
Pré-Publicações do Departamento de Matemática
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Abstract: It is given a structural conjugacy invariant in the set of pseudowords
whose finite factors are factors of a given subshift. Some profinite semigroup tools
are developed for this purpose. With these tools a shift equivalence invariant of
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1. Introduction

There is a very strong and decidable conjugacy invariant of sofic subshifts,
the class of shift equivalence, but the major problem of knowing if there is
an algorithm that decides if two subshifts of finite type are conjugate or not
remains open [16, 18]. The study of conjugacy problems about finite type
subshifts is usually made in terms of matrices of non-negative integers, and
in the more general case of sofic subshifts a certain kind of symbolic matrices
is used [21]. A different approach using the algebraic theory of languages
with profinite semigroup techniques was suggested to the author by Jorge
Almeida. It is well known that a subshift X of AZ is determined by the
language L(X ) of A+ whose elements are the finite factors of X . As has
been observed by Jorge Almeida, X is also determined by the infinite ele-

ments in the closure of L(X ) in the free profinite A-generated semigroup Â+.

The algebraic-topological structure of Â+ is very rich, but it remains quite
unexplored; see [5, 6] for some results; in [6] a dynamical parameter - en-

tropy - is extensively used to achieve results about the minimal ideal of Â+.
Almeida also established in [4] a strong link between minimal subshifts and
the structure of free profinite semigroups. So it seems that the exploration
of a profinite semigroup approach in symbolic dynamics deserves attention.
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2 ALFREDO COSTA

Developing some tools for this purpose and showing their potentiality is one
of the objectives of this paper.

Section 2 provides preliminary definitions and results about symbolic dy-
namics and free profinite semigroups. Our main reference for symbolic dy-
namics is the book of Lind an Marcus [21]. For background on classical semi-
group theory, rational languages and finite automata see for example [20].
For profinite semigroups see the introductory text [3]. It is necessary ba-
sic background about Green’s relations R, L, J , H, and the quasi-orders
≤R, ≤L, ≤J , as well about the notions of regular element and stable semi-
group [20, 2].

We study in Section 3 the effect of a subshift conjugacy in the set of pseu-
dowords whose finite factors are in the language of a given subshift. We
call this set the mirage of the subshift. The tools that we develop for this
study allow us to arrive at a structural conjugacy invariant in the mirage.
A corollary of this result is the conjugacy invariance of the Schützenberger
group in the J -class associated with a minimal subshift, a result announced
by Almeida without proof in [3]; these groups have been computed for some
classes of minimal subshifts, like Sturmian subshifts [4]. Our methods rely a
lot on the pseudowords that are simultaneously R-below and L-below idem-
potents; we say that such words are idempotent-bound.

In Section 4 we introduce an effectively computable shift equivalence invari-
ant of sofic subshifts, using the tools of Section 3. This invariant is obtained
from the syntactic image of the language of the sofic subshift: it is the labeled
poset of their idempotent-bound J -classes, labeled with their Schützenberger
groups. This improves the invariant introduced in [9] by Béal, Fiorenzi and
Perrin, who only considered regular J -classes. The results from [9] were an
inspiring source, but our methods are substantially different. We use profinite
syntactic methods, manipulating pseudowords, while in [9] symbolic matrices
where the main ingredient. Béal, Fiorenzi and Perrin continued in [8] the
search of conjugacy invariants in the structure of the syntactic semigroup of
the language of a sofic subshift. There they established a hierarchy of classes
of irreducible sofic subshifts closed for taking shift equivalent subshifts, and
they proved that the important class of almost finite type subshifts. This
class has pratical interest for coding with constrained channels [7].

In Section 5 we prove that the conjugacy invariant introduced in Section 4 is
a shift equivalence invariant. The proof depends on the conjugacy invariance.
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2. Preliminaries

2.1. Subshifts and codes. Let A be an alphabet. All alphabets in this
paper are assumed to be finite. The semigroup of finite non-empty words
(or blocks) on letters of A is as usually denoted by A+; the empty word is
denoted by 1 and A∗ is the monoid A+∪{1}. The length of u ∈ A∗ is denoted
by |u|. Let AZ be the set of sequences of letters of A indexed by Z. We define
in AZ the shift function σA by the following formula:

σA((xi)i∈Z) = (xi+1)i∈Z.

Note that σA is bijective. In general we denote σA simply by σ. We endow AZ

with the product topology with respect to the discrete topology of A. Note
that AZ is a compact Hausdorff space. From here on compact will mean both
compact and Hausdorff.

A shift dynamical system or subshift is a non-empty closed topological
subspace X of AZ (for some alphabet A) that is invariant under the action
of σ and σ−1 (that is, σ(X ) ⊆ X and σ−1(X ) ⊆ X ). A factor of (xi)i∈Z is
a finite sequence x[i,i+n] = xixi+1 · · ·xi+n−1xi+n, where i ∈ Z and n ≥ 0. If

X is a non-empty subset of AZ then we denote by L(X ) the set of factors of
elements of X . The set of words over A with length n is An; the set L(X )∩An

is denoted by Ln(X ). A language L of A+ is factorial if it is closed for taking
factors, and it is prolongable if for every word u in L there are letters a and
b such that aub belongs to L. For every subshift X , the language L(X ) is
factorial and prolongable. In fact, it is easy to prove that the correspondence
X 7→ L(X ) is a bijection between the subshifts of AZ and the non-empty
factorial prolongable languages of A+.

A subshift X of AZ is irreducible if for all u, v ∈ L(X ) there is w ∈ A∗ such
that uwv ∈ L(X ).

A code G between the subshifts X of AZ and Y of BZ is a continuous
function G : X → Y such that G ◦ σA = σB ◦ G. Note that the identity
transformation of a subshift is a code and that the composition of two codes
is a code. Note also that the inverse of a bijective code is a code. A bi-
jective code is called a conjugacy. Two subshifts are conjugate if there is a
conjugacy between them. A conjugacy invariant is a property of subshifts
that is preserved for taking conjugate subshifts. Irreducibility is a conjugacy
invariant. See [21] for the definition and computation of ordinary conjugacy
invariants like the zeta function and the entropy.
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It is well known [13] that a map G : X ⊆ AZ → Y ⊆ BZ is a code between
subshifts if and only if there are k, l ≥ 0 and a map g : Ak+l+1 → B such that
G(x) = (g(x[i−k,i+l]))i∈Z. We say that g is a block map of G with memory
k and anticipation l. The code G depends only on the restriction of g to
Lk+l+1(X ). We use the notation G = g[−k,l] : X → Y , or simply G = g[−k,l]

when X and Y are known. Note that if n ≥ l and m ≥ k then G = h[−m,n],
where h(a[−m,n]) = g(a[−k,l]), for all a = a−ma−m+1 . . . an−1an ∈ Am+n+1 (ai ∈
A). In particular, one can always choose k = l.

Given an alphabet A and k ≥ 1, consider the alphabet Ak. To avoid
ambiguities, we represent an element w1 . . . wn of (Ak)+ (with wi ∈ Ak) by
〈w1, . . . , wn〉. For k ≥ 0 let Φk the function from A+ to (Ak+1)∗ defined by

Φk(a1 . . . an) =

{
1 if n ≤ k,

〈a[1,k+1], a[2,k+2], . . . a[n−k−1,n−1], a[n−k,n]〉 if n > k,

where ai ∈ A and a[i,j] = aiai+1 . . . aj−1aj. It is easy to see that, if X is a

subshift of AZ and i, j ≥ 0 are such that i + j = k, then the restriction of

the code Φ
[−i,j]
k to X is a conjugacy between X and Φ

[−i,j]
k (X ), whose inverse

is the code with memory and anticipation 0 given by the block map that
sends an element w of Ak into its (i + 1)-th letter as an element of A+. A
one-block code is a code having a block map with memory and anticipation 0.
A one-block conjugacy is a conjugacy that is a one-block code.

Proposition 2.1. For every code G there are one-block codes G1 and G2

such that G1 is a conjugacy and G = G2 ◦G
−1
1 .

Proof : For a code G = g[−k,k] : X ⊆ AZ → Y ⊆ AZ let G1 be the restriction

of Φ
[−k,k]
2k+1 to X and let G2 : Φ

[−k,k]
2k+1 (X ) → Y be defined by G2 = g[0,0].

Proposition 2.1 is well known and it is very useful because if we want
to prove that some property is a conjugacy invariant it suffices to consider
one-block conjugacies. This simplification will be used later in this paper.

2.2. Sofic subshifts. A subshift X is sofic if L(X ) is rational. We call
graph-automaton to an automaton such that all states are initial and fi-
nal. An automaton is said to be essential if all states lie in a bi-infinite
path of the automaton. One can see that X is sofic if and only if L(X )
is recognized by an essential finite graph-automaton. We say that a finite
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graph-automaton presents the subshift X if it recognizes L(X ). A sofic sub-
shift is irreducible if and only if it is presented by a strongly connected finite
graph-automaton [12].

A subshift of finite type is a subshift X such that L(X ) = A+ \ A∗FA∗

for some finite set F . Therefore finite type subshifts are sofic. A subshift
presented by a finite graph-automaton in which every letter acts in at most
one state is called an edge subshift. An edge subshift is a subshift of finite
type, and every subshift of finite type is conjugate with an edge subshift.

