, J0|t=0 = I, because ρ0|t=0 = 0, ψ|t=0 = 0. That
is for the small t the inverse matrices J−1, J−1

0 exist (see Theorems A.1, A.2
below).

Now we write the expansion formulas of the matrices J−1, J−1
0 by linear

algebra straightforward computations.

Lemma A.1. For t ≤ t1 the matrix J−1 can be represented in the form

J−1 = J−1
0 − J−1

0 J1 J−1 = J−1
0 − J−1J1 J−1

0 , (A.1)

J−1 = I −BJ−1 , J−1 = I − J−1B , (A.2)

J−1 = I −B + B2J−1 = I −B + J−1B2 , (A.3)

J−1 = (I −B) (I −B2)−1 = (I −B2)−1 (I −B) , (A.4)

where B = J01 + J1.

Lemma A.2. For t ≤ t2 the matrix J−1
0 can be represented in the form

J−1
0 = I − J01J

−1
0 , J−1

0 = I − J−1
0 J01 , (A.5)

J−1
0 = (I − J2

01)
−1 (I − J01) = (I − J01) (I − J2

01)
−1. (A.6)

To estimate the norms of the functions in the weighted Hölder spaces we
shall use the following results. We denote by C different positive constants.

Lemma A.3 (Imbedding Theorem [BZ]). If q(x, t) ∈ C`
s(ΩT ), ` a positive

number, s ≤ `, and k = 2 i + |j| ≤ [`], then ∂i
t∂

j
xq ∈ C`−k

s−k(ΩT ) and

|∂i
t∂

j
xq|(`−k)

s−k,ΩT
≤ |q|(`)s,ΩT

. (A.7)
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Lemma A.4 ([B2]). Let ` be positive noninteger, r a nonnegative number,

s ≤ `, s+ r ≥ 0, f1(x, t) ∈ ◦
C`+r

s+r(ΩT ), f2(x, t) ∈ ◦
C`

s(ΩT ), q1(x, t) ∈ C`+r
s+r(ΩT ),

q2(x, t) ∈ C`
s(ΩT ), then for t ≤ T the following estimates hold:

|f1|(`)s,Ωt
≤ C t

r
2 |f1|(`+r)

s+r,Ωt
, (A.8)

|f1q2|(`)s,Ωt
≤ C |f1|(`+r)

s+r,Ωt
[sup
τ≤t

τ
r
2 |q2|Ω + t

s+r
2 |q2|(`)s,Ωt

] , (A.9)

|f1f2|(`)s,Ωt
≤ C t

s+r
2 |f1|(`+r)

s+r,Ωt
|f2|(`)s,Ωt

, (A.10)

|f2 q1|(`)s,Ωt
≤ C |f2|(`)s,Ωt

[t
s+r
2 |q1|(`+r)

s+r,Ωt
+ |q1|Ωt

] , (A.11)

|q1q2|(`)s,Ωt
≤ C |q1|(`+r)

s+r,Ωt
|q2|(`)s,Ωt

. (A.12)

We estimate the norms of the matrices J01, J1 = J11 + J12, then we prove
the existence of the inverse matrices J−1, J−1

0 and evaluate the difference

J−1(ρ0 + ψ)− J−1(ρ0 + ψ̃).

Lemma A.5. Let ρ0(ξ, t) ∈ C3+α
1+s (ΓT ), α ∈ (0, 1), 1 < s ≤ 2 + α, ρ0|t=0 = 0

and |ρ0|(3+α)
1+s,ΓT

≤ M1, M1 > 0.
Then for the matrix J01 the following estimates hold for t ≤ T :

‖J01‖(α)
s−2,Γt

= n max
i,j

|∂yj
(Ni χρ0)|(α)

s−2,Γt
≤ C M1

{
t, 1 < s < 2
t

4−s
2 , 2 ≤ s ≤ 2 + α,

(A.13)

‖J01‖(1+α)
s−1,Γt

≤ C M1

{
t

1
2 , 1 < s < 2

t
3−s
2 , 2 ≤ s ≤ 2 + α .

(A.14)

Proof : We write the norms of the element ∂yj
(Ni χρ0) in accordance to their

definition (2.9), for example,

|∂yj
(Ni χρ0)|(α)

s−2,Γt
= sup

τ≤t
τ

2+α−s
2 [∂yj

(Ni χρ0)]
(α)
Γ′τ

+ sup
τ≤t

|∂yj
(Ni χρ0)|

{
t

2−s
2 , 1 < s < 2

1, 2 ≤ s ≤ 2 + α

and evaluate each term taking into account that ρ0|t=0 = 0 (here Γ′τ =
Γ×[τ2 , τ ]).
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Corollary A.1. Let f(y, t) ∈ ◦
C1+α

s−1 (ΓT ), then

‖fJ01‖(α)
s−2,Γt

≤ C M1 |f |(1+α)
s−1,Γt

{
t

1+s
2 , 1 < s < 2

t
3
2 , 2 ≤ s ≤ 2 + α ,

(A.15)

‖fJ01‖(1+α)
s−1,Γt

≤ C M1 |f1|(1+α)
s−1,Γt

{
t

s
2 , 1 < s < 2

t, 2 ≤ s ≤ 2 + α ,
(A.16)

for t ≤ T .

