
The Journal of Geometric Analysis (2023) 33:94
https://doi.org/10.1007/s12220-022-01179-5

Symmetric Spaces Rolling on Flat Spaces

V. Jurdjevic1 · I. Markina2 · F. Silva Leite3,4

Received: 30 September 2022 / Accepted: 19 December 2022 / Published online: 9 January 2023
© The Author(s) 2023

Abstract
The objective of the current paper is essentially twofold. Firstly, to make clear the
difference between two notions of rolling a Riemannian manifold over another, using
a language accessible to a wider audience, in particular to readers with interest in
applications. Secondly, we concentrate on rolling an important class of Riemannian
manifolds. In the first part of the paper, the relation between intrinsic and extrinsic
rollings is explained in detail, while in the second partwe address rollings of symmetric
spaces on flat spaces and complement the theoretical results with illustrative examples.
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Intrinsic and extrinsic rolling · Stiefel manifolds
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1 Introduction

In the contemporary literature, there exist twonotions of rolling aRiemannianmanifold
over another, which more recently have also been extended to the semi-Riemannian
case. One of these notions is intrinsic rolling, which does not require that the Rie-
mannian manifolds are embedded. This concept uses the intrinsic geometry of the
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manifolds only, and forRiemannian surfaceswas introduced byAgrachev andSachkov
in [1] and by Bryant and Hsu in [2], and later studied for manifolds of higher dimen-
sions, for instance, in [3, 4] and [8]. Extension to the semi-Riemannian situation
appeared in [21].

Another definition of rolling initiated by Nomizu in [23] and presented more for-
mally by Sharpe in [25] is the extrinsic rolling, which makes use of the isometric
embedding of the manifolds in an ambient (semi)-Euclidean vector space V , so that
the rolling is described in terms of the action of the group SE(V ) of oriented isometries
of V . More recent works that use the extrinsic rolling are, for instance, [6, 11, 12, 16,
18, 20, 22, 26]. As far as we know, only in [8] and [21] both notions of rolling were
addressed, the first for the Riemannian case and the second for the semi-Riemannian
case. These two works are rather theoretical for researchers interested in applications
of rolling motions but that do not have a strong background in differential geometry.

The purpose of the current paper is essentially twofold. Firstly, we want to eluci-
date the difference between the two notions of rolling using a language that is more
accessible to those with practical interest in rolling motions but less familiar with
semi-Riemannian geometry. Secondly, we make transparent the relation between the
geometry of the symmetric spaces and its rolling on flat spaces. Our main message is
that the transitive action τ of a Lie group on a symmetric space completely defines its
rolling along a chosen curve on the manifold. The differential map dτ is the isometry
between the tangent spaces (after an identification of related vector spaces), that also
matches the parallel vector fields on the rolling curves. Examples of semi-Riemannian
symmetric spaces are provided, together with how to construct both types of rollings.
It is always assumed throughout the paper that non-holonomic constraints of no-slip
and no-twist are required in both situations, and the rollings are confined to semi-
Riemannian manifolds.

The organization of the paper is the following. After setting the notation, we discuss
in Sect. 3 the intrinsic rolling versus extrinsic. Section 4 is dedicated to rolling of
symmetric spaces on flat spaces. Finally, we include Sect. 5 with the rolling of Stiefel
manifolds, in order to illustrate the difference in the construction of rolling motions
for a reductive homogeneous manifold, that is not a symmetric semi-Riemannian
manifold.

2 Background and Notations

In this section, we revisit the most important known concepts and results that will be
used in the paper, and introduce the necessary notations. The main reference is the
book of O’Neill [24], where the reader may find further details.

2.1 Semi-RiemannianManifolds

A semi-RiemannianmanifoldM is a smoothmanifold endowedwith a non-degenerate
symmetric tensor g(. , .).Wewrite n = dim M , and denote by p the number of positive
eigenvalues of the tensor g, so that n − p is the number of negative eigenvalues of

123



Symmetric Spaces Rolling on Flat Spaces Page 3 of 33 94

g. The crucial example of a semi-Riemannian manifold is the semi-Euclidean vector
space R

p,n−p with the semi-Euclidean product

〈x, y〉p,n−p =
p∑

k=1

xk yk −
n∑

k=p+1

xk yk, x, y ∈ R
p,n−p.

Another important example is a vector space V with a bilinear symmetric non-
degenerate form (. , .)p,n−p . We will often refer to (. , .)p,n−p as a scalar product
and simply write (. , .) in case there is no need to specify the signature.

Let (V , (. , .)p,n−p) be a semi-Riemannian vector space. The isometric embedding
map will be denoted by

ι : M → V .

On existence of such an embedding see [5]. For the moment, we will identify the
manifold M with its image under the embedding, that is, notationally, ι(M) = M . The
semi-Riemannian metric g(. , .) on the embedded manifold M is inherited from the
semi-Riemannian product (. , .)p,n−p in the ambient space V . The isometric embed-
ding of M into V splits the tangent space of V , at a point m ∈ M , into a direct
sum:

TmV = TmM ⊕ (TmM)⊥, m ∈ M, (1)

where ⊥ denotes the orthogonal complement with respect to (. , .)p,n−p . Note that
the tangent space TmM and the normal space (TmM)⊥ are non-degenerate subspaces
of (V , (. , .)p,n−p). According to this, any vector v ∈ TmV , m ∈ M can be written
uniquely as the sum v = v� + v⊥, where v� ∈ TmM , v⊥ ∈ (TmM)⊥.

In what follows,∇ denotes the Levi-Civita connection on the ambient space V , and
∇ for the Levi-Civita connection on M . If X and Y are tangent vector fields on M ,
and ϒ is a normal vector field on M , then

∇XY (p) = (∇ X̄ Ȳ (p)
)�

, ∇⊥
X ϒ(p) = (∇ X̄ ϒ̄(p)

)⊥
, p ∈ M,

where X̄ , Ȳ , and ϒ̄ are any local extensions to V of the vector fields X , Y , and ϒ ,
respectively. If Z(t) and ϒ(t) are vector fields along a curve α(t), we use Dα(t)

dt Z(t)

to denote the covariant derivative of Z(t) along α(t) and
D⊥

α(t)
dt ϒ(t) for the normal

covariant derivative of ϒ(t) along α(t) (these notations are according to [24, p. 119]).
Again, to simplify notations, in cases where it is clear what is the curve along which

the covariant derivative is considered, we may simply write D
dt and

D⊥
dt instead of the

above. Observe that an isometric imbedding of M into V induces the equalities

D

dt
Z(t) =

(
d

dt
Z(t)

)�
,

D⊥

dt
ϒ(t) =

(
d

dt
ϒ(t)

)⊥
. (2)

123



94 Page 4 of 33 V. Jurdjevic et al.

A tangent vector field Y (t) along an absolutely continuous curve α(t) is tangent
parallel if D

dt Z(t) = 0, for almost every t . Similarly, a normal vector field ϒ(t) along

α(t) is normal parallel if D⊥
dt ϒ(t) = 0, for almost every t .

From now on we assume that all curves are absolutely continuous on some real
interval I = [0, T ], T > 0 and, even if not said, conditions involving derivatives are
valid only for values of the parameter t for which they are well defined.

We denote by SE(V ) the Lie group of semi-Riemannian isometries of the space
(V , (. , .)p,n−p). It can be shown that SE(V ) = SO(V ) � V , where, by abuse of
notation, V is the subgroup of translations on the vector space V , and SO(V ) is
the connected component containing the identity e of the group of isometries O(V ),
preserving the orientation of both positive definite and negative definite subspaces of
V . Elements in SE(V )will be represented by pairs g = (R, s), R ∈ SO(V ), s ∈ V , and
in this representation the action of SE(V ) on V is denoted by (g, v) 
→ g.v := R.v+s,
v ∈ V , where (R, v) 
→ R.v denotes the action of SO(V ) on V . The group product in
SE(V ) is defined as (R2, s2)(R1, s1) = (R2R1, s2 + R2.s1). It then follows that (e, 0)
is the group identity in SE(V ), and (R, s)−1 = (R−1,−R−1.s).

3 Intrinsic Versus Extrinsic Rolling

We want to recall the definition of a rolling of a semi-Riemannian manifold M over
a semi-Riemannian manifold M̂ along a given curve α : I → M with the restrictions
of no-slip and no-twist. There are two notions of such a rolling, commonly referred to
as “intrinsic” and “extrinsic,” that currently exist in the literature. Intrinsic rolling of
the Riemannian manifold, was introduced in [1, 2], and also used, for was introduced,
in [3, 8]. The intrinsic rolling of semi-Riemannian manifolds was studied in [21], and
the extrinsic rolling of particular families of semi-Riemannian manifolds was treated
in [6, 16, 17, 22]. The difference between the two definitions is that an “intrinsic”
rolling does not require that semi-Riemannian manifolds M and M̂ are isometrically
embedded into (V , (. , .)p,n−p), meanwhile an “extrinsic” rolling presumes such an
embedding.

In the following definitions, the semi-Riemannian manifolds (M, g) and (M̂, ĝ)
have equal dimension and the semi-Riemannian metric tensors have equal signature.
To compare the two notions of rolling, the isometries considered in the next two
definitions are restricted to oriented isometries.We call an isometry A : TmM → Tm̂ M̂
oriented if it preserves the orientation of the positive definite and the negative definite
subspaces of TmM and Tm̂ M̂ .

Definition 1 Intrinsic Rolling A curve α(t) on M is said to roll on a curve α̂(t) on M̂
if there exists an oriented isometry A(t) : Tα(t)M → T̂α(t)M̂ such that

˙̂α(t) = A(t)α̇(t), and

A(t)X(t) is a parallel vector field in M̂ along α̂(t) if and
only if X(t) is a parallel vector field inM along α(t).

