
fnins-16-1065366 February 7, 2023 Time: 15:53 # 1

TYPE Original Research
PUBLISHED 07 February 2023
DOI 10.3389/fnins.2022.1065366

OPEN ACCESS

EDITED BY

Rüdiger Christoph Pryss,
Julius-Maximilians-Universität
Würzburg, Germany

REVIEWED BY

Michael Winter,
Julius-Maximilians-Universität
Würzburg, Germany
Johannes Schobel,
Neu-Ulm University of Applied
Sciences, Germany

*CORRESPONDENCE

Henrique Madeira
henrique@dei.uc.pt

SPECIALTY SECTION

This article was submitted to
Decision Neuroscience,
a section of the journal
Frontiers in Neuroscience

RECEIVED 09 October 2022
ACCEPTED 09 December 2022
PUBLISHED 07 February 2023

CITATION

Hao G, Hijazi H, Durães J, Medeiros J,
Couceiro R, Lam CT, Teixeira C,
Castelhano J, Castelo Branco M,
Carvalho P and Madeira H (2023) On
the accuracy of code complexity
metrics: A neuroscience-based
guideline for improvement.
Front. Neurosci. 16:1065366.
doi: 10.3389/fnins.2022.1065366

COPYRIGHT

© 2023 Hao, Hijazi, Durães, Medeiros,
Couceiro, Lam, Teixeira, Castelhano,
Castelo Branco, Carvalho and Madeira.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

On the accuracy of code
complexity metrics: A
neuroscience-based guideline
for improvement
Gao Hao1, Haytham Hijazi2, João Durães3, Júlio Medeiros2,
Ricardo Couceiro2, Chan Tong Lam1, César Teixeira2,
João Castelhano4, Miguel Castelo Branco4, Paulo Carvalho2

and Henrique Madeira2*
1Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China, 2Center for
Informatics and Systems of the University of Coimbra (CISUC), University of Coimbra, Coimbra,
Portugal, 3Center for Informatics and Systems of the University of Coimbra (CISUC), Polytechnic
Institute of Coimbra, Coimbra, Portugal, 4Institute of Nuclear Science Applied to Health
(ICNAS)/Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of
Coimbra, Coimbra, Portugal

Complexity is the key element of software quality. This article investigates

the problem of measuring code complexity and discusses the results

of a controlled experiment to compare different views and methods to

measure code complexity. Participants (27 programmers) were asked to

read and (try to) understand a set of programs, while the complexity of

such programs is assessed through different methods and perspectives: (a)

classic code complexity metrics such as McCabe and Halstead metrics, (b)

cognitive complexity metrics based on scored code constructs, (c) cognitive

complexity metrics from state-of-the-art tools such as SonarQube, (d)

human-centered metrics relying on the direct assessment of programmers’

behavioral features (e.g., reading time, and revisits) using eye tracking, and (e)

cognitive load/mental effort assessed using electroencephalography (EEG).

The human-centered perspective was complemented by the subjective

evaluation of participants on the mental effort required to understand the

programs using the NASA Task Load Index (TLX). Additionally, the evaluation

of the code complexity is measured at both the program level and, whenever

possible, at the very low level of code constructs/code regions, to identify

the actual code elements and the code context that may trigger a complexity

surge in the programmers’ perception of code comprehension difficulty. The

programmers’ cognitive load measured using EEG was used as a reference

to evaluate how the different metrics can express the (human) difficulty in

comprehending the code. Extensive experimental results show that popular

metrics such as V(g) and the complexity metric from SonarSource tools

deviate considerably from the programmers’ perception of code complexity

and often do not show the expected monotonic behavior. The article

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1065366
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1065366&domain=pdf&date_stamp=2023-02-07
https://doi.org/10.3389/fnins.2022.1065366
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1065366/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 2

Hao et al. 10.3389/fnins.2022.1065366

summarizes the findings in a set of guidelines to improve existing code

complexity metrics, particularly state-of-the-art metrics such as cognitive

complexity from SonarSource tools.

KEYWORDS

code complexity metrics, code comprehension, EEG, cognitive load, mental effort,
code refactoring, code constructs

1. Introduction

The high complexity of software, particularly code
complexity, is traditionally considered the main contributing
factor to software reliability issues (Rook, 1990). Complex
code is hard to test, difficult to comprehend by programmers,
and hence difficult to maintain. In addition to the intrinsic
complexity of code structures, and the complexity related to the
interconnection of components/artifacts, the size of the code is
possibly the most expressive indicator of the very high levels of
complexity of modern software. Today, many software systems
easily reach millions of lines of code (LoC). For example, in
the automotive industry, where a good share of the software
is used for safety critical functions, a KPMG report from 2017
states that an “average car contains more than 150 million
lines of code” (Silberg, 2017). The updated number for 2022 is
certainly higher due to the constant increase in functionalities
and sophistication of automotive software.

More LoC mean more bugs, as attested by the fact that the
number of LoC is often used as the main metric to predict
bug count in software products (Sandu et al., 2018). In fact,
the same study reports field data from several real projects
in the automotive area showing defect densities from 1 to 6
bugs per KLoC (Sandu et al., 2018), suggesting that the defect
density remains quite significant. It is worth noting that the
defect density reported in Sandu et al. (2018) is not drastically
different from the defect rates per KLoC reported 25 years
before in the seminal book from McConnell (1993), which
indicated an industry average of 15 defects per KLoCs with
a very large standard deviation. Although the defect density
has been reduced due to advances in the software development
processes and improved tools, the impressive increase in code
size witnessed in the last decades has eroded the improvements
in residual defect density. In other words, the problem of
residual software defects remains the most persistent and
difficult challenge of the software industry, and the major cause
is the high complexity of software.

Measuring software complexity accurately is essential to
control and minimize the negative effects of code complexity
in software development. Software complexity metrics express
quantitatively different aspects of the software and could be
related to code, documentation, or even to the developers

(Scalabrino et al., 2017). Metrics are heavily used in software
engineering to guide the definition of test cases to achieve
specific goals concerning test coverage (e.g., in using control
flow and in data flow testing) (Ammann and Offutt, 2016),
to predict software defects probability and estimate defect
density (Moser et al., 2008; Huda et al., 2017), to determine
the adequate component granularity in software architectures
based on complexity thresholds (Herbold et al., 2011; Yamashita
et al., 2016), to estimate reusability of software components
(Papamichail et al., 2019), to control quality in continuous
integration/continuous deployment (Fenton and Pfleeger,
2014; Garcia-Munoz et al., 2016), and to assess/predict how
programmers comprehend code (Zuse, 1993; Sneed, 1995).

No matter the software development paradigm and specific
flavor, software metrics play an important role in software
development practices and have been the subject of intensive
research. For example, a survey published in 2017 (Varela
et al., 2017), focused only on code metrics, reported 226 studies
published in a period of 5 years, from 2010 to 2015, proposing
almost 300 different metrics, many of them related to code
complexity. Another survey focused on using machine learning
techniques for source code analysis (Sharma et al., 2021)
reported 364 primary studies published between 2002 and 2021
including a large percentage of studies on topics such as code
comprehension, refactoring, and code quality assessment. These
examples give an idea of the research intensity and publications
rate on the topic of software complexity and related metrics
in recent years.

Despite this massive body of work, predicting/measuring
software complexity in a way that accurately portrays the
inherent complexity of software artifacts, as perceived by
(human) software programmers, is still largely an open problem.
Nevertheless, the human perceived complexity in understanding
code is the measure that really matters for the development
and maintenance of reliable software, as it is crucial to manage
adequately important aspects such as software testability,
modifiability, and reusability.

It is known that classic complexity metrics deviate
considerably from human perceived complexity in code
structures such as recursive or multi-threading programming,
as in these cases the complexity is not in the code structures
(usually compact) but in the recursive and/or parallel nature

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 3

Hao et al. 10.3389/fnins.2022.1065366

of the code. Several works have shown different aspects
of this mismatch between complexity, as captured by code
complexity metrics, and the real difficulties felt by programmers
in comprehending code. For example, a relatively recent study
(Ajami et al., 2017) including a group of 222 professional
developers analyzed how programmers interpret code snippets
with similar functionality but different structures and show
significant differences (measured in speed and accuracy in
comprehending code snippets) for the different structures,
which clearly contradicts classic metrics such as cyclomatic
complexity V(g) (McCabe, 1976) where all branching constructs
are given the same weight. Other example (Jbara and
Feitelson, 2017) shows that complexity metrics cannot capture
context-sensitive aspects such as repeated code constructs that
appear along the code.

Recent interdisciplinary works using biometric and
neuroscience equipment (Couceiro et al., 2019; Medeiros et al.,
2021; Peitek et al., 2021) provide neuroscientific evidence
showing that classic complexity metrics such as V(g) do not
capture well the difficulties experienced by programmers in
comprehending code. These conclusions support the use of
more elaborated cognitive complexity metrics such as the one
used by state-of-the-art SonarSource tools (Campbell, 2017),
but the question of whether such more elaborated metrics
are accurate or not is still an open question. Since software
refactoring is the main instrument to cope with code complexity
in large-scale software projects, and refactoring is based on
complexity metrics, it is of utmost importance to be sure
that complexity metrics really represent code complexity as
perceived by human programmers (the ones that develop, test,
and maintain the code).

This article uses electroencephalography (EEG) to provide
a reference for the assessment of the cognitive load of
programmers while comprehending code. And it uses such
reference to evaluate different views and methods to measure
code complexity through a controlled experiment. A group
of 27 software programmers (B.Sc. and M.Sc. students, and
professional programmers) are asked to comprehend a set of
programs, while the complexity of such programs is assessed
through different methods including both code constructs
and human-centered approaches to measure code complexity.
Specifically, this study measures code complexity using the
following methods:

a) Classic code metrics such as LoC, V(g), and
Halstead metrics.

b) Cognitive complexity metrics based on scored
code constructs.

c) Cognitive complexity metrics from state-of-the-art tools
such as SonarSource tools.

d) Direct assessment of programmers’ behavioral features
(e.g., reading time and revisits) using eye tracking.

e) Direct assessment of programmers’ cognitive load while
comprehending the code using EEG, which has been
proposed as a reference to measure cognitive complexity
in code comprehension scenarios (Medeiros et al., 2019,
2021).

The human-centered perspective (d and e) is complemented
by the subjective evaluation of participants on the complexity
of the programs using the NASA Task Load Index (TLX)
(NASA-TLX, 2020). Furthermore, the evaluation includes a dual
approach of measuring code complexity at both the unit level
and at the very low level of code constructs/code regions to
expose the actual code elements that may trigger the perception
of complexity from human perspective. The results are distilled
as a set of guidelines to improve current methods and tools used
to assess code complexity.

The structure of the article is as follow. Next section
presents the related work, followed by the description of
the controlled experiment design and setup in section “3
Controlled experiment design and setup.” Section “4 Results
and discussion” discusses the results and proposes a set of
guidelines on how to improve existing code complexity metrics.
Section “5 Conclusion” concludes the article and briefly outlines
the future work.

2. Related work

Code complexity has been extensively studied in the
literature over the past decades for its importance in expressing
software quality. Zuse (1991) defines code complexity as “the
difficulty to maintain, change and understand software.” In the
IEEE-Standard (1991) computer dictionary, the definition is
“the degree to which a system or component has a design or
implementation that is difficult to understand and verify.” Code
complexity is the key element in predicting critical information
about reliability, maintainability, and testability, among other
software quality factors. It is, thus, essential to measure the code
complexity and quantify it accurately to understand its effect on
defect proneness and software quality (Sandu et al., 2018).

McCabe (1976) introduced the well-known cyclomatic
complexity [V(g)] metric, which is the basis for the definition
of test coverage in control flow testing techniques. V(g)
measures the number of linearly independent paths in a code
unit and expresses the difficulty in testing and maintaining
the code (Ammar et al., 2001). The success of V(g) has
led to the generalized use of this complexity metric as
a measure of code understandability. Even today, V(g) is
still used to control the complexity of code units, as a
common industry practice is to refactor code units with
V(g) higher than a given threshold [e.g., V(g) ≥ 10].
However, several works have shown the limitations of V(g) in
expressing complexity from a programmers’ perspective (e.g.,

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 4

Hao et al. 10.3389/fnins.2022.1065366

Ajami et al., 2017; Jbara and Feitelson, 2017; Couceiro et al.,
2019; Peitek et al., 2021). For example, a clear limitation
of V(g) is that it cannot distinguish between simple and
complex condition statements. Additionally, case or switch
statements that usually lead to repeated code patters that
are easy to understand by programmers contribute to V(g)
in a similar way as intricated (and difficult to understand)
loop structures.

Halstead (1977) proposed a family of complexity metrics
based on program operands and operators that attempt to
express the difficulty, effort, programmers’ workload, and other
measurable properties of software. Although the Halstead’s
metrics are easy to calculate, and are particularly useful for data
flow testing, they ignore the complexity of the control flow, as
they are mainly focused on program data.

