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Abstract: The maintenance paradigm has evolved over the last few years and companies that want to
remain competitive in the market need to provide condition-based maintenance (CBM). The diagnosis
and prognosis of the health status of equipment, predictive maintenance (PdM), are fundamental
strategies to perform informed maintenance, increasing the company’s profit. This article aims to
present a diagnosis and prognosis methodology using a hidden Markov model (HMM) classifier to
recognise the equipment status in real time and a deep neural network (DNN), specifically a gated
recurrent unit (GRU), to determine this same status in a future of one week. The data collected by
the sensors go through several phases, starting by cleaning them. After that, temporal windows
are created in order to generate statistical features of the time domain to better understand the
equipment’s behaviour. These features go through a normalisation to produce inputs for a feature
extraction process, via a principal component analysis (PCA). After the dimensional reduction and
obtaining new features with more information, a clustering is performed by the K-means algorithm,
in order to group similar data. These clusters enter the HMM classifier as observable states. After
training using the Baum–Welch algorithm, the Viterbi algorithm is used to find the best path of hidden
states that represent the diagnosis of the equipment, containing three states: state 1—“State of Good
Operation”; state 2—“Warning State”; state 3—“Failure State”. Once the equipment diagnosis is
complete, the GRU model is used to predict the future, both of the observable states as well as the
hidden states coming out from the HMM. Thus, through this network, it is possible to directly obtain
the health states 7 days ahead, without the necessity to run the whole methodology from scratch.

Keywords: maintenance; diagnosis; prognosis; deep neural network; hidden Markov models;
machine learning

1. Introduction

The mechanical systems of companies’ production equipment suffer degradation and
the remaining useful life (RUL) shortens as the equipment components deteriorate over
time [1]. With the current evolution of production equipment, its complexity has also
increased. Thus, modern industrial systems are often exposed to various failure modes [2].
An unexpected stoppage of equipment can cause great economic losses to a company
and/or even put the health of workers at risk.

1.1. Maintenance

According to Kumar et al. [3], it is estimated that 85% of the total life-cycle cost of
equipment is determined by decisions made during its operation, where maintenance
actions are included. Therefore, it becomes necessary to obtain a maintenance system

Energies 2023, 16, 2651. https://doi.org/10.3390/en16062651 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16062651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9947-0894
https://orcid.org/0000-0002-1953-7268
https://orcid.org/0000-0003-0167-7489
https://orcid.org/0000-0002-9694-8079
https://orcid.org/0000-0002-8210-5468
https://orcid.org/0000-0003-4313-7966
https://orcid.org/0000-0001-8737-6999
https://doi.org/10.3390/en16062651
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16062651?type=check_update&version=2


Energies 2023, 16, 2651 2 of 26

adaptable to the criticality of the equipment [4]. “Chronologically, maintenance strategies
have evolved from the naive breakdown or run-to-failure maintenance to preventive
maintenance, with first static time-based preventive maintenance, and then condition-based
preventive maintenance (CBM)” [5]. Thus, maintenance can be divided into three major
categories: corrective maintenance (CM), time-based maintenance (TBM) and condition-
based maintenance (CBM) [6]. CM is a maintenance strategy that acts on the system
only to repair or replace the failed components. It is a maintenance policy that can cause
unexpected equipment downtime, production stoppages and low safety and is only used
for low-criticality equipment [7]. TBM and CBM are seen as types of proactive maintenance
since they are done before the failure occurs. TBM is based on reliability parameters of the
equipment components and its maintenance is usually done periodically and before the
failure occurs, which can lead to excessive maintenance. On the other hand, CBM depends
on the condition of the system being monitored, and interventions only occur when they
are really necessary. It has many advantages over other strategies [8].

1.2. Condition-Based Maintenance—CBM

CBM is a strategy that is based on condition monitoring of equipment over its op-
erations, enabling just-in-time maintenance [8]. According to Leoni et al. [9], one of the
main advantages over preventive maintenance strategies is that it can be scheduled only
based on the condition of the equipment, with no need to plan interventions based on
reliability parameters. Lee et al. [10] mention that although implementing a CBM strategy
is more difficult and costly, it ultimately leads to less wasted equipment life, reducing costs
associated with production, parts stock, number of personnel, tools, etc. It also increases
equipment availability and decreases the number of unexpected stops, improving failure
prevention and simultaneously reducing the operational cost [11–13]. According to Zhang
et al. [14], a CBM policy makes better use of system information, reduces the risk of failures
and unnecessary maintenance. Therefore, CBM is a maintenance methodology, which, once
implemented, is more cost effective than traditional methodologies, which helps to improve
equipment reliability, reduce operating costs, improve safety and reduce the frequency and
severity of equipment failures [12,15–20]. In addition to the points enumerated above, with
the advancement of technology and the arrival of industry 4.0., companies are becoming
more and more sensorized, and it becomes evident that CBM is the maintenance that is
most suitable and can achieve the best results [17,21–26]. CBM is used in smart factories
through the use of IoT systems, CPS (cyberphysical systems), sensor technology and AI
technologies. In this way, the collection and processing of large quantities of data (big data)
can be done in real time [9,10,27,28].