(3)

The triplet (α(t), α̂(t), A(t)) is called a rolling curve.
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In theRiemannian case, the definition of “extrinsic” rolling initiated byNomizu [23]
and presented more formally by Sharpe [25] makes use of the isometric embedding
of M and M̂ in an ambient space. Here we use a definition of extrinsic rolling that is
more general than that used by [25]. This extended class of rollings is better suited for
making the bridge with control theory and also for comparison with Definition 1. It
includes the presence of a semi-Riemannian vector space (V , (. , .)p,n−p), orientability
for the group of semi-Riemannian motions SE(V ), and the replacement of piecewise
continuous curves by absolutely continuous curves, see also [8, 21].

Definition 2 Extrinsic Rolling An absolutely continuous curve g(t) in SE(V ), defined
on an interval I = [0, T ], is said to roll a curve α(t) in M onto a curve α̂(t) in M̂ ,
without slipping and without twisting, if

1 g(t)α(t) = α̂(t), for all t ∈ I ,
2 dα(t)g(t) Tα(t)M = T̂α(t)M̂ , for all t ∈ I .
3 No-slip condition:

˙̂α(t) = dα(t)g(t) α̇(t), for almost every t;

4 No-twist condition (tangential part)

dα(t)g(t)
D

dt
Z(t) = D

dt
dα(t)g(t) Z(t),

for any tangent vector field Z(t) along α(t) and almost every t ;
5 No-twist condition (normal part)

dα(t)g(t)
D⊥

dt
�(t) = D⊥

dt
dα(t)g(t)�(t),

for any normal vector field �(t) along α(t) and almost every t ;
6 dα(t)g(t)|Tα(t)M : Tα(t)M → T̂α(t)M̂ is orientation preserving.
The curve g(t) that satisfies the above conditions is called rolling map along the
curve α(t) (also called rolling curve), and α̂(t) is the development of α(t) on M̂ .

From now on, we may refer to rolling without slipping and without twisting simply
as “rolling.” The first two conditions in Definition 2 are called “rolling conditions.”
Notice that the second rolling condition and the splitting (1) also imply

dα(t)g(t)(Tα(t)M)⊥ = (T̂α(t)M̂)⊥. (4)

The no-slip and no-twist conditions can be seen as non-holonomic constraints. They
give rise to equations for the velocity of the rolling map, usually called the kinematic
equations of rolling.

At first glance, the no-slip and no-twist conditions inDefinition 2may look different
from those in [25], however, they are equivalent, as proven in [8, 21]. When dealing
with concrete examples these non-holonomic constraints are easier to handle when
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written as in [25]. For that reason, after introducing some necessary notations, we
rewrite conditions 3, 4, and 5 in Definition 2 using the terminology in [25].

For each action g(t) = (R(t), s(t)) ∈ SE(V ) on V , defined by g(t).p = R(t).p +
s(t), the differential (or tangent map) of g(t) at p ∈ V is given by

dpg(t)v := d

dε
g(t).p(ε)

∣∣∣∣
ε=0

= R(t).v, (5)

where ε 
→ p(ε) is a curve in V satisfying p(0) = p, dp
dε

(0) = v. If ġ(t) denotes the
time derivative of the curve g(t), i.e.,

ġ(t).p = d

dε
g(ε).p

∣∣∣∣
ε=t

= Ṙ(t).p + ṡ(t),

then, since g−1 = (R−1,−R−1.s), we can define

(
ġ(t)g−1(t)

)
.p := d

dε
g(ε).(g−1(t).p)

∣∣∣∣
ε=t

= Ṙ(t)R−1(t).(p − s(t)) + ṡ(t), (6)

so that

dp
(
ġ(t)g−1(t)

)
.v := d

dε

(
ġ(t)g−1(t)

)
.p(ε)

∣∣∣∣
ε=0

= Ṙ(t)R−1(t).v. (7)

Proposition 1 Conditions 3, 4 and 5 in Definition 2 are, respectively, equivalent to

3′ No-slip condition:

(ġ(t)g−1(t)).̂α(t) = 0, for almost every t;

4′ No-twist condition (tangential part):

dα̂(t)(ġ(t)g
−1(t)) T̂α(t)M̂ ⊂ (T̂α(t)M̂)⊥, for almost every t;

5′ No-twist condition (normal part):

dα̂(t)(ġ(t)g
−1(t)) (T̂α(t)M̂)⊥ ⊂ T̂α(t)M̂, for almost every t;

It was proved in [25] that given a curve α(t) in M there always exists a unique rolling
map g(t) that rolls a Riemannian manifold M on a Riemannian manifold M̂ along
α. The proof can be literally extended to the rolling of semi-Riemannian manifolds,
since the arguments in [25] do not rely on the positive definite property of the metric
tensor, but rather on being non-degenerate.
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Remark 1 The definition of rolling map does not exclude the possibility that g(t) is
the identity in SE(V ), otherwise the existence of a rolling map for each curve in M
would not be guaranteed. This is clearly seen, for instance, in the system consisting
of a cylinder rolling on the tangent plane at a point, when the rolling curve lies in the
straight line of intersection of the two manifolds.

The no-twist conditions in Definition 2 can also be rewritten in terms of parallel vector
fields as follows. This is particularly important for the comparison with the intrinsic
rolling.

Proposition 2 Conditions 4 and 5 of Definition 2 are, respectively, equivalent to

4′′ No-twist condition (tangential part): A vector field Z(t) is tangent parallel along
the curve α(t) if, and only if, dα(t)g(t)(Z(t)) is tangent parallel along α̂(t).

5′′ No-twist condition (normal part): A vector field �(t) is normal parallel along the
curve α(t) if, and only if, dα(t)g(t)(�(t)) is normal parallel along α̂(t).

Proof We prove the tangential part only. The proof of the normal part can be done
similarly.

It is clear that D
dt Z(t) = 0 if, and only if, D

dt

(
dα(t)g(t)(Z(t))

) = 0. Consequently,
condition 4 of Definition 2 implies condition 4′′ above.

To prove that condition 4′′ implies condition 4 of Definition 2, let Z(t) be an
arbitrary tangent vector field along α(t) and {E1(t), . . . , En(t)}, n = dim(M), be a
parallel tangent frame along α(t), so that

Z(t) =
n∑

i=1

zi (t)Ei (t) and
D

dt
Z(t) =

n∑

i=1

żi (t)Ei (t).

Now define Êi (t) := dα(t)g(t)(Ei (t)). Taking into account assumption 4′, we can
guarantee that {Ê1(t), . . . , Ên(t)} is a parallel tangent frame along the development
curve α̂(t). Since dα(t)g(t) is a linear isomorphism, using properties of the covariant
derivative we obtain

dα(t)g(t)

(
D

dt
Z(t)

)
=

n∑

i=1

żi (t)dα(t)g(t)(Ei (t)) =
n∑

i=1

żi (t)Êi (t)

and

D

dt

(
dα(t)g(t)(Z(t))

) = D

dt

(
n∑

i=1

zi (t)Êi (t)

)
=

n∑

i=1

żi (t)Êi (t).

Therefore, condition 4 in Definition 2 follows. 
�
Remark 2 It is clear from Proposition 2 that the tangent part of the no-twist condition
is always satisfied when the manifolds M and M̂ are one-dimensional, and the normal
no-twist condition is always satisfied when those manifolds have co-dimension one.

123



94 Page 8 of 33 V. Jurdjevic et al.

In order to relate the two seemingly very different definitions of rolling when
both M and M̂ are isometrically embedded in the semi-Riemannian vector space
(V , (. , .)p,n−p), we also need to compare A(t), the part responsible for the isometric
mapping of the tangent spaces in the intrinsic rolling definition, with the rolling map
g(t) = (R(t), s(t)) ∈ SE(V ), in the extrinsic definition.

Since SE(V ) = SO(V )�V and SO(V ) both act on V , if α(t) is a curve in V , then,
for any g(t) = (R(t), s(t)) ∈ SE(V ) and any tangent vector field Z(t) along α(t) we
have

dα(t)g(t).Z(t) = dα(t)R(t)Z(t) = R(t).Z(t). (8)

Remark 3 According to (8), we can refer to the restriction of dα(t)g(t) to Tα(t)M ,
which is the same as the restriction of dα(t)R(t) to Tα(t)M , as the restriction of R(t)
to Tα(t)M . This abuse of terminology simplifies the exposition that follows.

The following proposition provides a relationship between the intrinsic and the
extrinsic rolling when M and M̂ are isometrically embedded in V .

Proposition 3 Assume that (α(t), α̂(t), A(t)) is a rolling curve in the sense of Defini-
tion 1. Let g(t) = (R(t), s(t)) be a curve in SE(V ) such that the restriction of R(t) to
Tα(t)M is equal to A(t) and s(t) = α̂(t) − R(t).α(t). Then g(t) satisfies conditions 1
through 4 and 6 of Definition 2.

Conversely, if g(t) = (R(t), s(t)) is a curve in SE(V ) that satisfies conditions 1
through 4 and 6 of Definition 2, then (α(t), α̂(t), A(t)) is an intrinsic rolling curve,
where A(t) is the restriction of R(t) to Tα(t)M. This happens, in particular, if g(t) is
a rolling map along α(t).

The previous statement is completely obvious in view of Proposition 2, since the
tangential no-twist condition in Definition 2 is equivalent to the parallel transport con-
dition required by the intrinsic rolling. According to the last statement of Proposition
3, if g(t) = (R(t), s(t)) is a rollingmap along α(t)with development α̂(t), we say that
R(t) defines the intrinsic rolling curve (α(t), α̂(t), A(t)), where A(t) := R(t)|Tα(t)M .