Overall, both V(g) and Halstead’s metrics neglect an
essential factor: the human-centric perspective in expressing
code complexity. In Kaur and Mishra (2019), the authors
show that the human cognition involved in understanding or
changing a code unit may hamper the software development
because of the limited human cognitive resources. Developing,
testing, and reviewing code are human intellectual and abstract
processes. Therefore, mathematical models like those used in
V(g) or Halstead’s metrics might be inadequate to assess the
mental effort required to comprehend code.

Filling that gap, and trying to cope with modern
programming languages structures, Wang and Shao (2003) and
Wang (2006) introduced cognitive complexity (CC), which
attempts to measure the functional complexity of the code
in software design and code comprehension. Wang (2006)
examined the cognitive weights of Basic Control Structures
(BCS) and formulated what is called Cognitive Functional Size
(CFS) to measure the software complexity from a cognitive
perspective. BCS are defined as a collection of elements and
flow controls to develop the code functional structure. These
basic code constructs are classified under sequential, branch,
iteration, embedded component, and concurrent structures,
and each construct is assigned a score that represents the
(expected) cognitive effort in comprehending such construct.
The basic code construct scores are used to compute metrics
of program cognitive complexity (Crasso et al., 2016; Jain
and Satinderjit, 2019; Kaur and Mishra, 2019). However, the
different flavors of this metric consider that code complexity
increase in a linear way, which deviates significantly from the
human perception of code complexity, where the saturation
effect has been observed (i.e., if a subject considers a code
unit very complex, adding more complexity to the code does
not change the human perception as a very complex code)
(Couceiro et al., 2019).

A new metric of cognitive complexity emerged in 2017
from SonarSource tools and is currently one of the most
popular complexity metrics used by the software industry
(Campbell, 2017). Although this SonarSource metric was also

intentionally designed to measure code understandability (and
is also called cognitive complexity), its approach is considerably
different from the idea proposed by Wang and Shao (2003)
and Wang (2006) and subsequent papers (Crasso et al., 2016;
Jain and Satinderjit, 2019; Kaur and Mishra, 2019) that rely on
scoring basic code constructs. The cognitive complexity metric
disseminated by SonarSource tools is an attempt to improve
code refactoring decision based on V(g). It ignores structures
that allow multiple code statements to be shorthanded into one
statement, increments by one for each break in the linear flow,
and increments when flow-breaking structures are nested, trying
to express the complexity programmers may feel in handling the
code (Campbell, 2017).

SonarSource metric is in fact the most popular code
complexity metric today, but, to the best of our knowledge,
its accuracy in the assessment of code complexity from
programmers’ perspective has not been evaluated so far using
neurophysiological measures of cognitive load and mental effort
extracted using EEG while programmers are comprehending
code, as we do in the current article.

Numerous efforts have been made to investigate code
comprehension and understandability and its relationship
with programmers’ cognitive load while performing tasks on
code [e.g., answering comprehension questions (Rilling and
Klemola, 2003), understanding different source code patterns
(Fakhoury et al., 2018), or bug detection in code reviews
(Hijazi et al., 2022)]. Scalabrino et al. (2021) conducted a study
to calculate the correlation between 121 complexity metrics
and proxy variables for code understanding gathered in an
experiment. They showed that none of the examined metrics
[including V(g) and LoC] could capture the essence of code
understandability. Other empirical studies have investigated
the correlation between code complexity metrics and code
understanding using classic approaches based on surveys
and calibrated questions (e.g., Kasto and Whalley, 2013)
or, more recently, medical imaging equipment to effectively
measure mental effort and cognitive load while reading and
understanding code (Peitek et al., 2018; Castelhano et al.,
2019, 2021). Although some of these studies report correlations
between the metrics and the subjects’ performance on tasks
related to code comprehension, a general conclusion from
available studies is that classic code complexity metrics failed
to capture the (human) difficulty in comprehending code in
many code patterns.

Recent code comprehension measurement trends have
begun using physiological measures captured from the software
programmers while reading and (attempting to) understand
code. Physiological measures, such as HRV, EEG, or eye-tracker
measures (Müller and Fritz, 2016; Couceiro et al., 2019), have
shown a successful capacity to quantify software programmers’
cognitive, mental workload, and comprehension levels. This
new area was coined as NeuroSE (neuro software engineering)
in a recent comprehensive survey (Weber et al., 2021) where

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 5

Hao et al. 10.3389/fnins.2022.1065366

the authors proposed the term NeuroSE to “describe a
research field in software engineering (SE) that makes use
of neurophysiological methods and knowledge better to
understand the software development” (Weber et al., 2021).

There are two main strands of research in this context:
the use of information captured from the Central Nervous
System (CNS) and the application of surrogate information
captured mainly from the Autonomic Nervous System (ANS)
activity. The latter exhibit significant potential for real-life
implementation due to the less intrusive technologies required
(e.g., smart watches and eye trackers), whereas the former is
more accurate (hence more adequate for research purposes) but
less interesting for developing solutions for real-life deployment
since they rely on more intrusive technologies such as functional
magnetic resonance imaging (fMRI) and EEG.

So far, most research in NeuroSE targeting code
comprehension is focused on brain activity measurements
using fMRI and EEG due to their higher accuracy (Weber
et al., 2021). In fact, it has been shown that EEG can be used
to accurately identify programmers’ cognitive load associated
with understanding code of varying complexity (Medeiros et al.,
2021). In Duraisingam et al. (2017) and Ishida and Uwano
(2019), EEG features taken from several brain regions are
applied to perform a thorough analysis of task difficulty level for
program comprehension. Furthermore, there is clear evidence
that the complexity of the code induces mental effort that can
be assessed using EEG (Medeiros et al., 2019). In Lee et al.
(2016), Crk and Kluthe (2014), and Crk et al. (2016), EEG-based
feature analysis was applied to classify expertise level of software
programmers. Indeed, it is observed that cognitive performance
in code comprehension tasks will differ since expertise-related
differences in subject performance can be assessed using EEG
indications of working memory during code comprehension
tasks. Information fusion of eye movement and EEG has been
applied to predict programmer expertise and task difficulty
(Lee et al., 2018).

Although fMRI and EEG-based approaches can measure
programmers’ mental effort and cognitive load while
comprehending software code (Weber et al., 2021), these
approaches cannot be used in real software development
settings because of their inherent intrusiveness (e.g., EEG would
require the programmers to wear an EEG cap). Thus, it is vital
to evaluate existing code complexity metrics to assure that
code complexity inferred automatically from code features,
as current practice in the software industry, really represents
the complexity of the code as perceived by programmers.
This is precisely the goal of this article that compares classical
complexity metrics, cognitive complexity based on code
constructs, and SonarSource cognitive complexity with
physiological (EEG) and behavioral measures that represent the
mental effort of software programmers associated with code
comprehension tasks.

3. Controlled experiment design
and setup

In general terms, the controlled experiment performed in
this work is a code comprehension study. The programs used
in the code comprehension tasks have been designed to show
different levels of complexity according to classic complexity
metrics. A group of participants, software programmers, were
asked to perform three code comprehension trials. Each trial
consists of a control task and a program comprehension task.
The experimental setup included an EEG quick cap and EEG
amplifier to acquire the EEG signals, and an eye tracker to
allow us to know where each participant was looking at during
the code comprehension tasks. Although the EEG and the eye
tracker are separated devices, the data streams of both devices
are synchronized using a common time base. The eye tracker
was additionally used to measure the time each participant
spent in each region of the code and to count the number
of revisits to specific parts of the code of each program, as
the process of comprehending code normally includes several
iterations. At the end of each trial, the participant answered to
a small number of questions designed to assess the degree of
comprehension of each program. Additionally, each participant
also filled out a NASA-TLX (2020) survey to indicate his/her
subjective assessment of the code comprehension tasks.

The next subsections describe the elements of the controlled
experiment and setup. All the relevant data (experiment
protocol, programs used, code regions, and anonymized data
on the individual participants) is available in this link1 as
supplementary material for this article.

3.1. Overview of the experiment
protocol

Figure 1 shows a diagram representing the experiment
protocol. For each participant, the experiment started with some
preparatory steps such as the installation of the EEG quick cap,
eye tracker calibration, recap of the trial steps, and answer to
any questions/doubts from the participant. The participant was
acquainted with the setup and informed about the sequence of
steps of the trial and maximum time allocated to each task.

The steps of each trial were the following:

a) Fixation cross screen: an empty screen with a cross in
the middle, shown for 30 s, used as baseline interval
to separate tasks.

b) Control task: reading a narrative/descriptive text written
in the native language of the participants for 60 s. This
task was designed to create an activity that does not

1 shorturl.at/DHT79

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
http://shorturl.at/DHT79
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 6

Hao et al. 10.3389/fnins.2022.1065366

FIGURE 1

Sequence of steps for each trial of program comprehension.

require significant effort, providing us with a cognitive load
baseline for the EEG observations.

c) Code comprehension task: comprehension of a program
in Java for a maximum allowed time of 600 s (10 min).
Participants were allowed to stop earlier if they think that
they have fully understood the program.

d) Questionnaire: survey with two questions about the
program (“What does the program do?” and “How does
the program work?”) to assess how well each participant
understood each program, followed by the NASA-TLX
(2020) survey to assess the subjective impression of
each participant about the code comprehension task,
particularly metal effort, time pressure, and level of
discomfort felt during the execution of the task. The
participants’ answers to these questions were evaluated by
the authors of this article and scored in a scale from 0 to
6 (same scale as NASA-TLX). The final score representing
how well each participant understood each program is the
average of the scores assigned to the answer provided for
the two questions.

Each participant performed three trials, covering a different
program in each trial. The participants did not have any previous
knowledge about the programs used in the code comprehension
tasks and have not received any hint about the complexity of
each program to avoid bias. The programs were shown to the
participants always in the same order (i.e., no randomization) to
assure all participants had the same conditions for the program
comprehension tasks. Since the focus of our study is on the
participants (i.e., evaluation of participants’ cognitive load and
comparison with the code metrics scores), and not on the
classification of the programs, we gave priority to assuring the
same conditions to all participants.

The experiment design and protocol have been approved
by the Ethics Committee of the Faculty of Medicine of the
University of Coimbra, in accordance with the Declaration of
Helsinki. All the participants involved in the experiment have
signed an informed consent and all the data collected was
anonymized to assure full privacy of participants.

3.2. Programs and code regions of
analysis

The programs used in the controlled experiment are three
Java programs (named as C1, C2, and C3) specifically designed
to study code comprehension and programmers’ cognitive load
induced by the code comprehension tasks. To avoid extraneous
elements that may bias the perception of complexity, all the
programs followed three general requirements:

• Do not require specific domain-level knowledge from
the participants; the algorithms involved are generic
computation tasks.
• Do not use obscure or uncommonly hard-to-read syntax.
• Do not involve many libraries that are not part of the

language itself.

We designed the programs to cover different levels of code
complexity to better understand what triggers difficulty when
trying to comprehend code. The programs were evaluated by a
set of software development experts to rank them based on their
perceived difficulty. Program C1 is the easiest to understand,
program C2 has a medium difficulty, and program C3 is the
hardest. All the programs are relatively small to meet the
experiment time limits and avoid the effects of mental fatigue

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 7

Hao et al. 10.3389/fnins.2022.1065366

of the participants that could skew our results. C2 and C3 have
similar size (a bit more than 40 LoC). Program C1 is organized
in two functions (methods in a Java class) referred here as units
of code; program C2 comprises 3 units, and program C3 is a
single unit. Table 1 summarizes the features of the programs.

We partitioned the source code of the programs into small
regions to better identify and study the aspects of the source
code that may be related to difficulty when trying to comprehend
the code. This partitioning is aligned with the notion that
programs and units of code (e.g., functions) are typically too
large to be a single focus of attention by programmers at a
given time. Instead, programmers usually focus on a specific
area of code at a time and process it as a single unit of
attention. Boundaries of such regions are typically defined by
programming language constructs, in particular those that cause
control flow branching (e.g., if-conditions and loops), or by the
high-level logical nature within the algorithm they serve (e.g., a
region of variable initialization, a region of parameter checking,
a region of calculations, etc.). Having the source code of the
programs partitioned into small regions allows us to analyze
in detail the aspects of programming language specific to each
region and their relationship with the cognitive load experienced
by participants when trying to comprehend that code.

The strategy used for partitioning is straightforward and can
be implemented into an automated tool if needed. There are two
or more levels of regions: top-level regions and nested regions.
Top-level regions are immediately obtainable from syntactically
frontiers of the source code (as described next), and nested
regions are parts of top-level regions or other nested regions.

Top-level regions are defined as follows:

• Each function (or “method”) in a program is a top-level
region, provided that the program has more than one
function. Otherwise, the program is a single unit.
• Inside a single unit program or a function, top-level regions

are defined by identifying loop constructs (for, while) that
act as logical separators of the code at algorithmic level.
The entire loop and its inner (subordinated) instructions
are one top-level region, the code before the loop is another
top-level region, and the code after the loop is another
top-level region.
• In the case the code unit has an initial set of instructions

that correspond to variable declarations of 3 or more
lines, then there is a logical separation of code from the
programmer’s point of view that act as a natural separator
just as a top-tier loop construct: variable declaration then
the algorithm steps. In this case, the declarations are
one top-level region, and the code is one or more top-
level regions (depending on having loop constructs). The
number of lines of variable declarations may be adjusted.
In this study, 3 lines were considered as the minimum to
justify an independent region.
• Top-level regions do not overlap with one-another.

