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Cancer is a leading cause of mortality responsible for an estimated 10 million deaths
worldwide in 2020, and its incidence has been rapidly growing over the last decades.
Population growth and aging, as well as high systemic toxicity and chemoresistance
associated with conventional anticancer therapies reflect these high levels of
incidence and mortality. Thus, efforts have been made to search for novel
anticancer drugs with fewer side effects and greater therapeutic effectiveness.
Nature continues to be the main source of biologically active lead compounds,
and diterpenoids are considered one of themost important families sincemany have
been reported to possess anticancer properties. Oridonin is an ent-kaurane
tetracyclic diterpenoid isolated from Rabdosia rubescens and has been a target
of extensive research over the last few years. It displays a broad range of biological
effects including neuroprotective, anti-inflammatory, and anticancer activity against
a variety of tumor cells. Several structural modifications on the oridonin and
biological evaluation of its derivatives have been performed, creating a library of
compounds with improved pharmacological activities. This mini-review aims to
highlight the recent advances in oridonin derivatives as potential anticancer
drugs, while succinctly exploring their proposed mechanisms of action. To wind
up, future research perspectives in this field are also disclosed.
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1 Introduction

Cancer is a devastating disease. Based on the most recent estimates of global mortality and
incidence data (2020), cancer was responsible for 10 million deaths and 19.3 million new cases
worldwide. Growth and aging of the population, in most countries, and changes in the
distribution of the main risk factors, are some reasons that explain these high levels of
mortality and incidence, which are not predicted to decrease in the coming years (Bray
et al., 2021; Sung et al., 2021).

There is no curative treatment option available for cancer, and current anticancer
therapies, especially chemotherapy, have limited therapeutic potential associated with
adverse side effects, chemoresistance, and high systemic toxicity to the patient (Kashyap
et al., 2021). Consequently, studies have been performed to search for more efficient and
selective anticancer drugs with greater therapeutic properties and better safety profiles.
Over the last few years, there has been a growing attention toward the development of
natural anticancer agents.

Natural products are recognized as important sources of lead compounds,
characterized not only by their remarkable biological activity, but also by their diverse
and complex structures. Since natural products are produced by living organisms, they
possess properties that are evolutionarily optimized for serving a biological function, such
as binding to a specific macromolecule (Mayack et al., 2020). These attributes invite
researchers to make structural modifications and optimizations, in search of novel natural
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product derivatives. Between 1981 and 2019, a detailed analysis of
all therapeutic agents approved revealed that about 60% of the
currently used anticancer drugs came from natural products

(Newman and Cragg, 2020). Therefore, they continue to hold
great potential in the search for novel lead compounds in drug
discovery, especially in anticancer therapy.

TABLE 1 Recent approaches of oridonin optimizations (modifications of hydroxyl groups).

No. Chemical structure In vitro
activity (µM)

References

1 HL-60 IC50 = 32.76 Xu et al., 2008, 2016a, 2017, Wang et al. (2011),
Ding et al. (2013a), Hou et al. (2019), Shen et al.
(2019), Li et al. (2020), Yao et al. (2020)BEL-7402 IC50 =

39.80

BGC-7901 IC50 =
28.30

HCT-116 IC50 = 6.84

PC-3 IC50 = 13.9

K562 IC50 = 4.57

HCC-1806 IC50 =
21.74

MCF-7 IC50 = 17.9

MDA-MB-231 IC50 =
29.40

Growth inhibitory
rate (BEL-7402)

29.9% (1 µM)

93,6% (10 µM)

In vivo activity

Tumor inhibitory
ratio (H22): 42.7%

Tumor inhibitory
ratio (B16): 45.9%

2 HL-60 IC50 = 0.84 Xu et al. (2008)

BGC-7901 IC50 = 2.78

In vivo activity

Tumor inhibitory
ratio (H22): 64.9%

Tumor inhibitory
ratio (B16): 69.9%

3 BEL-7402 IC50 = 1.00 Xu et al. (2008)

BGC-7901 IC50 = 3.02

In vivo activity

Tumor inhibitory
ratio (H22): 62.5%

Tumor inhibitory
ratio (B16): 61.2%

4 HL-60 IC50 = 4.21 Wang et al. (2011)

BGC-7901 IC50 = 1.05

In vivo activity

Tumor inhibitory
ratio (H22): 63.7%

(Continued on following page)
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Diterpenoids are considered one of the most important families of
natural products. Oridonin is an ent-kaurane diterpenoid that has
attracted an increasing amount of attention in recent years, due to its
extensive biological activities (Ding et al., 2016). Despite oridonin’s
remarkable anticancer activity, its potential clinical use is limited.