Remark 4 We now also see precisely the difference between the rolling of Definition
1 and the rolling of Definition 2. A curve α(t) in M rolls on a curve α̂(t) in M̂
independently of the definition used. However, in the absence of the normal no-twist
condition, the lifting of the isometry A(t) to an isometry dα(t)g(t) in Tα(t)V is not
one to one since the latter can be completely arbitrary on the orthogonal complement
(Tα(t)M)⊥. If A⊥(t) : (Tα(t)M)⊥ → (T̂α(t)M̂)⊥ is amap such that any normal parallel
vector field along α(t) maps to a normal parallel vector field along α̂(t), then g(t) is
completely and uniquely defined by

dα(t)g(t)|Tα(t)M = A(t) and dα(t)g(t)|(Tα(t)M)⊥ = A⊥(t).

The arbitrariness of A(t), which due to Remark 3 can be seen as an arbitrariness of
R(t), is removed by adding the normal part of the no-twist condition, for then there
is a one-to-one correspondence between A(t) that rolls α(t) onto α̂(t) in the sense of
Definition 1 and the rolling map g(t) = (R(t), s(t)) in SE(V ) that rolls α(t) onto α̂(t)
in the sense of Definition 2. In fact, dα(t)(g(t)) is equal to A(t) on the tangent space
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Tα(t)M , and is uniquely determined on the orthogonal complement by the normal
no-twist condition.

We have already seen in Proposition 3 that if g(t) = (R(t), s(t)) is a rolling map
along a curve α(t) with development α̂(t), then the triple (α(t), α̂(t), A(t)), where
A(t) := R(t)|Tα(t)M , is an intrinsically rolling curve. In other words, each extrinsic
rolling map determines a unique intrinsic rolling curve.

However, we may perturb R(t) so that the normal part of the no-twist condition is
violated and still obtain an intrinsic rolling curve of α(t) on α̂(t). The next proposition
makes this statement clear. We use the symbol ◦ to denote the composition of linear
maps.

Proposition 4 Suppose that g(t) = (R(t), s(t)) is a rolling map along the curve α(t)
with development α̂(t), and Ṙ(t) = �(t) ◦ R(t), with �(t) ∈ so(V ). Let R̃(t) be the
solution of

˙̃R(t) = (�(t) + �0(t)) ◦ R̃(t), R̃(0) = R(0), (9)

where �0(t) ∈ so(V ) satisfies

�0(t)(T̂α(t)M̂) = 0, �0(t)(T̂α(t)M̂)⊥ ⊆ (T̂α(t)M̂)⊥. (10)

Then R(t) and R̃(t) define the same intrinsic rolling (α(t), α̂(t), A(t)).

Proof We already know, from previous remark, that R(t) defines the intrinsic rolling
curve (α(t), α̂(t), A(t)), where A(t) = R(t)|Tα(t)M . In order to prove the statement
it is enough to show that R̃(t)|Tα(t)M = A(t). For that, first notice that R and R̃ are
related by R̃(t) = R(t) ◦ S(t), where S(t) ∈ SO(V ) is the solution of

Ṡ(t) = (R−1(t) ◦ �0(t) ◦ R(t)) ◦ S(t), S(0) = I . (11)

Indeed, since S(t) ∈ SO(V ), we have Ṡ(t) = 	(t) ◦ S(t), for some 	(t) ∈ so(V ).
And so,

˙̃R(t) = Ṙ(t) ◦ S(t) + R(t) ◦ Ṡ(t) = (�(t) + R(t) ◦ 	(t) ◦ R−1(t)) ◦ R̃(t),

which according to the assumption ˙̃R(t) = (�(t) + �0(t)) ◦ R̃(t) implies 	(t) =
R−1(t) ◦ �0(t) ◦ R(t). Since by assumption R(t) satisfies

R(t)(Tα(t)M) = (T̂α(t)M̂), and R(t)(Tα(t)M)⊥ = (T̂α(t)M)⊥, (12)

and �0(t) satisfies (10), we conclude that for 	(t) := R−1(t) ◦ �0(t) ◦ R(t),

	(t)(Tα(t)M) = R−1(t) ◦ �0(t)(T̂α(t)M̂) = 0,

	(t)(Tα(t)M)⊥ = R−1(t) ◦ �0(t)(T̂α(t)M̂)⊥ ⊆ R−1(t)(T̂α(t)M̂)⊥
= (Tα(t)M)⊥.
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Now we are going to choose a system of coordinates so that S(t)|Tα(t)M becomes the
identity map; that is S(t)Z(t) = Z(t), for every Z(t) ∈ Tα(t)M . Here we assume
that dim(V ) = N and dim(M) = n < N . Let {b1(t), . . . , bN (t)} be an orthonor-
mal frame in V along α(t) such that, for every t , {b1(t), . . . bn(t)} is a basis for
Tα(t)M and {bn+1(t), . . . , bN (t)} is a basis for (Tα(t)M)⊥. In this system of coordi-

nates	(t)(Tα(t)M) is represented by the block matrix

(
0n,n

0N−n,n

)
, where 0m,n denotes

the zero matrix of sizem×n, while	(t)(Tα(t)M)⊥ is represented by the block matrix(
0n,N−n

	0(t)

)
, where 	0(t) is the projection of 	(t)(Tα(t)M)⊥ on (Tα(t)M)⊥. As a con-

sequence, 	(t) is represented by the block matrix

	(t) =
(

0n,n 0n,N−n

0N−n,n 	0(t)

)
.

So, since Ṡ(t) = 	(t) ◦ S(t), we must have S(t) =
(

In 0n,N−n

0N−n,n S4(t)

)
, from what

follows that S(t)Z(t) = Z(t), for every Z(t) ∈ Tα(t)M , and, consequently,

R̃(t)|Tα(t)M = R(t)|Tα(t)M = A(t).


�
These subtle differences between various notions of rollings are best illustrated

through the comparison of the rolling of a semi-Riemannian manifold M over a flat
manifold M̂ , versus the rolling of M on its affine tangent space M̂ at a fixed point,
when M and M̂ are isometrically embedded in (V , (. , .)p,n−p). We start by revising
general facts about a rolling on affine tangent spaces.

The following important properties of the rolling map of Riemannian manifolds
have also beenproved in [25]. Theproof uses the arguments involving the groupproper-
ties of SE(V ), that are also true for the semi-Riemannian vector space (V , (. , .)p,n−p).

Proposition 5 Let M, M1, and M2 be manifolds of the same dimension, isometrically
embedded in V , and α(t), α1(t) and α2(t) curves in M, M1, and M2, respectively,
defined in the real interval I, that satisfy α(0) = α1(0) = α2(0).

• Symmetric property of rolling
If g(t) ∈ SE(V ) is a rolling map of M on M1 along the rolling curve α(t) with
development curve α1(t), then g−1(t) ∈ SE(V ) is a rolling map of M1 on M,
along the rolling curve α1(t) with development curve α(t).

• Transitive property of rolling
If g(t) ∈ SE(V ) is a rolling map of M on M1 along the rolling curve α(t) with
development curve α1(t), and g1(t) ∈ SE(V ) is a rolling map of M1 on M2 along
the rolling curve α1(t) with development curve α2(t), then g(t)g1(t) ∈ SE(V ), is
a rolling map of M on M2, with rolling curve α(t) and development curve α2(t).

Remark 5 Using these two properties, one can reduce the study of rolling a manifold
on another to the simpler situation when the second manifold is the affine tangent
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space at a point of the first. Properties above have been used in [20] to derive the
kinematic equations of a sphere rolling on another sphere of the same dimension,
using the equations of spheres rolling on affine tangent spaces at a point. Also in the
semi-Riemannian case, these properties have been used in [22] to derive the kinematic
equations for rolling a hyperbolic sphere over another.

4 Rolling of Symmetric Spaces on Flat Manifolds

We start from setting the notation and recalling useful information about symmetric
spaces based on [24].

4.1 Symmetric Spaces

Definition 3 A connected semi-Riemannian manifold
(
M, g

)
is called a semi-

Riemannian symmetric space if for each o ∈ M there exists a diffeomorphic isometric
map ζo : M → M , called the global isometry of M at o, such that doζo = − Id on the
vector space ToM .

The symmetric semi-Riemannian spaces have close relation to Lie groups. The
connected identity component G of the isometry group acts transitively on M . Let
H be the isotropy subgroup of a point o ∈ M . Then M can be identified with the
homogeneous space G/H . Note that the isotropy subgroups of different points are
conjugate subgroups of G. Let g and h be the Lie algebras of the Lie groups G and
H , respectively. Then, the following Cartan decomposition holds,

g = h ⊕ p, [h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h. (13)

We denote by τ : G × M → M , (q,m) 
→ τ(q,m) = q.m the action of G on M .
Then, for any fixed q ∈ G, τq : M → M is a diffeomorphism of M . Recall that a
metric tensor g(. , .) on M is said to be G-invariant if

g(X(m),Y (m)) = g(dmτq(X), dmτq(Y )),

for q ∈ G, and vector fields X ,Y on M . A scalar product 〈. , .〉 in g is said to be
AdH -invariant if

〈 Adh X , AdhY 〉 = 〈X ,Y 〉, h ∈ H , X ,Y ∈ g.

Let π denote the projection of G on the coset manifold, i.e., π : G → G/H = M ,
g 
→ g.o = m. If e is the identity of G, then the map π and the differential map

deπ : TeG = g → ToM (14)

have the following properties, see [24, Chap. 11]:
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1. π : G → G/H = M is a submersion, such that deπ(h) = {0} ⊂ ToM , and
deπ : p → ToM is an isomorphism;

2. deπ makes one-to-one correspondence between AdH -invariant scalar products on
p and G-invariant metrics on M .

Definition 4 Let (M, gM ) and (N , gN ) be two semi-Riemannian manifolds and
π : N → M a submersion such that TnN = Vn ⊕ Hn , with Vn = ker(dnπ). Then π

is called a semi-Riemannian submersion if π−1(m) is a Riemannian submanifold of
N and the direct sum Vn ⊕ Hn is orthogonal at each n ∈ N .