Proof : We apply estimate (A.9)

‖fJ01‖(α)
s−2,Γt

≤ C |f |(1+α)
s−1,Γt

[sup
τ≤t

τ
1
2 n max

i,j
|∂yj

(Ni χρ0)|Γ + t
s−1
2 ‖J01‖(α)

s−2,Γt
] ,

‖fJ01‖(1+α)
s−1,Γt

≤ C |f |(1+α)
s−1,Γt

[sup
τ≤t

n max
i,j

|∂yj
(Ni χρ0)|+ t

s−1
2 ‖J01‖(1+α)

s−1,Γt
] .

On the basis of the estimates (A.13), (A.14) and

|∂yj
(Ni χρ0)| ≤

∫ τ

0
|∂τ1

∇yj
(Ni χρ0)| dτ1

≤ sup
τ1≤τ

(
|∂τ1

∂tj(Ni χρ0)|
{

τ
2−s
2

1 , 1 < s < 2
1, 2 ≤ s ≤ 2 + α

){
2
s τ

s
2 , 1 < s < 2

τ, 2 ≤ s ≤ 2 + α

we obtain (A.15), (A.16).
We note that these estimates can be derived with the direct evaluations of

the corresponding norms or with the help of an estimate (A.10), because ∂yj
ρ0

may be considered as the function belonging to
◦
C1+α

s−1 (ΓT ) by the condition
ρ0|t=0 = 0.

Corollary A.2. For the matrix J2
01 the following estimates hold for t ≤ T :

‖J2
01‖(α)

s−2,Γt
≤ C M 2

1

{
t

2+s
2 , 1 < s < 2

t
6−s
2 , 2 ≤ s ≤ 2 + α ,

(A.17)

‖J2
01‖(1+α)

s−1,Γt
≤ C M 2

1

{
t

1+s
2 , 1 < s < 2

t
5−s
2 , 2 ≤ s ≤ 2 + α .

(A.18)

Proof : These estimates are found with the help of the inequalities (A.10),
(A.13), (A.14).
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Lemma A.6. Let ψ(ξ, t) ∈ ◦
C2+α

s (ΓT ), ∂tψ ∈ ◦
C1+α

s−1 (ΓT ), α ∈ (0, 1), 1 < s ≤
2 + α, then for the matrix J1 = J11 + J12 the following estimates hold for
t ≤ T :

‖J11‖(α)
s−2,Γt

= n max
i,j

|Ni χ∂yj
ψ|(α)

s−2,Γt
≤ C t |∂tψ|(1+α)

s−1,Γt
, (A.19)

‖J11‖(1+α)
s−1,Γt

≤ C |ψ|(2+α)
s,Γt

, (A.20)

‖J12‖(α)
s−2,Γt

= n max |ψ ∂yj
(Ni χ)|(α)

s−2,Γt
≤ C t

3
2 |∂tψ|(1+α)

s−1,Γt
, (A.21)

‖J12‖(1+α)
s−1,Γt

≤ C t |∂tψ|(1+α)
s−1,Γt

. (A.22)

Proof : The estimates (A.19), (A.21), (A.22) are derived with direct eval-
uation of the corresponding norms and applying an inequality |∂m

y ψ| ≤∫ τ

0 |∂τ1
∂m

y ψ| dτ1, |m| = 0, 1; an estimate (A.20) follows from (A.7).

Corollary A.3. For the matrix J1 =J11+J12 the following estimates are valid
for t≤T :

‖J1‖(α)
s−2,Γt

≤ C t |∂tψ|(1+α)
s−1,Γt

, (A.23)

‖J1‖(1+α)
s−1,Γt

≤ C(|ψ|(2+α)
s,Γt

+ |∂tψ|(1+α)
s−1,Γt

) . (A.24)

Corollary A.4. Let f(y, t) ∈ ◦
Ck+α

s−2+k(ΓT ), k = 0, 1, 2, then the following
estimates are valid for t ≤ T :

‖fJ11‖(α)
s−2,Γt

≤ C t
s−1
2 |ψ|(2+α)

s,Γt
|f |(α)

s−2,Γt
, k = 0 , (A.25)

‖fJ11‖(α)
s−2,Γt

≤ C t
s+k
2 |∂tψ|(1+α)

s−1,Γt
|f |(k+α)

s−2+k,Γt
, k = 1, 2 , (A.26)

‖fJ11‖(1+α)
s−1,Γt

≤ C t
s+k−2

2 |ψ|(2+α)
s,Γt

|f |(k+α)
s−2+k,Γt

, k = 1, 2 , (A.27)