We are going to use the usual definition of a deterministic automaton: let-
ters act on states as partial functions, and there is a single initial state. By
the minimal automaton of a rational language we mean its minimal determin-
istic automaton. The Krieger cover of X is the essential graph-automaton
K(X ) obtained from the minimal automaton of L(X ) by deleting states that
do not lie in bi-infinite paths. Call Krieger edge subshift of X the edge sub-
shift obtained from K(X ) by labeling with different letters different arrows
in the graphical representation of K(X ). Krieger showed in [19] that if X
and Y are conjugate sofic subshifts, then their Krieger edge subshifts are
also conjugate. If the sofic subshift X is irreducible then K(X ) has a unique
terminal strongly connected component which is a graph-automaton F(X )
presenting X [10]. This graph-automaton is named the Fischer cover of X .
The right context of a state q in an automaton is the set of words that label
paths starting at q. A reduced automaton is an automaton such that differ-
ent states have different right contexts. The Fischer cover of X is the unique
graph-automaton presenting X that is strongly connected, reduced and such
that every letter acts on the states as a partial function [12].

2.3. Free profinite semigroups. A compact semigroup is a semigroup
endowed with a compact topology for which the semigroup operation is con-
tinuous. Finite semigroups are assumed to be endowed with the discrete
topology. A profinite semigroup is a compact semigroup T such that, for
every pair of distinct elements u and v of T , there is a continuous homomor-
phism ϕ from T into a finite semigroup F such that ϕ(u) 6= ϕ(v). Note that
finite semigroups are profinite.

Let u, v ∈ A+. If u 6= v then there is some finite semigroup S that does
not satisfy the identity u = v. Let r(u, v) be the smallest possible cardinal
for such an S. Let d(u, v) be 2−r(u,v) if u 6= v, and let d(u, u) = 0. Then d is
a metric.
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Let Â+ be the completion of A+ with respect to d. We call its elements

pseudowords. The topological space Â+ has a continuous semigroup opera-
tion that extends the concatenation product in A+. The resulting semigroup

Â+ is profinite. In fact we call Â+ the free A-generated profinite semigroup
because for every map ϕ from A into a profinite semigroup S, there is a

unique continuous homomorphism ϕ̂ : Â+ → S whose restriction to A is ϕ.

The elements of A+ are isolated points of Â+. The elements of Â+ \A+ can
not be the limit of a sequence (un)n of elements of A+ such that the sequence

(|un|)n is bounded. For this reason we say that the elements of Â+ \A+ have
infinite length.

The definition of the free A-generated profinite monoid Â∗ is similar to that

of Â+: we just substitute “semigroups” by “monoids”, and “semigroup ho-
momorphisms” by “monoid homomorphisms”. Considering the empty word

as an isolated point of Â+ ∪ {1}, we may see Â+ ∪ {1} as being Â∗.
A clopen subset of a topological space is a subset that is open and closed.

The following proposition [1] makes the connection between rational lan-

guages and the topology of Â+. For a proof see [2, Theorem 3.6.1].

Proposition 2.2. If L is a subset of A+ then L is rational if and only if the

closure of L in Â+ is clopen. Moreover, the topology of Â+ is generated by
the closures of the rational subsets of A+.

We say that a subset T of a semigroup S is factorial if it is closed for taking
factors. This extends the notion of factorial language.

Lemma 2.3. If L is a factorial rational language of A+ then the closure of

L in Â+ is factorial.

Proof : Suppose that xvy ∈ L, where x, y ∈ Â∗ and v ∈ Â+. Let (xn)n,
(yn)n and (vn)n be sequences of elements of A+ converging to x, y and
v, respectively. The set L is an open neighborhood of xvy by Proposi-
tion 2.2. Since (xnvnyn)n converges to xvy, there is N such that n ≥ N

implies xnvnyn ∈ L∩A+. The elements of A+ are isolated points of Â+, thus
L ∩A+ = L. Since L is factorial, if n ≥ N then vn ∈ L, thus v ∈ L.

A subset K of Â+ is prolongable if for all u ∈ K there are a, b ∈ A such
that aub ∈ K.
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Lemma 2.4. If L is a prolongable language of A+ then the closure of L in Â+

is prolongable.

Proof : Let u ∈ L and let (un)n be a sequence of elements of L converging to
u. Since L is prolongable, for each n there are letters an and bn such that
anunbn ∈ L. Since there is a finite number of letters, the sequence (an, bn)n

has a constant subsequence equal to (a, b). Then aub ∈ L.

A prefix (respectively, suffix ) of a pseudoword w of Â+ is a pseudoword u

of Â∗ such that w = uπ (respectively, w = πu) for some π in Â∗.

Lemma 2.5 ([2, Exercise 10.2.10]). Let π, ρ ∈ Â+ and u, v ∈ A+ be such
that uπ = vρ or πu = ρv. If |u| = |v| then u = v and π = ρ.

For every positive integer n and for every pseudoword w of Â+, let in(w)
(respectively tn(w)) denote the unique longest prefix (respectively suffix) of
w with length less or equal to n. The maps in and tn are continuous.

The next lemma is a particular case of Lemma 7.2 of [6]:

Lemma 2.6. Let p, q, f ∈ Â+ with f idempotent. If u is a finite factor of
pfq then u is a factor of pf or is a factor of fq.

2.4. Idempotent-bound semigroup elements. If s is an element of a
compact semigroup S, then the closure of the subsemigroup generated by s
has a unique idempotent [14], which we denote by sω. For profinite semi-
groups we have sω = lim sn!. Let e and f be idempotents of S. We say that
an element u of S is bounded by e and f (by this order) if u = euf . An
element is idempotent-bound if it is bounded by some pair of idempotents.
Regular elements are idempotent-bound.

Lemma 2.7. If S is a compact semigroup, then an element u of S is idempotent-
bound if and only if u ∈ SuS.

Proof : The “only if” part is trivial. Conversely, let x, y ∈ S be such that
u = xuy. Then u = xnuyn for all positive integer n. Hence u = xωuyω, since
xω and yω are adherent points of (xn)n and (yn)n, respectively.

Lemma 2.8. A J -class J of a compact semigroup S contains an idempotent-
bound element if and only if all elements of J are idempotent-bound.
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Proof : Let u be an element of J bounded by the idempotents e and f . If
v ∈ J then u = xvy and v = zut for some x, y, z, t ∈ S1. Then v = zut =
zeuft = zexvyft ∈ SvS, and the result follows from Lemma 2.7.

For compact semigroups, Lemma 2.8 allow us to refer to an idempotent-
bound J -class. The elements of an idempotent-bound J -class are not nec-
essarily bounded by the same idempotents; on the other hand, the elements
of an H-class are bounded by the same idempotents.

Lemma 2.9. Let π be an element of Â+ such that π = eπf for some idem-

potents e and f of Â+. If s is a suffix of e and p is a prefix of f then the
pseudowords π and sπp are J -equivalent.

Proof : We want to prove that π is a factor of sπp. Let e0 and f0 be such
that e = e0s and f = pf0. Then π = e0(sπp)f0.

Lemma 2.10. Let π be an element of Â+ such that π = eπf for some

idempotents e and f of Â+. Let ρ be an element of Â+ such that π = xρy
for some x, y ∈ A∗. Then π and ρ are J -equivalent.

Proof : We want to show that π is a factor of ρ. Since eπf = xρy, we have
in(e) = x and tn(f) = y. Hence there are e0 and f0 such that e = xe0 and
f = f0y, thus xe0πf0y = xρy. Therefore e0πf0 = ρ by Lemma 2.5.

Of course, every homomorphic image of an idempotent(-bound) element is
also idempotent(-bound). We have a sort of converse in the compact case:

Lemma 2.11. Let ϕ : T → S be an onto continuous homomorphism between
compact semigroups. If e is an idempotent of S then ϕ−1(e) contains an
idempotent. If s is an element of S bounded by the idempotents e1 and e2,
then there are t ∈ ϕ−1(s) and idempotents fi ∈ ϕ−1(ei) such that t = f1tf2.

Proof : Let x ∈ ϕ−1(e). Since T is compact we can consider the idempo-
tent xω, which is an adherent point of the sequence (xn)n. Since ϕ is contin-
uous and e is idempotent, we have xω ∈ ϕ−1(e).

Let t0 ∈ ϕ−1(s). As we have proved, the set ϕ−1(ei) contains some idem-
potent fi. Let t = f1t0f2. Then ϕ(t) = e1se2 = s and t = f1tf2.

3. Infinite pseudowords and subshifts

3.1. Coding of infinite pseudowords. One of the main reasons to inves-
tigate links between profinite semigroups and symbolic dynamics is that if X
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and Y are subshifts of AZ such that L(X )\A+ = L(Y) \A+ then X = Y . In

other words, we can recover X from L(X )\A+. So it seems a good idea to in-

vestigate the set L(X )\A+. This program has been initiated by Almeida [4].

Our goal is to find algebraic-topological conjugacy invariants in Â+ related
to L(X ) \ A+. We want to understand the changes of L(X ) \ A+ when a
conjugacy is applied to X .

In [2, Lemma 10.6.1] it is proved that Φk : A+ → (Ak+1)∗ has a unique

continuous extension Â+ → ̂(Ak+1)
∗
, which we also denote by Φk. Let G :

X ⊆ AZ → Y ⊆ BZ be a code having block map g : A2k+1 → B, and memory
and anticipation k. Let ĝ be the unique continuous monoid homomorphism

from ̂(A2k+1)
∗

into B̂∗ that extends g, and consider the map ḡ = ĝ ◦Φ2k. The

map ḡ extends the coding process described by g to every pseudoword of Â+.

