
Vol.:(0123456789)1 3

European Journal of Pediatrics (2023) 182:1191–1200 
https://doi.org/10.1007/s00431-022-04778-0

RESEARCH

The role of early functional neuroimaging in predicting 
neurodevelopmental outcomes in neonatal encephalopathy

Carla R. Pinto1,2,3 · João V. Duarte3,4 · Carla Marques5 · Inês N. Vicente5 · Catarina Paiva6 · João Éloi7 · 
Daniela J. Pereira8 · Bárbara R. Correia3,9 · Miguel Castelo‑Branco3,4 · Guiomar Oliveira2,3,5

Received: 22 October 2022 / Revised: 12 December 2022 / Accepted: 21 December 2022 / Published online: 6 January 2023 
© The Author(s) 2023

Abstract
Reliably assessing the early neurodevelopmental outcomes in infants with neonatal encephalopathy (NE) is of utmost impor-
tance to advise parents and implement early and personalized interventions. We aimed to evaluate the accuracy of neuroim-
aging modalities, including functional magnetic resonance imaging (fMRI) in predicting neurodevelopmental outcomes in  
NE. Eighteen newborns with NE due to presumed perinatal asphyxia (PA) were included in the study, 16 of whom underwent 
therapeutic hypothermia. Structural magnetic resonance imaging (MRI), and fMRI during passive visual, auditory, and sen-
sorimotor stimulation were acquired between the 10th and 14th day of age. Clinical follow-up protocol included visual and 
auditory evoked potentials and a detailed neurodevelopmental evaluation at 12 and 18 months of age. Infants were divided 
according to sensory and neurodevelopmental outcome: severe, moderate disability, or normal. Structural MRI findings 
were the best predictor of severe disability with an AUC close to 1.0. There were no good predictors to discriminate between 
moderate disability versus normal outcome. Nevertheless, structural MRI measures showed a significant correlation with the  
scores of neurodevelopmental assessments. During sensorimotor stimulation, the fMRI signal in the right hemisphere had an 
AUC of 0.9 to predict absence of cerebral palsy (CP). fMRI measures during auditory and visual stimulation did not predict 
sensorineural hearing loss or cerebral visual impairment.

Conclusion: In addition to structural MRI, fMRI with sensorimotor stimulation may open the gate to improve the knowl-
edge of neurodevelopmental/motor prognosis if proven in a larger cohort of newborns with NE.

What is Known:
• Establishing an early, accurate neurodevelopmental prognosis in neonatal encephalopathy remains challenging.
• Although structural MRI has a central role in neonatal encephalopathy, advanced MRI modalities are gradually being explored to  

optimizeneurodevelopmental outcome knowledge.
What is New:
• Newborns who later developed cerebral palsy had a trend towards lower fMRI measures in the right sensorimotor area during sensorimotor 

stimulation.
• These preliminary fMRI results may improve future early delineation of motor prognosis in neonatal encephalopathy.

Keywords  Perinatal asphyxia · Neonatal encephalopathy · Newborn · Prognosis · Functional neuroimaging · 
Neurodevelopmental outcome
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CP	� Cerebral palsy
DQ	� Developmental quotient
DWI	� Diffusion-weighted imaging
EDI-PT	� Portuguese version for European Deprivation 

Index
fMRI	� Functional magnetic resonance imaging
GLM	� General linear model
GMDS	� Griffiths Mental Development Scales
GMFCS	� Gross Motor Function Classification System
HIE	� Hypoxic-ischemic encephalopathy
HINE	� Hammersmith Infant Neurological 

Examination
IQR	� Interquartile range
ISCED	� International Standard Classification of 

Education
M-CHAT	� Modified Checklist for Autism in Toddlers
MRI	� Magnetic resonance imaging
NE	� Neonatal encephalopathy
PA	� Perinatal asphyxia
PICU	� Pediatric intensive care unit
ROC	� Receiver operating characteristics
ROI	� Region of interest
SD	� Standard deviation
 TH	� Therapeutic hypothermia
VABS	� Vineland Adaptive Behavior Scales