Sub-regions result from partitioning top-level regions
(or other sub-regions, depending on the nesting). They are
obtaining by recursively applying to the region being partitioned
the method that is used to partition a program function into
top-level regions, with small differences due to the smaller
code-size:

• The outermost loop constructs act as separators to define
the new level of sub-regions.
• Conditional branching can also be used as separators in

the same manner as loop constructs: at this level of detail
of depth inside the algorithm of the code, branching is as
relevant as loops. Only outermost branching is considered.
• Blocks of lines of variable declarations can also

constitute sub-regions.
• Sub-regions can be further partitioned into sub-regions.

Table 2 presents an example of partitioning for program
C2. It is worth noting that participants were not aware of this
partitioning as it is a conceptual tool for our analysis without
any visible traces in the code presented to them.

We did not predefine a target for the number of regions
no preferred region size. Code was partitioned as long as no
high-level language constructs were broken, and the resulting
sub-regions maintained a self-contained meaning. This resulted
in several levels on nested regions. We included all levels of
regions in our study and not only the innermost regions. A total
of 29 code regions were defined in the three programs: C1 has
only 3 top-level regions, C2 has 5 top-level regions and 3 inner
regions, and C3 has 3 top-level regions and 15 inner regions.

3.3. Participants

The recruitment of participants started with a call for
participation asking for participants with experience in Java
programming language. The selected group of 27 participants
include B.Sc. and M.Sc. students, researchers, and software
professionals. Out of the 27 participants, 21 are males and 6
are females, reflecting the gender unbalance among software
developers. The age range is from 19 to 42 years old, with an
average age of 24.4 years and a standard deviation of 6.12 years.

The screening process for selection of the participants
was mainly focused on the assessment of the programming
experience of the participants through an interview that
included a survey with questions about the number of years
in software development, the size of Java software projects
in which they have worked on, and the frequency of Java
programming tasks. A final group of 27 programmers were
divided in two groups (for the analysis of results), according
to their acquaintance to the Java language, as declared in
the survey. Since the participants’ answers in the survey are
subjective, we also considered the participants’ performance in

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 8

Hao et al. 10.3389/fnins.2022.1065366

TABLE 1 Key features of the programs used in the study.

Program Expected
complexity

V(g) LoC Number of
units

Goal

C1 Easy 5 + 1 15 2 Counts the number of elements in an array that fall within a given interval.

C2 Medium 4 + 7 + 1 45 3 Computes multiplication using classic weighted digit algorithm.

C3 Difficult 22 43 1 Searches 3 dimensional objects in a 3 dimensions space.

program comprehension tasks to fine-tune the clustering of the
participants in the following groups:

• Ordinary programmers: participants with Java
programming experience (have completed at least one
course on Java programming in their bachelor’s degree),
although some of them do not program in Java frequently
(19 participants).
• Proficient programmers: participants with good skills in

Java programming, with at least 3 years of Java experience,
and frequently involved in programming tasks in Java in the
last 3 years (8 participants).

3.4. Electroencephalography

The EEG signal was acquired through the Neuroscan
SynAmps 2 amplifier from Compumedics at a sampling rate of
1,000 Hz and utilizing 64 channels placed through an EEG quick
cap connected to the amplifier through the EEG head-box. The
EEG headbox module is connected to the acquisition computer
that collects the signals from the sensors. The placement of the
EEG electrodes in the scalp used the well-known international
10-10 system (Graimann et al., 2010).

Electroencephalography measures the electrical activity of
the brain and can be an essential tool to collect direct
measurements of the participants’ brain activity while trying to
comprehend the software. The goal is to assess the participants’
cognitive load induced by the code comprehension tasks. The
assumption is that complex code will induce higher levels of
cognitive load in participants when compared to the cognitive
load associated with the comprehension of simple code.

The EEG signal can be divided into many waveforms based
on frequency, amplitude, and spatial distributions. Table 3
shows the five main frequency bands (Delta, Theta, Alpha,
Beta, and Gamma), which are the ones most frequently utilized
(Malmivuo and Plonsey, 1995) to extract features for cognitive
load assessment.

The next paragraphs briefly describe the preprocessing of
EEG signals and the features extraction.

3.4.1. Preprocessing
In order to get a reliable analysis of the neural signals, the

recorded EEG data must first be preprocessed. We followed the

typical EEG preprocessing pipeline, starting with filtering the
raw EEG data, which is followed by inspection and interpolation
of channels with lower quality signal, re-referencing and,
finally, using Blind Source Separation (BSS) for further artifact
removal such as involuntary ocular movements (eye blinking
and microsaccades). This preprocessing step was done using
the open-source toolbox EEGLAB (Delorme and Makeig, 2004).
The specific procedure is shown in Table 4.

After cleaning the EEG data, a handcrafted feature
engineering approach was followed by exploring reported
features in the literature on cognitive load. This stage consists of
feature extraction, normalization, transformation, and scaling to
achieve the final cognitive load measure calculation.

3.4.2. Feature extraction
To extract the proper EEG features for each code region,

we explored the features reported in the paper (Malmivuo
and Plonsey, 1995) that were proposed to accurately identify
programmers’ cognitive load associated with understanding
code with different levels of complexity. The explored EEG
features fEEG1 and fEEG2 were extracted from the electrode
F2 and electrode PZ in the 10-10 placement system (Graimann
et al., 2010), respectively, and are described as follows:

fEEG1 (index 1 of the task engagement indexes)

This is one of the indexes proposed firstly by Pope et al.
(1995) and is currently widely used as a measure of engagement
during tasks (Freeman et al., 2004; Lei, 2011). Specifically, index
1 is the ratio between Theta, Alpha, and Beta power bands as
presented in the following equation:

fEEG1 = (θ+ β)/α (1)

fEEG2 (power ratio between Theta and Alpha bands)

The power ratios between frequency bands have been
explored to minimize the variability effects between subjects and
in Malmivuo and Plonsey (1995), the ratio between the Theta
and Alpha band was found to be as one of the most relevant
features and is described by the equation below:

fEEG2 = θ/α (2)

The absolute power of the Theta (4–8 Hz), Alpha (8–
13 Hz), and Beta (13–30 Hz) frequency bands was obtained by
computing the area under the power spectrum density (PSD)
curve. The PSD was calculated by squaring the absolute value of

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 9

Hao et al. 10.3389/fnins.2022.1065366

TABLE 2 Region partitions example for C2 program.

Regions Program C2

C2.A 01 private static byte[] getInts(String digs) {

02 byte[] result = new byte[digs.length()];

03 for (int i = 0; i < digs.length(); i++) {

04 char c = digs.charAt(i);

05 if (c < ’0’ | | c > ‘9’) {

06 throw new IllegalArgumentException(“Invalid string” + c

07 + “at position” + i);

08 }

09 result[digs.length() - 1 - i] = (byte) (c - ‘0’);

10 }

11 return result;

12 }

C2.B 13 public static String getResult(String num1, String num2) {

14 byte[] left = getInts(num1);

15 byte[] right = getInts(num2);

16 byte[] result = new byte[left.length + right.length];

C2.C.1 17 for (int rightPos = 0; rightPos < right.length; rightPos++) {

18 byte rightDigit = right[rightPos];

19 byte temp = 0;

C2.C.2 20 for (int leftPos = 0; leftPos < left.length; leftPos++) {

21 temp + = result[leftPos + rightPos];

22 temp + = rightDigit * left[leftPos];

23 result[leftPos + rightPos] = (byte) (temp % 10);

24 temp / = 10;

C2.C 25 }

C2.C.3 26 int destPos = rightPos + left.length;

27 while (temp ! = 0) {

28 temp + = result[destPos] & 0xFFFFFFFFL;

29 result[destPos] = (byte) (temp % 10);

30 temp / = 10;

31 destPos++;

32 }

33 }

C2.D 34 StringBuilder stringResultBuilder = new StringBuilder(result.length);

35 for (int i = result.length - 1; i > = 0; i-) {

36 byte digit = result[i];

37 if (digit ! = 0 | | stringResultBuilder.length() > 0) {

38 stringResultBuilder.append((char) (digit + ’0’));

39 }

40 }

41 return stringResultBuilder.toString();

42 }

C2.E 43 public static void main(String[] args) {

44 System.out.println(getResult(“1234”,“56789”));

45 }

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 10

Hao et al. 10.3389/fnins.2022.1065366

the fast Fourier transform of the clean EEG signal. Finally, we
computed the ratios between the frequency bands of interest to
obtain the two features to be explored in this study.

3.4.3. Feature normalization
After feature extraction, to reduce the inter-subject and

intra-subject variability, we normalized the feature values of the
code task under analysis with respect to the control task. The
final extracted features values represent then the variation of the
features on the code task in comparison to the control task:

4Feature CodeC(k) =
Feature CodeC

(
k
)
− Control(k)

Control(k)
(3)

where Feature CodeC
(
k
)

is the vector of the values of the feature
k from the code C being normalized by Control(k), which is the
average value of the feature k in the control task.

3.4.4. Feature transformation
To capture potentially rapidly changing cognitive load

dynamics during code inspection, four parameters were
computed from each feature for each analysis window
considered. These parameters are maximum, minimum, mean,
and standard deviation.

3.4.5. Feature scaling
Before proceeding to the analysis, the final transformed

EEG features were normalized considering min-max
normalization to eliminate scale dependencies among the
different participants.

x′ = (x − min(x))/(max(x) − min(x)) (4)

3.5. Eye tracking

The eye tracker device is a remote binocular eye tracking
(SMI RED) system (SMI-SensoMotoric Instruments, Germany),
with a sampling rate of 120 Hz. The tracker has a reported gaze
position accuracy of 0.4◦ and a spatial resolution of 0.05◦. The
participants sat between 60 and 70 cm away from a 22-in flat
screen with a resolution of 1,680 × 1,050 pixels. The system
compensates for head movements within a 50 cm × 30 cm (at

TABLE 3 Typical analyzed EEG frequency bands [adapted from
Medeiros et al. (2021)].

Name Frequency range Associated state of brain

Delta (δ) <4 Hz Unconscious/deep sleep

Theta (θ) 4–8 Hz Conscious/imagination/memory

Alpha (α) 8–13 Hz Conscious/relaxed mental activity

Beta (β) 13–30 Hz Conscious/emotional/focused

Gamma (γ) >30 Hz Conscious/high mental activity

65 cm distance), allowing the participants to look at the screen
in a naturalistic manner. A 9-point calibration procedure with a
fixation cross was performed before each task.

The stream of timestamped data with the coordinates of
gaze points produced by the eye tracker were synchronized with
the EEG through a common time base, in order to allow the
association of the code region where the subject was looking
at a given moment with the corresponding EEG features.
The eye-tracker was also utilized to measure the time each
participant spent reading each program and the time spent in
each code region of the programs. Since the process of reading
and comprehending code is normally iterative, we have also
measured the number of revisits of participants to each code
region. The participants’ reading time and, more specifically,
the distribution of the reading time along the code regions,
combined with the number of revisits to each code region,
provide a relevant indication of the complexity perceived by the
subject while reading and understanding the code.

3.6. NASA-TLX

In our experiment, we used NASA-TLX as an additional
source of information to indicate the perceived difficulty
of reading and comprehending the three programs. NASA-
TLX (2020) provides the participant’s subjective workload
assessment of a given task considering a multidimensional
rating process based primarily on a weighted average of ratings
from six dimensions: (a) Mental Demand; (b) Physical Demand;
(c) Temporal Demand; (d) Performance; (e) Effort; and (f)
Frustration. Since NASA-TLX is quite general, we considered
only the dimensions that make sense in code comprehension
tasks (e.g., we did not consider Physical Demand).

3.7. Cognitive load measurement

To obtain a measure to be used as reference in our study,
we assessed the programmer’s cognitive load directly through
the combination of the two extracted EEG features (fEEG1 and
fEEG2) and calculated the sum of the area under the curve of
both features while the programmer is looking at a specific code
region for a given duration (see Figure 2).

In the illustrative example in Figure 2, we can observe the
two extracted EEG features (fEEG1 and fEEG2) and the time
intervals corresponding to the participant’s reading of specific
code regions (A and B). The programmer’s cognitive load while
comprehending the code of a given region for a given amount
of time (note that we know where and when the participant is
looking at through the eye tracker data) is represented by the
area under the curve of the two EEG features during that period.
The larger the area under the curve, the higher the cognitive load
associated with the participant’s comprehension of that code

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 11

Hao et al. 10.3389/fnins.2022.1065366

TABLE 4 The procedure of EEG signal processing.

Step Number Name Tool Objective

1 Filtering

High-pass filter with a cut-off frequency at 1 Hz Remove the DC component and slow wave drifts.