For all u, v ∈ Â+ we have:

ḡ(uv) = ḡ(u)ḡ(t2k(u)v) = ḡ(u i2k(v))ḡ(v) = ḡ(u ik(v))ḡ(tk(u)v).

This property is easily seen to be true when we have Φ2k instead of ḡ, which

suffices to prove the general case since A+ is dense in Â+. The following
properties are also inherited from the properties of Φ2k: we have ḡ(u) = 1 if
and only if |u| < 2k + 1; if u ∈ A+ and |u| ≥ 2k + 1 then |ḡ(u)| = |u| − 2k;

and u ∈ Â+ \ A+ if and only if ḡ(u) ∈ B̂+ \ B+. In general ḡ is not a
homomorphism (but it is so if k = 0). However it shares some nice properties
with homomorphisms:

Lemma 3.1. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a code. Then:

(1) For K ∈ {J ,R,L} and u, v ∈ Â+, if u ≤K v then ḡ(u) ≤K ḡ(v).

(2) If w is a regular element of Â+ then ḡ(w) is a regular element of B̂+.

(3) If w is an idempotent-bound element of Â+ then ḡ(w) is an idempotent-

bound element of B̂+.

Proof : Suppose that u ≤J v. Then u = xvy for some x, y ∈ Â∗. Hence

ḡ(u) = ḡ(xv) · ḡ(t2k(xv)y) = ḡ(xi2k(v)) · ḡ(v) · ḡ(t2k(xv)y).

Thus ḡ(u) ≤J ḡ(v). The proof for the relations R and L is similar.

If w is a regular element of Â+ then w = wxw for some x. Hence

ḡ(w) = ḡ(wxw) = ḡ(w) · ḡ(t2k(w)xw) = ḡ(w) · ḡ(t2k(w)x i2k(w)) · ḡ(w),

which proves that ḡ(w) is regular.
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Let e and f be idempotents such that w = ewf . Then ḡ(w) = ḡ(ei2k(w)) ·
ḡ(w) · ḡ(t2k(w)f). Since ei2k(w) and t2k(w)f are infinite pseudowords, we
conclude that ḡ(ei2k(w)) and ḡ(t2k(w)f) are different from 1 (in fact they are
infinite). Hence ḡ(w) is idempotent-bound by Lemma 2.7.

3.2. The mirage. Given a subshift X of AZ, let Mir(X ) be the set of

pseudowords of Â+ whose finite factors belong to L(X ). We call Mir(X )

the mirage of X in Â+. Note that Mir(X ) is a union of J -classes. It is

not surprising that in order to understand the changes of L(X ) \ A+ when
a conjugacy is applied to X , one is lead to the mirage, because block maps
operate “locally” on elements of AZ, and the definition of the mirage reflects
this “locality”. In general the sets Mir(X ) and L(X ) do not coincide.

Example 3.2. Consider the sofic subshift Z with the following presentation:

•a
''

b

77 •

b

ww

The finite factors of abω+1a are a, abn, bn and bna, with n ≥ 1. Hence
abω+1a ∈ Mir(Z). If n ≥ 2 then abn!+1a /∈ L(Z) because n! + 1 is odd. Hence

abω+1a /∈ L(Z) because, by Proposition 2.2, the set L(Z) is open.

The shadow of X in Â+ is the set Sha(X ) =
⋃

u∈L(X )[u]J . If X is sofic then

L(X ) = Sha(X ) by Lemma 2.3.
Let Mirn(X ) be the set of pseudowords whose finite factors of length n

belong to L(X ). Note that Mir(X ) =
⋂

n≥1 Mirn(X ). We have

Mirn(X ) = Â+ \
( ⋃

w∈An\Ln(X )

Â∗wÂ∗
)
.

The set Â∗wÂ∗ is clopen because it is the closure in Â+ of the rational set
A∗wA∗. Hence Mirn(X ) is clopen and Mir(X ) is closed. It is clear that

L(X ) ⊆ Mir(X ), thus L(X ) ⊆ Mir(X ), and so L(X ) ⊆ Sha(X ) ⊆ Mir(X ).

We do not know if L(X ) = Sha(X ) implies that X is sofic. If X is of finite
type then for all sufficiently large n we have L(X ) = Mirn(X )∩A+. Since A+

is dense in Â+ and Mirn(X ) is clopen, this implies L(X ) = Mirn(X ) = Mir(X )
for all sufficiently large n.

Lemma 3.3. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a code. Then
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(1) ḡ(Ln(X )) ⊆ Ln−2k(Y) for all n ≥ 2k + 1;

(2) ḡ((L(X )) ⊆ L(Y) ∪ {1};
(3) ḡ(Sha(X )) ⊆ Sha(Y) ∪ {1};
(4) ḡ(Mirn(X )) ⊆ Mirn−2k(Y) ∪ {1} for all n ≥ 2k + 1;
(5) ḡ(Mir(X )) ⊆ Mir(Y) ∪ {1}.

Proof : If u ∈ Ln(X ), then u = x[1,n] for some x ∈ X . If n < 2k + 1
then ḡ(u) = 1. Let y = G(x). If n ≥ 2k + 1 then y[k+1,n−k] = ḡ(u), thus
ḡ(u) ∈ Ln−2k(Y). This proves (1), from which we deduce that

ḡ(L(X )) =
⋃

n≥1

ḡ(Ln(X )) ⊆
⋃

n≥2k+1

Ln−2k(Y) ∪ {1} = L(Y) ∪ {1}.

Then (2) follows from the continuity of ḡ, and (3) follows from (2) and from
Lemma 3.1 (1).

Let x = x1 . . . xm ∈ Mirn(X ) ∩ A+, with xi ∈ A. If m < n then ḡ(x) is a
word of length less than n−2k, and all such words belong to Mn−2k(Y)∪{1}.
We suppose that m ≥ n. Let w be a factor of length n − 2k of ḡ(x). Then
ḡ(x) = pwq for some p, q ∈ B∗. Let |p| = r, |q| = s. We have

pwq = ḡ(x) = ḡ(x[1,2k+r])ḡ(x[r+1,m−s])ḡ(x[m−s+1−2k,m]).

Since |ḡ(x[1,2k+r])| = r and |ḡ(x[m−s+1−2k,m])| = s, we have p = ḡ(x[1,2k+r]),
q = ḡ(x[m−s−1−2k,m]) and w = ḡ(x[r+1,m−s]). Hence |x[r+1,m−s]| = |w|+ 2k = n
and therefore x[r+1,m−s] ∈ Ln(X ). From item (1) it follows thatw ∈ Ln−2k(Y).
Hence ḡ(x) ∈ Mirn−2k(Y). This proves that ḡ(Mirn(X )∩A+) ⊆ Mirn−2k(Y)∪
{1}. Hence ḡ(Mirn(X )) ⊆Mn−2k(Y)∪{1} because A+ is dense in the compact

space Â+, and Mirn(X ) and Mirn−2k(Y) ∪ {1} are clopen.
From item (4) we deduce the following:

ḡ(Mir(X )) ⊆
⋂

n≥1

ḡ(Mirn(X )) ⊆
⋂

n≥2k+1

Mirn−2k(Y) ∪ {1} = Mir(Y) ∪ {1},

which proves (5).

The following lemma and its two corollaries are crucial since they are the
basic tools to be used in this article.

Lemma 3.4. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a code. Suppose

that G = g
[−k,k]
1 = g

[−l,l]
2 and that k ≥ l. Let u be an element of Â+ with

length greater or equal to 2k + 1. Let r = ik−l(ḡ2(u)) and s = tk−l(ḡ2(u)). If
u ∈ Mir2k+1(X ) then ḡ2(u) = rḡ1(u)s.
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Proof : If x ∈ X then g1(x[−k,k]) = g2(x[−l,l]). Every element of L2k+1(X ) is of
the form x[−k,k] for some x ∈ X . Therefore,

if pwq ∈ L2k+1(X ) and |p| = |q| = k − l then g1(pwq) = g2(w). (3.1)

Since u belongs to the open set Mir2k+1(X ) and |u| ≥ 2k + 1, there is a
sequence (un)n of elements of A+ ∩ Mir2k+1(X ) converging to u all of whose
terms have length greater than 2k. Let un = z1 . . . zt, with zi ∈ A. Then,

ḡ2(un) =
k−l∏

i=1

g2(z[i,i+2l])

︸ ︷︷ ︸
rn

t−k−l∏

i=k−l+1

g2(z[i,i+2l])
t−2l∏

i=t−k−l+1

g2(z[i,i+2l])

︸ ︷︷ ︸
sn

= rn

t−2k∏

i=1

g2(z[i+k−l,i+k+l])sn

= rn

t−2k∏

i=1

g1(z[i,i+2k])sn (by (3.1))

= rnḡ1(un)sn.

We have rn = ik−l(ḡ2(un)) and sn = tk−l(ḡ2(un)). Hence ḡ2(u) = rḡ1(u)s,
since ik−l, tk−l and ḡi are continuous.