Introduction

Neonatal encephalopathy (NE) succeeding perinatal 
asphyxia (PA) contributes considerably to poor neurodevel-
opmental outcomes [1]. Possible long-term neurodevelop-
mental sequelae, among survivors, include cerebral palsy 
(CP), intellectual disabilities, epilepsy, vision, and hearing 
impairments. Despite early therapeutic hypothermia (TH), 
current results in high-income countries reveal that the CP 
rate has remained unchanged around 20% [1; 2], while hear-
ing and visual impairments occur less frequently [2]. It is 
well recognized that neonates with severe NE at birth have 
a higher probability of death or disabling neurological and 
cognitive deficits. However, the prognosis of newborns with 
mild and moderate NE is more variable, with milder motor 
deficits and a broader spectrum of cognitive impairments, 
making prediction more difficult [1, 3]. Therefore, establish-
ing an accurate early neurodevelopmental prognosis in new-
borns with brain injury, especially in those who will develop 
a moderate disability, remains a challenging task in the 
neonatal intensive care unit. Although structural magnetic 
resonance imaging (MRI) is a robust predictor of neurode-
velopmental outcome in newborns with NE due to presumed 
PA, irrespective of TH [4], it has recently been demonstrated 

that spectroscopy may have a better accuracy, but requires 
expertise and harmonization [5]. Hence, currently structural 
MRI remains the most widely used technique, as it allows to 
characterize the degree and pattern of brain lesions. How-
ever, it is often insufficient to predict long-term disabilities 
such as fine motor, social, behavioral, sensorial, and cogni-
tive deficits, in particular in mild to moderate cases of NE 
[6]. Thus, new methods to assess brain function early to 
optimize prognostic information are lacking [7]. Functional 
magnetic resonance imaging (fMRI), better established in 
adults that also requires expertise, could potentially be con-
sidered the technique of choice for functional assessment 
of the newborn brain [7]. We hypothesize that fMRI might 
identify early brain function changes in neonates with NE 
related to neurodevelopmental impairments before clinical 
evidence of pathological signs. If this potential holds true, 
it could be of extreme importance, given that neuroplas-
ticity and brain adaptability are well documented as most 
modifiable in neonates [8]. Identifying, as early as possible, 
functionally affected systems offer considerable likelihood 
for optimizing brain outcomes by implementing intensive 
and targeted psychoeducational and therapeutic interven-
tions. The main objective of this study was to evaluate the 
accuracy of neuroimaging modalities, including fMRI, to 
predict severe or moderate disability at 18 months of age in 
newborns with NE due to presumed PA. Additionally, we 
intend to specifically relate blood-oxygen-level-dependent 
(BOLD) signal changes, measured with fMRI, during visual, 
auditory, and sensorimotor stimulation, with detailed sen-
sory and neurodevelopmental function at 12 and 18 months 
of age, respectively.

Materials and methods

Participants

An observational, exploratory study with prospective 
data collection was conducted. All procedures have been 
carried out in accordance with the Code of Ethics of the 
World Medical Association (Declaration of Helsinki) for 
experiments involving humans. Informed written consent 
was obtained from parents of all participants after a full 
verbal and written explanation of the study. The study was 
approved by the Ethics Committee of the Faculdade de 
Medicina da Universidade de Coimbra, Portugal (Refer-
ence CE-029–2014). All newborns admitted to the pedi-
atric intensive care unit (PICU) of a tertiary pediatric hos-
pital from Centro Hospitalar e Universitário de Coimbra, 
Portugal, born at or after 36 gestational weeks, with NE 
due to presumed PA, defined according to the American 
College of Obstetricians and Gynecologists’ Task Force  
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on Neonatal Encephalopathy, 2014 criteria [9], were recruited  
between April 2016 and March 2017. Exclusion criteria  
were presence of major congenital abnormalities and 
inherited inborn errors of metabolism or stroke. Neonatal 
data collection was retrieved from the PICU electronic 
clinical database and comprised parents and neonatal char-
acteristics, assessment, evolution, and treatment. Socio-
economic status of parents was categorized according to 
the International Standard Classification of Education 
(ISCED) and the Portuguese version for European Dep-
rivation Index (EDI-PT) [10]. The NE was characterized 
with the Modified Sarnat and Thompson scores, applied 
on admission [11, 12]. The amplitude-integrated electro-
encephalography (aEEG) worst background pattern at 
admission and 48 to 72 h of age was classified according 
to Hellstrom-Westas, 2006 [13].

