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ABSTRACT: A characterization of descent morphism in the category of Priestley
spaces, as well as necessary and sufficient conditions for such morphisms to be effec-
tive are given. For that we embed this category in suitable categories of preordered
topological spaces were descent and effective morphisms are described using the
monadic description of descent.
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0. Introduction

A preordered topological space (a preordered space) is a triple (X, 7, <)
where X is a set, 7 is a topology and < is a preorder (i.e. a reflexive and
transitive relation) on X. When < is also antisymmetric, then (X, 7, <) is
called an ordered topological space (an ordered space). They are the objects
of the category TopPreord (TopOrd) whose morphisms are the continuous
maps which preserve the preorder (the order, respectively).

An ordered space (X, 7, <) is said to be totally order-disconnected if given
x £ o’ in X there exists a closed and open (clopen, for short) decreasing
subset U of X such that ’ € U and = ¢ X. The compact totally order-
disconnected spaces are called the Priestley spaces. The full subcategory of
JopOrd whose objects are the Priestley spaces will be denoted by Psp.

The category Psp is dually equivalent to the category of bounded distribu-
tive lattices D Lat, the well-known Priestley duality. Since D Lat is monadic
over Set, it is easy to describe descent there with respect to the codomain
fibration DLat> — DLat: the effective descent morphisms are the descent
morphisms and they are exactly the regular epimorphisms. Therefore, we
conclude that, in Psp, the classes of effective codescent morphisms, of code-
scent morphisms and of regular monomorphisms coincide.
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2 M. DIAS AND M. SOBRAL

The descent morphisms with respect to the codomain fibration Psp?> — Psp
form a class which is strictly contained in the one of the regular epimorphisms.
Also the class of effective descent morphisms in Psp is a proper subclass of the
one of the descent morphisms. To prove that we consider StonePreord, the
full subcategory of TopPreord with objects all (X, 7, <) such that (X, 7) is a
Stone space, as well as its full subcategory P Preord with objects all totally
preordered-disconnected Stone spaces, and study the reflective embeddings
of Psp in PPreord and of PPreord in StonePreord.

Necessary and sufficient conditions for descent morphisms in P Preord and
in StonePreord to be effective are obtained by embedding these categories
into the category StoneRel, with objects all triples (X, 7, Rx) where (X, 7)
is a Stone space and Ry is an arbitrary binary relation on X. An explicit
description of the effective descent morphisms in StonePreord is given, us-
ing the one presented in [3] for the effective descent morphisms in Preord.
Finally, we prove that a Psp-morphism is an effective descent morphism in
Psp if and only if it is an effective descent morphism in PPreord.

For a comprehensive description of descent theory see [5].

1. Fundamentals of Monadic Descent

Let € be a category with pullbacks. The fibres with respect to the codomain
functor €2 — € are the slice categories € | B, for each B € €

For every C-morphism p : £ — B, the pullback functorp*: ¢ | B —-C | FE
has a left adjoint p! which is defined by composition with p on the left.

For bifibrations satisfying Beck-Chevalley condition, descent data can be
interpreted as structure maps for a monad, a fact first proved by Bénabou
and Roubaud in [1]. This is the case of the bifibration above: the category
Des(p), of objects equipped with descent data and morphisms preserving it,
is equivalent to the the category (€ | E)T of T-algebras for the monad T
induced in € | E by the adjunction p! 4 p*(n, €).

Let ®:C | B — (C | E)T be the Eilenberg-Moore comparison functor. A
morphism p : £ — B is a descent morphism if ® is full and faithful and it is
an effective descent morphism if ® is an equivalence of categories.

Proposition 1.1. For the monad T induced by p! 4 p*(n,e) in C | E we
have that:
(1) @ is full and faithful if and only if € is pointwise a regular epimor-
phism.
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(ii) @ has a left adjoint if and only if, for each T-algebra (C,v : C —
E ¢:ExpC — C), C| B has coequalizers of the pair (s, §).

A morphism p is called a universal reqular epimorphism if its pullback along
any morphism is a regular epimorphism.