Corollary 3.5. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy,
and let H = h[−l,l] : Y → X be its inverse. Consider an element u of

Â+ with length greater or equal to 2k + 2l + 1. If u ∈ Mir2k+2l+1(X ) then
u = ik+l(u)h̄ḡ(u)tk+l(u).

Proof : Let f the map that associates to each element of A2k+2l+1 the letter
hḡ(u). Then H ◦G = f [−(k+l),k+l] = Id[0,0] and f̄ = h̄ḡ. Applying Lemma 3.4

with g1 = f [−(k+l),k+l] and g2 = Id[0,0] we deduce the result.

Corollary 3.6. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy and let

H = h[−l,l] : Y → X be its inverse. Consider an element v of Â+. If r and s
are words of length k + l such that rvs ∈ Mir2k+2l+1(X ) then v = h̄ḡ(rvs).

Proof : By Corollary 3.5 we have rvs = rh̄ḡ(rvs)s, thus v = h̄ḡ(rvs) by
Lemma 2.5.

The following lemma provides a tool for dealing with idempotent-bound
pseudowords in the mirage.
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Lemma 3.7. Let G = g[0,0] : X → Y be a one-block conjugacy with inverse
H = h[−k,k]. Let e and f be idempotents of Mir(X ) and let ε = ḡ(e) and
φ = ḡ(f). Suppose that v is an element of Mir(Y) such that v = εvφ.
Consider the pseudoword w = h̄

[
tk(ε)v ik(φ)

]
. Then w is an element of

Mir(X ) such that ḡ(w) = v and w = ewf .

Proof : The map ḡ is a homomorphism, hence ε and φ are idempotents. By
Lemma 2.9, tk(ε)v ik(φ) is J -equivalent to v, and therefore it is also an ele-
ment of Mir(Y). Thus w ∈ Mir(X ) by Lemma 3.3. Hence, by Corollary 3.6,
ḡ(w) = v. We have the following chain of equalities:

w = h̄
[
tk(ε) ε · εvφ · φ ik(φ)

]

= h̄
[
tk(ε) ε ik(ε)

]
· h̄

[
tk(ε) εvφ ik(φ)

]
· h̄

[
tk(φ)φ ik(φ)

]

= h̄
[
tk(ε) ε ik(ε)

]
· w · h̄

[
tk(φ)φ ik(φ)

]
.

Since ḡ is a homomorphism, we have

w = h̄ḡ
[
tk(e)e ik(e)

]
· w · h̄ḡ

[
tk(f)f ik(f)

]
. (3.2)

Again by Lemma 2.9, the pseudowords e and tk(e)eik (e) are J -equivalent,
and therefore they are both in Mir(X ). For the same reason tk(f)f ik(f)
belongs to Mir(X ). We have h̄ḡ

[
tk(e)e ik(e)

]
= e and h̄ḡ

[
tk(f)f ik(f)

]
= f

by Corollary 3.6. Hence by (3.2) we conclude that w = ewf .

3.3. An invariant partially ordered set defined by the mirage. The
expression partially ordered set will be abbreviated by the term poset. Let
S be a semigroup. If T is a union of J -classes of S, then we denote by T †

the poset defined as follows: the elements of T † are the idempotent-bound
J -classes of S that are contained in T ; the partial order of T † is the one
induced by the quasi-order ≤J .

Let G be a code between the subshifts X of AZ and Y of BZ. Let g be a

block map of G. If J is a J -class of Â+ then all the elements of ḡ(J) lie in
the same J -class by Lemma 3.1. Moreover, if J is idempotent-bound and is
contained in Mir(X ), then [ḡ(J)]J is also idempotent-bound and is contained
in Mir(Y), by Lemmas 3.1 and 3.3. We can therefore define the map G† from
Mir(X )† to Mir(Y)† that sends J to [ḡ(J)]J . The map G† is order-preserving
by Lemma 3.1.

Remark 3.8. The map G† depends only on the code G.
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Proof : Suppose that G = g
[−k,k]
1 = g

[−l,l]
2 and that k ≥ l. Let u be an

idempotent-bound element of Mir(X ). Then ḡ2(u) is idempotent-bound. By
Lemma 3.4, there are words r and s of length k− l such that ḡ2(u) = rḡ1(u)s.
By Lemma 2.10, the pseudowords ḡ1(u) and ḡ2(u) are J -equivalent.

We denote by IdQ the identity function on a set Q.

Proposition 3.9. Let G : X → Y and H : Y → Z be codes between subshifts.
Then H† ◦G† = (H ◦G)†. Moreover, (IdX )† = IdMir(X )†.

Proof : It is clear that (IdX )† = IdMir(X )† .

Let G = g[−k,k] : X → Y and H = h[−l,l] : Y → Z be codes, with X ⊆ AZ,
Y ⊆ BZ, and Z ⊆ CZ. Let f be the map that associates to each element
u of A2k+2l+1 the letter hḡ(u). Then f [−(k+l),k+l] is a block map of H ◦ G
with memory and anticipation k + l, and f̄ = h̄ ◦ ḡ. Therefore if J is an
idempotent-bound J -class of Mir(X ) then

H†(G†(J)) = H†([ḡ(J)]J ) = [h̄(ḡ(J))]J = [f̄(J)]J = (H ◦G)†(J).

Hence H† ◦G† = (H ◦G)†.

Corollary 3.10. The posets Mir(X )† and Sha(X )† are conjugacy invariants.

Proof : For any code G : X → Y we have G†(Sha(X )†) ⊆ Sha(Y)†, by
Lemma 3.3. By Proposition 3.9, if G is a conjugacy then G† is an iso-
morphism of posets (with (G†)−1 = (G−1)†).

3.4. The Schützenberger groups in the mirage. Let H be an H-class
of a semigroup S. The right stabilizer of H is the submonoid of S1 given by

T (H) = {x ∈ S1 : Hx = H} = {x ∈ S1 : Hx ∩H 6= ∅}.

In T (H) we can consider the following equivalence relation:

x ≈ y ⇔ ∃h ∈ H : hx = hy ⇔ ∀h ∈ H, hx = hy.

The relation ≈ is a monoid congruence on T (H). Let Γ(H) = T (H)/≈ and
let ξH be the quotient homomorphism T (H) → Γ(H). The following theorem
is proved in [20, Theorem 3.3] in a non-topological version; see [14] for the
topological part.

Theorem 3.11. Let H be an H-class of a compact semigroup S. For the
quotient topology, the monoid Γ(H) is a compact group of permutations of
H with the same cardinal as H. If H1 and H2 are two H-classes contained



CONJUGACY INVARIANTS: AN APPROACH FROM PROFINITE SEMIGROUP THEORY 15

in the same J -class of S, then Γ(H1) and Γ(H2) are isomorphic compact
groups. If H is a maximal subgroup of S, then H and Γ(H) are isomorphic
compact groups.

The compact group Γ(H) is called the Schützenberger group of H and of
the J -class of H. It is easy to prove that the Schützenberger groups of
profinite semigroups are profinite groups. The non-topological version of
Theorem 3.11 speaks about D-classes, but in compact semigroups a D-class
is a J -class.

Proposition 3.12. Let X and Y be subshifts of AZ and BZ respectively. Let
G = g[0,0] : X → Y be a one-block conjugacy. Let U be an idempotent-bound

H-class of Â+ contained in Mir(X ). Consider the H-class V of B̂+ that
contains ḡ(U). Then the Schützenberger groups of U and V are isomorphic
compact groups.

Proof : The reader should have present within this prove that ḡ is a homo-

morphism. Let u ∈ U and let e and f be idempotents of Â+ such that
u = euf . Consider the set

P = {x ∈ Â+ : x = fxf and ux ∈ U}.

Every element of U has the form ux for some x ∈ P . Let η be the map
from U into V that maps an element of the form ux with x ∈ P to ḡ(ux).
Let h be a block map such that G−1 = h[−k,k]. By Corollary 3.5 we have
ux = ik(e)h̄ḡ(ux)tk(f). Therefore η is injective.

Let v ∈ V . Then there is y ∈ B̂+ such that v = ḡ(u)y and y = ḡ(f) y ḡ(f).
Since y ∈ Mir(Y), by Lemma 3.7 there is x ∈ Mir(X ) such that ḡ(x) = y and
x = fxf . Thus ḡ(ux) = v, and ux ∈ Mir(X ) by Lemma 2.6. Dually, there is
x′ such that x′ = ex′e, x′u ∈ Mir(X ) and ḡ(x′u) = v. Since ux and x′u are
bounded by the idempotents e and f , by Corollary 3.5 we have

ux = ik(e)h̄ḡ(ux)tk(f) = ik(e)h̄(v)tk(f) = ik(e)h̄ḡ(x
′u)tk(f) = x′u.

We have G†[ux]J = [ḡ(u)]J = G†[u]J . Therefore ux and u are J -equivalent,
since G† is bijective. Moreover, ux and u are H-equivalent because compact
semigroups are stable and ux = x′u. Hence ux ∈ U , thus x ∈ P . This proves
that η is bijective, since v = η(ux).
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Every element of Γ(U) has the form ξU(z) for some z ∈ P . The correspon-
dence

ψ : Γ(U) → Γ(V )

ξU(x) 7→ ξV (ḡ(x)), x ∈ P.

is a well-defined map. An element of Γ(V ) has the form ξV (y) for some
y ∈ T (V ). Since ḡ(u)y ∈ V and η is onto, there is z ∈ P such that ḡ(u)y =
ḡ(uz). Therefore ξV (y) = ξV (ḡ(z)), thus ψ is onto. The fact that the map ψ
is one-to-one also follows easily from the fact that η is one-to-one.