‖fJ12‖(α)
s−2,Γt

≤ C t
s+k+1

2 |∂tψ|(1+α)
s−1,Γt

|f |(k+α)
s−2+k,Γt

, k = 0, 1, 2 , (A.28)

‖fJ12‖(1+α)
s−1,Γt

≤ C t
s+k
2 |∂tψ|(1+α)

s−1,Γt
|f |(k+α)

s−2+k,Γt
, k = 1, 2 . (A.29)

Proof : These estimates are derived with the help of the inequalities (A.10)
and (A.19)–(A.22).
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Corollary A.5. For t ≤ T the following estimates hold:

‖J2
11‖(α)

s−2,Γt
≤ C t

2+s
2 (|∂tψ|(1+α)

s−1,Γt
)
2

, (A.30)

‖J2
11‖(1+α)

s−1,Γt
≤ C t

s−1
2 (|ψ|(2+α)

s,Γt
)
2

, (A.31)

‖J2
12‖(α)

s−2,Γt
≤ C t

4+s
2 (|∂tψ|(1+α)

s−1,Γt
)
2

, (A.32)

‖J2
12‖(1+α)

s−1,Γt
≤ C t

3+s
2 (|∂tψ|(1+α)

s−1,Γt
)
2

, (A.33)

‖J11J12‖(α)
s−2,Γt

≤ C t
3+s
2 (|∂tψ|(1+α)

s−1,Γt
)
2

, (A.34)

‖J11J12‖(1+α)
s−1,Γt

≤ C t
1+s
2 |ψ|(2+α)

s,Γt
|∂tψ|(1+α)

s−1,Γt
. (A.35)

Proof : All inequalities can be derived with the help of direct evaluations
of the corresponding norms. An estimate (A.31) follows from (A.10) and
(A.20). We can find inequalities (A.32), (A.34), (A.35) applying (A.10) and
estimates (A.19)–(A.22) of the matrices J11, J12.

Corollary A.6. For the matrix J1 = J11+J12
the following estimates hold for

t ≤ T :

‖J2
1‖(α)

s−2,Γt
≤ C t

2+s
2 (|∂tψ|(1+α)

s−1,Γt
)
2

, (A.36)

‖J2
1‖(1+α)

s−1,Γt
≤ C t

s−1
2 (|ψ|(2+α)

s,Γt
+ t |∂tψ|(1+α)

s−1,Γt
)
2

. (A.37)

Corollary A.7. Let ρ0 ∈ C3+α
1+s (ΓT ), ρ0|t=0 = 0, |ρ0|(3+α)

1+s,ΓT
≤ M1. Then for

t ≤ T the following estimates hold:

‖J01J11‖(α)
s−2,Γt

≤ C M1

{
t

2+s
2 , 1 < s < 2

t2, 2 ≤ s ≤ 2 + α
|∂tψ|(1+α)

s−1,Γt
, (A.38)

‖J01J11‖(1+α)
s−1,Γt

≤ C M1

{
t

s
2 , 1 < s < 2

t, 2 ≤ s ≤ 2 + α
|ψ|(2+α)

s,Γt
, (A.39)

‖J01J12‖(α)
s−2,Γt

≤ C M1

{
t

3+s
2 , 1 < s < 2

t
5
2 , 2 ≤ s ≤ 2 + α

|∂tψ|(1+α)
s−1,Γt

, (A.40)

‖J01J12‖(1+α)
s−1,Γt

≤ C M1

{
t

2+s
2 , 1 < s < 2

t2, 2 ≤ s ≤ 2 + α
|∂tψ|(1+α)

s−1,Γt
, (A.41)
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‖J01J1‖(α)
s−2,Γt

≤ C M1 (1 + t
1
2 )

{
t

2+s
2 , 1 < s < 2

t2, 2 ≤ s ≤ 2 + α
|∂tψ|(1+α)

s−1,Γt
, (A.42)

‖J01J1‖(1+α)
s−1,Γt

≤ C M1

{
t

s
2 , 1 < s < 2

t, 2 ≤ s ≤ 2 + α
(|ψ|(2+α)

s,Γt
+ |∂tψ|(1+α)

s−1,Γt
). (A.43)

Proof : We consider the matrices J01 and J11. With the help of an estimate
(A.10) for the product of the functions we derive

‖J01J11‖(α)
s−2,Γt

≤ C t
s−1
2 ‖J01‖(1+α)

s−1,Γt
‖J11‖(α)

s−2,Γt
,

‖J01J11‖(1+α)
s−1,Γt

≤ C t
s−1
2 ‖J01‖(1+α)

s−1,Γt
‖J11‖(1+α)

s−1,Γt
.