Low-pass filter with a cut-off frequency of 90 Hz The upper limit of the frequency band of interest for the analysis.

Notch filter at 50 Hz Remove the powerline interference.

2 Channels spatial
interpolation

Spherical spline interpolation algorithm from
Perrin et al., 1989

Remove and replace flat or noisy channels with interpolated signals
based on the data from the remaining channels.

3 Re-referencing Average reference Eliminate some common noise to all channels and reduce
lateralization bias.

4 Blind source separation Independent component analysis (ICA) Additional artifact removal (ocular, muscle, cardiac, and residual
artifacts).

FIGURE 2

An illustrative example of the two EEG features (fEEG1 and
fEEG2) values over the time for a given code comprehension
task, with two specific regions of interest A and B.

region. This way, both the amplitude of the EEG features and
the duration of the time window spent by the participant on
comprehending the code region will determine the measured
cognitive load of the participant for such code region.

Since participants may read (i.e., visit) each code region
more than one time when comprehending a specific code region
(e.g., region A in Figure 2 is visited twice), we measure the
participant’s cognitive load for the code region as the sum of
the cognitive load measured in each visit. For example, for code
region A, the participant’s cognitive load is the sum of the areas
under the curve of both features from the instance T1 to the
instance T2 (first visit) and from T3 to T4 (second visit).

The numeric value for the cognitive load of each participant
while he/she is trying to comprehend a given code region
considers as a reference (i.e., lower bound) the cognitive load
measured for that participant during the control task (reading a
simple narrative/descriptive text written in the native language
of the participant) and the scale normalization described above.
The higher the numeric value, the higher the cognitive load of
the participant.

4. Results and discussion

This section starts with the presentation of global results
in section “4.1 NASA-TLX results, code comprehension
performance, and cognitive load (EEG),” showing the subjective

perception of complexity (measured using NASA-TLX) and the
cognitive load (measured using EEG) for the three programs,
as well as the participants’ performance in comprehending
each program. Section “4.2 Code complexity metrics results”
presents the detailed results for all the metrics considered in the
study and the corresponding cognitive load measured by EEG,
covering both the entire programs and the detailed analysis
at the code region-level within each program. Section “4.3
Guidelines to improve code complexity metrics” summarizes the
most relevant guidelines to improve code complexity metrics
and Section “4.4 Limitations and threats to validity” discusses
limitations and threats to the validity of our study. Along the
entire section, to facilitate reading, we include key research
questions, and the corresponding answers and observations.

4.1. NASA-TLX results, code
comprehension performance, and
cognitive load (EEG)

NASA Task Load Index is a key instrument to measure
the mental effort felt by participants, according to their own
subjective points of view. Its relevance in this work is two-fold.
First, NASA-TLX results allow us to evaluate our assumptions
concerning task design into low (C1), medium (C2), and high
code complexity (C3). Second, and even more important, these
results corroborate our proposal that cognitive load measured
using EEG (Medeiros et al., 2021) can be used to analyze how
well current code complexity metrics (i.e., the ones evaluated in
this study) are good indicators for the programmers’ difficulty in
comprehending code or not.

Figure 3 shows the results for the four NASA-TLX
dimensions considered in this study. The results are the average
of the scores (from 0 to 6, being 6 the subjective maximum
scored by participants) provided by all participants to each
question of the NASA-TLX survey.

The participants’ subjective perception of their mental
demand/effort in understanding the code of the 3 programs
shows that C1 was considered much easier (i.e., required less

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 12

Hao et al. 10.3389/fnins.2022.1065366

FIGURE 3

NASA-TLX average results considering all participants.

mental effort) than C2 and C3, while C2 and C3 were regarded
by the participants at a similar level of complexity. As shown
previously in Table 1, C3 has a single unit with cyclomatic
complexity V(g) of 22 (very complex) and C2 includes 3 units
with V(g) of 4, 7, and 1. Despite having very different values
of cyclomatic complexity, the participants considered both
programs at a similar level of complexity.

The Mann–Whitney U test of H0: “the results of mental
demand for programs C2 and C3 have the same distribution,”
considering the results of the 27 participants, shows p = 0.522,
which means we cannot reject H0 (i.e., participants consider that
C2 and C3 required the same mental demand).

RQ1 – Is there a saturation effect in the programmers’
perception of code complexity?

Participants’ perception revealed a code complexity
saturation effect as they considered that the mental effort
required to understand both C2 and C3 programs is similar.
More code complexity (at least from a cyclomatic perspective)
in C3 does not translate into a perception of more mental
effort, suggesting that participants have reached their own
limit of mental effort.

The perception expressed by participants dividing the
programs in two groups, simple (C1) and complex (C2 and
C3), contradicts our initial assumption for the design of the
three programs: according to the participants’ perspective, we
do not have a program representing medium complexity code.
Nevertheless, the study is not significantly affected by the lack
of medium complexity task because the analysis of the different
metrics is also done at the code region level, and we have a large
variety of regions of different sizes and complexity (a total of 29
code regions, considering top level regions and inner regions).

The results for the other NASA-TLX dimensions are
consistent with the results obtained for mental effort. The
perception on how well each participant has understood the

programs (Figure 3, third group of results from the left) shows
that participants are almost sure that they have understood
C1 (an answer of 6 means that the participant was totally
sure) and they were quite unsure about what programs C2
and C3 do and how they work. The results for the temporal
demand in the execution of the tasks (the code comprehension
tasks had a maximum of 10 min for all programs) and the
frustration level are also quite consistent with the observation
that participants found C1 easy to understand and C2 and C3
are comparably difficult.

Table 5 shows the average results for the participant
perception of mental effort (from NASA-TLX), the cognitive
load measured using EEG, reading time, and the participants
performance in comprehending each program. As mentioned
before, the participants’ performance in comprehending the
code was graded by reviewing the participants’ answers to the
questions “What does this code do?” and “How does it work?”

The next paragraphs discuss the most relevant observations
from the results shown in Table 5. Note that the values obtained
for the cognitive load measured using EEG are related (i.e.,
normalized) to the control task (a reference task requiring very
low cognitive load). The higher the value obtained for cognitive
load (EEG), the higher the cognitive effort required compared to
the control task.

The cognitive load measured using EEG is consistent
with the subjective perception of mental effort declared by
participants. In fact, the average cognitive load (EEG) for C1
is relatively low, while the values for C2 and C3 are much
higher than the one observed for C1. Additionally, the cognitive
load (EEG) for C2 and C3 are similar. This is the same
pattern observed for the mental effort in NASA-TLX. The
Spearman correlation coefficient (rs) calculated for the scores
obtained for the mental effort (NASA-TLX) and cognitive load
(EEG) for all participants in the three programs is rs = 0.829,
with a corresponding p < 0.0001, which indicates a high
correlation between the cognitive load measured using EEG

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 13

Hao et al. 10.3389/fnins.2022.1065366

and the subjective perception of mental effort declared by
the participants.

RQ2 – Can EEG be a reference to assess the difficulty perceived
by programmers in comprehending source code?

(a) Results support the assumption that cognitive load
(EEG) measured in our experiment represents well the
difficulty programmers may perceive in comprehending code,
which is precisely the (human) perception of code complexity
that ideal code complexity metrics should capture. Thus,
cognitive load measured using EEG is a good yardstick to
compare complexity metrics, as we do in this article.

Concerning participants’ performance in the code
comprehension tasks (right hand column in Table 5), the
average performance of the C1 program (the one requiring
low mental effort/cognitive load) is high (5.45 on a 0 to
6 scale). Actually, all the proficient programmers fully
understood program C1 (scored 6.0). For the programs
causing higher mental effort/cognitive load (C2 and C3),
the average performance in comprehending the code drops
significantly. This drop in the performance is, as expected, less
evident for the experienced programmers, when compared to
ordinary programmers. For ordinary programmers the drop in
performance from program C1 to program C2 is 3.16 (more
than 50% of the scale range), while for proficient programmers
the decrease in performance is only 2.32 (38%). Globally, when
the programmers’ cognitive load (EEG) is high (i.e., revealing
that the participants really required a significant cognitive effort
to understand the code), we observe that the performance in
comprehending the code decreases.

The Mann–Whitney U test of H0: “the cognitive load
(EEG) measured while participants were comprehending C1 is
not related to the participants’ performance in understanding

program C1” shows p < 0.001, which means we can reject
H0. The tests for C2 and C3 produce similar results. Since the
test is directional, we can state that the higher the measured
cognitive load (EEG) the lower the participant’s performance in
comprehending the code.

(b) This observation also supports our assumption of using
cognitive load (measured by EEG) in this experiment as the
reference to express the difficulty perceived by programmers
in comprehending code, as when the program requires a high
cognitive load, the performance in comprehending the code drops
significantly.

Obviously, we are not suggesting that cognitive load can be
used as a predictor of performance in comprehending a program
in real life, as many other factors are involved (e.g., the person
could not try seriously to understand the program, which will
result in a low cognitive load, or the person may be mentally
busy with other issues while trying to understand a given code).
However, in the context of this controlled experiment high levels
of cognitive load were caused by high complexity in the code,
which resulted in low performance for the complex programs.

Reading time (second column from the right in Table 5)
also shows a clear difference for program C1 when compared to
both C2 and C3. All the three code comprehension tasks had a
maximum allocated time of 10 min (600 s), but participants were
allowed to stop earlier. In fact, participants needed much less
than 10 min to understand program C1 (average of 80.76 s with
a large confidence interval). On the contrary, participants used
almost the entire time slot of 10 min for programs C2 and C3.

The Spearman correlation coefficient (rs) calculated for
the reading time and cognitive load (EEG) measured for all
27 participants in the three programs is rs = 0.9857, with a
corresponding p < 0.001, which indicates a high correlation
between the reading time of each program and the cognitive load
measured using EEG.

TABLE 5 Average global results: performance, cognitive load, and reading time (95% confidence).

Mental effort
(NASA-TLX)

Cognitive load (EEG) Reading time (seconds) Performance
(comprehension)

All Participants

Program C1 1.77 (± 0.25) 21.95 (± 6.86) 80.76 (± 20.95) 5.45 (± 0.23)

Program C2 4.70 (± 0.38) 93.95 (± 14.52) 504.38 (± 31.27) 2.60 (± 0.50)

Program C3 4.87 (± 0.39) 123.03 (± 34.49) 457.14 (± 107.76) 2.73 (± 0.59)

Ordinary programmers

Program C1 1.95 (± 0.34) 21.63 (± 6.71) 76.45 (± 17.80) 5.13 (± 0.28)

Program C2 4.74 (± 0.42) 90.58 (± 29.70) 495.24 (± 56.52) 1.97 (± 0.22)

Program C3 4.95 (± 0.47) 108.9 (± 71.88) 418.23 (± 220.24) 2.13 (± 0.54)

Proficient programmers

Program C1 1.45 (± 0.35) 22.70 (± 18.96) 88.31 (± 55.36) 6.00 (± 0.00)

Program C2 4.64 (± 0.86) 97.13 (± 17.46) 512.38 (± 42.42) 3.68 (± 1.11)

Program C3 4.73 (± 0.80) 141.86 (± 33.55) 509.03 (± 93.70) 3.75 (± 1.17)

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 14

Hao et al. 10.3389/fnins.2022.1065366

FIGURE 4

Eye tracker data for Participant 2 in the comprehension task for program C2.

Although reading time may seem a good metric to indicate
programmers’ difficulty in comprehending code, a more detailed
analysis reveals obvious limitations of reading time as an
indicator of code complexity. Since C3 is clearly very complex
[V(g) = 22 in 43 LoC], we noticed that some participants gave
up and stopped trying to understand the code before the end
of the 10 min slot, which justifies an average reading time for
C3 a bit lower than the average reading time for C2. This is
also the reason why proficient programmers show reading times
longer than ordinary programmers, as proficient programmers
tried to understand C2 and C3 almost until the end of the 10 min
window (they did not give up).

RQ3 – Is reading time a reliable indicator of code
comprehension difficulty?

(a) The observation of eye tracking data for individual
participants confirmed that even when the reading time is
long (i.e., the participant used the entire 10 min slot), some
participants showed a reading pattern that suggests they were
engaged and trying to understand the code for some time and
gave up at a given moment, and simply kept looking at the
code in a random way. This shows that reading time might
not be a reliable indicator of code complexity.

Figure 4 shows an example of eye tracker data to
illustrate the disengagement of the participant from the code
comprehension task (an example for Participant 2 during code
comprehension of C2). The right side of Figure 4 shows the heat
map of the geometrical distribution of gaze points superimposed
on code during the whole window of 10 min. On the left side
of Figure 4, the gaze points are clustered using Y-coordinate
(i.e., only consider code lines and ignore the X-coordinate inside
each code line). The clustered gaze points are represented along
the time, and the different clusters (in different colors) represent

reading velocity. The clustered gaze points on the left are aligned
with the code lines on the right and represent the moments
when the participant read the corresponding code line. Gaze
points marked in gray correspond to high velocity code reading
(i.e., not the type of reading that represents a serious effort to
understand the code). The rationale of for using code reading
velocity was that complex sections of code are expected to
exhibit lower reading velocities, while less complex code lines
should have higher reading velocity.