A labeled poset is a poset in which every element is labeled by an element
of a certain class. A morphism between two labeled posets A and B is an
order-preserving map ϕ : A → B leaving the labels unchanged.

For a J -class J of a compact semigroup S, we define the ordered pair
(εJ ,GJ) as follows: the symbol εJ is equal to 1 if J is regular, and is equal
to 0 otherwise; in both cases GJ is the isomorphism class (in the algebraic-
topological sense) of the Schützenberger group of J . If T is a union of

J -classes of S then we denote by T †
× the labeled poset that results from T †

by labeling each J -class J with the ordered pair (εJ ,GJ).

Theorem 3.13. The labeled posets Mir(X )†× and Sha(X )†× are conjugacy
invariants.

Proof : Let G : X → Y be a conjugacy of subshifts. By Proposition 3.9
the map G† : Mir(X )† → Mir(Y)† is an isomorphism of posets. Moreover,
G†(Sha(X )) = Sha(Y). It remains to prove that G† preserves labels.

By Lemma 3.1, the maps G† and (G−1)† send regular J -classes into regular
J -classes. Moreover, (G−1)† = (G†)−1, by Proposition 3.9. Therefore G†

sends non-regular J -classes into non-regular J -classes. Hence G† preserves
the labels εJ .

By Proposition 2.1 there are one-block conjugacies G1 and G2 such that
G = G2 ◦ G−1

1 . Let K be an element of Mir(X )†. By Proposition 3.12
the Schützenberger group of (G−1

1 )†(K) is isomorphic to the Schützenberger

groups of G†
1 ◦ (G−1

1 )†(K) and G†
2 ◦ (G−1

1 )†(K). By Proposition 3.9, we have

G†
1 ◦ (G−1

1 )†(K) = K and G†
2 ◦ (G−1

1 )†(K) = G†(K).

Notice that Mir(X )†× = (Mir(X ) \ A+)†×, since idempotent-bound pseu-
dowords are infinite.
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Almeida proved in [4] that if X is a minimal subshift of AZ then all infinite

pseudowords in L(X ) are in a common J -class of Â+, which we denote by
J(X ); furthermore J(X ) is regular and the correspondence Y 7→ J(Y) is
a bijection between the set of minimal subshifts of AZ and the set of J -

classes of Â+ that are J -maximal among J -classes of infinite pseudowords
over A. Therefore, if X is minimal, then Mir†×(X ) has only one element,
which is labeled by the isomorphism class of the Schützenberger group G(X )
of J(X ). The conjugacy invariance of G(X ) was announced in [3], but no
proof was given. That result is now a particular instance of Theorem 3.13.
The group G(X ) is computed in [4] for several classes of minimal subshifts.
For example, if X is Sturmian (see [22] for background) then G(X ) is a free
profinite group on two free generators.

We can generalize the results of this section to a large class of relatively free
profinite semigroups. See [3] for background about relatively free profinite
semigroups and pseudovarieties. Let V be a pseudovariety containing the
pseudovariety of finite semilattices and such that V = V ∗ D, where D is the
pseudovariety of finite semigroups with a right zero. Denote by ΩAV the
free A-generated pro-V semigroup. For a subshift X , one could consider the

closure L(X )
V

of L(X ) in ΩAV, as well the closed set Mir(X ; V) of elements of
ΩAV whose finite factors are in L(X ), and the set Sha(X ; V) =

⋃
u∈L(X )

V[u]J .

The proof that Mir(X ; V)†× and Sha(X ; V)†× are conjugacy invariants can be
treated in the same way as we did for Theorem 3.13, with the appropriate
adaptations. For instance, one should prove that the map Φk : A+ → (Ak+1)∗

has a unique continuous extension ΩAV → (ΩAk+1V)1 and that Lemma 2.5
remains valid for elements of ΩAV. The proofs of these results are easy once
we are familiarized with the results from Section 10.6 of [2] about semidirect
products with D.

4. The sofic case

4.1. The syntactic semigroup of a sofic subshift. A binary relation
K in a semigroup S is stable if r K s implies tr K ts and rt K st for all
r, s, t ∈ S. The semigroup congruences are the stable equivalence relations.
The following quasi-order is stable:

v ≤L u⇔ [∀x, y ∈ A∗, xuy ∈ L⇒ xvy ∈ L].
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The equivalence relation generated by ≤L is a semigroup congruence, the
syntactic congruence of L. The quotient of A+ by the syntactic congruence
of L is called the syntactic semigroup of L. We denote it by Syn(L). Let
δL be the canonical homomorphism from A+ into Syn(L). The relation in
Syn(L) also denoted ≤L (or simply ≤) and given by

δL(v) ≤L δL(u) ⇔ v ≤L u,

is a well-defined partial order. The semigroup Syn(L) equipped with the par-
tial order ≤L is an example of an ordered semigroup: a semigroup equipped
with a partial order stable for multiplication. There is a generalization of the
theory of finite semigroups to finite ordered semigroups [24]. The language
L is rational if and only if Syn(L) is finite, and if Syn(L) is finite then δL has

a unique extension to a continuous homomorphism δ̂L : Â+ → Syn(L).

Lemma 4.1. Let u and v be elements of Â+. If L is a rational language of
A+ then

δ̂L(v) ≤L δ̂L(u) ⇔
[
∀x, y ∈ Â∗, xuy ∈ L⇒ xvy ∈ L

]
.

Proof : Let (un)n and (vn)n be sequences of elements of A+ converging to u
and v respectively. There is an integer p such that if n ≥ p then δL(un) =

δ̂L(u) and δL(vn) = δ̂L(v). We have then the following equivalence:

δ̂L(v) � δ̂L(u) ⇔
[
∃k : ∀n ≥ k, δL(vn) � δL(un)

]
.

We want therefore to prove the equivalence of the condition

∃k : ∀n ≥ k, ∃xn, yn ∈ A∗ : xnunyn ∈ L ∧ xnvnyn /∈ L (4.1)

with the condition

∃x, y ∈ Â∗ : xuy ∈ L ∧ xvy /∈ L. (4.2)

Since the elements of A+ are isolated points, we have L∩A+ = L. From the
fact that L is a rational language, it follows from Proposition 2.2 that the set

L is clopen in Â+. Moreover, A+ \ L is also rational and Â+ \ L = A+ \ L.

These properties of L, together with the compactness of Â+, make an easy
routine the verification of the equivalence between (4.1) and (4.2).

Let X be a subshift of AZ and let Syn(X ) be the syntactic semigroup
of L(X ). Note that X is sofic if and only if Syn(X ) is finite. We denote

respectively by δX and δ̂X the homomorphisms δL(X ) and δ̂L(X ). Knowing that
the transition semigroup of the minimal automaton of a rational language is
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isomorphic to its syntactic semigroup, one can see that for a sofic subshift X
the transition semigroup of its Krieger cover (and its Fischer cover, in case
X is irreducible) is isomorphic to Syn(X ). This fact is used in [9, 8].

If X = AZ then Syn(X ) is the trivial semigroup. The subshift AZ is usually
named the full shift of AZ. Suppose that X is not the full shift. Then Syn(X )
is a non-trivial semigroup with a zero (denoted by 0). One can easily prove
that δX (u) = 0 ⇔ u /∈ L(X ) for all u ∈ A+ [11]. This implies that if X is

sofic then δ̂X (u) = 0 ⇔ u /∈ L(X ) for all u ∈ Â+. The zero is the maximal
element of Syn(X ) for ≤L(X ), because if u ∈ A+ \L(X ) then xuy /∈ L(X ) for
all x, y ∈ A∗.

4.2. Tools for dealing with the syntactic semigroup. For u ∈ A+,
r, v, s ∈ A∗, if u = rvs and |r| = k − 1, |rv| = l then we denote v by any of
the following notations: u[k,l], u]k−1,l], u[k,l+1[.

Proposition 4.2. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy

between sofic subshifts. Let e and f be idempotents of Â+ and u an element
of L(X ) such that u = euf . If δ̂X (u) ≥ δ̂X (v) then δ̂Y(ḡ(u)) ≥ δ̂Y(ḡ(evf)).