On the basis of the estimates (A.14) for J01 and (A.19),(A.20) for J11 we
obtain (A.38),(A.39). The inequalities (A.40),(A.41) are derived analogously
by applying the estimates (A.10) and (A.14), (A.21), (A.22) for J01, J12.
Formulas (A.42), (A.43) with the matrix J1 = J11 + J12 follow from (A.38)–
(A.41).

Remark A.1. All these lemmas and corollaries are applied in the proofs of
the Lemma 3.1, Theorem 2.1 (Section 5) and Theorems A.1–A.3.

Now we prove the existence of the inverse matrices J−1 and J−1
0 .

Theorem A.1. Let ψ(ξ, t) ∈ ◦
C2+α

s (ΓT ), ∂tψ ∈ ◦
C1+α

s−1 (ΓT ), α ∈ (0, 1), s ∈
[1, 2 + α], ρ0(ξ, t) ∈ C3+α

1+s (ΓT ), ρ0|t=0 = 0 and |ψ|(2+α)
s,ΓT

+ |∂tψ|(1+α)
s−1,ΓT

≤ M ,

|ρ0|(3+α)
1+s,ΓT

≤ M , M > 0, M1 > 0.

Then there is t1 ∈ [0, T ], such that, the inverse Jacobian matrix J−1 exists,
is bounded

‖J−1‖(α+ν)
s−2+ν,Γt

≤ C(1 + M) , ν = 0, 1 , (A.44)

and it can be represented in the form

J−1 =
∞∑

k=0

(J01 + J1)
2k (I − (J01 + J1)) . (A.45)

Proof : We consider Jacobian matrix J = I+J01+J1. We have found formally
the inverse Jacobian matrix J−1 in Lemma A.1

J−1 = (I − (J01 + J1)
2)
−1

(I − (J01 + J1)) . (A.46)

To prove the existence of J−1 we show the existence of an inverse matrix
(I− (J01 +J1)

2)−1. For that we estimate the norms of the matrix (J01 +J1)
2.
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By the estimates (A.17), (A.18) for J2
01, (A.36), (A.37) for J2

1 = (J11 + J12)
2

and (A.42), (A.43) for J01J1 we obtain

‖(J01 + J1)
2‖(α)

s−2,Γt
≤ ‖J2

01‖(α)
s−2,Γt

+ ‖J01J1‖(α)
s−2,Γt

+ ‖J1J01‖(α)
s−2,Γt

+ ‖J2
1‖(α)

s−2,Γt

≤ µ1(t) , (A.47)

‖(J01 + J1)
2‖(1+α)

s−1,Γt
≤ µ2(t) , (A.48)

where

µ1(t) = C (M + M1)
2
{

t
2+s
2 , 1 < s < 2

t
2+s
2 + t

6−s
2 , 2 ≤ s ≤ 2 + α ,

µ2(t) = C (M + M1)
2
(

t
s−1
2 +

{
t

s
2 (1 + t

1
2 ), 1 < s < 2

t(1 + t
3−s
2 ), 2 ≤ s ≤ 2 + α ,

)
.

Let D = (J01 + J1)
2. Applying the estimate (A.10), we find

‖D2‖(α+ν)
s−2+ν,Γt

≤ C48 t
s−1
2 ‖D‖(α+ν)

s−2+ν,Γt
‖D‖(1+α)

s−1,Γt
, ν = 0, 1 .

By mathematical induction, we have

‖Dk‖(α+ν)
s−2+ν,Γt

≤ ‖D‖(α+ν)
s−2+ν,Γt

(C t
s−1
2 ‖D‖(1+α)

s−1,Γt
)
k−1

, ν = 0, 1 .

Here we make use of the estimates (A.47), (A.48)

‖Dk‖(α+ν)
s−2+ν,Γt

≤ µ1+ν(t)(C t
s−1
2 µ2(t))

k−1
, ν = 0, 1 .

We find t1 > 0 from the inequalities

C t
s−1
2 µ2(t) ≤ q, µ1+ν(t) ≤ q , ν = 0, 1, q ∈ (0, 1) ,

then we obtain

‖(J01 + J1)
2k‖(α+ν)

s−2+ν,Γt
≤ qk , ν = 0, 1, k = 1, 2, ..., t ≤ t1 . (A.49)

From here it follows
∞∑

k=0

‖(J01 + J1)
2k‖(α+ν)

s−2+ν,Γt
≤

∞∑

k=0

qk =
1

1− q
, ν = 0, 1, t ≤ t1 . (A.50)

On the basis of these estimates we shall have that the inverse matrix (I −
(J01 + J1)

2)−1 exists, is expressed in the form

(I − (J01 + J1)
2)
−1

=
∞∑

k=0

(J01 + J1)
2k (A.51)



SOLUTIONS TO PARABOLIC SYSTEMS WITH FREE BOUNDARY OF STEFAN TYPE 37

and is bounded

‖(I − (J01 + J1)
2)
−1‖(α+ν)

s−2+ν,Γt
≤ 1

1− q
, ν = 0, 1, t ≤ t1 . (A.52)

