UNCERTAINTY PRINCIPLES FOR THE q-HANKEL TRANSFORM

LUIS DANIEL ABREU

Abstract

We prove two propositions related to the support of functions and their q-Hankel transform. The first says that if a function f and its q-Hankel transform both vanish at the points $q^{-n}, n=1,2, \ldots$ then f must vanish identically. The second asserts that if f is supported at $[0, T]$ and its q-Hankel transform at $[0, \Omega]$ then $\Omega T \geq(q ; q)_{\infty}^{2}$.

KEYWORDS: uncertainty principles; q-Bessel functions; q-Hankel transform.
AMS Subject Classification (2000): 44A15, 33D15.

1. Introduction

The Fourier transform of a $L^{1}(\mathbf{R})$ function supported on a finite interval (a, b)

$$
\begin{equation*}
f^{\wedge}(\omega)=\int_{a}^{b} f(t) e^{-\omega i t} d t \tag{1}
\end{equation*}
$$

defines an entire function. Therefore, if f^{\wedge} itself has compact support, then it must vanish identically since it vanishes on a set with an accumulation point. By Fourier inversion f itself must vanish identically. This is the most simple manifestation of the uncertainty principle of Fourier analysis which says, in general, that a function and its transform cannot be simultaneously small. The present note pretends to address the question of how to prove such a statement if, instead of the Lebesgue measure, one is working with a measure without an accumulation point outside the interval (a, b).

Consider a number q in the real interval $(0,1)$. The prototype of the situation just described is the discrete Jackson q-integral

$$
\begin{equation*}
\int_{0}^{\infty} f(t) d_{q} t=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n} \tag{2}
\end{equation*}
$$

where the spectrum of the measure is $\left\{q^{n}\right\}_{n=-\infty}^{\infty}$ which has zero as the only accumulation point. Using the q-integral and a suitable chosen q-analogue of

Partial financial assistance by Centro de Matemática da Universidade de Coimbra.
the Bessel function (which we will define in the next section), Koornwinder and Swarttouw defined in [5] a q-analogue of the Hankel transform, $H_{q}^{\nu} f$, setting

$$
\begin{equation*}
\left(H_{q}^{\nu} f\right)(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x t ; q^{2}\right) f(t) d_{q} t \tag{3}
\end{equation*}
$$

For the transform $H_{q}^{\nu} f$, we will prove that, in a convenient normalized space, if f and $H_{q}^{\nu} f$ vanish at all the points of the spectrum outside the interval $(0,1)$, then f must vanish in the equivalent classes of the normalized space considered. The presentation is organized as follows. In the next section we introduce the notions about q-calculus to be used in the remaining of the paper. In the third section we prove our main theorem and deduce from it a proposition about uniqueness sets in a certain Hilbert space of entire functions. In the last section we obtain some estimates on the kernel of the integral transform and use them to conclude, from a general proposition due to de Jeu [6], that the length of the support of f times the length of the support of $H_{q}^{\nu} f$ must be bigger than a certain positive quantity, paralleling a classical result about Fourier transforms.

2. Basic definitions and facts

The third Jackson q-Bessel function or the Hahn-Exton q-Bessel function is defined by

$$
\begin{equation*}
J_{\nu}(z ; q)=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n(n+1) / 2}}{\left(q^{\nu+1} ; q\right)_{n}(q ; q)_{n}} z^{2 n+\nu} \tag{4}
\end{equation*}
$$

The notation $J_{\nu}^{(3)}(z ; q)$ is used to distinguish it from the other two known q-Bessel functions. Since this is the only Bessel function appearing on the text, we will drop the superscript for shortness of the notations and write $J_{\nu}(z ; q)=J_{\nu}^{(3)}(z ; q)$. The symbols in the above definitions are

$$
\begin{equation*}
(a ; q)_{n}=(1-q)(1-a q) \ldots\left(1-a q^{n-1}\right) \tag{5}
\end{equation*}
$$

with the zero and infinite cases as

$$
\begin{gather*}
(a ; q)_{0}=1 \tag{6}\\
(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}=\prod_{k=0}^{\infty}\left(1-a q^{n}\right) \tag{7}
\end{gather*}
$$