Figure 4 shows that Participant 2 started reading the code
and did a full detailed read until the end of the code, which
took around 220 s (point marked by the red arrow). After that
point on, the participant continued looking at the code at high
reading velocity (gray gaze points), with occasional gaze clusters
distributed without a consistent reading pattern. In other words,
although the reading time of this participant was close to 600 s,
the code comprehension period was limited to the first 220 s.

(b) Reading time must be carefully considered when assessing
code comprehension difficulty in controlled experiments, as it
can easily assume a confounding behavior (nevertheless, reading
time is often used in the literature to assess programmers’ code
comprehension difficulty).

The fact that proficient programmers tried harder and used
longer engaged reading times, when compared to ordinary
programmers, explains why we did not observe low values
of cognitive load for proficient programmers. In fact, if a
programmer is proficient, we would expect a lower value
of cognitive load in program comprehension tasks, when
compared to ordinary programmers. However, we did not
observe a large difference in cognitive load between proficient
and ordinary programmers due to the tendency of proficient
programmers to perform a thorough reading that resulted
in longer average reading time (and consequently, a higher
accumulated cognitive load).

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 15

Hao et al. 10.3389/fnins.2022.1065366

4.2. Code complexity metrics results

Table 6 shows a global view of the results for all the metrics
studied in our work considering the three programs and their
structure (units). As indicated in Table 1, C1 is composed of
a function and the main unit, C2 has two functions and the
main unit, and C3 is a monolithic program with a single unit.
To keep consistency with the analysis at the more detailed level
of code regions presented further on, Table 6 also indicates
the identifiers of the code regions between parentheses. The
metrics considered include (LoC) and V(g) (McCabe, 1976),
a group of five metrics based on data and program operands
(Halstead, 1977), cognitive complexity based on weighting
basic control structures (CC-BCS) (Wang, 2006; Kaur and
Mishra, 2019), cognitive complexity from SonarSource (CC-
Sonar) (Campbell, 2017), and cognitive load measured using
EEG (used as reference).

A first observation from the results in Table 6 is focused on
the less complex code units. Although the main units of C1 and
C2 scores relatively high in the Halstead data-oriented metrics,
they have V(g) of 1 and CC-Sonar of 0, which suggest that they
do not require a significant cognitive effort from the control flow
point of view. In fact, the cognitive load measured using the two
EEG features considered in our experiments [the same features
used in Medeiros et al. (2021)] showed quite low values. Even
so, they were not zero (i.e., they required a cognitive load higher
than the control task), and the values obtained for the main unit
of C1 were much higher than the value for C2. Table 7 shows
the code of the main units of C1 and C2. Both units are very
simple and have the minima values of V(g) and CC-Sonar, but
C1-main is clearly more complex from the data point of view
than C2-main. Additionally, C1-main has more LoC than C2-
main. These results raise the following observation, which is
consistent with the results obtained for other code regions (see
Table 8 further on):

RQ4 – Can cognitive load measured by EEG detect small
differences in the complexity of code units?

Results for small code units with the lowest values of
V(g) = 1 and CC-Sonar = 0 show that Cognitive Load (EEG)
can discriminate small differences in the actual complexity
of the code, particularly complexity related to data structures
and number of lines of code that is not well captured by V(g)
and CC-Sonar.

An interesting result in Table 6 is the contradictory values
obtained for CC-Sonar and Cognitive Load (EEG) for the units
C1.function and C2.function1. In fact, C1.function has a CC-
Sonar value of 5 and a Cognitive Load (EEG) of 14.35, while
C2.function1 has a lower value of CC-Sonar of 4 but a value
of Cognitive Load (EEG) of 25.54, which is much higher than
the value measured for C1.function. The same can be observed

for V(g), as this metric has the same values of CC-Sonar for
these two units.

The use of thresholds of code complexity metrics to refactor
code units (i.e., break the unit in two simpler units) has
an important problem: it lies in the assumption that the
complexity metric is monotonically increasing with respect
to programmers’ effort in comprehending the code, which
is measured in our study through Cognitive Load (EEG).
Obviously, an inversion in the monotonicity of CC-Sonar,
such as the one found in the cognitive load results for the
units C1.function and C2.function1, is a serious problem.
It may introduce unnecessary fragmentation in the software
architecture or fail in refactoring highly complex units.

RQ5 – Do V(g) and CC-Sonar metrics have always a
monotonic behavior?

Results for C1.function and C2.function1 (and for other
code regions; see Table 8) show that V(g) and CC-Sonar
metrics do not always show a monotonic behavior.

Given the very high industrial relevance of metrics such
as CC-Sonar and V(g) for code refactoring, it is important
to try to understand the reasons why CC-Sonar does not
represent well the average cognitive load of programmers while
comprehending the code of these two units. Table 9 shows the
code of C1.function and C2.function1.

The mere observation of the code of these two units
immediately shows that C2.function1 is clearly more difficult to
understand than C1.function, in spite of the values of CC-Sonar
and V(g) may suggest the opposite. The following observations
help to understand which these metrics, and particularly CC-
Sonar, fail in this type of code scenario:

4.2.1. Variables
The use of variables seems to play an important role. This

aspect is captured by Halstead metrics but not by V(g) nor CC-
Sonar. This example shows that the quantity and complexity of
variables (and operands, and parameters) have a clear impact
on the difficulty programmers may feel in comprehending code.
This seems logical as the existence of more data components
(such as in C2.function1) forces the programmers to hold more
information in their short-term memory.

4.2.2. Library and external API
The use of secondary aspects of the language (e.g., calls to

library functions and external APIs) are not accounted for code
metrics. This is, in fact, hard to address because the meaning of
such calls may not be evident in the context of the code under
analysis, which seems to play a role in the increasing of cognitive
load of the participants in our experiment.

4.2.3. Algorithm
CC-Sonar and V(g) metrics do not address the semantics

of the program operations. In other words, the algorithm

Frontiers in Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 16

Hao et al. 10.3389/fnins.2022.1065366

TABLE 6 Global results for all the code complexity metrics considered in the study.

Program LoC V(g) Vol.
(HVol)

Length
(HLth)

Effort
(HEff)

Nb. of
operands

Difficulty
(HDif)

CC-
BCS

CC-
Sonar

Cognitive load
(EEG)

All Ordinary Proficient

C1.function
(C1.AB)

10 5 222.9 93 4,557.2 23 20.4 192 5 14.35 14.99 13.33

C1.main
(C1.C)

5 1 208.9 43 1,319.3 24 6.3 9 0 7.60 6.64 9.38

C2.function1
(C2.A)

12 4 489.9 90 9,650.5 39 20.6 1,550 4 25.54 21.85 28.77

C2.function2
(C2.BCD)

30 7 1,295.0 224 62,116.5 107 48.0 6,608 9 66.16 67.30 65.29

C2.main
(C2.E)

3 1 81.75 20 286.1 10 3.5 8 0 2.25 1.43 3.06

C3 43 22 2,147.6 395 162,705.7 – – 4,379,690 54 123.03 108.90 141.86

TABLE 7 Code of the main units of C1 and C2, showing that even small differences in the code could lead to different average cognitive load
measured by EEG.

Program C1, main
V(g) = 1 CC-Sonar = 0 / Cognitive Load
(EEG) = 7.60

Program C2, main
V(g) = 1 CC-Sonar = 0 / Cognitive Load
(EEG) = 2.25

public static void main(String[] args) {

int[] sequence = {−7, 1, 5, 2, −4, 3, 0};

int result = getResult(sequence, 2, 4);

System.out.println(“Result = ” + result);

}

public static void main(String[] args) {

System.out.println(getResult(“1234”, “56789”));

}

and what it means for the programmer are not captured
by those metrics. Handling a program that uses a complex
algorithm necessarily puts an additional cognitive load
on the programmer, even if the code constructs are
simple. The semantics of the algorithm is clearly more
complex in C2.function1 than in C1.function, even if
the code constructs [relevant for CC-Sonar and V(g)]
are very simple.

RQ6 – Why do V(g) and CC-Sonar metrics deviate
considerably from the cognitive load measured using EEG for
some code units?

Results show that data complexity, the use of libraries
and APIs, and the semantics of the algorithms (i.e., aspects
that may make the algorithm complex beyond the cyclomatic
complexity) are elements that could be included in metrics
such as CC-Sonar to capture code complexity in a human
perspective in a more accurate way.

Another evident result in Table 6 is the lack of saturation
effect in existing code complexity metrics. That is, there
is no upper limit for the values obtained for the code
complexity metrics. This is the case of some Halstead
metrics and CC-BC (weighting basic control structures)
that reach very high values for some units. It is obvious that
these very high values of complexity metrics do not have

a clear meaning in terms of code complexity perceived by
programmers. This was expected, as the complexity perceived
by the programmer (or the difficulty in comprehending
code) depends on both the programmer (e.g., his/her
level of programming expertise) and the code, and the
complexity metrics are entirely defined based on code
structure and data.

Although metrics are calculated considering only the
information available in the source code, most metrics have
been defined with the objective (at least partially) of capturing
code complexity as perceived by average programmers. For
example, the popular metric CC-Sonar has been proposed
to overcome the limitations of V(g) in representing code
complexity for code refactoring purposes (Campbell, 2017).
But the results in Table 6 show that CC-Sonar does not
have a saturation effect as well. For example, the unit
C2.function2 had CC-Sonar of 9 and an average value of
Cognitive Load (EEG) of 66.16, while C3 had CC-Sonar
of 55 (a huge value), but the Cognitive Load (EEG) was
just 1.8 times higher (123.03) than the value observed
for C2.function2.

The saturation effect already observed in the NASA-TLX
results is also very evident in the cognitive load measured
by EEG and a value in the range of 140 for the cognitive
load measured using the two EEG features considered in our
experiments [same features used in Medeiros et al. (2021)]

Frontiers in Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366
February

7,2023
Tim

e:15:53
#

17

H
ao

e
t

al.
10

.3
3

8
9

/fn
in

s.2
0

2
2

.10
6

5
3

6
6

TABLE 8 Detailed results for code regions.

Region LoC V(g) Volume
(HVol)

Length
(HLth)

Effort
(HEff)

Number
of

operands

Difficulty
(HDif)

CC-
BCS

CC-
Sonar

Number of revisits Cognitive load (EEG)

All Ordinary Proficient All Ordinary Proficient

C1.A 4 2 108.4 26 948.7 14 8.75 20 1 7 8 6 5.39 5.27 5.61

C1.B 6 4 153.7 35 2,613.4 17 17 132 4 11 12 10 8.96 9.72 7.71

C1.C 5 1 208.9 43 1,319.3 24 6.32 9 0 9 8 12 7.60 6.64 9.38

C1.AB 10 5 222.9 48 4,557.2 23 20.44 192 5 19 22 15 14.35 14.99 13.33

C2.A 12 4 468.8 90 9,650.5 39 20.58 1,550 4 33 41 27 25.54 21.85 28.77

C2.B 4 1 177.2 41 1,860.6 21 10.5 15 0 13 12 13 6.99 6.48 7.43

C2.C 17 4 666.8 128 21,819.5 66 32.72 3,512 5 98 103 93 53.58 56.32 51.18

C2.D 9 4 390.7 75 6,662.6 36 17.05 150 4 12 12 12 5.59 4.50 6.68

C2.E 3 1 81.7 20 286.1 10 3.5 8 0 5 5 6 2.25 1.43 3.06

C2.C.1 3 2 171.9 38 1,575.7 20 9.17 70 1 19 25 14 8.67 10.16 7.36

C2.C.2 6 2 340.0 68 5,780.0 34 17 196 2 79 84 74 33.37 35.09 31.87

C2.C.3 8 2 195.0 42 2,482.3 20 12.73 165 2 19 21 17 11.54 11.07 11.94

C2.BCD 30 7 1,295.0 224 62,116.5 107 48 6,608 9 114 120 110 66.16 67.30 65.29

C3.A 7 10 438.8 97 9,049.9 45 20.62 36 6 19 19 19 10.16 12.14 7.06

C3.B 4 1 158.1 36 543.55 22 3.44 90 0 5 6 4 1.96 2.25 1.20

C3.C 32 13 1,468.8 276 81,066.6 122 55.19 4,379,438 48 116 90 150 93.64 76.24 116.85

C3.A.1 3 5 171.0 41 1,624.19 19 9.5 20 2 9 9 9 3.88 3.12 4.89

C3.A.2 2 3 112.6 27 914.7 13 8.12 3 2 3 3 2 0.86 0.94 0.75

C3.A.3 2 4 229.3 55 3,583.5 25 15.62 3 2 7 4 10 1.13 1.35 0.98

C3.C.1 29 12 1,338.2 255 68,048.5 113 50.85 625,646 47 76 58 100 84.70 66.40 109.10

C3.C.2 27 11 1,222.8 233 56,675.3 103 46.35 89,390 45 72 55 95 77.91 60.06 101.70

C3.C.3 3 1 166.8 40 1,061.44 20 6.36 12 0 5 8 3 4.41 2.47 6.35

C3.C.4 19 9 583.0 120 13,058.2 48 22.4 9,933 38 42 33 56 43.20 36.25 52.46

C3.C.5 11 6 413.4 86 7,235.07 35 17.5 1,200 24 30 27 34 31.80 27.81 37.11

C3.C.6 9 5 346.1 72 5,191.9 30 15 170 19 21 24 17 20.28 19.43 21.40

C3.C.7 2 3 236.8 51 2,404.8 22 10.15 72 7 16 22 7 7.04 3.39 10.70

C3.C.8 4 2 142.6 33 816.8 14 5.37 12 6 5 5 7 1.65 1.94 1.37

C3.C.9 2 2 48.4 14 254.2 6 5.25 6 6 2 2 1 0.60 0.60 0.60

C3.C.10 4 2 64.7 17 258.9 6 4 12 5 2 2 1 0.70 0.44 0.87

C3.C.11 2 2 48.4 14 254.3 6 5.25 6 5 1 1 1 0.24 0.24 0.24

C3.C.12 4 2 303.1 67 3,214.8 33 10.61 48 4 5 5 4 5.66 3.50 8.91

Fro
n

tie
rs

in
N

e
u

ro
scie

n
ce

17
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 18

Hao et al. 10.3389/fnins.2022.1065366

TABLE 9 Example of code that caused a divergence between CC-Sonar values and the cognitive load measured by EEG.