Therefore, researchers have structurally modified oridonin and
synthesized new derivatives with improved pharmacological
activities and drug-like properties (Liu et al., 2021b).

Herein we seek to briefly overview the biological activities of
oridonin and highlight the emerging therapeutic potential of recent

TABLE 1 (Continued) Recent approaches of oridonin optimizations (modifications of hydroxyl groups).

No. Chemical structure In vitro
activity (µM)

References

5 BEL-7402 IC50 = 2.18 Shen et al. (2019)

HCT-116 IC50 = 0.16

6 HCT-116 IC50 = 32.4 Hou et al. (2019)

PC-3 IC50 = 3.1

K562 IC50 = 11.1

7 data not disclosed Sun et al. (2014)

8 BEL-7402 IC50 = 1.84 Xu et al. (2016a)

Growth inhibitory
rate (BEL-7402)

87,77% (1 µM)

93,94% (10 µM)

9 BEL-7402 IC50 = 0.50 Xu et al. (2014)

K562 IC50 = 1.12

10 K562 IC50 = 0.95 Li et al. (2020)

MCF-7 IC50 = 16.15

11 HCC-1806
IC50 = 0.18

Yao et al. (2020)

MDA-MB-
231 IC50 = 0.63
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oridonin derivatives in anticancer therapy, while also exploring their
proposed mechanisms of action. Finally, we provide a discussion of
future research perspectives for the development of these derivatives in
the clinic.

2 Oridonin: An active compound with
anticancer activity

Oridonin (C20H28O6, compound 1 listed in Table 1) is an ent-
kaurane tetracyclic diterpenoid isolated from the traditional Chinese
medicinal herb Rabdosia rubescens. It was first reported in 1967 (Fujita
et al., 1967), and the relationship between its anticancer activity and its
structure was demonstrated a few years later (Fujita et al., 1976).

Besides its anticancer activity, oridonin possesses an extensive
range of biological activities, such as anti-inflammatory (Cummins
et al., 2019), neuroprotective (Lin et al., 2019), anti-microbial (Li et al.,
2016b), anti-fibrotic (Bohanon et al., 2014), anti-sepsis (Zhao et al.,
2016), immune-modulating (Guo et al., 2013), and analgesic effects
(Zang et al., 2016). A search of the PubMed.gov 0F1 database revealed
the following results: 617 research articles published as of September
2022 while searching “oridonin”, and 357 research articles published
as of September 2022 while searching “oridonin AND cancer”. This
indicates that a major focus is being given to its anticancer activity.

Oridonin’s anticancer activity is well documented in a variety of
cancers, in particular, lung (Li et al., 2018b), prostate (Lu et al., 2017),
esophageal (Jiang et al., 2019), liver (Zhang et al., 2006), colorectal
(Zhang et al., 2019a), breast (Li et al., 2018a), gastric (He et al., 2017),
pancreatic (Liu et al., 2020), oral (Yang et al., 2017), nasopharyngeal
(Liu et al., 2021a), gallbladder (Chen et al., 2019), ovarian (Dong et al.,
2018), leukemia (Li and Ma, 2019), and myeloma (Hong et al., 2020).

Nevertheless, oridonin’s anticancer mechanisms of action are not yet
fully understood. The suggested main ones include the suppression of the
cell cycle progression, induction of apoptosis, and autophagy, by
modulation of signaling pathways, for instance, regulation of
intracellular reactive oxygen species (ROS), Bax/Bcl-2, p53/p21, NF-
κB, MAPK, PI3K, and fatty acid synthase pathways (Ding et al., 2016).

The relevant signaling pathways modulated by oridonin are
represented in Figure 1.