For each (A,a) in € | B, a0 =M : (E xpA,p-m) — (A, a), where the
diagram

EXBA7L>A
e

is the pullback of p along . Then the following is an immediate consequence
of 1.1(i):

Corollary 1.2. A morphism p is a descent morphism if and only if it is a
universal reqular epimorphism.

We are going to describe descent in categories C that, other than pullbacks,
have all coequalizers. Then € | B has coequalizers and they are constructed
at the level of C. Therefore, the corresponding comparison functor is always
part of an adjunction L 4 ®(«, 3).

We first look for a characterization of the universal regular epimorphism
in € because the following holds:

p descent morphism <= (3 is an isomorphism <= p is a universal regular
epimorphism.

For a T-algebra (C,~, &) we consider the diagram

2

EXBC C ! Q (1)
oy 27
Y EXBQ 4]
E . B

where ¢ is the coequalizer of the pair (72,£) and o = o(¢,¢), the component
of the unit of the comparison adjunction, is the unique morphism for which
the upper triangles commute.
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Proposition 1.3. Let C be a concrete category over Set with pullbacks and
coequalizers which are preserved by the forgetful functor. Then q ¢ 5 a
bimorphism for every T-algebra.

Proof: 1t a(c) = (v(c),q(c)) = (v(c),q()) = a(c) then 7(c) = 7(¢) and
q(c) = q(c’). Since (see e.g. 5.A in [4])

/

q(c) = q() <= £(1(¢0),¢) = c = ¢(v(c), ) = ¢
and £(7y(c),c) = ¢ then

Hence (¢, ¢) s an injective map.
Since o c.¢) - & = p*(q) and p*(q) = 1 X g q is surjective, we conclude that
Q(C,¢) 18 an epimorphism. [

Corollary 2.8 in [6] holds for these categories, as observed there, giving a
criterion that will be useful in the sequel.

Theorem 1.4. Let C be a concrete category over Set with coequalizers and
pullbacks. If pullbacks are preserved by the forgetful functor then, for a mor-
phism p, the following are equivalent:

(i) p is an effective descent morphism;
(ii) for each T-algebra (C,~v,&) the coequalizer of (ma,&) is a universal
reqular epimorphism;
(iii) for each T-algebra (C,~,&) the square in diagram (1) is a pullback.

This follows from general results (see [4] and [6]). They are presented here
in the appropriated form for the context we are interested in.

2. Regular and universal regular epimorphisms

Let Preord be the category with objects X = (X, <) where X is a set and
< is a preorder on X and with morphisms the preorder preserving maps. We
denote by Ry the subset {(z,2')|z <2’} of X x X.

Proposition 2.1. Let f : X — Y be a morphism in Preord.

(i) f is a reqular epimorphism if and only if f(X) = Y and Ry is the
transitive closure of f X f(Rx);

(i1) [ is a universal reqular epimorphism if and only if Ry = f x f(Rx).
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For details see 2.2 and 2.3 in [3].

Let CPreord be the full subcategory of TopPreord with objects (X, 7, <)
such that (X, 7) belongs to a full subcategory € of Top closed under pullbacks
and finite subspaces. Then the forgetful functors U : CPreord — € and
V : CPreord — Preord preserve pullbacks.

Proposition 2.2. A morphism f in CPreord is a (universal) reqular epimor-
phism if and only if its underlying maps in C and in Preord are (universal)
reqular epimorphisms.

Proof: Let f: X — Y be a morphism in CPreord and (7, ) be its kernel
pair.
If f is a regular epimorphism then the coequalizer diagram
1 f
X Xy X X —Y

2

is preserved by the forgetful functor U : CPreord — € because U has both a
left and a right adjoint defined on objects by F(C) = (C,A¢) and G(C) =
(C,C' x (), respectively. Furthermore, assuming that Ry strictly contains the
transitive closure of f x f(Rx), let Y’ have the same underlying topological
space as Y and Ry be the transitive closure of f x f(Rx). The morphism
f': X =Y’ defined by f'(z) = f(x) for each x € X, is such that f’'-m =
f" - m but does not factor through f. Consequently, f would not be the
coequalizer of (71, m5) in CPreord.