Let M = G/H be a semi-Riemannian symmetric space with G-invariant metric
g(. , .) corresponding to an AdH -invariant scalar product 〈. , .〉 on p, as mentioned
in property 2 before Definition 4. We extend 〈. , .〉 to the entire Lie algebra g such
that the direct sum g = p ⊕ h becomes orthogonal. We denote by Lqh = qh the
multiplication from the left onG. We then define the vertical left-invariant distribution
V by Vq = deLq(h) and the horizontal distribution H by Hq = deLq(p). We keep
the notation 〈. , .〉 for the left-invariant AdH -invariant metric on G induced by the
extended scalar product on g. Under these conditions the projection map π : G → M
is a semi-Riemannian submersion.

We say that a vector field X on G is horizontal if X(q) ∈ Hq for any q ∈ G. An
absolutely continuous curve q : I → G on G is horizontal if q̇(t) ∈ Hq(t) for almost
every t ∈ I , or equivalently, if dq(t)Lq−1(t)q̇(t) ∈ Hq(0).

For a vector field Y on M there is a horizontal vector field Ỹ on G such that
dqπ(Ỹ (q)) = Yπ(q). In particular, this implies that for any absolutely continuous
curve α : I → M there is a horizontal curve q : I → G such that π(q(t)) = α(t) and
dq(t)π(q̇(t)) = α̇(t) for almost every t ∈ I . We call Ỹ and q(t) the horizontal lifts of
Y and α(t), respectively. A horizontal lift q(t) of a curve α(t) is unique, if we specify
the initial value q(0).

The following result will be useful later on.

Lemma 1 Letπ : G → M bea semi-Riemannian submersion onto a semi-Riemannian
symmetric space as above. Let α : [0, T ] → M be an absolutely continuous curve and
Y be a vector field along α. Let q : [0, T ] → G be a horizontal lift of α and Ỹ a
horizontal lift of Y along q. Then

DM
α(t)

dt
Y (t) = dq(t)π

( k∑

j=1

dy j (t)

dt
A j

)
, (15)

where dq(t)Lq−1(t)Ỹ (t) = ∑k
j=1 y j (t)A j is written in terms of a basis {A1, . . . , Ak}

of p.

Proof We denote by ∇G the Levi-Civita connection on G. First we show that

∇G
V W = 1

2
[V ,W ] (16)
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for left-invariant vector fields V ,W ∈ p. Since p and the metric on G are AdH -
invariant, then

〈[V , Z ],W 〉 = 〈V , [Z ,W ]〉, V ,W ∈ p, Z ∈ h, (17)

see, for instance [24, Lemma 3, Chap. 11]. Then for any Z ∈ g and V ,W ∈ pwe have

2〈∇G
V W , Z〉 = −〈V , [W , Z ]〉 + 〈W , [Z , V ]〉 + 〈Z , [V ,W ]〉 (18)

byKoszul formula. If Z ∈ h, then the first two terms on the right-hand side are canceled
by (17). If Z ∈ p, then the first two terms on the right-hand side vanish by [p, p] ⊂ h
and the orthogonality of p and h. It shows (16).

Let π : G → M be a Riemannian submersion, X , Y vector fields on M , and X̃ ,
Ỹ their horizontal lifts to G. We denote prHq

: TqG → Hq the orthogonal projection
onto a horizontal sub-bundle H at q ∈ G. We recall that the Levi-Civita connections
∇M on M and ∇G on G are related by

∇M
X Y = dqπ(prHq

∇G
X̃
Ỹ ), (19)

see [24, Lemma 45, Chap. 7].Wewrite the horizontal lifts X̃ and Ỹ , in the left invariant
basis {A1, . . . , Ak} of p by

dq(t)Lq−1(t) X̃ =
k∑

i=1

xi (t)Ai , dq(t)Lq−1(t)Ỹ =
k∑

j=1

y j (t)A j

Then,

∇G
X̃
Ỹ = ∇G∑k

i=1 xi Ai

k∑

j=1

y j A j =
k∑

i, j=1

xi
(
∇G

Ai
y j A j

)

=
k∑

i, j=1

xi
(
Ai (y j )A j + y j∇G

Ai
A j

)

=
k∑

j=1

( k∑

i=1

(xi Ai )(y j )
)
A j +

k∑

i, j=1

xi y j∇G
Ai
A j

=
k∑

j=1

( k∑

i=1

(xi Ai )(y j )
)
A j + 1

2

k∑

i, j=1

xi y j [Ai , A j ].

Since M is a semi-Riemannian symmetric space we have [Ai , A j ] ∈ h and therefore

prHq
∇G
X̃
Ỹ =

k∑

j=1

( k∑

i=1

(xi (q)Ai )(y j (q))
)
A j .
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Now we set dq(t)Lq−1(t) X̃(t) = dq(t)Lq−1(t)q̇(t) = ∑k
i=1 xi (q(t))Ai and obtain

prHq(t)

DG
q̇(t)Ỹ (t)

dt
= prHq(t)

∇G
q̇(t)Ỹ (t) =

k∑

j=1

(
q̇(t)(y j (q(t)))

)
A j

=
k∑

j=1

dy j (q(t))

dt
A j .

We set X(t) = α̇(t) in formula (19) and obtain (15). 
�

4.2 Intrinsic Rolling of Symmetric Spaces on Flat Manifolds

The definition of a symmetric space is intimately related to the rolling on a flat space.
We aim to construct an intrinsic rolling of a semi-Riemannian symmetric manifold M
on the tangent space ToM = M̂ . Namely, we will find the triplet

(
α(t), α̂(t), A(t)

)

satisfying Definition 1 by using only the data of the symmetric manifold.
The main properties that result from assuming that M is a symmetric space can be

summarized in the following commutative diagrams:

G

Lq
��

π �� M

τq
��

G
π

�� M

g = p ⊕ h

de(Lq)
��

deπ �� ToM

do(τq)
��

TqG = Hq ⊕ Vq
dqπ

�� Tτq (o)M

(20)

Thus we conclude that

π(q) = π(Lq(e)) = τq(π(e)) = τq(o), q ∈ G. (21)

We also recall that, ∀q ∈ G,

Vq = ker(dqπ), h = ker(deπ),

and the map dqπ : Hq → Tτq (o)M is an isometry. Let U ∈ p. Then, from the second
diagram in (20), it follows that

dqπ(deLq(U )) = doτq(deπ(U )). (22)

Now, choose an absolutely continuous curve α : [0, T ] → M such that α(0) = o.
Then, there exists a horizontal curve q : [0, T ] → G that projects to α. More precisely

L1 π(q(t)) = α(t) = τq(t)(o). In the last equality we used (21);
L2 dq(t)π(q̇(t)) = α̇(t);
L3 q̇(t) = deLq(t)U (t), for some curve U ∈ p.
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Combining L3, L2 and (22) we obtain

α̇(t)
L2= dq(t)π(q̇(t))

L3= dq(t)π(deLq(t)U (t))
(22)= d0τq(t)(deπ(U (t))), (23)

and emphasize that both maps dq(t)π and d0τq(t) are isometries between the corre-
sponding spaces, for any t ∈ [0, T ].

Now we define the curve α̂(t) ∈ ToM . For the curve U (t) = dq(t)Lq−1(t)(q̇(t)) on
p, we write deπ(U (t)) ∈ ToM , and by solving the Cauchy problem

{
dα̂
dt = deπ(U (t)) = ˙̂α
α̂(0) = 0,

(24)

we obtain α̂(t). Here we implicitly identified the vector spaces ToM and T̂α(t)(ToM)

by an isometric orientation preserving map j .
We also define A(t) : Tα(t)M → T̂α(t)(ToM) as a composition of the maps

Tα(t)M
L1= Tτq(t)(o)M

(d0τq(t))
−1

−−−−−−→
by (20)

ToM
j−→ T̂α(t)(ToM). (25)

Note that, by the commutative diagram (20), the map A(t) can be defined alternatively
by the composition of the following isometric maps:

Tα(t)M
(dq(t)π)−1

−−−−−−→ Hq(t)

dq(t)Lq−1(t)−−−−−−→ p
deπ−−→ ToM

j−→ T̂α(t)(ToM). (26)

Proposition 6 If α(t), α̂(t), and A(t) : Tα(t)M → T̂α(t)(ToM) are defined as in
Sect. 4.2, the triple (α(t), α̂(t), A(t)) is a rolling curve for the intrinsic rolling of
the manifold M over M̂ = ToM, i.e., it satisfies conditions in Definition 1.

Proof By the construction of A, the condition (3) in the intrinsic rolling for the isometry
A(t) : Tα(t)M → T̂α(t)(ToM) is fulfilled. We need to verify that a parallel vector field
Y along α is mapped to a parallel vector field Ŷ along α̂.

Let Y be a vector field along α(t) = τq(t)(o), where q(t) is a horizontal lift of α(t).
Then Ŷ = A(Y ) is given by

Ŷ (t) = deπ ◦ dq(t)Lq−1(t)(Ỹ (t)) = deπ
( k∑

j=1

ỹ j (t)A j

)
, (27)

where we used (26). We also denoted by Ỹ (t) ∈ Hq(t) the horizontal lift of Y (t),
and write dq(t)Lq−1(t)Ỹ (t) = ∑k

j=1 ỹ j (t)A j , where {A1, . . . , Ak} is a basis for p.
Assume that Y (t) is a parallel vector field along α. Then, using the identity (15) in

Lemma1,dq(t)π
(∑k

j=1
d ỹ j (t)
dt A j

)
= 0. Sincedq(t)π : Hq(t) → Tα(t)M is a bijection,
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we conclude that
d ỹ j (t)
dt = 0 for all j = 1, . . . , k. Then, (27) shows that

dŶ (t)

dt
= deπ

( k∑

j=1

d ỹ j (t)

dt
A j

)
= 0.