C1.function
CC-Sonar = 5 / Cognitive Load (EEG) = 14.35

C2.function1
CC-Sonar = 4 / Cognitive Load (EEG) = 25.54

public static int getResult(int[] sequence, int lower,

int upper){

int result = 0;

if (sequence == null)

return result;

for (int n : sequence) {

if (n > = lower && n < = upper)

result++;

}

return result;

}

private static byte[] getInts(String digs) {

byte[] result = new byte[digs.length()];

for (int i = 0; i < digs.length(); i++) {

char c = digs.charAt(i);

if (c < ‘0’ | | c > ‘9’) {

throw new IllegalArgumentException(“Invalid

string” + c + “at position” + i);

}

result[digs.length()-1-i] = (byte) (c-‘0’);

}

return result;

}

TABLE 10 Examples of code regions with low CC-Sonar and high cognitive load (EEG).

C2.C.1

CC-Sonar = 1

Cognitive load (EEG) = 8.67

for (int rightPos = 0; rightPos < right.length; rightPos++) {

byte rightDigit = right[rightPos];

byte temp = 0;

C2.C.2

CC-Sonar = 2

Cognitive load (EEG) = 33.37

for (int leftPos = 0; leftPos < left.length; leftPos++) {

temp + = result[leftPos + rightPos];

temp + = rightDigit * left[leftPos];

result[leftPos + rightPos] = (byte) (temp % 10);

temp / = 10;

}

C2.C.3

CC-Sonar = 2

Cognitive load (EEG) = 11.54

int destPos = rightPos + left.length;

while (temp ! = 0) {

temp + = result[destPos] & 0xFFFFFFFFL;

result[destPos] = (byte) (temp % 10);

temp / = 10;

destPos++;

}

}

TABLE 11 Examples of code regions with relatively high CC-Sonar and very low cognitive load (EEG).

C3.C.8

CC-Sonar = 6

Cognitive load (EEG) = 1.65

if (c = = 0) { /* nested in 5 For loops */

mb = b;

break;

}

C3.C.9

CC-Sonar = 6

Cognitive load (EEG) = 0.60

if (c < mc) /* nested in 5 For loops */

mc = c;

C3.C.10

CC-Sonar = 5

Cognitive load (EEG) = 0.70

if (b = = 0) { /* nested in 4 For loops */

ma = a;

break;

}

C3.C.11

CC-Sonar = 5

Cognitive load (EEG) = 0.24

if (b < mb) /* nested in 4 For loops */

mb = b;

seems close to the saturation point for average programmers.
In fact, the maximum average value of Cognitive Load (EEG)
observed was 141.86 (±33.55) (see Table 5) for proficient
programmers trying to comprehend C3. The analysis of the
eye tracking data showed that these programmers tried harder
to understand this difficult code with V(g) = 22 (i.e., they

were engaged during the 10 min of maximum time). The large
confidence interval resulted from the fact that the number of
proficient programmers was small.

Since the value of CC-Sonar recommended as threshold
to refactor a code unit is 15 for most languages (and
can go up to 25 for C and C++) (Campbell, 2021),

Frontiers in Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 19

Hao et al. 10.3389/fnins.2022.1065366

the high value of cognitive load measured by EEG for
C2.function2 suggests that for this specific code the CC-
Sonar of 9 [and V(g) = 7] does not capture well the
difficulties evidenced by participants in understanding program
C2 in general and C2.function2 in particular. Note that the
average performance of participants in understanding C2
was 2.6 (on a 0 to 6 scale). Even proficient programmers
scored only 3.68 in the comprehension of C2 (see Table 5),
which means the code C2.function2 was not well understood,
despite having a CC-Sonar value substantially lower than the
threshold of 15.

RQ7 – Code units with values of V(g) and CC-Sonar
metrics much lower than the threshold values used for code
refactoring should correspond to code units that are easily
understood by the average programmer?

Results show that values of CC-Sonar [and V(g)]
much lower than the value recommend as threshold for
code refactoring do not guarantee that programmers easily
understand the code unit, suggesting that other elements in
the code (in addition to control flow complexity) may cause
higher cognitive load to the programmers and reduce their
performance in comprehending the code.

Table 8 shows the results for the code regions defined in
the three programs. In addition to all the code metrics already
used in previous tables and cognitive complexity (EEG) used as
reference, Table 8 also shows number of revisits to each code
region, which is a metric based on the participants’ code reading
behavior (i.e., not in the code). The calculation of code metrics
such as CC-BCS and CC-Sonar for the inner code regions of
each unit (e.g., a While structure that is inside two For loops)
was done assuming that such code region was a code unit per se
and mimicked the same cyclomatic conditions where the code
region is inserted in the program unit.

The goal of the analysis of the detailed results shown in
Table 8 is to help identifying specific code regions causing
high programmers’ cognitive load, to identify examples of code
and data structures that are responsible for increased effort in
comprehending code. Note that the code regions are used only
for analysis purposes and were not visible in the code of the
programs during the code comprehension tasks.

A high number of revisits to a given code region could
be interpreted as difficulty in understanding the code of the
region, which takes the programmer to look at that code many
times. Another possible interpretation is that the programmer
is meticulous and was really confirming the meaning of the
code (possibly because that code is related to other regions).
Both interpretations lead to the conclusion that a high number
of revisits to a given code region is associated with high
cognitive load, which may indicate difficulty of the programmers
in comprehending that code snippet. In fact, the Spearman
correlation coefficient (rs) calculated for number of revisits (all

programmers) and the cognitive load measured by EEG (all
programs) result in rs = 0.963 with a corresponding p < 0.0001,
which indicates a very high correlation.

RQ8 – Is the number of revisits to the code regions of a
program a reliable indication of the programmers’ cognitive
load required to understand the code of the different code
regions?

The strong positive correlation observed between the
number of revisits to a given code region and the cognitive
load measured using EEG (r = 0.963 with p < 0.0001)
suggests that the measurement of programmers’ cognitive
load in program comprehension tasks can be achieved using
a simple and non-intrusive eye tracker (to calculate the
number of revisits to each code region of the program) instead
of a complex EEG setup. Furthermore, while EEG can be
used only in controlled experiments, the low intrusiveness
of eye trackers opens the possibility of using this approach
to measure programmers’ cognitive load in real software
development environments.

It is worth mentioning that this result is obviously
dependent on the algorithm used for the division of the code
into code regions. In our study, we used an algorithm (presented
in section “3.2 Programs and code regions of analysis”) that tries
to mimic the way the average programmer is expected to work
out the code to fully understand it.

For space reasons, the following paragraphs focus only on
the analysis of CC-Sonar and cognitive load (EEG) values for
the different code regions, with the main goal of identifying
code scenarios where CC-Sonar does not capture well the effort
needed (i.e., cognitive load) by programmers in understanding
the code. We see this as an important step towards the
proposal of new variants of CC-Sonar metric that match the
programmers’ cognitive load in a more effective way.

Table 8 shows that there are many code regions where
the CC-Sonar value does not correspond to the cognitive load
measured using EEG or breaks the monotonicity of the CC-
Sonar metric. For example, the regions C2.C and C2.D, although
having similar values of CC-Sonar (5 and 4, respectively)
show very different values of cognitive load (53.58 and 5.59,
respectively). An important difference between the code of
these two regions is related to the data structures, number of
variables and parameters, which are much more complex in
the case of C2.C. This is well captured by the five Halstead
metrics that show much higher values for C2.C than for C2.D.
This effect [i.e., high values of cognitive load (EEG) for code
regions with high values of Halstead metrics] can be observed
in many code regions in Table 8. There is in fact a high positive
correlation between Effort (HEff) and cognitive load (EEG)
with a Spearman correlation coefficient value of rs = 0.901 with
a corresponding p < 0.0001. All the other Halstead metrics
(Halstead, 1977) correlates with cognitive load (EEG) (the one

Frontiers in Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 20

Hao et al. 10.3389/fnins.2022.1065366

with lower rs had rs = 0.85 with p < 0.0001). A possible
reason for not having even higher Spearman coefficient values
is because the physiologic measurement of cognitive load
(EEG) saturates in the high values, which is not the case of
Halstead metrics.

In contrast with Halstead metrics, the correlation between
the values measured for CC-Sonar and cognitive load (EEG) for
the 29 code regions show a Spearman correlation coefficient of
rs = 0.513, with a corresponding p = 0.00316. Although there is
a positive correlation, the fact that the coefficient rs is lower than
the one observed for the Halstead metrics suggests that the code
regions with high data complexity are causing such deviation.

RQ9 – Is CC-Sonar measuring accurately the programmers’
cognitive load related to the data complexity of code units?

Results show that code regions with high data complexity,
as captured by Halstead metrics, correspond to high values
of participants’ cognitive load (EEG), showing that data
complexity is an important cause of possible difficulties in
comprehending code that is normally not captured by the
CC-Sonar metric for the same code regions. This is a strong
indication that CC-Sonar should be complemented with some
“flavor” of Halstead metrics.

Code regions C2.C.2 and C2.C.3 also show a clear
discrepancy between the values obtained for CC-Sonar and
code complexity (EEG), as low values of CC-Sonar correspond
to relatively high values of cognitive load. However, in this
case the data complexity is not the only reason for the
high participants’ cognitive load, as happened in region C2.C,
since the values of Halstead metrics are moderate. Table 10
shows the code snippets for these two regions (and C2.C.1
to provide context). Although the structure of the code
is rather simple in both C2.C.2 and C2.C.3 (hence CC-
Sonar is low), the real meaning (i.e., the algorithm) of the
instructions inside the for cycle (C2.C.2) and the while cycle
(C2.C.3) is not obvious.

A final example of strong discrepancy between CC-Sonar
and cognitive load (EEG), but this time following the opposite
direction as the one shown in Table 10, is the result observed
for the regions C3.C.8, C3.C.9, C3.C.10, and C3.C.11. In
this case we observe a reasonably high value of CC-Sonar
(5 or 6) but the corresponding values of cognitive load
(EEG) are rather low.

Table 11 shows the code of these regions. The reason why
CC-Sonar is relatively high is because the code of these regions
is nested inside several for loops. As CC-Sonar increases 1
point for each nesting level of control flow breaking structures,
the metric shows a relatively high value. Since the code of
these regions is very simple and is not dependent (through
the variables) of the outer for loops, the programmers easily
understand these regions and the measured cognitive load
(EEG) is rather low.

The reason why the values of CC-Sonar metric are relatively
high for the code regions shown in Table 11 is because the CC-
Sonar metric increments 1 for each nested level in the code.
However, high levels of nested code do not always correspond
to high comprehension effort from the programmers.

RQ10 – Is the depth of nesting of control flow breaking
structures always responsible for the increase in the
programmers’ difficulty in understanding the code, as
proposed by CC-Sonar metric?

Results show that the depth of nesting of control flow
breaking structures, although increasing the value of CC-
Sonar, does not necessarily lead to high levels of participants’
cognitive load. This is particularly the case when the variables
and operands involved in the execution of the nested flow
breaking structures are not used in the outer loops.

4.3. Guidelines to improve code
complexity metrics

The improvement of existing code complexity metrics
should be understood (in the context of this study) as the
conjunction of three interdependent goals:

a) Assure that the scores provided by code metrics are
aligned with the average programmers’ perception of
code complexity.

b) Avoid monotonicity failures in the metrics (i.e., an increase
in the metric score should not correspond to a decrease
in the programmers’ perception of code complexity,
and vice versa).

c) Assure that scores thresholds recommended for code
refactoring are realistic. Although metrics are used for
many other purposes in addition to refactoring, the
importance of refactoring in the software industry makes
the selection of the right threshold a relevant goal per se.