Conversely, if the underlying morphisms of f in € and in Preord are regular
epimorphisms and g - m = g -7y in CPreord, then both structures produce a
unique factorization of g through f, say h and A’ and, since f is surjective we
have that h = b’ is the unique morphism A in CPreord such that h - f = g.

If f is a universal regular epimorphism in C and in Preord then, as every
pullback in CPreord

XXYALA
- la
bty

is preserved by U and by V, U(ms) and V (my) are regular epimorphisms and
SO Ty is a regular epimorphism in CPreord.
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Let us assume now that f is a universal regular epimorphism in CPreord.
Then U f is a universal regular epimorphism in € because the pullback of U f
along a morphism o/ : C' — U(Y) in C is the image by U of a pullback in
CPreord where A = (C,A¢).

For y < ¢ in Y, the pullback of V(f) along o' : {y < ¢’} — V(Y) is the
image by V of the pullback in CPreord of f and a : A — Y where A is
the ordered set {y < ¢’} with the subspace topology. Then 5 is a regular
epimorphism in €Preord and so in Preord. Since X xy A = f~(y) x {y} U
f1(y") x {¢/'}, there exist (x,y) < (2/,%/) in X xy A which gives < 2’ such
that f(x) =y and f(2') = ¢'. Thus V(f) is a universal regular epimorphism
in Preord. ]

Proposition 2.3. Let f : X — Y be a morphism in StonePreord.
(i) f is a regular epimorphism if and only if f(X) =Y and Ry is the
transitive closure of f X f(Rx);
(ii) f is a universal reqular epimorphism if and only if Ry = f x f(Rx).

Proof: (i) and (ii) follow from the previous proposition and the fact that in
the category Stone of Stone spaces the regular epimorphisms are universal
and they are the surjective maps. [

The category StonePreord has a factorization system (&€, M) with € the
class of regular epimorphisms and M the class of monomorphisms. Indeed,the
(€, M)-factorization of a morphism f : X — Y is obtained by considering
the (Regular Epi, M ono)-factorization f = m - q in Stone, and endowing the
codomain of ¢ with the preorder which is the transitive closure of ¢ x q(Rx).

Proposition 2.4. The category PPreord is an epireflective subcategory of
StonePreord.

Proof: For (X, 1,<) in StonePreord let I(X) be (X, 7, <!) with z <! 2/ if

z<z'in X or
¥’ € U € DClopen(X) = x € U,

where DClopen(X) denotes the set of decreasing clopen subsets of X. Then
<! is a preorder on I(X) which is an object of PPreord. The morphism
rx : X — I(X) defined by rx(z) = x is the reflection of X in PPreord as
we show next. Given g : X — Y with Y € PPreord the unique continuous
function ¢’ : I(X) — Y such that ¢’ - rx = g is a preorder preserving map.
Indeed, if £ 2/, © <! 2’ and g(z) £ g(2') there exists U € DClopen(Y)
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which contains g(z') but not g(z). Hence, 2/ € g}(U) which is a decreasing
clopen subset of X and = & ¢g~1(U), a contradiction.
Furthermore, for each X, rx, being a surjective map, is an epimorphism. =

Proposition 2.5. Let f : X — Y be a morphism in PPreord and (mwy, 7o)
its kernel pair.

(i) f is a regular epimorphism if and only if, up to isomorphism, [ = ry:-q
where q : X — Y is the coequalizer of (w1, ms) in StonePreord and
ry: is the reflection of Y' in PPreord.

(ii) f is an universal reqular epimorphism if and only if Ry = f X f(Rx).

Proof: (i) follows from the way colimits are constructed in full replete reflec-
tive subcategories of categories where these colimits exist.

(ii)) The “if” part is clear. We prove the “only if” part. If y < ¢/ in Y
let A = {y,y'} be the subspace of Y in PPreord and consider the pullback
along the inclusion ¢ : A — Y. Then, since m, is a regular epimorphism,

o = T4 - (.