Thus Ŷ is a parallel vector field along α̂ on ToM . 
�

4.3 Extrinsic Rolling of Symmetric Spaces on Flat Manifolds

In the present section, we describe the rolling of a semi-Riemannian symmetric man-
ifold M on the flat manifold which is the affine tangent space M̂ = T aff

o M at o ∈ M .
We will connect the intrinsic rolling, described in Sect. 4.2 to the extrinsic rolling,
by choosing an isometric embedding into a vector space V . Let M = G/H be a
semi-Riemannian symmetric manifold. Let

ι : M → V , M = ι(M) (28)

be an isometric embedding. In the present section all the objects related to V will be
marked by a line on top, like the image M = ι(M) ⊂ V of M in V , or o = ι(o) the
image of the isotropy point in V . The map doι is a linear isometry and

doι(ToM) = Tι(o)M = ToM ⊂ V . (29)

We define
M̂ := T aff

o M = o + ToM . (30)

Note that diagram (20) implies that any W ∈ ToM can be written as

W = doι(W ) = doι(deπ(U )), where W ∈ ToM, U ∈ p. (31)

We assume that ρ : G → GL(V ) is a representation of G on V , and define

G := ρ(G). (32)

The action of G on M is denoted by q.m, with q = ρ(q) ∈ G and m ∈ V , to

emphasize that the group G acts on both M and M̂ as it does on vectors in V . We keep
writing τq for the action of q ∈ G on M . Moreover, we assume that the imbedding
map ι is equivariant under these actions, i.e.,

ι(τq(m)) = q.(ι(m)) = q.m. (33)

We know that G acts on the symmetric space M by isometries and ι : M → V is
an isometric embedding. So, since the metric on M is the restriction of the metric on
V , G = ρ(G) must preserve the metric on V . As a consequence, G ⊂ SO(V ).
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The group representation ρ induces the Lie algebra representation deρ that maps
A ∈ g to Ā ∈ ḡ ⊂ so(V ). Let (. , .) denote the scalar product on ḡ, defined by

( Ā, B̄) := 〈A, B〉.

Then p̄ = deρ(p) is the orthogonal complement to h̄ = deρ(h) in ḡ relative to (. , .),
and ḡ = h̄ ⊕ p̄ is a Cartan decomposition.

Define the map P : G → M by

P(ρ(q)) = ι(π(q)). (34)

The map P is smooth, as a composition of smooth maps.
Differentiating (33), we get that the lower part of the following diagram commutes,

while differentiating (34) we also get that the upper part of this diagram commutes.

p

deπ
��

deρ �� p

p = deP
��

ToM

doτq
��

doι �� ToM

doq
��

Tτq (o)M
dτq (o)ι�� Tq.oM

(35)

Here all the linear maps are bijective isometries.
We take an absolutely continuous curve α : [0, T ] → M , α(0) = o, and its hori-

zontal lift
q : [0, T ] → G, dq(t)Lq−1(t)q̇(t) = U (t) ∈ p, (36)

such that α(t) = τq(t)(o). This and the equivariance of ι given by (33) imply that

α(t) = ι(α(t)) = ι(τq(t)(o)) = q(t).o, (37)

where q : [0, T ] → G is horizontal, i.e., q̄−1q̇ ∈ p̄. But then,

α̇(t) = dα(t)ι(α̇(t)) = dα(t)ι ◦ doτq(t)(deπ(U ))

= doq(t)(p ◦ deρ(U )) = doq(t)(W ) (38)

where U ∈ p from (36), and W := p ◦ deρ(U ) ∈ ToM , by diagram (35). Since q(t)
is a linear map, then doq(t) = q(t) and we simply writeW (t) = q(t)−1. α̇(t) for q(t)
from (37).
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We are ready to define α̂ ∈ M̂ = T aff
o M . For that, find a curve s : [0, T ] → ToM

as the solution of the Cauchy problem

{
ṡ(t) = W (t) = q(t)−1.α̇(t)

s(0) = 0
(39)

and set α̂(t) = o + s(t) ∈ T aff
o M .

Proposition 7 In the notation of Sect. 4.3, there is R : [0, T ] → SO(V ) such that
g(t) = (R(t), s(t)) ∈ SE(V ) is a rolling map that rolls the curve α(t) ∈ M onto the

curve α̂(t) ∈ M̂ = T aff
o M, where α̂(t) = o + s(t).

We emphasize that for the rollingmap g(t) in the statement of this proposition, one has
the freedom to define R(t)|T⊥M such that g(t) satisfies the normal no-twist condition.
The no-slip and tangent no-twist conditions are determined by the intrinsic rolling,
the latter being the nature of symmetric spaces.

Proof The proof is constructive. Since s is the solution of (39), it is enough to define
R(t) ∈ SO(V ) so that g(t) = (R(t), s(t)) ∈ SE(V ) satisfies the conditions in Defini-
tion 2.

Let R(t) be such that

dα(t)R(t)|Tα(t)M
(X(t)) = q(t)−1. X(t), (40)

for any tangent vector field X(t) along α(t) and R(0) = e.
Using (38) and (39), we see that g(t) satisfies the no-slip condition

dα(t)g(t)(α̇(t)) = q(t)−1. α̇(t) = ṡ(t) = ˙̂α(t).

Now, we show that if R(t) is defined as above, then g(t) = (R(t), s(t)) satisfies
the tangent no-twist condition given in Proposition 2. Let X(t) be a tangent parallel
vector field along α(t). Notice that, from the bottom of diagram (35), dαι is a bijective
isometry between TαM and TαM . Since, according to [24, Proposition 3.59], the
covariant derivative on M is the pullback of the covariant derivative on M under the
isometries, the vector field X(t) = (

dα(t)ι
)−1

(X(t)) is parallel along α(t) on M .
Moreover, diagram (35) shows that the parallel vector field X(t) is mapped to the

parallel tangent vector field X̃(t) along s(t) on ToM due to Lemma 1 and the isometric

embedding. As a consequence, the vector field X̂(t) along α̂ on M̂ = T aff
o M is parallel.

As was mentioned earlier on, the condition (40) on R(t) still leaves freedom on
how dα(t)R(t) acts on the normal space T⊥

α(t)M . In order to guarantee that g(t) =
(R(t), s(t)) ⊂ SE(V ) also satisfies the normal no-twist condition, we define the
(unique) map R(t) along α on M such that the differential dα(t)R(t)|T⊥

α(t)M
maps the

normal parallel vector fields along α to the normal parallel vector fields along α̂ on

M̂ = T aff
o M . 
�
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Remark 6 In relation to the last part of the proof of Proposition 7, we point out that
in [8, Sect. 3.3] a complete answer was given to the problem of extending intrinsic
rollings to extrinsic ones. We also refer to [18] for no-twist conditions in the case of
embedded sub-Euclidean manifolds.

Corollary 1 If M has co-dimension 1, let α(t) = q(t).o be a curve in M, satisfying
α(0) = o, where q(t) is a horizontal curve in G and q̇ = q .U (t). Then, (R(t), s(t)) ∈
SE(V ) is a rolling map of M on M̂ along α(t), with development α̂(t) = s(t) + o,
where R(t) = q(t)−1 and s(t) satisfies the Cauchy problem ṡ(t) = U (t).o, s(0) = 0.
Moreover, {

Ṙ(t) = −U (t).R(t)
ṡ(t) = U (t).o

, (41)

are the corresponding kinematic equations.

Proof For manifolds of co-dimension 1, the normal no-twist condition is always sat-
isfied. So, taking into account (40) and Remark 3, we have R(t) = q(t)−1. So,

Ṙ(t) = −U (t)R(t). According to (39), ṡ(t) = q(t)−1.α̇(t). But α̇(t) = q̇(t).o, so it
follows that ṡ(t) = q(t)−1q̇(t).o = U (t).o. 
�

4.4 Examples

We will exemplify the results of Sects. 4.2 and 4.3.

4.4.1 Rolling the 2-Dimensional Hyperbolic Space

First we describe the hyperbolic disc as a symmetric manifold, and construct the
intrinsic and extrinsic rolling on the corresponding flat spaces. We refer to [19] for
more details about hyperbolic spaces and the relationship between two of its equivalent
models, which will be used in this section.

Let D be the unit disk {z ∈ C : |z| < 1} in R
2, with the hyperbolic metric given

in coordinates (x1, x2) by h2 = 4 (dx1)2+(dx2)2(
1−(x21+x22 )

)2 . D is also known as the Poincaré ball

model. The Lie group

G = SU(1, 1) =
{
g =

(
a b
b̄ ā

)
: a, b ∈ C, |a|2 − |b|2 = 1

}

acts transitively on D via the Möbius transformations, i.e.,

τg(z) = az + b

b̄z + ā
, τg(0) = b

ā
.
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Let H :=
{(

a 0
0 ā

)
, |a|2 = 1

}
be the isotropy subgroup of 0 ∈ D. The projection

map is
π : G → D = G/H

g =
(
a b
b̄ ā

)

→ τg(0) = b

ā .
(42)

The Lie algebra g of G is given by

g = su(1, 1) =
{(

iv u1 + iu2
u1 − iu2 −iv

)
: v, u1, u2 ∈ R

}
.

We endow g with an AdG-invariant semi-Riemannian metric defined by 〈X ,Y 〉 =
2 tr(XY ) = 1

2 B(X ,Y ), B(. , .) being the Killing form. The matrices

A1 = 1

2

(
i 0
0 −i

)
, A2 = 1

2

(
0 1
1 0

)
, A3 = 1

2

(
0 i
−i 0

)
(43)

form an orthonormal basis of g.
The Lie algebra h of the isotropy subgroup H is spanned by A1 and its orthogonal

complement p is spanned by A2 and A3. Note that the restriction of 〈. , .〉 to p is
positive definite. From the commutation relations, we conclude that g = h ⊕ p is a
Cartan decomposition of g.