The infinite product above can be written in series form by means of the the Euler formula:

$$
\begin{equation*}
(z ; q)_{\infty}=\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{\frac{n(n-1)}{2}}}{(q ; q)_{n}} x^{n} \tag{8}
\end{equation*}
$$

The q-integral in the finite interval $(0, a)$ is

$$
\begin{equation*}
\int_{0}^{a} f(t) d_{q} t=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n} \tag{9}
\end{equation*}
$$

and in the interval $(0, \infty)$

$$
\begin{equation*}
\int_{0}^{\infty} f(t) d_{q} t=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n} \tag{10}
\end{equation*}
$$

We will denote by $L_{q}^{p}(X)$ the Banach space induced by the norm

$$
\begin{equation*}
\|f\|_{p}=\left[\int_{X}|f(t)|^{p} d_{q} t\right]^{\frac{1}{p}} \tag{11}
\end{equation*}
$$

For entire indices, the functions $J_{n}(x ; q)$ are generated by the relation, valid for $|x t|<1$,

$$
\begin{equation*}
\frac{\left(q x t^{-1} ; q\right)_{\infty}}{(x t ; q)_{\infty}}=\sum_{n=-\infty}^{\infty} J_{n}(x ; q) t^{n} \tag{12}
\end{equation*}
$$

It was shown in [5] that the q-Hankel transform satisfies the inversion formula

$$
\begin{equation*}
f(t)=\int_{0}^{\infty}(x t)^{\frac{1}{2}}\left(H_{q}^{\nu} f\right)(x) J_{\nu}\left(x t ; q^{2}\right) d_{q} x=\left(H_{q}^{\nu}\left(H_{q}^{\nu} f\right)\right)(t) \tag{13}
\end{equation*}
$$

where t takes the values $q^{k}, k \in Z$.

3. A vanishing theorem for the q-Hankel transform

The main tool in the proof of the main result in this section is the following completeness criterion, derived in [2] as a consequence of the PhragménLindelöf principle for functions of order less than one.
Theorem A. Let f and g be defined by their power series expansions as $f(z)=\sum_{n=0}^{\infty}(-1)^{n} a_{n} z^{2 n}$ and $g(z)=\sum_{n=0}^{\infty}(-1)^{n} b_{n} z^{2 n}$. Denote by λ_{n} the nth zero of g. If the order of f is less than one, then the sequence $\left\{f\left(\lambda_{n} x\right)\right\}$ is complete $L_{q}(0,1)$ if, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{a_{n}}{b_{n}} \rightarrow 0 \tag{14}
\end{equation*}
$$

Now we formulate and proof our main result, which is an uncertainty principle of a qualitative nature. Essentially it says that a $L_{q}^{1}\left(\mathbf{R}^{+}\right)$function and its q-Hankel transform cannot be both simultaneously supported inside the interval $(0,1)$.

Theorem 1. Let $f \in L_{q}^{1}\left(\mathbf{R}^{+}\right)$such that both f and its q-Hankel transform vanish at the points $q^{-n}, n \in \mathbf{N}_{0}$, then

$$
\begin{equation*}
f\left(q^{k}\right)=0, k \in \mathbf{Z} \tag{15}
\end{equation*}
$$

that is, $f \equiv 0$ almost everywhere in $L_{q}^{1}\left(\mathbf{R}^{+}\right)$. If f is analytic then f must vanish identically in the whole complex plane.