CBM is the maintenance responsible for detecting, through condition monitoring, the
first signs of anomalies in [29] equipment. In this way, it is possible to determine when
maintenance is required based on the actual condition of the equipment. Through condition
monitoring, it is possible to inspect and assess the current state of a piece of equipment
through data collected in real time from different types of sensors (e.g., vibration, noise, tem-
perature, etc.) [1,16,30,31]. The better the adequacy of equipment degradation modelling
as well as the better the monitoring accuracy, the better the CBM strategy becomes [11].
Moreover, the reliability of the collected data is very important for this type of maintenance,
hence the need to have calibrated sensors that make reliable measurements [32,33].

Summarizing, CBM can be divided into three phases [9,10,18,34]:
(i) Data acquisition, where useful data are collected, usually from sensors;
(ii) Data processing, where noise components are filtered out of the physical observa-

tions and subsequently, a data analysis is performed;
(iii) Maintenance decision-making.
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1.3. Diagnosis and Prognosis

CBM can be divided into two types of decision: failure diagnostics, which is the ability
to detect a cause of failure; failure prognostics, which is responsible for detecting a failure
that may occur in the future [35]. The prognosis of the health status of a piece of equipment
has become an unavoidable concept in the context of today’s industry, where intelligent
manufacturing and industrial big data provide input solutions for maintenance [36,37].
Then, through a CBM strategy, it is also possible to make a prognosis of the state of the
equipment, having the indication of possible problems and/or failures that could happen
in the future [38]. Effective prognostic techniques that can anticipate future conditions
are integrated into an advanced predictive maintenance framework that is incorporated
into the condition monitoring system [1]. We then speak of predictive maintenance (PdM),
whose aim is to predict the condition diagnosis of the equipment.

1.4. Predictive Maintenance PdM

PdM is a CBM strategy, but instead of diagnosing the equipment, it performs a real-
time prognosis [5]. Thus, as the authors pointed out, PdM is more efficient at planning
maintenance actions than a CBM policy. PdM improves productivity, product quality
and overall manufacturing efficiency [24]. According to Harald et al. [39], predictive
maintenance can reduce machine downtime by 30% to 50% and extend machine life
by 20% to 40%. Therefore, it is possible to think of predictive maintenance as being more
accurate than condition-based maintenance [40]. The aim of CBM is to identify deviations
or substantial modifications that are usually signs of a development failure. Consequently,
condition-based monitoring serves as a crucial pillar of predictive maintenance [40].

By monitoring a machine’s operating conditions in real time, it is possible to detect
key patterns for future failure prediction, thus predicting maintenance actions. According
to Yam et al. [38], an “alarm” can be given when values outside the normal operating
range are predicted, allowing system operators to take appropriate action to check machine
conditions and repair faults before a more critical failure, hence the need for companies to
acquire an equipment-condition-based maintenance strategy with a focus on prediction.
Then, a predictive maintenance strategy is also based on equipment condition monitoring
but integrates prognostics to effectively conclude on the state of equipment health in the
future [1]. According to Oakley et al. [17], predictions based on information extracted
from values collected by sensors have helped to improve decision-making regarding the
maintenance of equipment.

1.5. HMM-GRU to Perform Maintenance

Normally, the phenomena of the degradation evolution of equipment components
have a stochastic nature and can be described by stochastic modelling processes [19,34,41].
These stochastic models are modelled based on probability and statistical theories and
can be related to component degradation and failure occurrences [41]. In this paper, we
use a doubly stochastic process, the hidden Markov model (HMM), to characterise the
state of equipment degradation. The objective of the HMM is to classify the health state
of the equipment. To do this, we use the data collected by the sensors responsible for
monitoring the equipment. These types of data are characterized by time series data, since
they are collected over time in a continuous manner. Time series data are the most collected
type of data in this new era of industry 4.0. These observations collected over time can be
analysed and used as a tool that prevents unexpected equipment failures [42]. Thus, it is
essential to use machine learning (ML) tools, which is a field of AI that extracts key patterns
from collected temporal data through different paradigms such as: supervised learning,
semisupervised learning, unsupervised learning and reinforcement learning. According to
Kiangala and Wang [42], deep learning is a branch of ML consisting of different methods
such as: artificial neural network (ANN), convolution neural networks (CNN), long short-
term memory (LSTM), etc. In this paper, we will use the Gated Recurrent Units (GRU) tool,
which is like an LSTM network with a forgetting gate. This is currently a well-recognized
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prognostic tool and is the tool responsible for making the prediction of future data later
classified by the HMM to obtain the health status of the equipment, thus performing a
prognosis and supporting a PdM methodology.