A curve z(t) in D lifts to a horizontal curve

g(t) = 1√
1 − |z(t)|2

(
1 z(t)

z̄(t) 1

)
eθ(t)A1 ∈ G,

when θ̇ = −2
1−|z|2 (x1 ẋ2 − ẋ1x2). In such case,

g−1ġ = 1

1 − |z|2
(

0 ż e−iθ

˙̄z eiθ 0

)
. (44)

The proof of these two facts regarding lifts of curves can be found in [15, pages 97,
98], modulo minor obvious misprints.
• Intrinsic rolling of D on T0D.

We now apply the theory developed at the beginning of this section for the intrinsic
rolling of M = D on M̂ = T0D. Let α(t) be a curve in D satisfying α(0) = 0.

Define u(t) := α̇(t) e−iθ(t)

1 − |α(t)|2 , so that the horizontal lift of α to G satisfies g−1ġ =
(

0 u(t)
u(t) 0

)
=: U (t), g(0) = I . Notice that α(t) = τg(t)(0) = b(t)

ā(t) . According to

(24), the curve α̂(t) is the solution of the initial value problem ˙̂α(t) = deπ(U (t)) =
u(t), α̂(0) = 0.
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The isometry A(t):Tα(t)M → Tα̂(t)M̂ is obtained explicitly using (25) and it is
given by

A(t)v(t) = (
doτg(t)

)−1 = a(t)2v(t), v(t) ∈ Tα(t)M .

• Extrinsic rolling of D on T aff
0 D

The rollings of D can be also represented “extrinsically” after embedding D in
a vector space and defining an appropriate representation of G. Here, we consider
the embedding of D in V = R

1,2, which is R
3 equipped with the Minkowski metric

dm2 = −(dx1)2 + (dx2)2 + (dx3)2. V is isometric to (su(1, 1), 〈. , .〉). The isometric
diffeomorphism

ι : D → R
1,2

z = x2 + i x3 
→ ι(z) = (
1+|z|2
1−|z|2 ,

2x3
1−|z|2 ,

−2x2
1−|z|2 )

(45)

is obtained via the hyperbolic stereographic projection through the point (−1, 0, 0)
and an appropriate change of coordinates. Then

ι(D) = H2 = {(x1, x2, x3) : x21 = 1 + x22 + x23 , x1 > 0}. (46)

Now define G = AdG . It is known that [9, 24] G ⊂ SO(V ) = SO+(1, 2), that is
the connected identity component of

SO(1, 2) = {X ∈ SL(3, R) : XT I1,2X = I1,2}, I1,2 =
⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ .

Indeed, calculating gA j g−1, j = 1, 2, 3, with g =
(
a b
b̄ ā

)
, |a|2 − |b|2 = 1, we

obtain

Adg =
⎛

⎝
|a|2 + |b|2 2 Im(āb) −2 Re(ab̄)
2 Im(ab) Re(a2 − b2) − Im(a2 + b2)

−2 Re(ab) Im(a2 − b2) Re(a2 + b2)

⎞

⎠ . (47)

It can be shown that Adg I1,2 Adg = I1,2, for all g ∈ G, and the determinant of the
diagonal blocks is in both cases equal to |a|2 + |b|2 > 0, so Adg ∈ SO+(1, 2). It
follows that ġ(0) 
→ adġ(0) defines a Lie algebra isomorphism deρ, between g =
su(1, 1) and ḡ = so(1, 2). Since [A1, A2] = A3, [A1, A3] = −A2, and [A2, A3] =
−A1, an easy calculation yields

A = 1

2

(
iv u
ū −iv

)

→ adA =

⎛

⎝
0 u2 −u1
u2 0 −v

−u1 v 0

⎞

⎠ , u = u1 + iu2. (48)
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We also have the Cartan decomposition so(1, 2) = h ⊕ p, where

h = span

⎧
⎨

⎩

⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠

⎫
⎬

⎭ , p = span

⎧
⎨

⎩

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ,

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠

⎫
⎬

⎭ ,

h is the Lie algebra of the isotropy subgroup of SO(1, 2) at e1.
We also need to guarantee that the embedding ι is equivariant relative to G, i.e.,

ι(τg(z)) = Adg(ι(z)), for every z ∈ D and g ∈ G. We first show that this identity is
true for z = 0, and then use the transitive action of G on D to prove the general case.

ι(τg(0)) = ι( bā ) = ι( 1
|a|2 Re(ab), 1

|a|2 Im(ab))

= (|a|2 + |b|2, 2 Im(ab),−2 Re(ab)
)

= Adg(e1) = Adg(ι(0)).

(49)

Now, let h := 1√
1−|z|2

(
1 z
z̄ 1

)
∈ SU(1, 1), so that z = τh(0). Using this and the

identity (49), we can write, for each g ∈ G and z ∈ D,

ι(τg(z)) = ι(τg(τh(0))) = ι(τgh(0)) = Adgh(ι(0))

= Adg( Adh(ι(0))) = Adg(ι(τh(0)) = Adg(ι(z)).
(50)

We are finally in conditions to deal with the extrinsic rolling of the hyperboloidH
on its affine tangent space at e1, resulting from the action of SO+(1, 2). Since H2 is
co-dimension 1, Corollary 1 applies and (R(t), s(t)) is a rolling map along the curve
α(t) = g(t)e1. The kinematic equations for the extrinsic rolling of H2 on T aff

e1 H are,

⎧
⎨

⎩

Ṙ(t) = −U (t)R(t)

ṡ(t) = U (t)e1

, U =
⎛

⎝
0 u1 u2
u1 0 0
u2 0 0

⎞

⎠ . (51)

This agrees with the results reported in [16].

4.4.2 The Projective Complex Plane and the Riemann Sphere

This is another example where the natural geometry on M is induced by the structure
of G. The rollings of the projective space CP1, identified with the extended complex
plane C ∪ ∞, on its tangent planes can be obtained essentially in the same way as
in the case of the Poincaré disk, with obvious adaptations. For this reason we omit
certain details here.

Consider the projective planeM = CP1 with the ellipticmetric given in coordinates

(x1, x2) by l2 = 4 (dx1)2+(dx2)2(
1+(x21+x22 )

)2 . The Lie group G = SU(2) acts transitively on M . The
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isotropy group of the origin z = 0 is H =
{(

a 0
0 ā

)
, |a| = 1

}
. We endow g = su(2)

with the metric 〈X ,Y 〉 = −2 tr(XY ). Relative to this metric, the matrices

A1 = 1

2

(
i 0
0 −i

)
, A2 = 1

2

(
0 1
−1 0

)
, A3 = 1

2

(
0 i
i 0

)
(52)

form an orthonormal basis of g. The Lie algebra h and the complementary space p are
given by

h = {1
2

(
iv 0
0 −iv

)
: v ∈ R}, p = {1

2

(
0 u

−ū 0

)
, u ∈ C}.

The horizontal lift of a curve α(t) = x1 + i x2 in CP1 to SU(2) is given by g(t) =
1√

1+|α(t)|2

(
1 α(t)

−ᾱ(t) 1

)
eθ(t)A1 , with θ being a solution of θ̇ = 2

1+|α|2 (x1 ẋ2 − ẋ1x2).

• Intrinsic rolling of CP1 on T0CP1

We are ready to deal with the intrinsic rolling of M = CP1 on its tangent space at

z = 0. Letα(t) be a curve inCP1 satisfyingα(0) = 0, and define u(t) := α̇(t) e−iθ(t)

1 + |α(t)|2 ,

so that the horizontal lift g(t) ∈ SU(2)ofα satisfies g−1ġ =
(

0 u(t)
−u(t) 0

)
=: U (t) ∈

p, g(0) = I . So, according to Proposition 6, the curve α(t) in CP1 rolls on the curve
α̂(t) in T0CP1 which is the solution of ˙̂α(t) = u(t), α̂(0) = 0.

The isometry (that preserves the elliptic metric) is given explicitly by

A(t) = (d0τg(t))−1 : Tα(t)M → T̂α(t)M̂
v(t) 
→ v(t)a(t)2

.

So, (α, α̂, A) is a rolling curve for the intrinsic rolling of CP1 on its tangent space at
0.
• Extrinsic rolling of CP1 on T aff

0 CP1

For the extrinsic rolling, we embed CP1 in the 3-dimensional Euclidean space,
through the passage to the Riemann sphere S2 via the inverse of the stereographic
projection and a change of coordinates. This isometric embedding is defined by

ι : CP1 → R
3

z = x + iy 
→ ι(z) =
( −2x

1 + |z|2 ,
|z|2 − 1

1 + |z|2 ,
−2y

1 + |z|2
)

. (53)

Clearly ι(CP1) = S2, and ∞ is mapped to the north pole of S2.
In this case

Adg =
⎛

⎝
|a|2 − |b|2 −2 Im(āb) 2 Re(āb)
2 Im(ab) Re(a2 + b2) − Im(a2 − b2)

−2 Re(ab) Im(a2 + b2) Re(a2 − b2)

⎞

⎠ ∈ SO(3), (54)
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so, we define ρ(SU(2)) = G = AdG = SO(3). The Lie algebra isomorphism
deρ : su(2) → so(3, R) is defined by

A = 1

2

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)

→ adA =

⎛

⎝
0 −u3 u2
u3 0 −u1

−u2 u1 0

⎞

⎠ . (55)

Clearly, p = span

⎧
⎨

⎩

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠

⎫
⎬

⎭. Since the embedding defined

in (53) is equivariant relative to the adjoint group SO(3), we can finally applyCorollary
1 to obtain the extrinsic rolling of the Riemann sphere on its affine tangent space at the
south pole −e3, along the curve α(t) = g(t)(−e3), where g(t) is horizontal. Assume
that

g(t)−1ġ(t) = U (t) =
⎛

⎝
0 0 u1(t)
0 0 u2(t)

−u1(t) −u2(t) 0

⎞

⎠

Then, the kinematic equations are

{
Ṙ(t) = −U (t)R(t)
ṡ(t) = −U (t) e3

, (56)

with U as above. These equations are the same as the equations for the ball–plate
problem [13], or the equations for the sphere rolling on a plane [12, 14].