MRI data acquisition

MRI data were acquired at a mean age of 12 ± 3 days of 
age, using a 3 T scanner (Siemens AG, Healthcare, Erlan-
gen, Germany), with a 20-channel head coil. Foam cushions 
and sedation with intravenous midazolam or propofol were 
used to minimize head motion. The MRI protocol included 
a 3D T1-weighted MPRAGE (0.83-mm isotropic voxel, 160 
slices, TR/TE = 2300/3.5 ms), a 3D T2-weighted SPACE 
(0.83-mm isotropic voxel, 160 slices, TR/TE = 3200/443 ms), 
diffusion-weighted imaging (DWI), and three fMRI T2*-
weighted sequences sensitive to BOLD (blood-level-
oxygen-dependent) contrast (TR/TE = 2080/31 ms, voxel 
size = 2 × 2 × 2 mm3, 29 axial slices (whole-brain coverage), 
FOV = 256 × 256 mm2, FA = 90°). Continuous monitoring of 
the newborns inside the scanner was provided by an intensive 
care pediatrician and nurse.

Structural MRI grading system of brain injury

Brain lesions characteristic of NE due to presumed PA were 
graded by two expert neuroradiologists using T1, T2, and 
DWI sequences, according to a recently reported scoring 
system [14].

Functional stimulation paradigm

Newborns were submitted to passive visual [7], auditory 
[15], and sensorimotor stimulation [16], delivered in an 
optimized block design paradigm [17] in separate runs, 
described in detail in Online Resource 1.

fMRI data preprocessing

Data were processed using BrainVoyager version 21.2 
(Brain Innovation, Maastricht, The Netherlands), and the 
FMRIB Software Library (FSL) version 4.1.8. fMRI vol-
umes were corrected for motion using rigid transformations 
and motion parameters were included in data analysis [18]. 
Motion outliers were accounted through scrubbing of pairs 
of volumes with > 0.5 mm of translation or 0.5° of rotation 
between them. We applied slice-scanning time correction, 
linear trends removal, and temporal high-pass filtering (5 
cycles per run). We then performed anatomical-functional 
registration and finally applied slight spatial smoothing (full-
width half-maximum kernel with 3 mm) to functional data.

fMRI subject‑level data analysis

A whole-brain voxel-wise general linear model (GLM) was 
used to estimate the BOLD response to visual, auditory, or 
sensorimotor stimulation, using a two-gamma hemodynamic 
response function adapted for term infants [19]. While using 
a less conservative threshold of p < 0.05, as previously sug-
gested for newborn fMRI studies [7], to compensate for 
multiple comparisons, only BOLD signal changes in voxels 
located in primary visual, auditory, or sensorimotor areas 
identified by visual inspection were considered, and regions 
of interest (ROIs) were defined as the set of activated voxels 
within these local anatomical sensitive search spaces.

Sensory assessment at 12 months

The formal auditory and visual assessment included brain-
stem auditory and visual evoked potentials, described in 
Online Resource 2 and 3.

Neurodevelopmental assessment at 18 months

Neurodevelopmental and clinical assessment was performed 
at a mean age of 19 ± 3 months by an experienced neurode-
velopment team (neurodevelopmental pediatrician and a 
psychologist). Besides a detailed classical clinical (includ-
ing growth evaluation) and neurological examination, these 
children were submitted to the following assessment tools, 
currently used in the neurodevelopment unity: the Griffiths 
Mental Development Scales (GMDS) [20], the Vineland 
Adaptive Behavior Scales (VABS) [21], and the Modi-
fied Checklist for Autism in Toddlers (M-CHAT) [22] for 
autism spectrum disorders (ASD) screening. Children with 
a positive M-CHAT, and according to clinical judgment, 
performed a direct structured proband instrument observa-
tion, the Autism Diagnostic Observation Schedule (ADOS), 
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to confirm ASD suspected diagnosis [23]. CP was diagnosed 
using the clinical criteria from the European Network of Cer-
ebral Palsy [24]. The Gross Motor Function Classification 
System (GMFCS) for CP classification was also applied. 
The neurological examination performed was standardized 
according to the Hammersmith Infant Neurological Exami-
nation (HINE) [25]. Epilepsy was diagnosed using the Inter-
national League Against Epilepsy clinical definition [26]. 
Microcephaly was defined as head circumference more than 
two standard deviations (SD) below the mean for age and sex 
(i.e., less than the 3rd percentile) in the WHO growth charts.