The next points summarize our proposal of guidelines to
improve code complexity metrics such as CC-Sonar and V(g).
For space reasons, we just propose the guidelines as a spotlight
pointing to possible future research directions, considering that
such guidelines are supported by the observations previously
presented in this section (paragraphs in italic):

4.3.1. Saturation
Code complexity metrics such as CC-Sonar and V(g) should

include a scale saturation effect in the scores, as experimental
results show a clear saturation in the programmers’ perception
of code complexity. The human notion of software unit
complexity saturates at a given point and metrics should
reproduce that for the average programmer.

Frontiers in Neuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 21

Hao et al. 10.3389/fnins.2022.1065366

4.3.2. Nonlinearity and threshold scores
Programmers’ cognitive load measured using EEG suggests

a nonlinear perception of code complexity. This must be
studied in detail to understand how the complexity perception
grows and allows a solid justification for the scores used as
threshold for code refactoring. The quest for the optimal average
saturation threshold (very relevant for code refactoring) and/or
the investigation of personalized methods to identify complexity
saturation points for individual programmers are important
research lines where neuroscience can contribute to improve
software engineering practices.

4.3.3. Data complexity
Code complexity metrics based on a cyclomatic complexity

perspective [such as CC-Sonar and V(g)] should include
data complexity elements as the ones used by Halstead
effort metric. Experimental results clearly show that data
complexity (including the number of variables and parameters)
plays an important role in the programmers’ perception of
code complexity.

4.3.4. Algorithm complexity
The idea that the algorithm complexity in a software unit

can be measured by cyclomatic complexity clearly has strong
limitations. The semantics of sequential instructions (especially
data movement instructions) can significantly increase the
programmers’ perception of complexity. Existing metrics must
incorporate other elements of algorithm complexity, in addition
to cyclomatic complexity.

4.3.5. Context complexity
The use of libraries, APIs, services, methods, etc. by a

software unit seems to contribute more for the programmers’
perception of complexity than just as mere flow breaking
elements, as they are often treated by existing metrics.
The general notion of fan-out (number of other functions,
methods, etc., called by a given unit) embeds additional context
complexity that must be incorporated in existing metrics.

4.3.6. Depth of nesting
The experimental results show that the number of statement

blocks that are nested due to the use of control structures (loops
and branches) do not necessarily increases the difficulty in
comprehending the inner blocks, especially when the execution
of the code in the inner block is independent from the outer
loops. Existing metrics should take that into consideration and
do not assume that nesting always increase the code complexity.

4.4. Limitations and threats to validity

Studies involving human being performance in controlled
experiments usually have limitations and threats to validity in

the different aspects. However, we applied several measures to
mitigate potential threats in the following elements.

4.4.1. Construct validity
The validity here stands for measures taken to

mitigate the risks that threaten data reliability. First, this
study uses EEG as the reference for the programmers’
cognitive load measurement, which can be subject
to various artifacts, such as ocular (eye-blink or eye
movement), cardiac artifacts, and environmental effects.
However, we followed a rigorous and well-established
pre-processing pipeline to ensure a reliable neural
signal analysis.

Second, the codes used in the comprehension tasks
might not perfectly represent real-life problems in software
companies, although exhibiting different complexities. The
limitation here is the time constraints of a controlled
experiment, which results in relatively small programs.
However, since the goal is to estimate the cognitive load
associated with comprehending different code regions
(with different complexities), the effect of small programs
is relatively insignificant. Moreover, using these small
programs, we illustrated a wide range of practical examples
where code complexity metrics fail to express the cognitive
load of developers.

4.4.2. Internal validity
This validity deals with the measures taken to

mitigate the limitations and threats of data used. The
data was acquired in typical controlled experiment
environments, which may put constraints on the participants’
performance, and induce the feeling of being monitored
or under evaluation. However, we assured all participants
that their code comprehension performance would be
neither judged nor evaluated under any circumstances.
Nonetheless, the feeling of being monitored or observed
varies among participants, and it is impossible to
eliminate it entirely.

4.4.3. External validity
This validity deals with mitigating the risks of results’

generalizability.
First, although the results of this study can be

replicated and generalized, one of the obvious limitations
is the limited number of participants recruited (i.e., 27
participants), given the personalized nature of the neural
measurement. We attempted to overcome the limitation
by recruiting two levels of JAVA expertise and using
various code complexities to achieve a reasonable level of
generalizability.

Despite these threats and limitations, this study rigorously
evaluated state-of-the-art code complexity metrics using a
comprehensive set of examples and cases and compared them

Frontiers in Neuroscience 21 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 22

Hao et al. 10.3389/fnins.2022.1065366

with the complexity perceived by humans using cognitive load
measurement from a reliable well-established source (i.e., EEG).

5. Conclusion

This article discusses the results of a controlled
experiment involving 27 programmers performing code
comprehension tasks and shows that popular code complexity
metrics fail considerably in capturing code complexity
as perceived by programmers. The reported experiment
used programmers’ cognitive load measured by EEG as
the reference to evaluate a comprehensive set of existing
code complexity metrics in terms of their ability to capture
the difficulty programmers may feel in comprehending
code. The metrics evaluated include classic McCabe and
Halstead metrics, cognitive complexity metrics based on
scored code constructs, programmers’ behavior metrics such
as reading time and number of revisits to specific code
regions, and state-of-the-art code complexity metrics such
as the metric provided by SonarSource tools (named in the
paper as CC-Sonar).

The experiment used additional survey-oriented methods
based on NASA-TLX to assess the subjective perception
of participants in terms of code complexity. Results
showed that the programmers’ cognitive load measured
using EEG correlates (rs = 0.829, with p < 0.0001) with
the subjective perception of code complexity assessed by
NASA-TLX, supporting our assumption that cognitive load
measured through EEG in our experiment represents well
the difficulty programmers may feel in comprehending
code and constitutes a good yardstick to compare
complexity metric.

The results of the evaluation of the different metrics were
discussed at the level of the entire programs used in the code
comprehension tasks (the experiments used three programs),
code units (functions) of each program, and small code regions
used in the analysis to help identify the actual code elements
that cause high values of programmers’ cognitive load, which
correspond to code areas that were perceived as complex by
the programmers.

Given the relevance for the software industry of metrics
such as V(g) and CC-Sonar, the discussion of the results
was particularly focused on the evaluation of such metrics.
In particular, the paper presented a comprehensive set of
examples (illustrated using the actual code) in which V(g)
and CC-Sonar seemed to fail in capturing code complexity as
perceived by programmers, discussing in detail possible causes
and possible solutions to improve the accuracy of current code
complexity metrics.

The article ends with the proposal of a set of guidelines
encompassing both concrete proposals and research directions

to improve existing code complexity metrics, particularly
metrics such as CC-Sonar.

Data availability statement

The original contributions presented in this study are
included in the article/Supplementary material, further
inquiries can be directed to the corresponding author.

Ethics statement

The studies involving human participants were
reviewed and approved by the Ethics Committee of
the Faculty of Medicine of the University of Coimbra,
https://www.uc.pt/fmuc/orgaosconsultivos/comissaoetica. The
patients/participants provided their written informed consent
to participate in this study.

Author contributions

GH: analysis, writing, and results and tables. HH: writing,
repository preparation, and reviewing. JD: experiment design,
analysis, writing, and reviewing. JM: analysis, writing, data
curation, repository preparation, EEG processing pipeline, and
reviewing. RC: EEG processing pipeline and data curation.
CL: supervision. CT: supervision and EEG processing
pipeline. JC: experiment design, data acquisition, and EEG
resources. MC: neuroscience supervision, EEG resources,
and experiment design. PC: conceptualization, methodology,
funding acquisition, and reviewing. HM: conceptualization,
methodology, funding acquisition, writing, and reviewing.
All authors contributed to the article and approved the
submitted version.

Funding

This work was funded in part by the BASE (Biofeedback
Augmented Software Engineering) project under Grant POCI-
01-0145-FEDER-031581, by the Centro de Informática e
Sistemas da Universidade de Coimbra (CISUC), and in part
by Coimbra Institute for Biomedical Imaging and Translational
Research (CIBIT), Institute of Nuclear Sciences Applied to
Health (ICNAS), and the University of Coimbra under Grant
PTDC/PSI-GER/30852/2017 | CONNECT-BCI.

Acknowledgments

The authors thank the participants who took part in the
controlled experiment.

Frontiers in Neuroscience 22 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://www.uc.pt/fmuc/orgaosconsultivos/comissaoetica
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 23

Hao et al. 10.3389/fnins.2022.1065366

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: shorturl.at/DHT79

References

Ajami, S., Woodbridge, Y., and Feitelson, D. (2017). “Syntax, predicates, idioms
what really affects code complexity?,” in Proceedings of the IEEE international
conference on program comprehension (ICPC), Buenos Aires. doi: 10.1109/ICPC.
2017.39

Ammann, P., and Offutt, J. (2016). Introduction to software testing, 2nd Edn.
Cambridge: Cambridge University Press. doi: 10.1017/9781316771273

Ammar, H., Nikzadeh, T., and Dugan, J. (2001). Risk assessment of software-
system specifications. IEEE Trans. Reliab. 50, 171–183. doi: 10.1109/24.963125

Campbell, A. (2021). Webinar: Refactoring with cognitive complexity. Available
online at: https://community.sonarsource.com/t/webinar-refactoring-with-
cognitive-complexity/45331/2 (accessed September 29, 2022).

Campbell, G. (2017). Cognitive complexity–a new way of measuring
understandability, Technical Report. Geneva: SonarSource.

Castelhano, J., Duarte, I. C., Duraes, J., Madeira, H., and Castelo-Branco, M.
(2021). Reading and calculation neural systems and their weighted adaptive use
for programming skills. Neural Plast. 2021:5596145. doi: 10.1155/2021/5596145

Castelhano, J., Duarte, I. C., Ferreira, C., Duraes, J., Madeira, H., and Castelo-
Branco, M. (2019). The role of the insula in intuitive expert bug detection in
computer code: An fMRI study. Brain Imaging Behav. 13, 623–637.

Couceiro, R., Duarte, G., Durães, J., Castelhano, J., Duarte, C., Teixeira,
C., et al. (2019). “Biofeedback augmented software engineering: Monitoring of
programmers’ mental effort,” in Proceedings of the IEEE/ACM 41st international
conference on software engineering: New ideas and emerging results (ICSE-NIER),
Montreal, CN. doi: 10.1109/ICSE-NIER.2019.00018

Crasso, M., Mateos, C., Zunino, A., Misra, S., and Polvorın, P. (2016). Assessing
cognitive complexity in Java-based object-oriented systems: Metrics and tool
support. Comput. Inform. 35, 497–527.

Crk, I., and Kluthe, T. (2014). “Toward using alpha and theta brain waves
to quantify programmer expertise,” in Proceedings of the IEEE 36th annual
international conference of the IEEE engineering in medicine and biology society,
Chicago, IL. doi: 10.1109/EMBC.2014.6944840

Crk, I., Kluthe, T., and Stefik, A. (2016). Understanding programming expertise:
An empirical study of phasic brain wave changes. ACM Trans. Comput. Hum.
Interact. 23, 1–29. doi: 10.1145/2829945

Delorme, A., and Makeig, S. (2004). EEGLAB: An open-source toolbox for
analysis of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Duraisingam, A., Palaniappan, R., and Andrews, S. (2017). “Cognitive task
difficulty analysis using EEG and data mining,” in Proceedings of the conference
on emerging devices and smart systems (ICEDSS), Mallasamudram, TN. doi:
10.1109/ICEDSS.2017.8073658

Fakhoury, S., Ma, Y., Arnaoudova, V., and Adesope, O. (2018). “The effect
of poor source code lexicon and readability on developers’ cognitive load,” in
Proceedings of IEEE/ACM 26th international conference on program comprehension
(ICPC), Gothenburg, SE. doi: 10.1145/3196321.3196347

Fenton, N., and Pfleeger, S. (2014). Software metrics: A rigorous and
practical approach, 3rd Edn. Boca Raton, FL: CRC Press. doi: 10.1201/b
17461

Freeman, F. G., Mikulka, P. J., Scerbo, M. W., and Scott, L. (2004). An evaluation
of an adaptive automation system using a cognitive vigilance task. Biol. Psychol. 67,
283–297. doi: 10.1016/j.biopsycho.2004.01.002

Garcia-Munoz, J., Garcia-Valls, M., and Escribano-Barreno, J. (2016).
“Improved metrics handling in sonarqube for software quality monitoring,” in
Proceedings of the international conference on distributed computing and artificial
intelligence, Berlin. doi: 10.1007/978-3-319-40162-1_50

Graimann, B., Allison, B. Z., and Pfurtscheller, G. (Eds.) (2010). Brain-computer
interfaces: Revolutionizing human-computer interaction. Berlin: Springer Science
& Business Media.

Halstead, M. H. (1977). Elements of software science. Amsterdam, NL: Elsevier.