4.4.3 Rolling Semi-Riemannian Orthogonal Groups

Here we consider M to be the connected component containing the identity of the
semi-Riemannian orthogonal group O(p, n − p), 1 ≤ p ≤ n − 1, consisting of
invertible n × n real matrices P , satisfying P J P = In , where J = diag(Ip,−In−p),
and P J := J T PT J . The Lie algebra of O(p, n− p), denoted by so(p, n− p), consists
of n×n matrices B satisfying BJ = −B. If we consider P ∈ O(p, n− p) partitioned

as P =
(
P1 P2
P3 P4

)
, where P1 is p × p, then

M = SO+(p, n − p)
= {P ∈ O(p, n − p) : det(P) = 1, det(P1) > 0, det(P2) > 0} .

(57)

We consider M equipped with the semi-Riemannian metric defined by

〈B,C〉J := tr (BJC). (58)

Consider the Lie group G := SO+(p, n − p) × SO+(p, n − p), equipped with
the natural semi-Riemannian metric induced by (58) on each component, which is
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bi-invariant. G acts transitively on M with action

τ : G × M → M
((Q1, Q2), P) 
→ Q1PQ−1

2
. (59)

Fixing a point P0 ∈ M , the projection π : G → M maps (Q1, Q2) to Q1P0Q
−1
2 .

The isotropy subgroup at P0 is

H =
{
(Q1, Q2) ∈ G : Q1P0Q

−1
2 = P0

}
, (60)

and M = G/H . Of course, the semi-Riemannian metric (58) on M is also AdH -
invariant. The Lie algebra g = so(p, n − p) ⊕ so(p, n − p) splits as g = h ⊕ p,
where

h =
{
(B, P−1

0 BP0) : B ∈ so(p, n − p)
}

p =
{
(C,−P−1

0 CP0) : C ∈ so(p, n − p)
} , (61)

and this orthogonal splitting satisfies (13).
• Intrinsic rolling of M = SO+(p, n − p) on M̂ = TP0 SO

+(p, n − p).
We now apply the results obtained in Sect. 4.2 for the intrinsic rolling of M =

SO+(p, n − p) on its tangent space at the point P0. Note that the differential of π at
(e, e), the identity in G, is given by

d(e,e)π : g → TP0M
(U1,U2) 
→ U1P0 − P0U2

, (62)

and the kernel of d(e,e)π is h. So, d(e,e)π defines an isomorphism between p and TP0M ,
mapping (U ,−P−1

0 U P0) to 2U P0.
Let α(t) be a curve in M satisfying α(0) = P0, and Q(t) a horizontal lift of α(t)

to G, i.e., π(Q(t)) = α(t) and Q−1 Q̇ = (U (t),−P−1
0 U (t)P0), for some curve

U (t) ∈ so(p, n − p). Then, according to (24), Sect. 4.2, the curve α(t) ∈ M rolls on
the curve α̂(t) ∈ M̂ defined by

˙̂α(t) = 2U (t)P0, α̂(0) = 0,

and the isometry A(t) is defined in (25) as the inverse of dP0τQ(t). Since for Q =
(Q1, Q2),

dP0τQ : TP0M → TQ1P0Q
−1
2
M

CP0 
→ Q1CP0Q
−1
2 = Q1CQ−1

1 Q1P0Q
−1
2

,

where C ∈ so(p, n − p), with the identification of the vector spaces TP0M and
T̂α(t)(TP0M), we finally obtain

A(t) : Tα(t)M → T̂α(t)M̂
DQ1P0Q

−1
2 
→ Q−1

2 DQ2P0, D ∈ so(p, n − p)
.
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In conclusion, the triple (α(t), α̂(t), A(t)) is a rolling curve in the sense of Definition
1.
• Extrinsic rolling of M = SO+(p, n− p) on M̂ = T aff

P0
SO+(p, n− p). We embed M

and M̂ isometrically on the semi-Euclidean vector space V = (gl(p, n − p), 〈. , .〉J ),
and identify ι(M) and ι(M̂) with M and M̂ , respectively. In this case, also the repre-
sentation ρ of G on V is the identity map, so we can write everything in Proposition
7 without using overlines. The equivariance property (33) is also trivially satisfied,
and the action of G on V is simply the extension of the action (59) from M to the
embedding space V . Notice that

TP0 SO
+(p, n − p) = {BP0, BJ = −B},

T⊥
P0
SO+(p, n − p) = {CP0, C J = C}.

(63)

We now find the rolling map g(t) = (R(t), s(t)) ∈ SE(V ) along the curve α(t) =
Q1(t)P0Q

−1
2 (t) in M , satisfying α(0) = P0 where Q(t) = (Q1(t), Q2(t)) is a

horizontal lift ofα(t) toG. So, Q−1 Q̇ ∈ p, i.e., Q−1 Q̇ = (Q−1
1 Q̇1,−P−1

0 Q−1
1 Q̇1P0).

Defining U := Q−1
1 Q̇1, we have Q−1 Q̇ = (U ,−P−1

0 U P0), and after a few simple
calculations, we get α̇(t) = Q1(t)(2U (t)P0)Q

−1
2 (t). So, according to Proposition 7,

s(t) is the only solution of

ṡ(t) = 2U (t)P0, s(0) = 0.

We also know that, for every tangent vector field X(t) along α(t)

dα(t)R(t)|Tα(t)M (X(t)) = Q(t)−1 X(t),

and the tangent no-twist condition is satisfied. For a general symmetric space this is
not enough to define a rolling map in the sense of Definition 2, because the normal no-
twist condition also requires that we know how to define dα(t)R(t)|T⊥

α(t)M
. However,

for this particular example, it turns out that if dα(t)R(t) = Q(t)−1, the normal no-twist
condition is also satisfied.

To show this we rewrite the normal no-twist condition 5 of Definition 1 in its
equivalent form given in 5′ of Proposition 1. Taking into consideration that

T̂α(t)M̂ = TP0 SO
+(p, n − p) and T⊥

α̂(t)M̂ = T⊥
P0 SO

+(p, n − p),

and using (63), the normal no-twist condition is equivalent to prove that for every
B = −BJ , (R−1 Ṙ)(BP0) is always of the form CP0, for some matrix C satisfying
C = C J . But R−1 Ṙ = (U ,−P−1

0 U P0) and U J = −U , so

(R−1 Ṙ).(BP0) = UBP0 + BP0P
−1
0 U P0 = (UB + BU )P0 = CP0
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where C = UB + BU = (UB + BU )J = C J . Writing R = (R1, R2), the kinematic
equations are ⎧

⎨

⎩

ṡ(t) = 2U (t)P0
Ṙ1(t) = −U (t)R1

Ṙ2(t) = P−1
0 U (t)P0R2(t)

, (64)

with initial conditions s(0) = 0, R(0) = (e, e). This coincides with the results in [6].

5 Rolling Stiefel Manifolds on Affine Tangent Spaces

We will now narrow our discussion to the Stiefel manifolds Stnk equipped with the
Riemannianmetric inherited from the ambient Euclidean vector spaceMnk consisting
of n × k matrices. Rolling motions of Stiefel manifolds were already studied in [10],
but in this section we present an alternative approach, where a different representation
of Stiefel as a homogeneous space is used, and also take advantage of the fact that
any curve in a homogeneous space G/K is the projection of a horizontal curve in G.
The results are independent of the chosen representation, but for the one used here the
calculations become simpler.

There are two compelling reasons for including the Stiefel manifold in this paper.
Firstly, because it is the only case outside ofG-invariant Riemannian manifolds where
the rolling equations are explicitly calculated, and secondly because it illustrates the
relevance of the normal no-twist condition for rollingmanifolds that are homogeneous
spaces but not symmetric spaces.

5.1 Stiefel Manifold

Let V = Mnk denote the set of n×k real matrices, endowed with the positive definite
scalar product 〈N , M〉 = tr(NT M). The case n = k will be denoted by gl(n). We
define the action of gl(n) on V through the linear homomorphism

ρ : gl(n) → gl(V )

A 
→ ρA

with ρA(M) = AM , M ∈ V . Under this convention, we obtain d
dt ρA(t) = ρ Ȧ(t) for

any smooth enough curve A(t) in gl(n). Moreover, the restriction of ρ to the group
SO(n) is a group homomorphism ρ : SO(n) → SO(V ) which is also isometric.

The Stiefel manifold Stnk consists of ordered sets of k orthonormal vectors in R
n .

Here we assume that 1 < k < n. Any ordered set m1, . . . ,mk of orthonormal vectors
can be identified with a matrix M whose columns are m1, . . . ,mk . Any such matrix
M satisfies MT M = Ik , where Ik is the k × k identity matrix, and MT is the matrix
transpose ofM . Thismatrix representation realizes Stnk as an isometrically embedded,
compact, and connected, submanifold of the Euclidean vector space V = Mnk , which
we continue to denote by Stnk .

Stnk can be also viewed as a homogeneous space. In what follows {e1, . . . , en}
denotes the standard basis in R

n and E denotes the matrix with columns e1, . . . , ek .
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The group SO(n) acts transitively on Stnk . Thus Stnk can be identified with the orbit
{ρQ(E) : Q ∈ SO(n)}. The isotropy subgroup H = {Q ∈ SO(n) : ρQ(E) = E}
reduces tomatrices Q =

(
Ik 0
0 X

)
, with X ∈ SO(n−k). Evidently H is isomorphic to

SO(n−k) and consequently Stnk = SO(n)/SO(n−k). It follows that so(n) = p⊕h,
where

h =
{(

0 0
0 C

)
, C ∈ so(n − k)

}
,

p =
{(

A −BT

B 0

)
, A ∈ so(k), B ∈ M(n−k)k

}
.