Proof : Suppose that xḡ(u)y ∈ L(Y). By Lemma 2.4 there are words r and s

of length k+l such that rxḡ(u)ys ∈ L(Y). Let p = i4k+2l(e) and q = t4k+2l(f),

and let ε, φ ∈ Â+ be such that e = pε and f = φq. Then

rxḡ(u)ys = rxḡ(pεuφq)ys

= rxḡ(p[1,4k]) · ḡ(p]2k,4k+2l]εuφq[1,2k+2l]) · ḡ(q]2l,4k+2l])ys

Let H = h[−l,l] be the inverse conjugacy of G. Since the words ḡ(p]2k,4k+2l])
and ḡ(q[1,2k+2l]) have length 2l, we have then

h̄(rxḡ(u)ys) =

= h̄
[
rxḡ(p[1,4k])ḡ(p]2k,4k+2l])

]
· h̄ḡ(p]2k,4k+2l]εuφq[1,2k+2l])·

· h̄
[
ḡ(q[1,2k+2l])ḡ(q]2l,4k+2l])ys

]

= h̄
[
rxḡ(p[1,4k+2l])

]
· h̄ḡ(p]2k,4k+2l]εuφq[1,2k+2l]) · h̄

[
ḡ(q[1,4k+2l])ys

]

= h̄
[
rxḡ(p[1,4k+2l])

]
· p]3k+l,4k+2l]ε · u · φq[1,k+l] · h̄

[
ḡ(q[1,4k+2l])ys

]
,

where the last equality is justified by Corollary 3.6. Let z be the pseudoword

h̄
[
rxḡ(p[1,4k+2l])

]
· p]3k+l,4k+2l]ε · v · φq[1,k+l] · h̄

[
ḡ(q[1,4k+2l])ys

]
.
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Since rxḡ(u)ys ∈ L(Y), we have h̄(rxḡ(u)ys) ∈ L(X ), by Lemma 3.3. Hence,

since δ̂X (u) ≥ δ̂X (v), from Lemma 4.1 we deduce that z ∈ L(X ), thus ḡ(z) ∈
L(Y). Again by Corollary 3.6,

h̄ḡ(p[1,4k+2l]) = p]k+l,3k+l], h̄ḡ(q[1,4k+2l]) = q]k+l,3k+l].

Hence the suffix of length 2k of h̄
[
rxḡ(p[1,4k+2l])

]
is p]k+l,3k+l], and the prefix

of length 2k of h̄
[
ḡ(q[1,4k+2l])ys

]
is q]k+l,3k+l]. Therefore,

ḡ(z) = ḡh̄
[
rxḡ(p[1,4k+2l])

]
· ḡ(p]k+l,4k+2l]εvφq[1,3k+l]) · ḡh̄

[
ḡ(q[1,4k+2l])ys

]
. (4.3)

For π ∈ {p, q} we have ḡ(π[1,4k+2l]) = ḡ(π[1,3k+l])ḡ(π]k+l,4k+2l]). With these fac-
torizations and observing that the length of each of the words r, s, ḡ(p]k+l,4k+2l])
and ḡ(q[1,3k+l]) is k + l, Corollary 3.6 allows us to perform the following sim-
plification of equality (4.3):

ḡ(z) = xḡ(p[1,3k+l]) · ḡ(p]k+l,4k+2l]εvφq[1,3k+l]) · ḡ(q]k+l,4k+2l])y

= xḡ(p[1,4k+2l]εvφq[1,4k+2l])y

= xḡ(evf)y.

Therefore xḡ(u)y ∈ L(Y) ⇒ xḡ(evf)y ∈ L(Y). Then, from Lemma 4.1 we

deduce that δ̂Y(ḡ(u)) ≥ δ̂Y(ḡ(evf)).

Theorem 4.3. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy between

sofic subshifts. Let e and f be idempotents of Â+. Let u and v be elements

of Â+ such that u = euf , v = evf , u ∈ L(X ) and v ∈ Mir(X ). Then

δ̂X (u) ≥ δ̂X (v) if and only if δ̂Y(ḡ(u)) ≥ δ̂Y(ḡ(v)).

Proof : The direct implication follows immediately from Proposition 4.2. Con-
versely, suppose that δ̂Y(ḡ(u)) ≥ δ̂Y(ḡ(v)). Then,

δ̂Y [ḡ(tk(e)u ik(f))] = δ̂Y [ḡ(tk(e) i2k(e))] · δ̂Y(ḡ(u)) · δ̂Y [ḡ(t2k(f) ik(f))]

≥ δ̂Y [ḡ(tk(e) i2k(e))] · δ̂Y(ḡ(v)) · δ̂Y [ḡ(t2k(f) ik(f))]

= δ̂Y [ḡ(tk(e)v ik(f))]. (4.4)

For w ∈ {u, v} let w0 be tk(e)w ik(f). By Lemma 2.9, the pseudoword w0

is J -equivalent to w, hence u0 ∈ L(X ) and v0 ∈ Mir(X ) since L(X ) and
Mir(X ) are unions of J -classes (for the former set see Lemma 2.3). Hence

ḡ(u0) ∈ L(Y) and ḡ(v0) ∈ Mir(Y). The pseudowords ε = ḡ(tk(e)e ik(e)) and
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φ = ḡ(tk(f)f ik(f)) are idempotents such that εḡ(w0)φ = ḡ(w0). Therefore,
if H = h[−l,l] is the inverse conjugacy of G, then by Proposition 4.2 we have:

δ̂X (h̄ḡ(u0)) ≥ δ̂X (h̄ḡ(v0)). (4.5)

By Corollary 3.5 we have w0 = ik+l(w0)h̄ḡ(w0) tk+l(w0). Note that ik+l(w0) =
tk(e)il(e) and tk+l(w0) = tl(f)ik(f). Let r = e il(e) and s = tl(f)f . Then

rh̄ḡ(w0)s = w. Multiplying on the left both members of (4.5) by δ̂X (r), and

on the right by δ̂X (s), we obtain δ̂X (u) ≥ δ̂X (v).

Corollary 4.4. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy between

sofic subshifts. Let e and f be idempotents of Â+. Let u and v be elements

of Â+ such that u = euf , v = evf , u ∈ L(X ) and v ∈ Mir(X ). Then

δ̂X (u) = δ̂X (v) if and only if δ̂Y(ḡ(u)) = δ̂Y(ḡ(v)).

Proof : Suppose that δ̂X (u) = δ̂X (v). Then v ∈ L(X ), since u ∈ L(X ).

Applying Proposition 4.2 twice, we conclude that δ̂Y(ḡ(u)) = δ̂Y(ḡ(v)). Con-

versely, suppose that δ̂Y(ḡ(u)) = δ̂Y(ḡ(v)). From Theorem 4.3, we deduce

δ̂X (u) ≥ δ̂X (v). If v /∈ L(X ), then δ̂X (v) = 0 ≥ δ̂X (u). If v ∈ L(X ) then we
apply again Theorem 4.3, interchanging the roles of u and v.

4.3. A syntactic conjugacy invariant of sofic subshifts. Let X be a
sofic subshift. If X is the full shift then Syn(X ) is the trivial semigroup, and
if not then Syn(X ) \ {0} = δX (L(X )). Note that δX (L(X )) is a union of J -
classes. The labeled poset of the idempotent-bound J -classes in the syntactic
image (LPIJSI) of X is the labeled poset δX (L(X ))†×. In this section we prove
that the LPIJSI is a conjugacy invariant of sofic subshifts.

Proposition 4.5. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy
between sofic subshifts. If in what follows J is an idempotent-bound J -class
contained in L(X ) then the correspondence

Gs : δX (L(X ))† → δY(L(Y))†

[δ̂X (J)]J 7→ [δ̂Y(G†(J))]J

is a well-defined order-preserving function.

Proof : By Lemma 2.11 and since δ̂−1
X (δX (L(X ))) = L(X ), every element of

δX (L(X ))† is the J -class of an idempotent-bound element of L(X ). Let u

be an element of L(X ) such that u = euf for some idempotents e and f of
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Â+. Suppose that w is such that δ̂X (u) ≤J δ̂X (w). Then there are elements

p and q of A∗ such that δ̂X (u) = δ̂X (pwq). By Corollary 4.4, δ̂Y(ḡ(u)) =

δ̂Y(ḡ(epwqf)), thus δ̂Y(ḡ(u)) ≤J δ̂Y(ḡ(w)), which proves that Gs is order

preserving. In particular, if u J v then δ̂Y(ḡ(u)) J δ̂Y(ḡ(v)), which proves
that Gs is a well-defined function.

The following is an immediate corollary of Proposition 3.9.

Proposition 4.6. Let G : X → Y and H : Y → Z be conjugacies between
sofic subshifts. Then Hs ◦Gs = (H ◦G)s. Moreover, (IdX )s = IdδX (L(X ))†.

Corollary 4.7. The poset δX (L(X ))† is a conjugacy invariant of sofic sub-
shifts.

Proposition 4.8. Let G : X ⊆ AZ → Y ⊆ BZ be a conjugacy between sofic
subshifts. If K is a J -class of δX (L(X )) then K is regular if and only if
Gs(K) is regular.

Proof : By Lemma 2.11, if K is a regular J -class of δX (L(X )) then there is a

regular J -class J of Â+ such that K = [δ̂X (J)]J . We have J ⊆ L(X ). Since

G† preserves the regularity of a J -class, the J -class Gs(K) = [δ̂Y(G†(J))]J
is regular. Hence Gs sends regular J -classes to regular J -classes. The same
is true with (G−1)

s
, which is the map (Gs)−1, by Proposition 4.6.

Proposition 4.9. Let G : X ⊆ AZ → Y ⊆ BZ be a conjugacy between
sofic subshifts. If K is an idempotent-bound J -class of δX (L(X )) then the
Schützenberger groups of K and Gs(K) are isomorphic.

Proof : By Propositions 2.1 and 4.6, we are reduced to the case where G is a
one-block conjugacy. Suppose that g is a block map for G with memory and
anticipation zero. Note that ḡ is a homomorphism. Let U be an idempotent-
bound H-class ofK. By Lemma 2.11 there is an element u of δ̂−1

X (U) bounded
by some idempotents e and f . Consider the set

P = {z ∈ Â+ : z = fzf and δ̂X (z) ∈ T (U)}.