Herbold, S., Grabowski, J., and Waack, S. (2011). Calculation and optimization
of thresholds for sets of software metrics. Empir. Softw. Eng. 16, 812–841. doi:
10.1007/s10664-011-9162-z

Hijazi, H., Duraes, J., Couceiro, R., Castelhano, J., Barbosa, R., Medeiros, J., et al.
(2022). Quality evaluation of modern code reviews through intelligent biometric
program comprehension. IEEE Trans. Softw. Eng. 1, 1–18. doi: 10.1109/TSE.2022.
3158543

Huda, S., Alyahya, S., Ali, M. M., Ahmad, S., Abawajy, J., Al-Dossari, H. Z., et al.
(2017). A Framework for software defect prediction and metric selection. IEEE
Access 6. doi: 10.1109/ACCESS.2017.2785445

IEEE-Standard (1991). 610-1990–IEEE standard computer dictionary.
A compilation of IEEE standard computer glossaries. Piscataway, NJ: IEEE
Standard.

Ishida, T., and Uwano, H. (2019). “Synchronized analysis of eye movement
and EEG during program comprehension,” in Proceedings of IEEE/ACM 6th
international workshop on eye movements in programming, Montreal, CN. doi:
10.1109/EMIP.2019.00012

Jain, L., and Satinderjit, S. (2019). Designing the code snippets for experiments
on code comprehension of different software constructs. Int. J. Comput. Sci. Eng.
doi: 10.26438/ijcse/v7i3.310318

Jbara, A., and Feitelson, D. (2017). How programmers read regular code: A
controlled experiment using eye tracking. Empir. Softw. Eng. 22, 1440–1477. doi:
10.1007/s10664-016-9477-x

Kasto, N., and Whalley, J. (2013). “Measuring the difficulty of code
comprehension tasks using software metrics,” in Proceedings of the 15th
Australasian computer education conference, Darlinghurst.

Kaur, L., and Mishra, A. (2019). Cognitive complexity as a quantifier of version
to version Java-based source code change: An empirical probe. Inf. Softw. Technol.
106, 31–48. doi: 10.1016/j.infsof.2018.09.002

Lee, S., Hooshyar, D., Ji, H., Nam, K., and Lim, H. (2018). Mining biometric
data to predict programmer expertise and task difficulty. Cluster Comput. 21,
1097–1107. doi: 10.1007/s10586-017-0746-2

Lee, S., Matteson, A., Hooshyar, D., Kim, S., Jung, J., and Nam, G. (2016).
“Comparing programming language comprehension between novice and expert
programmers using EEG analysis,” in Proceedings of IEEE 16th international
conference on bioinformatics and bioengineering, Taichung. doi: 10.1109/BIBE.
2016.30

Frontiers in Neuroscience 23 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
http://shorturl.at/DHT79
https://doi.org/10.1109/ICPC.2017.39
https://doi.org/10.1109/ICPC.2017.39
https://doi.org/10.1017/9781316771273
https://doi.org/10.1109/24.963125
https://community.sonarsource.com/t/webinar-refactoring-with-cognitive-complexity/45331/2
https://community.sonarsource.com/t/webinar-refactoring-with-cognitive-complexity/45331/2
https://doi.org/10.1155/2021/5596145
https://doi.org/10.1109/ICSE-NIER.2019.00018
https://doi.org/10.1109/EMBC.2014.6944840
https://doi.org/10.1145/2829945
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1109/ICEDSS.2017.8073658
https://doi.org/10.1109/ICEDSS.2017.8073658
https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1201/b17461
https://doi.org/10.1201/b17461
https://doi.org/10.1016/j.biopsycho.2004.01.002
https://doi.org/10.1007/978-3-319-40162-1_50
https://doi.org/10.1007/s10664-011-9162-z
https://doi.org/10.1007/s10664-011-9162-z
https://doi.org/10.1109/TSE.2022.3158543
https://doi.org/10.1109/TSE.2022.3158543
https://doi.org/10.1109/ACCESS.2017.2785445
https://doi.org/10.1109/EMIP.2019.00012
https://doi.org/10.1109/EMIP.2019.00012
https://doi.org/10.26438/ijcse/v7i3.310318
https://doi.org/10.1007/s10664-016-9477-x
https://doi.org/10.1007/s10664-016-9477-x
https://doi.org/10.1016/j.infsof.2018.09.002
https://doi.org/10.1007/s10586-017-0746-2
https://doi.org/10.1109/BIBE.2016.30
https://doi.org/10.1109/BIBE.2016.30
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-16-1065366 February 7, 2023 Time: 15:53 # 24

Hao et al. 10.3389/fnins.2022.1065366

Lei, S. (2011). Driver mental states monitoring based on brain signals. Ph.D.
thesis. Berlin: Technischen Universitat, 1–271.

Malmivuo, J., and Plonsey, P. (1995). Bioelectromagnetism: Principles and
applications of bioelectric and biomagnetic fields. Oxford: Oxford University Press,
365–373. doi: 10.1093/acprof:oso/9780195058239.001.0001

McCabe, T. J. (1976). A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320.
doi: 10.1109/TSE.1976.233837

McConnell, S. C. (1993). Code complete: A practical handbook of software
construction. Redmond, WA: Microsoft Press.

Medeiros, J., Couceiro, R., Castelhano, J., Branco, M. Castelo, Duarte, G.,
Duarte, C., et al. (2019). “Software code complexity assessment using EEG
features,” in Proceedings of the IEEE 41st annual international conference of the
IEEE engineering in medicine and biology society, Berlin. doi: 10.1109/EMBC.2019.
8856283

Medeiros, J., Couceiro, R., Duarte, G., Durães, J., Castelhano, J., Duarte, C., et al.
(2021). Can EEG be adopted as a neuroscience reference for assessing software
programmers’ cognitive load? Sensors 21:2338.

Moser, R., Pedrycz, W., and Succi, G. (2008). “A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction,” in
Proceedings of the international conference software engineering, ICSE, Leipzig.
doi: 10.1145/1368088.1368114

Müller, S., and Fritz, T. (2016). “Using (bio) metrics to predict code quality
online,” in Proceedings of the IEEE/ACM 38th international conference on software
engineering (ICSE), Austin, TX. doi: 10.1145/2884781.2884803

NASA-TLX (2020). NASA TLX task load index. Washington, DC: National
Aeronautics and Space Administration.

Papamichail, M., Diamantopoulos, T., and Symeonidis, A. (2019). Measuring
the reusability of software components using static analysis metrics and reuse rate
information. J. Syst. Softw. 158:110423. doi: 10.1016/j.jss.2019.110423

Peitek, N., Apel, S., Parnin, C., Brechmann, A., and Siegmund, J. (2021).
“Program comprehension and code complexity metrics: An fMRI study,” in
IEEE/ACM 43rd international conference on software engineering (ICSE), Madrid.
doi: 10.1109/ICSE43902.2021.00056

Peitek, N., Siegmund, J., Apel, S., Kästner, C., Parnin, C., Bethmann, A., et al.
(2018). A look into programmers’ heads. IEEE Trans. Softw. Eng. 1, 442–462.
doi: 10.1109/TSE.2018.2863303

Perrin, F., Pernier, J., Bertrand, O., and Echallier, J. F. (1989). Spherical
splines for scalp potential and current density mapping. Electroencephalogr. Clin.
Neurophysiol. 72, 184–187. doi: 10.1016/0013-4694(89)90180-6

Pope, A., Bogart, E. H., and Bartolome, D. S. (1995). Biocybernetic system
evaluates indices of operator engagement in automated task. Biol. Psychol. 40,
187–195. doi: 10.1016/0301-0511(95)05116-3

Rilling, J., and Klemola, T. (2003). “Identifying comprehension bottlenecks
using program slicing and cognitive complexity metrics,” in Proceedings of 11th
IEEE international workshop on program comprehension, Portland, OR.

Rook, P. (1990). Software reliability handbook, ed. P. Rook (London: Centre for
Software Reliability).

Sandu, I., Salceanu, A., and Bejenaru, O. (2018). New approach of the customer
defects per lines of code metric in automotive SW development applications.
J. Phys. 1065. doi: 10.1088/1742-6596/1065/5/052006

Scalabrino, S., Bavota, G., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D.,
and Oliveto, R. (2017). “Automatically assessing code understandability: How
far are we?,” in Proceedings of the 32nd IEEE/ACM international conference
on automated software engineering, Urbana, IL. doi: 10.1109/ASE.2017.811
5654

Scalabrino, S., Bavota, G., Vendome, C., Linares-Vásquez, M., Poshyvanyk,
D., and Oliveto, R. (2021). “Automatically assessing code understandability,” in
Proceedings of the 32nd IEEE/ACM international conference on automated software
engineering, Urbana, IL. doi: 10.1109/TSE.2019.2901468

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H., et al.
(2021). A Survey on machine learning techniques for source code analysis. arXiv
[Preprint]. 2110.09610.

Silberg, G. (2017). Protecting the fleet and the car business. Amstelveen, NL:
KPMG.

Sneed, H. (1995). Understanding software through numbers: A metric based
approach to program comprehension. J. Softw. Maint. 7, 405–419. doi: 10.1002/
smr.4360070604

Varela, A., Perez-Gonzalez, H., Martinez-Perez, F., and Soubervielle-Montalvo,
C. (2017). Source code metrics: A systematic mapping study. J. Syst. Softw. 128,
164–197. doi: 10.1016/j.jss.2017.03.044

Wang, Y. (2006). “Cognitive complexity of software and its measurement,”
in Proceedings of the 5th IEEE international conference on cognitive informatics,
Beijing. doi: 10.1109/COGINF.2006.365701

Wang, Y., and Shao, J. (2003). “Measurement of the cognitive functional
complexity of software,” in Proceedings of the second IEEE international conference
on cognitive informatics, London.

Weber, B., Fischer, T., and Riedl, R. (2021). Brain and autonomic
nervous system activity measurement in software engineering: A systematic
literature review. J. Syst. Softw. 178:110946. doi: 10.1016/j.jss.2021.
110946

Yamashita, K., Huang, C., Nagappan, M., Kamei, Y., Mockus, A., Hassan, A. H.,
et al. (2016). “Thresholds for size and complexity metrics: A case study from
the perspective of defect density,” in Proceedings of the international conference
on software quality, reliability and security (QRS), Vienna. doi: 10.1109/QRS.20
16.31

Zuse, H. (1991). Software complexity–measures and methods. Berlin: Walter de
Gruyter Inc. doi: 10.1515/9783110866087

Zuse, H. (1993). Criteria for program comprehension derived from software
complexity metrics. IEEE Workshop Program Compr. 1993, 8–16. doi: 10.1109/
WPC.1993.263911

Frontiers in Neuroscience 24 frontiersin.org

https://doi.org/10.3389/fnins.2022.1065366
https://doi.org/10.1093/acprof:oso/9780195058239.001.0001
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/EMBC.2019.8856283
https://doi.org/10.1109/EMBC.2019.8856283
https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1145/2884781.2884803
https://doi.org/10.1016/j.jss.2019.110423
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/TSE.2018.2863303
https://doi.org/10.1016/0013-4694(89)90180-6
https://doi.org/10.1016/0301-0511(95)05116-3
https://doi.org/10.1088/1742-6596/1065/5/052006
https://doi.org/10.1109/ASE.2017.8115654
https://doi.org/10.1109/ASE.2017.8115654
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1002/smr.4360070604
https://doi.org/10.1002/smr.4360070604
https://doi.org/10.1016/j.jss.2017.03.044
https://doi.org/10.1109/COGINF.2006.365701
https://doi.org/10.1016/j.jss.2021.110946
https://doi.org/10.1016/j.jss.2021.110946
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1515/9783110866087
https://doi.org/10.1109/WPC.1993.263911
https://doi.org/10.1109/WPC.1993.263911
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	On the accuracy of code complexity metrics: A neuroscience-based guideline for improvement
	1. Introduction
	2. Related work
	3. Controlled experiment design and setup
	3.1. Overview of the experiment protocol
	3.2. Programs and code regions of analysis
	3.3. Participants
	3.4. Electroencephalography
	3.4.1. Preprocessing
	3.4.2. Feature extraction
	fEEG1 (index 1 of the task engagement indexes)
	fEEG2 (power ratio between Theta and Alpha bands)

	3.4.3. Feature normalization
	3.4.4. Feature transformation
	3.4.5. Feature scaling

	3.5. Eye tracking
	3.6. NASA-TLX
	3.7. Cognitive load measurement

	4. Results and discussion
	4.1. NASA-TLX results, code comprehension performance, and cognitive load (EEG)
	4.2. Code complexity metrics results
	4.2.1. Variables
	4.2.2. Library and external API
	4.2.3. Algorithm

	4.3. Guidelines to improve code complexity metrics
	4.3.1. Saturation
	4.3.2. Nonlinearity and threshold scores
	4.3.3. Data complexity
	4.3.4. Algorithm complexity
	4.3.5. Context complexity
	4.3.6. Depth of nesting

	4.4. Limitations and threats to validity
	4.4.1. Construct validity
	4.4.2. Internal validity
	4.4.3. External validity

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