But then the matrix in the right-hand side of the formula (A.46) exists and is
bounded by the estimates (A.13), (A.14) and (A.23), (A.24) of the matrices
J01 and J1, respectively, and (A.52)

‖(I−(J01+J1)
2)
−1

(I−(J01+J1))‖(α+ν)
s−2+ν,Γt

≤ C(1+M) , ν = 0, 1, t ≤ t1 .
(A.53)

Now we show that the matrix

(I − (J01 + J1)
2)
−1

(I − J01 − J1) ≡
∞∑

k=0

(J01 + J1)
2k (I − J01 − J1)

is equal to the inverse Jacobian matrix J−1. For that we consider an identity

(I + J01 + J1)
m∑

k=0

(J01 + J1)
2k (I − J01 − J1) =

=
m∑

k=0

(J01 + J1)
2k (I − J01 − J1) (I + J01 + J1) (A.54)

≡ I − (J01 + J1)
2m+2 ∀m ,

where I + J01 + J1 = J .
By the estimate (A.49) we have

‖(J01 + J1)
2m+2‖(α+ν)

s−2+ν,Γt
≤ qm+1 → 0 , m →∞, ν = 0, 1, q ∈ (0, 1) .

(A.55)
Moreover, the series

∑m
k=0(J01pJ1)

2k converges to the bounded matrix sat-
isfying the estimate (A.50). So we can pass to the limit as m → ∞ in the
identities (A.54) taking into account (A.55), then we obtain

(I + J01 + J1)
∞∑

k=0

(J01 + J1)
2k(I − J01 − J1) =

=
∞∑

k=0

(J01 + J1)
2k (I − J01 − J1) (I + J01 + J1) = I .
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These identities mean that the matrix
∑∞

k=0(J01 + J1)
2k (I − J01 − J1) is

the right and the left inverse matrix to the matrix J = I + J01 + J1, i.e. it is
the inverse matrix J−1.

Thus we have proved that the inverse Jacobian matrix J−1 exists, satisfies
the estimate (A.53) and is expressed in the form (A.45), which follows from
the formulas (A.46) and (A.51).

We consider now the matrix J0 = I + J01.

Theorem A.2. Let ρ0 ∈ (ξ, t) ∈ C3+α
1+s (ΓT ), α ∈ (0, 1), s ∈ [1, 2 + α],

ρ0|t=0 = 0 and |ρ0|(3+α)
1+s,ΓT

≤ M1.

Then there is t2 > 0 such that the inverse matrix J−1
0 exists, is bounded

‖J−1
01 ‖(α+ν)

s−2+ν,Γt
≤ 1

1− q
, ν = 0, 1, q ∈ (0, 1), t ≤ t2 , (A.56)

and can be represented in the form

J−1
0 =

∞∑

k=0

(−1)k Jk
01 . (A.57)

Proof : To prove the existence of the inverse matrix J−1
0 it is sufficient to

show that the series in (A.57) converges to a bounded matrix, i.e. satisfies
the estimate (A.56). On the basis of the estimates (A.13), (A.14) for J01 we
obtain

‖Jk
01‖(α+ν)

s−2,Γt
≤ µ3+ν(t) (t

s−1
2 µν(t))

k−1 , k = 1, 2, ... ,

where

µ3+ν(t) = C M1

{
t

2−ν
2 , 1 < s < 2

t
4−s−ν

2 , 2 ≤ s ≤ 2 + α
, ν = 0, 1 .

We choose t2 > 0 from the inequalities

µ3(t) ≤ q , µ4(t) ≤ q , t
s−1
2 µ4(t) ≤ q , q ∈ (0, 1) ,

then we shall have

‖Jk
01‖(α+ν)

s−2+ν,Γt
≤ qk ∀ t ≤ t2, ν = 0, 1 ,

and ∞∑

k=0

‖Jk
01‖(α+ν)

s−2+ν,Γt
≤

∞∑

k=0

qk =
1

1− q
, t ≤ t2 .

That is the matrix
∑∞

k=0(−1)k Jk
01 exists, is bounded and equals J−1

0 .
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In Section 4 we make use of the contraction principle. For that we have to
estimate the difference of the matrices J−1 − J̃−1, where J = I + J01 + J1,
J̃ = I + J01 + J̃1, J1 = {∂yj

(Ni χψ)}1≤i, j≤n, J̃1 = {∂yj
(Ni χ ψ̃)}1≤i, j≤n.

Theorem A.3. Let ρ0 ∈ (ξ, t) ∈ C3+α
1+s (ΓT ), ρ0|t=0 = 0; ψ(ξ, t), ψ̃(ξ, t) ∈

◦
C2+α

s (ΓT ), ∂tψ, ∂tψ̃ ∈ ◦
C1+α

s−1 (ΓT ), α ∈ (0, 1), s ∈ (1, 2 + α], and |ρ0|(3+α)
s+1,ΓT

≤
M1, |ψ|(2+α)

s,ΓT
+ |∂tψ|(1+α)

s−1,ΓT
≤ M , |ψ̃|(2+α)

s−ΓT
+ |∂tψ̃|(1+α)

s−1,ΓT
≤ M .