Outcomes at 18 months

Neurodevelopmental outcomes at 18 months of age were 
classified into three categories:

–	 Severe disability, defined if one of the following: (1) 
death; (2) global developmental quotient (DQ) in GMDS 
or VABS (total score, adaptive behavior composite 
- ABC), of 70 or below; (3) CP with a GMFCS 3–5; 
(4) cerebral visual impairment; (5) sensorineural hearing 
loss requiring amplification; (6) epilepsy (requiring anti-
convulsant therapy at time of assessment); (7) confirmed 
ASD diagnosis.

–	 Moderate disability, defined if one of the following: (1) 
GMDS (global DQ) or VABS (total score, ABC) between 
70 and 84; (2) CP with GMF 1–2.

–	 Normal, if GMDS (global DQ) or VABS (total score, 
ABC) above 84 and no clinical neurological, or neurode-
velopmental sequelae at the time of assessment.

Statistical analysis

The IBM-SPSS® software version 27 was used. A level of 
statistical significance of 5% was considered. A univariate 
analysis was made, in which central tendency and disper-
sion measures were calculated for quantitative variables, and 
absolute and relative frequencies were determined for quali-
tative variables. Quantitative variables were first checked for 
normality using the Kolmogorov–Smirnov tests. Receiver 
operating characteristic (ROC) curves were performed to 
evaluate the accuracy of neuroimaging biomarkers to pre-
dict outcome. The power of the predictors to discriminate 
was quantified by the area under the ROC curve (AUC). 
Independent Student’s t test or Mann–Whitney U test were 
performed as appropriate to compare quantitative variables. 
Additionally, Spearman correlations were used to evaluate 
the relationship between quantitative variables without nor-
mal distribution.

Results

During the study period, 20 newborns were eligible, of 
whom two were excluded: one died on the fifth day of age 
due to an adverse prognosis and redirecting of care and, and 
the other, had an inherited inborn error of metabolism. The  
demographic and clinical characteristics of the 18 new-
borns and their parents are described in Table 1. Param-
eters regarding PICU assessment, evolution, and treatment  
are summarized in Table 2. Sixteen newborns were sub-
mitted to TH. Regarding structural MRI, the median of the  
total score was 2 (IQR 1 to 6.75), the median of deep grey 
matter subscore was 0 (IQR 0 to 1.5), and the median of 
white matter/cortex subscore was 0 (IQR 0 to 5.25). No 
lesions in the cerebellum were observed. Three newborns 
had a total score of 0, four newborns had a total score of 1, 
scored in the additional subscore due to subdural hemor-
rhages, and in four newborns the total score ranged from 
15 to 26, all of whom had lesions in the thalamus/basal 
ganglia, posterior limb of the internal capsule, or periro-
landic cortex. Regarding fMRI, the summary measures of 
brain responses during visual, auditory, and sensorimotor 
stimulation from each newborn can be observed in Online 
Resources 4. No differences were observed in fMRI BOLD 
responses in newborns sedated with midazolam or propo-
fol (Online Resources 5). Data from clinical and neurode-
velopmental evaluation are summarized in Table 3 and in 
Online Resources 6. The median of HINE at 18 months of 
age was 78 (IQR 70 to 78) and five had a suboptimal score 
(< 74), four of whom had the highest punctuation in MRI  
deep gray matter subscore (6 to 15). Concerning children 
with positive score for ASD screening, M-CHAT (n = 5), 
four had CP or severe global psychomotor delay (GMDS 
global DQ or VABS total score < 70), and in one child 
ADOS was conducted, which ruled out ASD.

In Table 4, the accuracy of neuroimaging modalities 
to predict moderate and/or severe disability at 18 months 
can be acknowledged after application of ROC curves. 
Overall, the fMRI measurements were not good predic-
tors of outcome. Nevertheless, the AUC of BOLD signal 
(% signal change) in the right hemisphere during sensori-
motor stimulation was 0.9 (95% CI: 0.694–1.0; p = 0.086) 
to predict absence of CP (Online Resources 7). The mean 
of BOLD (% signal change) in the right hemisphere dur-
ing sensorimotor stimulation was − 0.1275 and 0.7819 
in patients with and without CP, respectively (t = 1.6; 
p = 0.141; Cohen’s d effect size = 1.239).

The significant relationships between the scores GMDS 
(total or subscales) and the structural MRI score can be 
observed in Fig. 1. Additionally, a positive Spearman corre-
lation was found between the right brain hemisphere fMRI 
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BOLD signal during sensorimotor stimulation and the 
GMDS locomotor subscale (Rho = 0.784; p = 0.003; 95% 
CI 0.413 to 0.956) or the HINE (Rho = 0.652; p = 0.022; 
95% CI 0.262 to 0.890) at 18 months.