But finite discrete spaces are compact and totally preordered-disconnected for
every preorder. Hence A’ belongs to PPreord and so r4 is an isomorphism.
Now, like in the proof of 2.2, we conclude that there exist < 2’ in X such
that f(z) =y and f(2') =¥/ |

The category PPreord also has a factorization system (£, M) with € is the
class of regular epimorphisms and M is the class of monomorphisms where
the factorization of a morphism f € PPreord is obtained by first considering
the factorization f = m - ¢ in StonePreord and then taking f=m'-rg-q
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X d Y
N
PN

R(Q)

with m' the unique morphism such that m’-rg = m. Then m’ is a monomor-
phism, since it is injective map, and 7¢ - ¢ is a coequalizer in PPreord.

Proposition 2.6. Psp is a reqular-epirefiective subcategory of P Preord.

Proof: For X = (X, 1,<) € PPreord we consider the binary relation

e~z ifr<iaz and 2 <z

which is an equivalence relation on X.

Let I(X) be the quotient set, X/ ~, equipped with the quotient topology
with respect to the canonical projection ry : X — I(X) and the preorder
Rp(x) obtained by transitive closure of rx X rx(Rx). Then we have that

r <y [z] <[y

where [z] denotes the equivalence classe of x.

Being a continuous image of the compact space X, I(X) is also compact.
It remains to prove that it is totally order-disconnected. If [x] £ [y] then
x % y and so there exists a clopen decreasing subset U; of X which contains
y but not . Then the set U = {[a] : @ € Uy} is a clopen subset of X/ ~;,
because r (U) = Uy, and it is decreasing: if [z] < [y] € U then x <y € Uj
which implies that € U; and so that [z] € U. Thus I(X) belongs to PSp.

Furthermore, given a morphism ¢ : X — Y with Y € Psp the unique
function ¢’ such that ¢’ - ry = ¢ is continuous and order preserving. Thus
the regular epimorphism rx is the reflection of X in Psp. [

Proposition 2.7. Let f : X — Y be a morphism in Psp.
(i) f is a regular epimorphism in Psp if and only if it is a reqular epi-
morphism in PPreord;
(ii) f is a universal regular epimorphism in Psp if and only if Ry =

fx f(Rx).
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Proof: (i) In categories with a system of factorization (RegularEpi, Mono)
the embedding of each regular epireflective subcategory preserves and reflects
regular epimorphisms.

(ii) In the proof of 2.5 (ii), A" € Psp and the proof that the condition is
necessary follows in a completely analogous way. ]

Finally, being a regular epireflective subcategory of a category with a fac-
torization system (Regular Epi, Mono), Psp also admits a (Regular Epi, M ono)-
factorization system.

3. Descent in PPreord

By Proposition 2.5(ii), a morphism p : £ — B is a descent morphism in
PPreord if and only if for each b < V' in B there exist e < ¢’ in E such that
p(e) = b and p(e’) = b/, and these are the descent morphisms in PPreord as
well as in the full subcategory FinPreord of finite preordered sets.

Proposition 3.1. (3.4, [3]) For a morphism p : E — B in Preord (or in
FinPreord) the following are equivalent:

(i) p is an effective descent morphism;

ii for every by < b1 < by in B there exists eg < e; < ey in E such that
p(e;) = b;, for i=0,1,2.

Proposition 3.2. (3.9, [4]) Let D be a full subcategory of C closed under
pullback. If a morphism p in D is an effective descent morphism in C then
the following are equivalent:

(i) p is an effective descent morphism in D;
(ii) for every pullback

ExpA=— A (2)
E B
in C, Ae D whenever E xg A e D.

Corollary 3.3. Let D be a full subcategory of C closed under pullbacks. If
the descent morphisms in D are effective descent morphisms in C then the
following are equivalent:

p

(i) p is an effective descent morphisms in D;
(ii) p is a descent morphism in D and, for every pullback (2) in C, A € D
whenever £ xg A € D.
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Proposition 3.4. In StoneRel the effective descent morphisms are the reg-
ular eptmorphisms.