As documented in the literature, oridonin induced G2/M phase
arrest of A549 cells (Zheng et al., 2017) and promoted S phase arrest
via the p53/p21 pathway on activated hepatic stellate cells (Bohanon
et al., 2014). Oridonin also inhibited the proliferation and induced
apoptosis of SNU-216 cells by enhancing the p53 expression and
function (Bi et al., 2018), and increased the generation of ROS,
triggering apoptosis, in diffuse large B-cell lymphoma (Xu et al.,
2016b).

Moreover, oridonin induced apoptosis in OCM-1 and MUM2B
uveal melanoma cells (Gu et al., 2015), and SW480 and
SW620 colorectal cancer cells (Kwan et al., 2013), by suppressing
fatty acid synthase. In HepG2 cells, oridonin induced G2/M phase
arrest and apoptosis viaMAPK and p53 pathways (Wang et al., 2010).

FIGURE 1
Schematic representation of the relevant signaling pathways modulated by oridonin.

1 https://pubmed.ncbi.nlm.nih.gov/
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Furthermore, oridonin also induced autophagy by inhibiting
glucose metabolism in colorectal cancer cells (Yao et al., 2017), and
recent studies suggest that oridonin not only can suppress cell
migration and invasion, (Li et al., 2016c), but also revert drug
resistance (Kadioglu et al., 2018).

3 Oridonin derivatives: Potential agents
in anticancer therapy

Oridonin is recognized as a logical hit compound for anticancer
therapy research. It has an appropriate molecular weight (364.4 g/mol)
and plenty of functional groups that provide numerous synthetic
routes to create different libraries of derivatives. Oridonin also meets
the criteria of Lipinski’s rule (Lipinski et al., 2001) and it is relatively
commercially available (Ding et al., 2016).

However, oridonin’s use as a therapeutic agent is limited by its low
water solubility and oral bioavailability (Xu et al., 2006; Xu et al.,
2018), as well as its first-pass effect after oral administration.
Moreover, its rapid clearance, lack of proper dosage forms,
moderate potency, and still undefined mechanisms of action (Li
et al., 2016a) also limit oridonin’s use in the clinic. Therefore, a
main strategy to overcome such shortcomings is by synthesizing
oridonin derivatives with increased drug-likeness properties and
anticancer activity (Xu et al., 2018).

Evidence shows that structural modifications on oridonin
usually encompass four typical optimizations, as represented in
Figure 2: 1) modifications of hydroxyl groups; 2) modifications of
A-ring; 3) modifications of D-ring (α, β-unsaturated ketone); and
4) transformations of the skeletal structure (Zhang et al., 2020;
Guan et al., 2021). Although this research has been active for a few
years, and substantial progress has been achieved in the
identification of novel derivatives, herein we have selected the
most representative work.

3.1 Modifications of hydroxyl groups

Xu et al. synthesized a series of oridonin derivatives by introducing
various hydrophilic side chains at the 1-O- and 14-O-hydroxyl groups.

Most of them exhibited improved cytotoxicity and aqueous solubility.
Compound 2 (listed in Table 1) is almost 38-fold more potent than
oridonin in the HL-60 cell line (IC50 = 0.84 μM), and compound 3
(listed in Table 1) is almost 40-fold more potent than oridonin in the
BEL-7402 cell line (IC50 = 1.00 μM). In vivo, compounds 2 and
3 showed a more potent anticancer effect in mice with H22 liver
tumor (tumor inhibitory ratio of 64.9% and 62.5%, respectively) and in
mice with B16 melanoma (tumor inhibitory ratio of 69.9% and 61.2%,
respectively) when compared with its parental compound (Xu et al.,
2008).

A follow-up paper was published regarding the conjugation of
different anhydrides with the 14-O-hydroxyl group and further
reaction with an amino acid ester. Amino acid modifications can
be performed to improve the compound’s solubility and cell
permeability (Vig et al., 2013). The results afforded compound 4
(listed in Table 1), with an anticancer activity almost 27-fold more
potent against the BGC-7901 cell line (IC50 = 1.05 μM) and a tumor
inhibitory ratio of 63.7% inmice with H22 liver tumor when compared
with oridonin (Wang et al., 2011).