Discussion

In our study, the best early predictor of severe disability at 
18 months of age, with excellent performance (AUC near 
1.0), was structural MRI, measured with the application 
of the Weeke score for classification of HIE brain lesions, 
despite performed near the time of DWI pseudonormaliza-
tion. Its accuracy in predicting jointly moderate and severe 
neurodevelopmental disabilities relative to normal outcomes 
was lower, however reaching an AUC of 0.806. The struc-
tural MRI score also showed a high negative correlation 
(Rho Spearman from − 0.713 to − 0.891) with global DQ of 
GMDS and the sub-quotients from its locomotor and per-
sonal-social domains (Fig. 1). Although these results should 

Table 1   Demographic and clinical characteristics of newborns with 
neonatal encephalopathy and their parents

NE  neonatal encephalopathy,  ISCED  International Standard Classifi-
cation of Education, n total number, IQR interquartile range, SD stand-
ard deviation, aEEG amplitude-integrated electroencephalography

Demographic and clinical characteristics NE (n = 18)

Age at delivery, years, mean ± SD
  Mothers 31.6 ± 6.5
  Fathers 34.4 ± 8.6

ISCED, level, median (IQR)
  Mothers 5 (2 to 6)
  Fathers 3 (2 to 6)

Deprived families 3
Gestational age, weeks, median (IQR) 39.5 (37.75 to 40.0)
Birth weight, g, mean ± SD 3,208 ± 396
Gestational age-birth weight
  Small for gestational age 2
  Appropriated for gestational age 15
  Large for gestational age 1

Gender
 Male/female 14/4

Type of delivery
  Vaginal 1
  Vacuum extraction 5
  Forceps 2
  C-section 10

Delivery complications
  Uterine rupture 1
  Cord prolapse 0
  Shoulder dystocia 1
  Obstructed labor 1

Resuscitation needs
  Positive ventilation pressure 4
  Tracheal intubation 14
  Chest compressions 6
  Adrenaline 5

Apgar score 5′, median (IQR) 6 (5 to 6)
Apgar score 10′, median (IQR) 7 (6 to 8)
pH 1st hour of age, mean ± SD 7.00 ± 0.1
Base excess 1st hour of age, mean ± SD -17.9 ± 4.3
Lactate on admission, mmol/L, mean ± SD 15.7 ± 4.6
Grade of NE on admission
  Mild 2
  Moderate 11
  Severe 5

Thompson score on admission, median (IQR) 10 (8 to 12)
aEEG background pattern on admission
  Continuous 2
  Discontinuous 9
  Burst suppression 3
  Low voltage 4
  Inactive, flat 0

Table 2   PICU assessment, evolution, and treatment

aEEG amplitude-integrated electroencephalography(background pattern),   
h hours, IQR interquartile range, n total number, NE neonatal encephalop-
athy, PICU pediatric intensive care unit, SD standard deviation
a Seizures assessed during the first 72 h of age

NE (n = 18)

aEEG background pattern at 48–72 h of age,
  Continuous 5
  Discontinuous 10
  Burst suppression 1
  Low voltage 2
  Inactive, flat 0

Seizuresa 6
Therapeutic hypothermia 16
Sedation 17
  Morphine 16
  Midazolam 4
  Duration, h, median (IQR) 84 (70 to 91)

Mechanical invasive ventilation 17
  Duration, h, median (IQR) 114 (104 to 147)

Cardiovascular support 15
  Dopamine 15
  Adrenaline 3

Anticonvulsants 7
  Phenobarbital 7
  Midazolam 3
  Phenytoin 1

Length of PICU stay, days, mean ± SD 12.1 ± 6
Mortality 0
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be interpreted with caution, given the characteristics and 
small sample size, it is similar to that reported by Weeke 
et al. in one of the studied cohorts (AUC 0.988 for gray 
matter subscore) [14]. Different structural MRI scores to 
classify brain NE lesions due to presumed PA were proved 
to be highly predictive of outcomes at 24 months [27]. Some 

of those grading systems are based on categorizing defined 
brain injury patterns, so they are easy to apply. However, 
it is challenging to classify brain lesions in infants when 
they are not adequately included in the standard NE patterns. 
Accordingly, a current study exposes the limitations of the 
qualitative interpretation of structural MRI patterns [28]. 
The recently developed Weeke score [14] we used assesses 
all relevant brain areas separately and applies an item-based 
system; it can improve the detection of slight injury in mild 
NE [29] and has better accuracy and comparable inter-rater 
reliability relative to other item-based scoring systems [27].