Proof: The universal epimorphisms in Stone Rel are the morphisms whose un-
derlying morphisms in Stone and in Rel are universal regular epimorphisms.
Indeed, Proposition 2.2 is still true if instead of €Preord we consider CRel,
the category of spaces of € equipped with an arbitrary binary relation. In
the this case only the left adjoint to the forgetful functor U : CRel — C, has
a different definition: F'(C') = (C, () for each C' € C.

In Stone the regular epimorphisms are universal and they are exactly the
surjective maps. In Rel a regular epimorphism is a morphism f : X — Y
such that f(X) = Y and Ry = f x f(Rx) and so it is also a universal
regular epimorphism. Consequently, every regular epimorphism in StoneRel
is a universal regular epimorphism. Now the conclusion follows by applying
Theorem 1.4. [

Proposition 3.5. For a morphism p : E — B in PPreord the following are
equivalent:

(i) p is an effective descent morphism;
(ii) p is a descent morphism and, for every pullback (2) in StoneRel, A €
PPreord whenever E xg A € PPreord.

Proof: We can apply Corollary 3.3 to D = PPreord and € = StoneRel.
Indeed, PPreord is a full subcategory of StoneRel closed under pullbacks
and every descent morphism in PPreord is an effective descent morphism in
StoneRel. ]

We can also apply 3.3 to D = StonePreord and € = StoneRel. In this
case this case one can give an explicit description of the effective descent
morphisms in StonePreord.

Proposition 3.6. For a morphism p : EE — B in StonePreord the following
are equivalent:

(i) p is an effective descent morphism;
(ii) p is a descent morphism and, for every pullback (2) in StoneRel, A €
StonePreord whenever E xg A € StonePreord
(iii) for every by < by < by in B there exists ey < e; < ey in E such that
p(e;) = b;, for i=0,1,2.
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Proof: By 3.4 in [3], that we recall in 3.1, (i7) < (i4i) tell us that the effec-
tive descent morphisms in StonePreord are exactly those morphisms whose
underlying morphisms in Preord are the effective descent morphisms in this
category. The proof given there still holds if we replace sets by Stone spaces
as we sketch now.

If p satisfies (ii) and by < by < by in B let A be the set {ao, a1, as} equipped
with the binary relation R4 = {(ag, a1), (a1, a2)} UA 4 and the discrete topol-
ogy and a be defined by «(a;) = b; for i=0, 1, 2. For the pullback (2) in
StoneRel, since E xp A ¢ StonePreord, Rpx,4 is not transitive. Hence
there exist (zg, 1), (r1,72) € Rpxya but not (z1,xs). Since 7y is a regular
epimorphism in StoneRel we can conclude that z; belongs to p~1(b;) x {a;}
and then that e; = 71 (x;) form a chain ey < e; < ey in E such that p(e;) = b;
fori =0, 1, 2.

Conversely, it is easy to show that condition (iii) implies that R4 is tran-
sitive when the relation R, ,4 is transitive. [}

Proposition 3.7. A morphismp : E — B in PPreord is an effective descent
morphism if:
(i) for every by < by < by in B there exists ey < e; < ey in E such that
p(e;) = b;, for i=0,1,2.
(i) for every pullback (2) in StonePreord, if E xp A belongs to PPreord
then also A belongs to PPreord.

Proof: Since D = PPreord is a full subcategory of € = StonePreord closed
under pullbacks, we apply 3.2 and the characterization above to conclude
that these are sufficient conditions for a descent morphism in PPreord to be
an effective descent morphism. [

Condition (ii) above is necessary for a descent morphism in PPreord to be
an effective descent morphism.

Proposition 3.8. If p is an effective descent morphism in P Preord then for
every pullback (2) in StonePreord, if E xg A belongs to PPreord then also
A belongs to PPreord.

Proof: Given a pullback (2) in StonePreord with E xp A € PPreord then
we have that
o (Exp A m,m3) € (PPreord | E)T;
e T, is a coequalizer of (73, m13) in StonePreord, because p is a descent
morphism;
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e ¢ =14 - my is the coequalizer of (73, m13) in PPreord.