Then there is t3 > 0 such that for t ≤ t3 the following estimates hold:

‖J−1 − J̃−1‖(α)
s−2,Γt

≤ C t |∂tψ − ∂tψ̃|(1+α)
s−1,Γt

, (A.58)

‖J−1 − J̃−1‖(1+α)
s−1,Γt

≤ C(|ψ − ψ̃|(2+α)
s,Γt

+ |∂tψ − ∂tψ̃|(1+α)
s−1,Γt

) . (A.59)

Proof : We compare the difference J−1 − J̃−1 of the inverse Jacobian matrix
J−1, which we take in the form (A.3)

J−1 − J̃−1 = −(J1 − J̃1) + (J01 + J1)
2 J−1 − (J01 + J̃1)

2 J̃−1 ,

where J1 − J̃1 = {∂yj
(Ni χ(ψ − ψ̃))}1≤i, j≤n.

After some computations we shall have

J−1 − J̃−1 = (I − (J01 + J̃1)
2)
−1

[−(J1 − J̃1) + (J01 + J̃1) (J1 − J̃1) J−1

+ (J1 − J̃1) (J01 + J1) J−1] , (A.60)

where the matrices (I − (J01 + J̃1)
2)−1, J−1 exist (see Theorem A.1). We

evaluate the norms of the matrices in the right-hand side of the identity
(A.60) with the help of the estimates (A.12) for the product of the functions,
(A.23),(A.24), (A.42),(A.43), (A.36),(A.37) for the matrices J1; J01J1; J2

1
respectively and (A.52), (A.44), then we find

‖J−1 − J̃−1‖(α)
s−2,Γt

≤ t (C + µ5(t)) |∂tψ − ∂tψ̃|(1+α)
s−1,Γt

,
(A.61)

‖J−1 − J̃−1‖(1+α)
s−1,Γt

≤ (C + µ6(t)) (|ψ − ψ̃|(2+α)
s,Γt

+ |∂tψ − ∂tψ̃|(1+α)
s−1,Γt

) ,

where

µ5+ν(t) = C t
s−1
2

(
M t

1−ν
2 + M1

{
t

1
2 , 1 < s < 2

t
3−s
2 , 2 ≤ s ≤ 2 + α

)
(1+M) , ν = 0, 1 .

We choose t4 > 0 from the inequalities

µ5(t) ≤ 1 , µ6(t) ≤ 1 ,
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and then from (A.61) we obtain the estimates (A.58), (A.59) for t ≤ t3 =
min(t1, t4).

Appendix B.The model transmission problem

Let S1 = Rn
− and S2 = Rn

+ be half-spaces xn < 0 and xn > 0 in Rn

respectively, SjT = Sj×(0, T ); R a plane xn = 0, RT = R×[0, T ].
In Section 4 we study the linear problem written in the form (4.1)1, (4.12),

(4.2)1, (4.13), (4.3)–(4.7). The proof of the solvability of this problem is
based on the following model transmission problem for the unknown functions
uj(x, t), cj(x, t), j = 1, 2, ψ(x′, t) satisfying zero initial data:

∂tuj − aj ∆uj − α1(∂tψ − aj ∆′ψ) = fj(x, t) in SjT , j = 1, 2 , (B.1)

∂tc1 − b1 ∆c1 − β1(∂tψ − b1 ∆′ψ) = g1(x, t) in S1T , (B.2)

∂tc2 − b2 ∆c2 − [β2 + γ2(α1 − α2)](∂tψ − b2 ∆′ψ) = g2(x, t) in S2T , (B.3)

(u1 − u2)|xn=0 = η0(x
′, t) , (B.4)

(cj − γjuj)|xn=0 = ηj(x
′, t) , j = 1, 2 , (B.5)

(λ1 ∂xn
u1 − λ2 ∂xn

u2)|xn=0 = ϕ1(x
′, t) , (B.6)

(k1 ∂xn
c1 − k2 ∂xn

c2)|xn=0 + d′∇′ψ − κ1 ∂tψ = ϕ2(x
′, t) , t ∈ (0, T ) , (B.7)

where all coefficients κ1, aj, bj, γj, λj, kj, j = 1, 2, are positive constants and
d′ = (d1, ..., dn−1).