By the definition of Gs, since u is idempotent-bound, we have δ̂Y(ḡ(u)) ∈

Gs(K). Let V be the H-class of δ̂Y(ḡ(u)). Every element of U has the form

δ̂X (uz) for some z ∈ P . Consider the correspondence:

η : U → Syn(Y)

δ̂X (uz) 7→ δ̂Y(ḡ(uz)), z ∈ P.
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Let z1 and z2 be elements of P . Note that uzi ∈ L(X ) and that uzi =

euzif . Therefore δ̂X (uz1) = δ̂X (uz2) if and only if δ̂Y(ḡ(uz1)) = δ̂Y(ḡ(uz2))
by Corollary 4.4. This shows that η is a well-defined injective function.

Let z ∈ P . Then there is z′ ∈ Â+ such that δ̂X (uz) = δ̂X (z′u) and z′u =

ez′uf . From Corollary 4.4 we deduce that δ̂Y(ḡ(uz)) = δ̂Y(ḡ(z′u)). From

this equality and the fact that, according to Proposition 4.5, δ̂Y(ḡ(uz)) is J -

equivalent to δ̂Y(ḡ(u)), we deduce that δ̂Y(ḡ(uz)) is H-equivalent to δ̂Y(ḡ(u))
because finite semigroups are stable. Hence η(U) ⊆ V .

Let v ∈ V . Then there are p1, p2 ∈ B̂∗ such that v = δ̂Y(ḡ(u)p1) =

δ̂Y(p2ḡ(u)). Since δ̂Y(ḡ(u)) = δ̂Y(ḡ(uf)) = δ̂Y(ḡ(eu)) we can assume that

p1 = ḡ(f) p ḡ(f) and p2 = ḡ(e) p ḡ(e). Since pi ∈ L(Y), by Lemma 3.7
there is qi ∈ Mir(X ) such that ḡ(qi) = pi and q1 = fq1f , q2 = eq2e. Then

uq1, q2u ∈ Mir(X ) by Lemma 2.6. Since v = δ̂Y(ḡ(uq1)) = δ̂Y(ḡ(q2u)), we

have δ̂X (uq1) = δ̂X (q2u) by Corollary 4.4. Let w = δ̂X (uq1). Note that

w is R-below and L-below δ̂X (u). On the other hand we have Gs[w]J =

[δ̂Y(ḡ(uq1))]J = Gs(K). Therefore w is J -equivalent to δ̂X (u) since Gs is
bijective. Thus w ∈ U , because Syn(Y) is stable. Hence q1 ∈ P and η(w) = v.
This proves η(U) = V , thus |U | = |V |.

Note that every element of Γ(U) has the form ξU [δ̂X (z)] for some z ∈ P .

Let z1, z2 ∈ P . Then ξU [δ̂X (z1)] = ξU [δ̂X (z2)] ⇔ δ̂X (uz1) = δ̂X (uz2) and

ξV [δ̂Y(ḡ(z2))] = ξV [δ̂Y(ḡ(z2))] ⇔ η[δ̂X (uz1)] = η[δ̂X (uz2)]. Therefore, since η
is an injective map, the correspondence

ξU [δ̂X (z)] 7→ ξV [δ̂Y(ḡ(z))], z ∈ P,

is a well-defined injective homomorphism from Γ(U) into Γ(V ). And since
|Γ(U)| = |U | = |V | = |Γ(V )|, it is an isomorphism.

From Corollary 4.7 and Propositions 4.8 and 4.9, we finally conclude that
the LPIJSI is a conjugacy invariant of sofic subshifts.

Example 4.10. Consider the sofic subshifts X and Y with the following
Fischer covers:

X : •

a

>>
b

// •
b

// •

c

??

b

~~
•

c
��

Y : •

a

>>
b

// •
b

// •

a

??

b

~~
•

a
��
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Subshifts X and Y have the same zeta function and the same entropy. These
invariants are also equal in their Krieger edge shifts. The LPIJSI of X and
Y are not isomorphic (see Figure 1), hence X and Y are not conjugate.

(1,Z3) (1,Z2)

(1,Z1)

<<<<<<<<<<<<<<<<

����������������

(1,Z3) (1,Z2)

(0,Z1)

JJJJJJJJJ

ttttttttt

(1,Z1)

Figure 1. The LPIJSI of X and Y .

The LPIJSI is of no use for detecting non-conjugate irreducible subshifts
of finite type, since in such cases it is reduced to a single point labeled (1,Z1)
(see [9]). On the other hand, both subshifts of example 4.10 belong to the
class of almost finite type subshifts [7].

4.4. Krieger and Fischer presentations. For α = (xi)i∈Z− ∈ AZ−

, β =

(xi)i∈Z+
0
∈ AZ+

0 and γ = z1 . . . zn ∈ An (where n ∈ Z+), we denote by α.β the

sequence (xi)i∈Z and by αγ the sequence . . . x−3x−2x−1z1 . . . zn of AZ−

. Let
X be a sofic subshift of AZ. Consider the set

X− = {x ∈ AZ−

: x.y ∈ X for some y ∈ AZ+

}.

The future in X of a sequence x of X − is the set {y ∈ AZ+
0 : x.y ∈ X}.

The relation on AZ−

that identifies sequences with the same future is an
equivalence relation. We denote by [x] the equivalence class of x. The Krieger
cover of X is isomorphic to the graph-automaton whose states are the classes
[x] with x ∈ X−, and whose transition homomorphism τ is defined by [x]·a =
[xa], for a ∈ A such that xa ∈ X− [19]. Let τ̂ be the unique continuous

homomorphism extending τ to Â+. We have τ̂(u) = τ̂(v) if and only if

δ̂X (u) = δ̂X (v), for all u, v ∈ Â+. We denote by ImK(X ) u the image of τ̂(u)
and by ImF(X ) u the image of the restriction of τ̂(u) to the states of F(X ). It
is well known that J -equivalent elements in a semigroup of partial functions
have the same rank (the rank is the cardinal of the image). For a J -classK of
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Syn(X ) let rankK(X ) K (respectively rankF(X )K) be the rank ofK considering
Syn(X ) as the transition semigroup of K(X ) (respectively F(X )).

Proposition 4.11. Let X and Y be sofic subshifts of AZ and BZ, respectively,
and let G : X → Y be a conjugacy. If K is an idempotent-bound J -class
of δX (L(X )) then rankK(X )K = rankK(X ) G

s(K). If X and Y are irreducible
then rankF(X )K = rankF(X )G

s(K).

Proof : If we prove the inequality rankK(X )K ≤ rankK(X )G
s(K), then we just

apply it to G−1, deducing the converse inequality:

rankK(X ) G
s(K) ≤ rankK(X )(G

−1)sGs(K) = rankK(X )K.

Let G = g[−k,k] and G−1 = h[−l,l]. Let u ∈ A+ and e, f ∈ Â+ be such that e
and f are idempotents and δ̂X (euf) ∈ K. There are elements e0 and f0 of
A+ of length greater than 2k + 2l and such that

δX (e0) = δ̂X (e), δY(ḡ(e0)) = δ̂Y(ḡ(e)), t2k(f) = t2k(f0),

δX (f0) = δ̂X (f), δY(ḡ(f0)) = δ̂Y(ḡ(f)), i2k(e) = i2k(e0).

Then

δY(ḡ(e0uf0)) = δ̂Y(ḡ(e0)ḡ(t2k(e0)u i2k(f0))ḡ(f0))

= δ̂Y(ḡ(e)ḡ(t2k(e)u i2k(f)ḡ(f))

= δ̂Y(ḡ(euf)).

For x ∈ AZ−

, let ḡ(x) = (g(xi−k,i+k))i<−k ∈ AZ−

; and for x ∈ AZ+
0 , let

ḡ(x) = (g(xi−k,i+k))i≥k ∈ AZ+
0 . Let F = (vq)q∈ImK(X ) e0uf0

be a family of
elements of X− such that q = [vq] · e0uf0. Consider the map

ψF : ImK(X ) e0uf0 → ImK(Y) ḡ(e0uf0)

q 7→ [ḡ(vqe0uf0)].

This map is well defined, because [ḡ(vqe0uf0)] = [ḡ(vq i2k(e0uf0))] · ḡ(e0uf0).

Since δY(ḡ(e0uf0)) = δ̂Y(ḡ(euf)) ∈ Gs(K), our goal of proving the condition
rankK(X ) K ≤ rankK(X ) G

s(K) will be achieved if we prove that ψF is injective.
Suppose that q and r are distinct elements of ImK(X ) K. Then, without loss

of generality, we can suppose that there is s ∈ AZ+

such that:

vqe0uf0.s ∈ X , vre0uf0.s /∈ X . (4.6)
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Hence

ḡ(vqe0uf0).ḡ(t2k(vqe0uf0)s) ∈ Y . (4.7)

We want to prove that

ḡ(vre0uf0).ḡ(t2k(vqe0uf0)s) /∈ Y . (4.8)

Suppose the contrary. Then for all i ≥ 1 we have

ḡ((vr)[−i−k−l,−1]e0uf0s[0,i+1+k+l]) ∈ L(Y). (4.9)

Note that (vr)[−i−k−l,−1]e0uf0 ∈ L(X ) (because vre0uf0 ∈ X−) and that
f0s[0,i+1+k+l] ∈ L(X ) (because vqe0uf0.s ∈ X ). Hence, since f0 has length
greater than 2k + 2l, we have (vr)[−i−k−l,−1]e0uf0s[0,i+1+k+l] ∈ Mir2k+2l+1(X ).
From Corollary 3.6 we deduce that

(vr)[−i,−1]e0uf0s[0,i+1] = h̄ḡ((vr)[−i−k−l,−1]e0uf0s[0,i+1+k+l]).