In 2019, Shen et al. also synthesized oridonin derivatives by
modifying the 14-O-hydroxyl group. Compound 5 (listed in
Table 1) proved to be the most potent (IC50 = 0.16 μM), around
43-fold more potent than oridonin against the HCT-116 cell line.
Moreover, this compound induced cell cycle arrest at the S and G2/M
phases, and apoptosis progression, possibly by suppressing the p53-
MDM2 signaling pathway. Furthermore, in vivo studies on an HCT-
116 colon cancer xenograft model reported compound 5 to suppress
the tumor volume and reduce its weight by 85.82% at 25 mg/kg/day,
when compared with oridonin (58.61%) (Shen et al., 2019).

In the same year, Hou et al. synthesized novel C14-1,2,3-triazole
oridonin derivatives via copper-catalyzed alkyne-azide cycloaddition
(CuAAC). Compound 6 (listed in Table 1) proved to be the most
potent (IC50 = 3.1 μM) against the PC-3 cancer cell line. Preliminary
mechanistic studies reported that this compound caused G2/M phase
arrest and induced apoptosis in a dose-dependent manner in the same
cell line (Hou et al., 2019).

A major milestone was achieved when Sun and collaborators
synthesized L-alanine-(14-oridonin) ester trifluoroacetate
(HAO472) (compound 7, listed in Table 1). The compound
exhibited improved aqueous solubility without losing anticancer

FIGURE 2
Typical optimization sites and molecular structure of oridonin.
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activity (data not disclosed). In vivo, HAO472 acts as a prodrug,
releasing oridonin when metabolized through the cleavage of its
C14 ester bond. HAO472 advanced into a phase I human clinical
trial (CTR20150246; chinadrugtrials. org.cn)1F2 in China, by Jiangsu
Hengrui Medicine Co., Ltd., to develop a new treatment for acute
myelogenous leukemia (Sun et al., 2014).

Xu’s group synthesized novel derivatives possessing NO donor
functionalities with modifications at the 1-O- and 14-O-hydroxyl
groups. Compound 8 (listed in Table 1) showed the most potent
anticancer activity against the BEL-7402 cell line (IC50 = 1.84 μM).
Preliminary mechanistic studies revealed that compound 8 induced
apoptosis and caused S phase arrest in BEL-7402 cells, exhibiting a
growth inhibitory rate of 87.7% and 93.9% for 1 μM and 10 μM
respectively when compared with oridonin (Xu et al., 2016a).

The same research group also synthesized oridonin-coupled
nitrogen mustard derivatives, and all of them showed better
anticancer activity than oridonin against a variety of cell lines.
Compound 9 (listed in Table 1) proved to be the most potent,
exhibiting an IC50 value of 0.50 μM against the BEL-7402 cell line.
This compound also induced apoptosis of BEL-7402 cells and caused
G1 phase arrest (Xu et al., 2014).

In 2020, Li and collaborators synthesized oridonin derivatives with
H2S-releasing groups. Compound 10 (listed in Table 1) showed the most
potent anticancer activity against the K562 cell line, with an IC50 value of
0.95 μM. Further studies revealed that compound 10 caused S phase arrest
in K562 cells and G1 phase arrest in HepG2 cells (Li et al., 2020).

In the same year, Yao and collaborators synthesized oridonin
derivatives by eliminating all hydroxyl groups of oridonin. Compound
11 (listed in Table 1) exhibited an IC50 value of 0.18 μMagainst the HCC-
1806 cell line, 120-fold more potent than oridonin. Moreover, this
compound induced ROS generation, caused G2/M phase arrest and
induced apoptosis through the PI3K-Akt-mTOR signaling pathway.
Furthermore, in vivo studies in mice with breast cancer reported that
compound 11 suppressed tumor volume and reduced its weight by 74.1%
at 25 mg/kg/day, which was better than the positive control paclitaxel
(66.0% at 6 mg/kg/day) while showing no toxicity (Yao et al., 2020).

The reported structural modifications generally improve the
solubility of the derivatives by introducing aqueous solubility-
enhancing moieties via esterification of the 1-O and 14-O-hydroxyl
groups. Such derivatives usually act as prodrugs since ester bonds
suffer from poor in vivo metabolic stability (Ding et al., 2013a).

3.2 Modifications of A-ring

In 2017, Xu’s group synthesized and evaluated a panel of A-ring
modified derivatives bearing various substituents on the 14-O-

TABLE 2 Recent approaches of oridonin optimizations (modifications of A-ring).