Theorem B.1. Let α ∈ (0, 1), s ∈ (1, 2 + α]. We assume

κ1 > 0 , µj = βj − αj γj > 0, j = 1, 2 . (B.8)

Then for every functions fj, gj ∈
◦
Cα

s−2(SjT ), η0, ηj ∈
◦
C2+α

s (RT ), ϕj ∈
◦
C1+α

s (RT ), j = 1, 2, the problem (B.1)–(B.7) has a unique solution uj, cj ∈
◦
C2+α

s (SjT ), ψ ∈ ◦
C2+α

s (RT ), ∂tψ ∈
◦
C1+α

s−1 (RT ) and it satisfies the estimate
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∑
j=1

(|uj|(2+α)
s,SjT

+ |cj|(2+α)
s,SjT

) + |ψ|(2+α)
s,RT

+ |∂tψ|(1+α)
s−1,RT

≤

≤ C1

( 2∑
j=1

(|fj|(α)
s−2,SjT

+ |gj|(α)
s−2,SjT

+ |ηj|(2+α)
s,RT

+ |ϕj|(1+α)
s−1,RT

) + |η0|(2+α)
s,RT

)
. (B.9)

Proof : In the equations (B.1) and conditions (B.4), (B.6) we make the change

uj = vj + α1 ψ , j = 1, 2 , (B.10)

and then we obtain the problem for the new unknown functions v1, v2

∂tv1 − a1 ∆v1 = f1 in D1T ,

∂tv2 − a2 ∆v2 = f2 in D2Tϕ
(B.11)

(v1 − v2)|xn=0 = η0 ,

(λ1 ∂xn
v1 − λ2 ∂xn

v2)|xn=0 = ϕ1 .

We note that (B.11) is the transmission (or conjunction) problem [B1], it’s

solution vj belongs to
◦
C2+α

s (SjT ), j = 1, 2, and satisfies the estimate

2∑
j=1

|vj|(2+α)
s,SjT

≤ C
( 2∑

j=1

|fj|(2+α)
s−2,SjT

+ |η0|(2+α)
s,RT

+ |ϕ1|(1+α)
s−1,RT

)
. (B.12)

We have represented the equations (4.1)2, (4.2)2 in the form (4.12), (4.13)
to obtain problem (B.11) separated from other unknown functions.

We construct auxiliary functions Z1, Z2 as the solutions of the first bound-
ary value problems in half-space Sj

∂tZj − bj ∆Zj = gj in SjT ,
(B.13)

Zj|t=0 = 0 , Zj|xn=0 = (ηj + γj vj)|xn=0 ,

where j = 1, 2 and known functions vj. Each one of the problems (B.13) has

a unique solution Vj ∈
◦
C2+α

s (SjT ) [S1, LSU] and the following estimate holds
for j = 1, 2:

|Zj|(2+α)
s,SjT

≤ C
(
|gj|(α)

s−2,SjT
+ |ηj|(1+α)

s−1,RT
+

2∑

k=1

|fk|(α)
s−2,SkT

+ |η0|(2+α)
s,RT

+ |ϕ1|(1+α)
s−1,RT

)
.

(B.14)
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After the substitution (B.10) and the following ones

c1 = z1 + Z1 + β1 ψ ,
(B.15)

c2 = z2 + Z2 + (β2 + γ2(α1 − α2))ψ

in the equations (B.2), (B.3) and conditions (B.5), (B.7) we obtain the prob-
lem for the functions z1, z2, ψ with time derivative in the transmission con-
dition

∂tz1 − b1 ∆z1 = 0 in D1T , (B.16)

∂tz2 − b2 ∆z2 = 0 in D2T , (B.17)

zj|xn=0 + µj ψ = 0 , j = 1, 2 , (B.18)

(k1 ∂xn
z1 − k2 ∂xn

z2)|xn=0 + d′∇′Tψ − κ1 ∂tψ = ϕ(x′, t) , (B.19)

where µj = βj − γj αj > 0, j = 1, 2, ϕ = ϕ2 − (k1 ∂xn
Z1 − k2 ∂xn

Z2)|xn=0 ∈◦
C1+α

s−1 (RT ),

|ϕ|(1+α)
s−1,RT

≤ |ϕ2|(1+α)
s−1,RT

+ C
( 2∑

j=1

(|fj|(α)
s−2,SjT

+ |gj|(α)
s−2,SjT

+ |ηj|(1+α)
s−1,RT

)

+ |ϕ0|(2+α)
s,RT

+ |ϕ1|(1+α)
s−1,RT

)
. (B.20)

We apply Fourier transform on x′ and Laplace transforms on t to the
problem (B.16)–(B.19)

ṽ(ξ′, xn, p) =
1

(2π) n−1
2

∫ ∞

0
e−pt dt

∫

Rn−1

v(x, t) e−ix′ξ′dx′ .

Then from the heat equations of the problem, we find the solution in the
images of Fourier and Laplace transforms

z̃1 = B1 er1xn, xn < 0 , z̃2 = B2 e−r2xn, xn > 0 , (B.21)

where rj = 1
bj

(p + bjξ
′2), Bj = Bj(ξ

′, p), j = 1, 2, are unknown functions.