Proof. Let $f \in L_{q}^{1}\left(\mathbf{R}^{+}\right)$. If $f\left(q^{-n}\right)=0, n \in \mathbf{N}_{0}$, then the q-Hankel transform of f is

$$
\begin{equation*}
H_{q}^{\nu} f(\omega)=\int_{0}^{1}(\omega t)^{\frac{1}{2}} J_{\nu}\left(\omega t ; q^{2}\right) f(t) d_{q} t \tag{16}
\end{equation*}
$$

Our second assumption says that

$$
\begin{equation*}
\left(H_{q}^{\nu} f\right)\left(q^{-n}\right)=0, n \in \mathbf{N}_{0} \tag{17}
\end{equation*}
$$

therefore, setting $\omega=q^{-n}$ in (16) gives

$$
\begin{equation*}
\int_{0}^{1}\left(q^{-n} t\right)^{\frac{1}{2}} J_{\nu}\left(q^{-n} t ; q^{2}\right) f(t) d_{q} t=0, n \in \mathbf{N}_{0} \tag{18}
\end{equation*}
$$

Now, in the set up of Theorem A take $f(z)=J_{\nu}\left(z ; q^{2}\right)$ and $g(z)=\left(z^{2} ; q^{2}\right)_{\infty}$. Using (4) and (8) together with the trivial observation that $\left\{q^{-n}\right\}$ is the sequence of zeros of g gives that, if $\nu>-1$, the sequence $\left\{J_{\nu}\left(q^{-n} x ; q^{2}\right)\right\}$ is complete in $L_{q}^{1}(0,1)$. This, together with (18) implies that $f \equiv 0$ in $L_{q}^{1}(0,1)$, that is,

$$
\begin{equation*}
f\left(q^{n}\right)=0, n \in \mathbf{N}_{0} \tag{19}
\end{equation*}
$$

Combining this with the assumption $f\left(q^{-n}\right)=0, n \in \mathbf{N}_{0}$ gives

$$
\begin{equation*}
f\left(q^{k}\right)=0, k \in \mathbf{Z} \tag{20}
\end{equation*}
$$

This proves that $f \equiv 0$ almost everywhere in $L_{q}^{1}\left(\mathbf{R}^{+}\right)$. Since the set $\left\{q^{k}, k \in\right.$ $\mathbf{Z}\}$ has an accumulation point, if f is analytic then it must be the null function.

Following [1] we introduce the space

$$
\begin{equation*}
P W_{q}^{\nu}=\left\{f \in L_{q}^{2}\left(\mathbf{R}^{+}\right): f(x)=\int_{0}^{1}(t x)^{\frac{1}{2}} J_{\nu}\left(x t ; q^{2}\right) u(t) d_{q} t, u \in L_{q}^{2}(0,1)\right\} \tag{21}
\end{equation*}
$$

This can be interpreted as a q-Bessel version of the Paley Wiener space of bandlimited functions. Clearly, $P W_{q}^{\nu}$ is a Hilbert space of analytic functions. Observe also that, if $\left(H_{q}^{\nu} f\right)\left(q^{-n}\right)=0, n \in \mathbf{N}$, then taking into account definitions (9) and (2), $f=\left(H_{q}^{\nu}\left(H_{q}^{\nu} f\right)\right)$ is of the form required in (21). Using these concepts, we have the following consequence of the vanishing theorem:
Corollary 1. $\Gamma=\left\{q^{-n}, n \in \mathbf{N}\right\}$ is a set of uniqueness for the space $P W_{q}^{\nu}$.
Proof. Take $f \in P W_{q}^{\nu}$ such that $f\left(q^{-n}\right)=0, n \in \mathbf{N}$. If f is of the form required in (21) then $f=H_{q}^{\nu} u^{*}$ where $u^{*} \in L_{q}^{2}\left(\mathbf{R}^{+}\right)$is obtained from $u \in L_{q}^{2}(0,1)$ by prescribing $u\left(q^{-n}\right)=0, n \in \mathbf{N}$. By the inversion formula (13), $u^{*}=H_{q}^{\nu} f$. We conclude that $H_{q}^{\nu} f\left(q^{-n}\right)=0, n \in \mathbf{N}$. By Theorem 1, $f \equiv 0$.
Remark 1. Observe that we proved the following characterization of $P W_{q}^{\nu}$:

$$
\begin{equation*}
P W_{q}^{\nu}=\left\{f \in L_{q}^{2}\left(\mathbf{R}^{+}\right):\left(H_{q}^{\nu} f\right)\left(q^{-n}\right)=0, n \in \mathbf{N}\right\} \tag{22}
\end{equation*}
$$