No. Chemical structure In vitro activity (µM) References

12 BEL-7402 IC50 = 1.03 Xu et al. (2017)

K562 IC50 = 0.29

MCF-7 IC50 = 0.08

13 MCF-7 IC50 = 0.20 Ding et al. (2013a)

MDA-MB-231 IC50 = 0.20

14 MCF-7 IC50 = 0.98 Ding et al. (2013b)

MDA-MB-231 IC50 = 5.60

15 MCF-7 IC50 = 0.44 Ding et al. (2014)

MDA-MB-231 IC50 = 0.54

2 http://www.chinadrugtrials.org.cn/index.html
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position. The results indicated that the anticancer efficacy was highly
dependent on the 14-position modification and the 1-O-hydroxyl
group was not required for efficacy. Compound 12 (listed in Table 2),
with a trans-cinnamic acid moiety on the 14-position, displayed the
most potent activity against the MCF-7 cell line with an IC50 value as
low as 0.08 μM, 200-fold more potent than oridonin. Moreover,
compound 12 caused ROS generation, induced apoptosis via the
mitochondrial pathway, and arrested the cell cycle at the G2/M
phase (Xu et al., 2017).

In 2013, Ding et al. (2013a) developed novel derivatives by
introducing a thiazole ring at C1 and C2 of oridonin’s A-ring.
Most of the nitrogen-enriched derivatives exhibited higher potency
and aqueous solubility. In the form of its HCl salt, compound 13 (listed
in Table 2) exhibited approximately 62-fold improvement in aqueous
solubility when compared with oridonin (1.29 mg/mL). Additionally,
being the most potent, compound 13 showed an IC50 value of 0.20 μM,
approximately 147-fold more potent than oridonin, and mediated
apoptosis of MDA-MB-231 cells.

The enone and pyran systems are important functionalities naturally
occurring in various bioactive compounds (Kumar et al., 2017). Ding et al.
(2013b) synthesized novel derivatives by incorporating them into the
A-ring of oridonin. The introduction of the enone functionality created
dienone derivatives, and compound 14 (listed in Table 2) proved to be the
most promising with an IC50 value of 0.98 μMagainst theMCF-7 cell line,
inducing apoptosis of MCF-7 cells by inhibiting NF-κB pathway and
increasing Bax/Bcl-2 ratio. Among the dihydropyran-fused derivatives,
compound 15 (listed in Table 2) showed the highest inhibition potency
against the same cell line (IC50 = 0.44 μM), but no mechanistic studies
were provided for this compound (Ding et al., 2014).

3.3 Modifications of D-ring (α, β-unsaturated
ketone)

α, β-unsaturated ketones (enones) are well-known Michael
acceptors. For this reason, the enone system is considered an

TABLE 3 Recent approaches of oridonin optimizations (modifications of D-ring - α, β-unsaturated ketone).

No. Chemical structure In vitro activity (µM) Reference

16 BEL-7402 IC50 = 3.21 Shen et al. (2018)

HCT-116 IC50 = 1.05

TABLE 4 Recent approaches of oridonin optimizations (transformations of the skeletal structure).

No. Chemical structure In vitro activity (µM) References

17 BEL-7402 IC50 = 1.39 Li et al. (2013a)

K562 IC50 = 0.39

18 BEL-7402 IC50 = 0.87 Li et al. (2013b)

K562 IC50 = 0.24
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important pharmacophore of natural products, and oridonin’s D-ring
enone appears to be critical for its anticancer activity (Ding et al.,
2013b). Hence, few modifications have been performed on that part of
the molecule that have successfully produced derivatives with
improved activity.

Nonetheless, Shen et al. (2018) demonstrated that α, β-unsaturated
ketones can be targets for structural modifications to achieve promising
derivatives. Shen’s group synthesized oridonin derivatives with
substituted benzene moieties at the C17 position, and compound 16
(listed in Table 3) proved to be the most potent with an IC50 value of
1.05 μM against the HCT-116 cell line. Moreover, compound 16 induced
apoptosis and caused G2 phase arrest in HCT-116 cells.