Although we were unable to identify biomarkers that dis-
tinguish moderate neurodevelopmental disability from nor-
mal outcomes at 18 months of age, which is challenging, 
we observed a negative correlation between structural MRI 
total score and the results of neurodevelopmental assess-
ment instruments that can improve the knowledge of the 
wide prognosis range in newborns with NE.

One of our main and innovative goals was to determine if 
fMRI can improve the capacity of structural MRI to predict 
neurodevelopmental outcomes, including potential damage 
to motor, visual, or auditory pathways. It is well recognized 
that structural MRI is a good predictor of severe CP, namely 
if severe basal ganglia/thalamus lesions or a clear abnormal 
posterior limb of the internal capsule signal are observed 
[30]. Nevertheless, it may not be as accurate in mild cases 
of CP [31]. We observed that fMRI measures (mean of 
BOLD % signal change) in the right brain hemisphere dur-
ing sensorimotor stimulation were good predictors of CP 
absence. Children with CP had a trend for lower mean values 
of BOLD signal when compared to others, although without 
reaching statistical significance, probably due to the small 
sample size. Additionally, a positive significant correlation 
was established between those fMRI measures and the HINE 
or locomotor subscale of GMDS at 18 months of age. If 
replicated in larger-scale studies, these results may improve 
the ability to predict CP in newborns with NE before clinical 
evidence and promote early targeted educational interven-
tions. We hypothesized that the negative responses observed 
in the right sensorimotor area of the newborns who later 
develop CP might be related to oxygen consumption asso-
ciated with possible synaptogenesis due to brain plasticity 
and motor reorganization [8, 32]. These mechanisms might 
also explain why this relationship was only observed in the 
right hemisphere, in addition to the eventual maturational 
asymmetry, cortical hemisphere preference, or influence of 
the stimulus type.

Although the literature on fMRI in newborns with brain 
injury is still scarce, these findings are supported by a study 
performed on newborns with perinatal brain lesions, includ-
ing NE due to presumed PA, which concluded that the CP 
group had reduced functional connectivity from the right 

Table 3   Clinical and neurodevelopment evaluation at 18 months

ABC  adaptive behavior composite,  ASD  autism spectrum disorder,  DQ   
development quotient,  GMDS  Griffiths Mental Development Scales,   
GMFCS Gross Motor Function Classification System, HINE Hammersmith 
Infant Neurological Examination, IQR  interquartile range, M-CHAT Modi-
fied Checklist for Autism in Toddlers, n total number, NE neonatal encepha-
lopathy, VABS Vineland Adaptive Behavior Scales

NE (n = 18)

Outcome
  Severe disability 4
  Moderate disability 8
  Normal 6

Cerebral palsy 4
  Spastic 4
  Bilateral 3
  Unilateral 1
  GMFCS 1–2 1
  GMFCS 3–5 3

HINE, median (IQR) 78 (70 to 78)
Growth
  Weight, z score, mean ± SD  −0.342 ± 0.97
  Length/height, z score, mean ± SD  − 0.693 ± 1.16
  Microcephaly 4

GMDS, global DQ,
   < 70 3
  70–84 1
   ≥ 85 14

VABS, total score-ABC
   < 70 4
  70–84 8
   ≥ 85 6

ASD
  Screening, M-CHAT, positive 5
  Confirmed 0

Auditory evoked potentials
  Sensorineural hearing loss requiring amplification 

(moderate)
1

Visual evoked potentials
  Cerebral visual impairment 2

Epilepsy 3
  Requiring one anticonvulsant 2
  Requiring two or more anticonvulsants 1

Feeding difficulties 1
  Tube feeding 1
  Gastrostomy 0
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supplementary motor areas when compared with the non-
CP group [33]. However, they did not find any difference 
between the groups in brain activation during a motor task 
like the one used in our study.