The property $\left(H_{q}^{\nu} f\right)\left(q^{-n}\right)=0, n \in \mathbf{N}$ can thus be seen as a sort of " q-Hankelbandlimitedness". It was shown in [1] that there are many features in this space analogous to the classical Paley Wiener space, including a sampling theorem and a reproducing kernel.

4. An uncertainty principle

With the purpose of extending the Donoho and Stark uncertainty principle [3] to an abstract setting, de Jeu [6] obtained a very general proposition, from which we just quote a special case.
Theorem B If there is a Plancherel theorem for the integral transform in $L^{2}(X)$ whose kernel is $K(x, t)$, then, if the support of f is T and the support of $(K f)(x)=\int_{X} K(x, t) f(t) d \mu(t)$ is Ω, the following inequality holds:

$$
\begin{equation*}
\left\|\mathbf{1}_{T \times \Omega} K(x, t)\right\|_{L^{2}(\mu, X) \times L^{2}(\mu, X)} \geq 1 \tag{23}
\end{equation*}
$$

In order to use Theorem B to extract more valuable information about the size of the supports in our study of the q-Hankel transform, we must first obtain bounds for its kernel.

Lemma 1. If $\nu \geq 0$ and $|x|<q^{-\frac{1}{2}}$, the inequality holds:

$$
\begin{equation*}
\left|J_{\nu}(x ; q)\right| \leq \frac{1}{(q ; q)_{\infty}} \tag{24}
\end{equation*}
$$

Proof. If $\nu>0, y>-\frac{1}{2}$ and $x \in \mathbf{R}$, the following q-analogue of the Sonine integral was proved in [1]:

$$
\begin{equation*}
\frac{(q ; q)_{\infty}}{\left(q^{\nu} ; q\right)_{\infty}} x^{-\nu} J_{y+\nu}(x ; q)=\int_{0}^{1} t^{\frac{y}{2}} \frac{(t q ; q)_{\infty}}{\left(t q^{\nu} ; q\right)_{\infty}} J_{y}\left(x t^{\frac{1}{2}} ; q\right) d_{q} t \tag{25}
\end{equation*}
$$

Setting $y=0$ in (25) and taking absolute values gives

$$
\begin{equation*}
\left|J_{\nu}(x ; q)\right| \leq\left|x^{\nu} \frac{\left(q^{\nu} ; q\right)_{\infty}}{(q ; q)_{\infty}}\right| \int_{0}^{1}\left|\frac{(t q ; q)_{\infty}}{\left(t q^{\nu} ; q\right)_{\infty}} J_{0}\left(x t^{\frac{1}{2}} ; q\right)\right| d_{q} t \tag{26}
\end{equation*}
$$

We need to estimate the integrand in (25). For the infinite product, observe that if $0<t<1$, then

$$
\begin{equation*}
\frac{(t q ; q)_{\infty}}{\left(t q^{\nu} ; q\right)_{\infty}}<\frac{1}{\left(q^{\nu} ; q\right)_{\infty}} \tag{27}
\end{equation*}
$$

Now we will show that, if $t<1$ and $|x|<q^{-\frac{1}{2}}$ then

$$
\begin{equation*}
\left|J_{0}\left(x t^{\frac{1}{2}} ; q\right)\right| \leq 1 \tag{28}
\end{equation*}
$$

This can be seen using a generating function argument as follows. Substituting t by $t^{-1} q$ in (12) and multiplying the two resulting identities gives, if $|x q|<|t|<|x|^{-1}$ (which holds if $|x|<q^{-\frac{1}{2}}$ and $|x t|<1$)