From the conditions on the plane xn = 0

Bj + µj ψ̃ = 0 , j = 1, 2 ,

k1 r1 B1 + k2 r2 B2 − (κ1 p− i d′ξ′)ψ̃ = ϕ̃
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we find Bj, ψ̃

Bj =
µj

κ1

1

ζ
ϕ̃, j = 1, 2 , ψ̃ = − 1

κ1 ζ
ϕ̃ ,

where

ζ = p +
k1 µ1

κ1
r1 +

k2 µ2

κ1
r2 − i

κ1
d′ξ′ ,

Re ζ > 0 by conditions kj > 0, µj > 0, κ1 > 0. So we can represent the
fraction 1

ζ in the form

1

ζ
=

∫ ∞

0
e−ζσdσ .

Substituting the functions Bj into formulas (B.21) and applying this ex-
pression of 1

ζ we shall have

z̃j =
µj

κ1
ϕ̃

∫ ∞

0
e−ζσ−rj |xn| dσ ,

ψ̃ = − 1

κ1
ϕ̃

∫ ∞

0
e−ζσ dσ .

With the help of the inverse Laplace and Fourier transforms [BE] we find
zj and ψ in the closed form

zj(x, t) =
µj

κ1

∫ t

0
dτ

∫

Rn−1

ϕ(y′, τ) Gj(x
′ − y′, |xn|, t− τ) dy′, j = 1, 2, (B.22)

ψ(x′, t) = − 1

κ1

∫ t

0
dτ

∫

Rn−1

ϕ(y′, τ) G1(x
′ − y′, 0, t− τ) dy′ , (B.23)

where

G1 = 4b1b2

∫ t

0
dσ

∫ t−σ

0
dτ1

∫

Rn−1

∂xnΓ1

(
x′ − η′ +

d′

κ1
σ,

k1µ1σ

κ1
− xn, t− σ − τ1

)

× ∂yn
Γ2

(
η,

k2 µ2 σ

κ1
− ηn, τ1

)∣∣∣
ηn=0

dη′ , xn < 0 ,

G2 = 4b1b2

∫ t

0
dσ

∫ t−σ

0
dτ1

∫

Rn−1

∂ηnΓ1

(
η+

d′

κ1
σ,

k1 µ1 σ

κ1
+ ηn, τ1

)∣∣∣
ηn=0

× ∂xn
Γ2

(
x′ − η′,

k2 µ2 σ

κ1
+ xn, t− σ − τ1

)
dη′ , xn > 0 .
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Here Γj(x, t) is the fundamental solution of the heat equation ∂tv−bj ∆v = 0:

Γj(x, t) =
1

(2
√

π bj t)n e
− x2

4 bj t .

As it was proved in [B4] the potentials (B.22) with the kernels Gj(x, t)

belong to the space
◦
C2+α

s (SjT ) and satisfy the estimate

|zj|(2+α)
s,SjT

≤ C |ϕ|(1+α)
s−1,RT

. (B.24)

The function ψ(x′, t) ((B.23)) as a trace of potential zj on the plane xn = 0

also belongs to
◦
C2+α

s (RT ) and the estimate for it holds

|ψ|(2+α)
s,RT

≤ C |ϕ|(1+α)
s−1,RT

. (B.25)

From the boundary condition (B.19), by the above conclusions and esti-
mates (B.24), (B.25), we have

∂tψ =
1

κ1
(k1 ∂xn

z1 − k2 ∂xn
z2 + d′∇′ψ − ϕ) ∈ ◦

C
1+α
s−1 (RT ) ,

|∂tψ| ≤ C
( 2∑

j=1

|zj|(2+α)
s,DjT

+ |ψ|(2+α)
s,RT

+ |ϕ|(1+α)
s−1,RT

)
≤ C |ϕ|(1+α)

s−1,RT
. (B.26)

Recalling the substitutions (B.10), (B.15) we obtain that the functions uj =
vj +α1ψ, j = 1, 2, c1 = z1+Z1+β1ψ (j = 1), c2 = z1+Z2+(β2+γ2(α1−α2))ψ

(j = 2) belong to the space
◦
C2+α

s (SjT ), j = 1, 2. Applying estimates (B.12),
(B.24), (B.14), (B.25), (B.26) and (B.20) of the functions vj, zj, ψ, ∂tψ and
ϕ respectively leads to the required estimate (B.9).

Remark B.1. The conditions on the coefficients (B.8) correspond to the
conditions (4.8), (4.9) of the Theorem 4.1 respectively.
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[B3] Bizhanova, G.I. – Solution in a weighted Hölder space of an initial-boundary value problem
for a second-order parabolic equation with a time derivative in the conjugation condition,
Algebra i Analiz, 6(1) (1994), 64–94; translation in St. Petersburg Math. J., 6(1) (1995),
51–75.

[B4] Bizhanova, G.I. – Solution in a weighted Hölder function space of multidimensional two-
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