(65)

One can easily verify that h is the Lie algebra of H , p is the orthogonal complement
to h relative to the trace metric 〈M1, M2〉 = − tr(M1M2), and

[h, h] ⊂ h, [p, h] = p, h ⊂ [p, p]. (66)

The latter algebraic property shows that the Stiefel manifold Stnk is not a symmetric
space. The metric coming from the action of SO(n) on Stiefel is not the trace metric
induced by the above decomposition, and the parallel transport relative to the metric
induced by the trace metric on Stnk does not have a simple description because of the
condition h ⊂ [p, p]. Although the general approach, developed in Sect. 4.2, for the
construction of rolling symmetric spaces cannot be used here, wemanage to overcome
the difficulties.

The projection map π : SO(n) → Stnk = SO(n)/SO(n − k) is given by π(Q) =
QE = ρQ(E). It is a submersion, and deπ : p → TE Stnk is an isomorphism,mapping
U ∈ p toUE . Thegrouphomomorphismρ : SO(n) → SO(V ) induces theLie algebra
homomorphism so(n) → so(V ). We will use the same notation p, h for the images of
p, h under the Lie algebra homomorphism.

It follows, see for instance [7], that the tangent to Stnk at a point P ∈ Stnk is given
by

TP Stnk = {W ∈ Mnk : WT P + PTW = 0}. (67)

Remark 7 A simple calculation using (67) shows that for Q ∈ SO(n), we have
TQP Stnk = QTP Stnk .

In particular,

TE Stnk =
{(

A
B

)
, A ∈ so(k), B ∈ M(n−k)k

}
⊂ Mnk . (68)

Hence, its orthogonal complement inMnk is

T⊥
E Stnk =

{(
S
0

)
, S ∈ Mkk, ST = S

}
. (69)
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The orthogonal complement is further decomposed as

T⊥
E Stnk = VE ⊕ slkk, (70)

where VE is the linear span of E , and its orthogonal complement, denoted by slkk is
defined as

slkk =
{(

S
0

)
, S ∈ Mkk, ST = S, tr(S) = 0

}
.

5.2 Extrinsic Rolling of Stnk

We will now turn our attention to the rollings of curves in M = Stnk on M̂ =
T aff
E Stnk := E + TE Stnk which is the affine tangent space at E . According to

Definition 2, curves α(t) in Stnk are rolled on curves α̂(t) in M̂ by rolling maps
g(t) = (R(t), s(t)) in SE(V ) = SO(V ) � V under the action g(t)(α(t)) =
R(t)(α(t)) + s(t) = α̂(t). The fact that SO(n) acts transitively on Stnk implies that
there is a unique horizontal curve Q(t) ∈ SO(n), Q(0) = In , that projects on α(t),
that is, ρQ(t)(E) := Q(t)E = α(t), and Q−1(t)Q̇(t) ∈ p.

We will now assume that R(t)−1 = ρQ(t) ◦ S(t) for some curve S(t) in the isotropy
subgroup

K = {S ∈ SO(V ) : S(E) = E}. (71)

The choice of Q(t) as a horizontal lift of α(t) implies that R(t)(α(t)) = E ,
since R(t)−1(E) = ρQ(t) ◦ S(t)(E) = ρQ(t)(E) = α(t). But then, g(t)(α(t)) =
R(t)(α(t)) + s(t) = E + s(t) = α̂(t), and by the requirement of the first rolling
condition in Definition 2, we must have

s(t) ∈ TE Stnk, and so, ṡ(t) = ˙̂α(t). (72)

In what follow we will find the condition on S(t) such that g(t) = (
R(t), s(t)

)

satisfies the no-slip and both no-twist constrains. According to the second rolling
condition in Definition 2,

dα(t)g(t)(Tα(t) Stnk) = R(t)(Tα(t) Stnk) = TE Stnk . (73)

Remark 7 and ρQ(t)(E) = α(t) lead to

dEρQ(t)(TE Stnk) = ρQ(t)(TE Stnk) = Tα(t) Stnk .

Therefore,

TE Stnk = R(t)(Tα(t) Stnk) = S−1 ◦ ρQ−1(Tα(t) Stnk) = S−1(TE Stnk).

123



94 Page 30 of 33 V. Jurdjevic et al.

Hence, S(TE Stnk) = TE Stnk , and since S is an isometry in V , we also have
S(T⊥

E Stnk) = T⊥
E Stnk . So,

S(TE Stnk) = TE Stnk, S(T⊥
E Stnk) = T⊥

E Stnk . (74)

Moreover, since S(E) = E and S is an orthogonal transformation,

S(VE ) = VE , S(slkk) = slkk . (75)

We recall from the beginning of this section that ˙ρQ(t) := ρQ̇(t) for Q(t) ∈ SO(n).

The no-slip condition requires that Ṙ(t)(α(t)) + ṡ(t) = 0, or,

Ṙ(t) ◦ R(t)−1(E) = −ṡ(t). (76)

Since R = S−1 ◦ ρQ−1 , we have

Ṙ ◦ R−1 = ( ˙S−1 ◦ ρQ−1 + S−1 ◦ ρ ˙Q−1) ◦ ρQ ◦ S

= ˙S−1 ◦ S + S−1 ◦ ρ ˙Q−1 ◦ ρQ ◦ S
(77)

Since ˙S−1 ◦ S = −S−1 ◦ Ṡ and ρ ˙Q−1 ◦ ρQ = −ρQ−1 ◦ ρQ̇ = −ρQ−1 Q̇ , the above can
be rewritten as

Ṙ ◦ R−1 = −S−1 ◦ Ṡ − S−1 ◦ (ρQ−1 Q̇) ◦ S. (78)

Note that S(E) = E implies Ṡ(E) = 0, and ρQ−1 Q̇(E) = Q−1 Q̇E = UE , for
U ∈ p. Taking into consideration the structure of elements in p, appearing in (65),

Q−1(t)Q̇(t) =
(
A(t) −BT (t)
B(t) 0

)
, and consequently the no-slip condition requires that

ṡ(t) = −Ṙ(t)R−1(t)(E) = S−1
(
A(t)
B(t)

)
. (79)

We will now choose S(t) ∈ K , or equivalently �(t) = Ṡ ◦ S−1 ∈ so(V ) so that
R(t) satisfies the no-twist conditions.

Since �(t)(E) = 0. Therefore

Ṡ ◦ S−1(TE Stnk) = �(t)(TE Stnk) ⊂ TE Stnk,
Ṡ ◦ S−1(T⊥

E Stnk) = �(t)(T⊥
E Stnk) ⊂ T⊥

E Stnk .
(80)

�(VE ) = 0, � (slkk) ⊂ slkk, (81)

due to (74) and (75).
Now, since T̂α(t)M̂ = TE Stnk , and similarly (T̂α(t)M̂)⊥ = T⊥

E Stnk , the tangential
no-twist condition 4′ given in Proposition 1, requires that

ġ(t) ◦ g−1(t)(TE Stnk) ⊂ T⊥
E Stnk . (82)
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Since ġ ◦ g−1(TE Stnk) = Ṙ ◦ R−1(TE Stnk), taking into account (78), we can write

ġ ◦ g−1(TE Stnk) = −S−1 ◦ (Ṡ ◦ S−1 + ρQ−1 Q̇) ◦ S (TE Stnk),

and using (74), the tangential no-twist condition (82) can be written as

Ṡ ◦ S−1 (TE Stnk) + ρQ−1 Q̇ (TE Stnk) ⊂ T⊥
E Stnk,

or, equivalently,

�(TE Stnk) = −�
(
ρQ−1 Q̇ (TE Stnk)

)
, (83)

where � denotes the orthogonal projections of V onto TE Stnk .
We now impose the normal no-twist condition

ġ(t) ◦ g−1(t)(T⊥
E Stnk) ⊂ TE Stnk, (84)

and similarly to the previous calculations, we obtain a second restriction on S:

�(T⊥
E Stnk) = −�⊥ (

ρQ−1 Q̇ (T⊥
E Stnk)

)
, (85)

where �⊥ denotes the orthogonal projections of V onto T⊥
E Stnk .

To make sure that the previous condition can be fulfilled, we must show that the
right-hand side of (85) is according to the action (81) of � on each subspace of the
direct decomposition of T⊥

E Stnk in (70). For that, we compute the product of the
matrix Q−1 Q̇ by elements in T⊥

E Stnk , using the fact that Q−1 Q̇ ∈ p and the structure
of the matrices in these subspaces, given in (65) and (69).

Assume that

Q−1 Q̇ =
(
A −BT

B 0

)
, A = −AT , and take

(
X
0

)
, with X = XT .

Then,

Q−1 Q̇

(
X
0

)
= 1

2

(
AX + X A

2BX

)
+ 1

2

(
AX − X A

0

)
.

Notice that AX −X A is symmetric with trace zero, and when X = Ik , AX −X A = 0.
Therefore, as required,

�⊥ (
ρQ−1 Q̇ (VE )

)
= 0, �⊥ (

ρQ−1 Q̇ (slkk)
)

⊂ slkk .

We now summarize how to find the rolling map (R(t), s(t)) ∈ SE(V ), for rolling
Stnk on T aff

E Stnk , along a curve α(t), α(0) = E .
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1. Find the horizontal lift Q(t) of α(t), satisfying Q(0) = In .We know that Q−1 Q̇ =(
A −BT

B 0

)
, A = −AT .

2. Find S(t) using the no-twist conditions (83), (85), with S(0) = eSO(V ). Those
conditions can be rewritten as

{
Ṡ ◦ S−1(v�) = −�(Q−1 Q̇ v�), ∀v� ∈ TE Stnk
Ṡ ◦ S−1(v⊥) = −�⊥(Q−1 Q̇ v⊥), ∀v⊥ ∈ T⊥

E Stnk
.

3. Find R = S−1 ◦ ρ
Q−1 .

4. Find s(t) by solving equation (79), resulting from the no-slip condition, with
s(0) = 0:

ṡ(t) = S−1
(
A(t)
B(t)

)
.
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