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} t^{n-m} q^{m} J_{n}(x ; q) J_{m}(x ; q)=1 \tag{29}
\end{equation*}
$$

Equating coefficients of t^{0} in (29) reveals that, if $|x|<q^{-\frac{1}{2}}, \sum_{k=-\infty}^{\infty} q^{k}\left[J_{k}(x ; q)\right]^{2}=$ 1. In particular,

$$
\begin{equation*}
\left|J_{k}(x ; q)\right| \leq q^{-\frac{k}{2}}, k=0,1, \ldots \tag{30}
\end{equation*}
$$

Now, if $t<1$ and $|x|<q^{-\frac{1}{2}}$ we also have $|x t|<q^{-\frac{1}{2}}$. Setting $k=0$ in (30) gives(28). Using this estimates in (26) together with (27) gives

$$
\begin{equation*}
\left|J_{\nu}(x ; q)\right| \leq\left|x^{\nu} \frac{1}{(q ; q)_{\infty}}\right| \tag{31}
\end{equation*}
$$

This proves the lemma.
We can now state a proposition providing information of a quantitative nature about the supports of f and $H_{q}^{\nu} f$.

Theorem 2. Suppose that $\nu \geq 0$. If the support of f is contained in $[0, T]$ and the support of $H_{q}^{\nu} f$ is contained in $[0, \Omega]$, then

$$
\begin{equation*}
\Omega T \geq(q ; q)_{\infty}^{2} \tag{32}
\end{equation*}
$$

Proof. First observe that if $\Omega T \geq 1$ then the proposition is trivial, since $(q ; q)_{\infty}<1$. Thus we can assume without loss of generalization that $\Omega T<1$. In this case we have $|x t|<1$ in the square $[0, T] \times[0, \Omega]$ and the use of (24) together with the definition of the q-integral gives

$$
\begin{gather*}
\left\|\mathbf{1}_{T \times \Omega}(x, t)(x t)^{\frac{1}{2}} J_{\nu}\left(x t ; q^{2}\right)\right\|_{L_{q}^{2}(X) \times L_{q}^{2}(X)}=\int_{0}^{\Omega}\left[\int_{0}^{T}\left[(t x)^{\frac{1}{2}} J_{\nu}\left(x t ; q^{2}\right)\right]^{2} d_{q} t\right]_{q} d_{q} x \tag{33}\\
\leq \int_{0}^{\Omega} \int_{0}^{T}\left[\frac{1}{(q ; q)_{\infty}}\right]^{2} d_{q} t d_{q} x=\frac{\Omega T}{(q ; q)_{\infty}^{2}} \tag{34}
\end{gather*}
$$

now observe that applying Theorem B to the q-Hankel transform gives

$$
\begin{equation*}
1 \leq\left\|\mathbf{1}_{T \times \Omega}(x t)^{\frac{1}{2}} J_{\nu}\left(x t ; q^{2}\right)\right\|_{L_{q}^{2}(X) \times L_{q}^{2}(X)} \tag{35}
\end{equation*}
$$

and the result is proved.

References

[1] L. D. Abreu, A q-Sampling Theorem related to the q-Hankel transform, Proc. Amer. Math. Soc. 133 (2005), 1197-1203.
[2] L. D. Abreu, Completeness criteria for sequences of special functions, preprint.
[3] D. L. Donoho, P. B. Stark, Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49 (1989), no. 3, 906-931
[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge.
[5] T. H. Koornwinder, R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms. Trans. Amer. Math. Soc. 333 (1992), no. 1, 445-461.
[6] M. F. E. de Jeu, An uncertainty principle for integral operators. J. Funct. Anal. 122 (1994), no. 1, 247-253.

Luis Daniel Abreu
Departamento de Matemática da Universidade de Coimbra
E-mail address: daniel@mat.uc.pt