We could not observe differences in standard brain 
responses during visual and auditory stimulation in new-
borns with cerebral visual impairment and sensorineural 
hearing loss when compared with others. These results can 
be explained due to the inconsistency of reports observed 
in previous fMRI studies in newborns, the difficulty of 
normalizing functional activity data or eventually being 
influenced by sedation used to avoid head motion. It is 
well recognized that neonatal fMRI studies observed adult-
like positive BOLD responses, but also temporally delayed 
peak BOLD responses or smaller and negative responses 
[7, 19, 34, 35]. Possible explanations for this variability 
are the maturity level of neurovascular coupling and of 
autoregulation mechanisms and different cerebral oxygen 
metabolic rates in newborns [36]. Despite our efforts to 
analyze fMRI data with an age-appropriate hemodynamic 
response function, the best way to detect BOLD signals 
using task-based fMRI in newborns is not yet fully under-
stood [19]. Furthermore, when using fMRI in newborns 
with brain injury, specific methodological aspects become 
more significant and should be considered [37]. Another 
contributing factor for the lack of power of fMRI analysis 
may be the predominant involvement of the white matter 
and thalamus, more than the cortex itself, in the hypoxic-
ischemic perinatal insult, highly correlated with neurode-
velopmental impairment, especially with motor and visual 

function [38–40]. Thus, normal primary visual cortex or 
normal optic radiations do not rule out the possibility of an 
abnormal visual function [40]. Conversely, reduced activa-
tion in the occipital cortex and functional connectivity in 
fMRI during visual stimulation was found in infants with 
perinatal brain injury [41].

The limitations of this study include a small sample of 
newborns with NE and a small number of those with CP, 
cerebral visual impairment, and sensorineural hearing loss, 
restricting the inference and generalization of results. The 
maturity level of the local neurovascular coupling underly-
ing the BOLD signal can be potentially compromised in 
this population of high-risk newborns, precluding a good 
model of the hemodynamic response. Using a bilateral 
task for sensorimotor stimulation, instead of an alternating 
unilateral one, prevents us from thoroughly assessing later-
alization and eventually achieving a better comprehension 
of motor injury and its reorganization. Additionally, the 
effects of the sedation used to avoid head motion on brain 
function cannot be entirely excluded.

However, this study has a number of strengths: use of a 
structured item-based system for classifying brain injury 
due to presumed PA; a comprehensive and detailed assess-
ment of the neurodevelopmental outcome measures and 
infant’s needs, optimized with the use of complementary 
instruments, including VABS, and the multidisciplinary 
approach comprising otorhinolaryngology and ophthal-
mology evaluation; inclusion of the challenging fMRI 
application as a potential tool to improve motor injury 
prediction in the future.

Table 4   Accuracy of the 
neuroimaging modalities to 
predict severe or moderate 
disability

Severe vs moderate disability and normal outcome (n = 18); moderate disability vs normal (n = 14); moder-
ate and severe disability vs normal (n = 18)
 AUC​ area under the curve, CI confidence intervals, h hours, MRI magnetic resonance imaging, fMRI func-
tional magnetic resonance imaging, BOLD blood-oxygen-level-dependent
* p < 0.05

Severe Moderate Moderate and severe
AUC [95% CI] AUC [95% CI] AUC [95% CI] 

Structural MRI
  Total score 1.0 [1.0; 1.0]* 0.708 [0.431; 0.986] 0.806 [0.604; 1.0]*
  Deep grey matter subscore 1.0 [1.0; 1.0]* 0.5 [0.184; 0.816] 0.667 [0.415; 0.918]
  White matter/cortex subscore 1.0 [1.0; 1.0]* 0.625 [0.327; 0.923] 0.750 [0.526; 0.974]

fMRI BOLD mean (% signal change)
 Stimulus per brain hemisphere
  Visual left 0.611 [1.16; 1.0]
  Visual right 0.519 [0.103; 0.934]
  Auditory left 0.167 [0.0; 0.409]
  Auditory right 0.333 [0.0; 0.682]
  Sensorimotor left 0.667 [0.289; 1.0]
  Sensorimotor right 0.1 [0.0; 0.306]
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Conclusion

This exploratory and challenging outcome study of new-
borns with NE due to presumed PA strengthens structural 
MRI’s relevance to predict neurodevelopmental impairment. 
The still unmet possibility of fMRI providing a wealth of 
new information about the integration of functional cerebral 
activity in NE can be achieved through better defining nor-
mal inter-individual variability and tailored hemodynamic 
response function. Nevertheless, our fMRI results during 
sensorimotor stimulation open the door to refining future 
motor function characterization, allowing accurate prognos-
tic information and early specific and precise therapeutic 
rehabilitation interventions.
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