Therefore (vr)[−i,−1]e0uf0s[0,i+1] ∈ L(X ) by (4.9). Since i can be taken ar-
bitrarily large, this implies that vre0uf0.s ∈ X , which contradicts (4.6).
Hence (4.8) is true. Comparing (4.7) and (4.8), we conclude that ψF(q) 6=
ψF(r). Hence ψF is injective, and in fact bijective, since we have proved that
rankK(X ) K = rankK(X ) G

s(K).
Again, to prove that rankF(X )K = rankF(X )G

s(K) it suffices to show that
rankF(X )K ≤ rankF(Y)G

s(K). Let r be a state of F(Y). Since F(Y) is
strongly connected, there is z ∈ B+ such that r · z = r, which implies
r · zω = r and zω ∈ L(Y). Let z′ = ik+l(z

ω) zω tk+l(z
ω). The pseudowords

zω and z′ are J -equivalent by Lemma 2.9, thus z ′ is an idempotent-bound
element of L(Y) by Lemma 2.3. Hence h̄(z′) is an idempotent-bound element

of L(X ) and ḡ(h̄(z′)) = zω, by Corollary 3.6. We may therefore consider a
map ψG : ImK(X ) h̄(z′) → ImK(Y) z

ω for some family G. Since ψG is onto, we

have r = [ḡ(x)] for some x ∈ X−. For each q ∈ ImF(X ) e0uf0, let vq ∈ AZ−

be such that [vq] is a state of F(X ) and q = [vq] · e0uf0. Because F(X ) is
the unique terminal strongly connected component of K(X ) there is wq ∈ A+

such that [vq] = [x] · wq = [xwq]. We have already proved that the map

ϕ : ImF(X ) e0uf0 → ImK(Y) ḡ(e0uf0)

q 7→ [ḡ(xwqe0uf0)].

is injective. On the other hand, ϕ(q) = [ḡ(x)] · ḡ(t2k(x)wqe0uf0)) and [ḡ(x)]
is a state of F(Y). Since F(Y) is the terminal component of K(Y), this shows
that ϕ(q) ∈ ImF(Y) ḡ(e0uf0).
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Consider a sofic subshift X . For an idempotent-boundJ -class J of δX (L(X ))
we add to the label (εJ ,GJ) of J in the LPIJSI a third element, the rank of
J in K(X ). We call the resulting labeled poset the Krieger LPIJSI of X . If
X is irreducible, then we add a fourth element, the rank of J in F(X ), and
we call Fischer LPIJSI to this labeled poset. The invariance of the LPIJSI
and Proposition 4.11 are be summarized in the following theorem:

Theorem 4.12. The Krieger LPIJSI is a conjugacy invariant of sofic sub-
shifts, and the Fischer LPIJSI is a conjugacy invariant of irreducible sofic
subshifts.

If we delete the non-regular J -classes in the Krieger and Fischer LPIJSI we
still have a conjugacy invariant. The existence of these weaker invariants was
proved in [9]. They are ineffective to prove that the subshifts of Example 4.10
are not conjugate. The authors of [9] used a substantially different approach,
one that used symbolic matrices, the main tool being Nasu’s Classification
Theorem for sofic subshifts [23].

It seems hard to find examples in which the Krieger and Fischer LPIJSI
detect non conjugate sofic subshifts with the same syntactic LPIJSI, the same
entropy and the same zeta function. The pair of of Example 1.4 in [15] is
an example of this kind, but another invariant (of no use for irreducible sofic
subshifts) is given there.

Note that in the proof of Proposition 4.11 the property of the Fischer
cover that intervened was the fact that it is the unique strongly connected
terminal component of the Krieger cover. Hence, if X and Y are conjugate
sofic subshifts whose Krieger covers have unique strongly connected termi-
nal components then Proposition 4.11 holds for the rank on such terminal
components. Note that there are in fact non-irreducible subshifts with a
unique strongly connected terminal component in its Krieger cover: the two
subshifts of Example 1.4 in [15] are in such conditions.

5. Shift equivalence

Let X be a subshift of AZ and let l ≥ 1 be an integer. Consider the alphabet
Al of the elements in A+ with length l and let γl be the map X → (Al)Z such
that (γl(x))i = x[il,il+l−1]. The image of γl is a subshift of (Al)Z referred as

the l-th power shift of X and denoted by X l. Two subshifts X and Y are shift
equivalent if there is l ≥ 1 such that X l and Y l are conjugate. If X l and Y l

are conjugate then for all k ≥ l the subshifts X k and Yk are also conjugate.
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Conjugate subshifts are shift equivalent, but the validity of the converse in
the finite type case was a major open problem for a long time, until Kim
and Roush found examples showing that the converse is false [17, 18]. There
is an algorithm for deciding if two sofic subshifts are shift equivalent or not,
but it is very complicated, even for finite type subshifts [16, 21].

Let X be a sofic subshift of AZ. Recall that δX (u) is the equivalence class
of u in A+ for the syntactic congruence of L(X ). Consider an integer l ≥ 1.
We can naturally embed (Al)+ in A+. It is easy to see that if u ∈ (Al)+ then
δX l(u) = δX (u) ∩ (Al)+, so that the map that sends δX l(u) into δX (u) is a
well-defined one-to-one homomorphism from Syn(X l) into Syn(X ), for which
reason we can consider Syn(X l) as a subsemigroup of Syn(X ). The following
lemma isolates and generalizes an argument in the proof of the last theorem
of [9]:

Lemma 5.1. Let X be a sofic subshift of AZ and consider an integer l ≥ 1.
Let E be the set of idempotents of Syn(X ). For each e in E let we be an
element of A+ such that δX (we) = e. Let l′ = l ×

∏
e∈E |we| + 1. Let s be an

element of Syn(X ) for which there is an idempotent f such that s = sf or
fs = s. Then s ∈ Syn(X l′).

Proof : Suppose that s = sf (the other case is similar). Let v ∈ A+ be such

that δX (v) = s. Let k = |v| (l
′−1)
|wf |

. Consider the word u = v(wf)
k. Then

|u| = |v| × l′ and δX (u) = δX (v)δX (wf)
k = sf = s.

Proposition 5.2. Let X be a sofic subshift. For an integer l ≥ 1, let l′ be
as in Lemma 5.1. Then X and X l′ have the same LPIJSI.

Proof : Let P = Syn(X ) and Q = Syn(X l′). By Lemma 5.1 the set of
idempotent-bound elements of P equals the set of idempotent-bound ele-
ments of Q. We denote this set by B. For K ∈ {J ,R,L,H} let KS be
the relation K in a semigroup S. Let u, v ∈ B. Clearly if u ≤LQ

v then
u ≤LP

v. We prove the converse. Suppose that u ≤LP
v. Then u = xv for

some x ∈ P 1. Since v is idempotent-bound, there is an idempotent f in P
such that v = fv. The element xf of P belongs to Q, by Lemma 5.1. Then
u ≤LQ

v, since u = (xf)v. Similarly, u ≤RQ
v if and only if u ≤RP

v. Hence

the Green’s relations KP and KQ coincide in B. In particular P † = Q†.
Let U be an H-class contained in B. The proof will be complete if we

show that the Schützenberger group ΓP of U in P is isomorphic to the
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Schützenberger group ΓQ of U in Q. For R ∈ {P,Q} let TR be the right stabi-
lizer of U in R, and let ξR be the quotient homomorphism TR → ΓR. Suppose
that U is L-below the idempotent f of P . The set Z = {s ∈ T P : s = fs}
is a subsemigroup of P . If s ∈ T P then fs ∈ Z and ξP (s) = ξP (fs), thus
ΓP = ξP (Z). By Lemma 5.1 we have Z ⊆ Q, thus Z ⊆ TQ. Therefore
we can define the function from ΓP to ΓQ mapping an element of the form
ξP (s) with s ∈ Z to ξQ(s). This map is an isomorphism because it is clearly
injective and ΓP and ΓQ have the same cardinal as H.

Let G be a graph-automaton with alphabet A and transition homomor-
phism τ . For an integer l ≥ 1 denote by Gl the graph-automaton with the
same set of states as G, with alphabet Al and whose transition homomor-
phism is the restriction of τ to Al. Note that if u ∈ (Al)+ ⊆ A+ then u has
the same rank in G and in Gl. It is not difficult to see that if X is a sofic
subshift then K(X l) = K(X )l and F(X l) = F(X )l, the latter case if X is also
irreducible. From this fact and from Proposition 5.2 and Theorem 4.12, we
deduce the following theorem:

Theorem 5.3. The Krieger LPIJSI is a shift equivalence invariant of sofic
subshifts, and so is the Fischer LPIJSI in the case of irreducible sofic sub-
shifts.

This result was proved in [9] for the invariant obtained from the Krieger
and Fischer LPIJSI by removing the non-regular J -classes.

We do not know if the structural conjugacy invariant in the mirage pre-
sented in Section 3 is a shift equivalence invariant.
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