By 1.4, ¢ is a universal regular epimorphism in PPreord. Then for a < d
in J(A) there exist (e,a) < (¢/,a’) € Exp A and so a <a'in A. Hence ry is
an isomorphism and so that A belongs to PPreord. |

We can apply 3.2 to D = FinPPreord, the subcategory of finite spaces in
PPreord, which is isomorphic FinPreord, and € = PPreord to conclude that
a morphism p € D which is an effective descent morphism in P Preord is also
an effective descent morphism in D. Then, the class of descent morphisms
in PPreord strictly contains the one of the effective descent morphisms in
this category since we also have strict inclusion of the corresponding classes
in FinPreord.

4. Descent in Psp

Let H : X — € be the inclusion and I the reflection of C in X. Reflections
that preserve pullbacks of all pairs with codomain in X are said to have stable
units in [2].

Lemma 4.1. Let C, €', X and X' be categories with pullbacks. Given reflec-
tions H41:C— X and I' 41 H' : X' — €' and pullback preserving functors
U and V' for which the diagram

1

C——X
H
I/

commutes, if H' 4 I' has stable units and U reflects isomorphisms then H - I
also has stable units.

Proposition 4.2. The reflection H - I : PPreord — Psp has stable units.

Proof: Consider the following commutative diagram

I
PPreord — PSp

H
V
I/

Preord Ord
H/

U
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where the bottom is the reflection of Preord in Ord, the category of (par-
tially) ordered sets and U,V are the obvious forgetful functors. In [7], J.
Xarez proved that the reflection of Preord in Ord has stable units. Since U
and V preserves pullbacks and U reflects isomorphisms we conclude that the
reflection of PPreord in Psp also has stable units. [

Theorem 4.3. A morphism p : E — B in Psp is an effective descent mor-

phism in this category if and only if it is an effective descent morphism in
PPreord

Proof: Let p: E — B € Psp be an effective descent morphism in PPreord.
Since Psp is a full subcategory of PPreord closed under pullbacks, by 3.2,
for a pullback

EXBA%A
“l ia
E B

in PPreord with £ xg A € Psp we have to prove that A € PPreord. Since
the reflection I : PPreord — Psp has stable units and B € Psp then [
preserve the pullback. Thus, in the diagram

p

2

ExgA A
1) |
I(E x5 A) —" 104

I(m) 2) |1

E B

the outer rectangle (1) + (2) as well as the square (2) are pullbacks. Con-
sequently, (1) is a pullback and so, for the pullback functor p* : PPreord |
B — PPreord | E, p*(ra) = rgxa which is an isomorphism because £ xp A
belongs to Psp. But p* : PPreord | B — PPreord | E, being monadic, re-
flects isomorphisms. Therefore, 74 is an isomorphism and so A belongs to
Psp.

Conversely, if the morphism p is an effective descent morphism in Psp it is
a descent morphism also in PPreord. Indeed, let (C,~, &) be a T-algebra for
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the monad induced in PPreord | E by the adjunction p! 4 p* : PPreord |
B — PPreord | E.

Since [ preserves pullbacks of morphisms with codomain in Psp it is easy
to see that (I(C), I(), (£)) is a T-algebra for the monad induced in Psp | F
by the adjunction p! 4p*: Psp | B — Psp | E.

In the diagram

C—"—Q
o (1) ro
10) " 1(Q)
1(7) (2) 1(5)
E———B

the square (2) is a pullback: since p is an effective descent morphism in Psp
and the forgetful functor from Psp to Set preserves pullbacks and coequalizers
the conclusion follows from 1.4.

We can apply 1.4 to € = PPreord and prove that the outer rectangle (1)
+ (2) is a pullback, which is equivalent to prove that (1) is a pullback.

Let h : C — I(C) xpq) @ be the morphism defined by h(c) = ([c], q(c)).
There exists an isomorphism ¢ : £ xp Q — I(C) Xy @ such that h =
t - acpe- Then, by 1.3, we conclude that h is a bijective map and so an
homeomorphism.

Furthermore it is an order isomorphism: if h(c) < k() then [c] < [¢] and
so ¢ < in C. Thus h is an isomorphism in PPreord and so p is an effective
descent morphism in PPreord. [
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