3.4 Transformations of the skeletal structure

6,7-seco oridonin derivatives (especially spirolactone-type and
enmein-type diterpenoids) have been reported to possess
impressive anticancer activity. Unfortunately, they are harder to
isolate from natural plant sources than oridonin. Since oridonin is
commercially available, it can be used as a starting material to
synthesize these compounds: the C6-C7 carbon bond of oridonin
can be oxidized and cleaved in the presence of periodate or lead
tetraacetate, yielding a 6,7-seco-kaurene-type diterpenoid. If the
starting material has a hydroxyl group at C1, an enmein-type is
obtained; otherwise, a spirolactone-type is formed (Wang et al.,
2012; Ding et al., 2016; Xu et al., 2018).

Li et al. (2013a) synthesized ent-6,7-seco-oridonin derivatives by
the conversion of oridonin to spirolactone-type diterpenoids. All the
synthesized compounds exhibited better anticancer activity than
oridonin, in vitro. Compound 17 (listed in Table 4) exhibited IC50

values of 0.39 μM against the K562 cell line and 1.39 μM against the
BEL-7402 cell line, similar values to that of the positive control Taxol
(IC50 values of 0.41 μM and 1.89 μM, respectively). Further
mechanistic studies of compound 17 revealed that it induced
apoptosis in BEL-7402 cells and caused G2/M phase arrest.

The same research group reported a series of novel enmein-type
derivatives, and most of them exhibited improved anticancer activities
when compared with oridonin and the positive control Taxol. The
representative compound 18 (listed in Table 4) showed IC50 values of
0.24 μM against the K562 cell line and 0.87 μM against the BEL-7402
cell line. Moreover, compound 18 caused G2/M phase arrest and
induced apoptosis by triggering the mitochondria-related caspase-
dependent pathway (Li et al., 2013b).

4 Future perspectives

The global cancer burden is expected to be 28.4 million cases in
2040, corresponding to a 47% rise from 2020 (Sung et al., 2021).

Chemotherapy continues to be the main therapeutic option for
cancer treatment, and oridonin has recently emerged as a promising
hit compound due to its anticancer activity. However, its therapeutic
potential is limited, and the exact mechanisms of action remain to be
further elucidated.

Tremendous efforts to improve oridonin’s pharmaceutical
properties have been carried out by several research groups. To
date, over one hundred oridonin-based new scaffolds with various
modifications have been synthesized, and many of them exhibited

improved anticancer activities and aqueous solubility (Guan et al.,
2021). Moreover, the structure-activity relationship studies obtained
have contributed to a better comprehension of their mechanisms of
action and molecular targets (Li et al., 2021).

Oridonin has also been investigated in combination therapy with
other chemotherapeutic agents. For instance, oridonin was shown to
potentiate the apoptotic effects of gemcitabine through G0/G1 phase
arrest in the PANC-1 cell line (Liu et al., 2014), and synergistically
enhance JQ1-triggered apoptosis in HCC cells through the mitochondrial
pathway (Zhang et al., 2017). Combined treatment of oridonin with
cetuximab showed synergistic anticancer effects on laryngeal squamous
cell carcinoma (Cao et al., 2016). Moreover, oridonin and
homoharringtonine (HHT) exerted synergistic effects against t (8; 21)
leukemia in vitro and in vivo prolonging t (8; 21) leukemia mouse survival
(Zhang et al., 2019b). Furthermore, a reported study demonstrated that
oridonin exhibited anti-chemoresistance activity in cisplatin-resistant
human gastric cancer cells by inducing caspase-dependent apoptosis
(He et al., 2017). Altogether, these findings lead us to believe that
oridonin and its derivatives have tremendous potential yet to be
discovered in a variety of cancers, either in single or combined therapy.

Although no oridonin-based drugs have been approved for clinical
use by the U.S. Food and Drug Administration (FDA) or by the
European Medicines Agency (EMA) (Liu et al., 2021b), compound
HAO472 has already advanced into a phase I clinical trial in China, and
we anticipate that new oridonin derivatives may emerge as anticancer
drug candidates and enter additional clinical trials soon. It is imperative
for oridonin and its derivatives to be the subjects of more robust pre-
clinical studies, to ensure the safety and potency of the compounds
before developing them as anticancer drugs.

Further investigations are required regarding the single or
combined use of oridonin and its derivatives in anticancer therapy,
while also exploring their role as anti-chemoresistance agents, for they
have the potential to be viable therapeutic options.
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