1.6. Related Work

There are several examples of papers supporting PdM, which use DNN to make
predictions of the future, as well as other papers that use HMM to classify the state of
a system. Mateus et al. [43] made a comparison about a predictive system using an
LSTM network or a closed recurrent unit (GRU) for a multivariate data set. Antunes
et al. [44] proposed in their paper a variation of the exponential smoothing technique for
short-term forecasting and an artificial neural network for long-term forecasting. Mateus
et al. [45] presented in his article predictive models using an LSTM network to predict
future equipment status based on data from an industrial paper press. Zhang et al. [46]
proposed an approach to perform a prognosis of rotating equipment’s health using wavelet
transform (WT), a principal component analysis (PCA) and artificial neural networks (ANN)
to classify the failure and predict the condition of components, equipment and machines.
Martins et al. [47] showed how it was possible to classify the health condition of equipment
via an HMM with multivariate analysis. Yu [48] proposed an adaptive HMM method that
evolved over time to detect equipment failures and component degradation monitoring.
Arpaia et al. [49] presented a fault detection method using HMM for fluid machinery
without a priori information about its failure conditions. Mateus et al. [50] presented a case
study where they determined the future behaviour of the data collected by sensors coupled
to industrial equipment; the authors used time series models and deep learning.

1.7. Contributions of the Paper

In our case, the article stands out for integrating a diagnosis methodology that uses
an HMM with a forecasting tool, the GRU. In this way, the methodology explained in
this article demonstrates how a diagnosis and prognosis of the production equipment’s
health status can be made in an online mode. The added value of the methodology is
that it is generic and can be used in any equipment with different sensors. Furthermore,
it is a methodology that detects unusual patterns in the equipment’s operation without
prior information using unsupervised ML tools. Furthermore, the GRU predicts optimised
observable states after going through a process of feature generation, PCA and clustering.
That is, the GRU does not make the prediction directly on the data collected by the sensors
but on a data set optimized by ML processes. Moreover, a future prediction is made
with the GRU algorithm directly on the hidden states classified by the HMM. Thus, the
methodology does not only make a future prediction about the observable data that need
to be classified but also a prediction of the classification itself performed by the HMM.

1.8. Paper Structure

This article is divided as follows: Section 1 gives an introduction with the objective to
explain the context of the article, where maintenance concepts are described and where
the tools used to accomplish the diagnosis and prognosis of equipment are introduced, as
well as related works. In Section 2, a theoretical framework of each of the tools used in
this article is presented. Section 3 talks about the methodology used and explains how it
can be performed both to make a diagnosis of the equipment using the HMM, as well as a
prognosis using the GRU. Section 4 describes the case study carried out in a production
equipment used in the paper industry, where the objective was to realize 3its diagnosis and
prognosis. In Section 5, a discussion of the results is provided, where an evaluation of the
methodology is performed to understand if it works. Finally, in Section 6, the conclusion of
the work is drawn.
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2. Background
2.1. Principal Component Analysis (PCA)

A principal component analysis (PCA) is an unsupervised learning method of feature
extraction and dimensional reduction (moving p-dimensional data to a lower-dimensional
m-dimensional linear subspace), retaining the original features of the data and selecting their
key properties [42,51–53]. It analyses a data table in which observations are described by
several intercorrelated quantitative dependent variables and is widely used due to its ability
to extract interpretable information by efficiently removing redundancies [54,55]. It is typi-
cally used to perform the dimensional reduction of large sets of time series observations [56],
moving from representing possibly correlated variables to a new set of orthogonal, uncorre-
lated variables and preserving the highest percentage of information [40,46,55]. In this way,
it allows a rapid assessment of any relationships between variables [54]. In other words, it is
a method of projecting large dimensional measurements towards a minimum dimensional
space and preserving maximum variance [57] by compressing sensory data according to
their spatial and temporal correlations [58]. Then, the PCA produces linear combinations
of the original variables to generate new axes, known as principal components (PCs), with
the first PC having as high a variance as possible, possessing the greatest variability in the
data, and each subsequent component in turn having as high a variance as possible under
the constraint that it is not correlated with the previous components [46,54]. In other words,
the PCA is a linear transformation that rearranges the data into a new coordinate system,
in which the first PC is defined as the coordinate that shows the greatest variation in the
data when projected in that direction; the second PC is the coordinate that presents the
second largest variation, and so on for the other components [54].

2.2. K-Means Algorithm

The K-means algorithm is a clustering, nonhierarchical, unsupervised learning method
in ML, from the branch of multivariate statistical analysis, where the number of clusters K
is determined, and the observations closest to the cluster centre are included in that same
cluster [59–63]. Clusters are formed so that the distribution of samples among clusters max-
imises intragroup cohesion, i.e., the distance of observations from their centroid, increasing
similarity within the same cluster, and dissimilarity between different clusters [63–66].
K-means clustering is used to perform the classification of unlabelled data in which the
specific response variables are unknown [67]. In this process, the similarity between ob-
servations in the same cluster increases and the similarity with data from other clusters
decreases [67,68].

The K-means algorithm uses the distance between data points as the standard measure
of data similarity, usually using the Euclidean distance [60,69] (which is the one used in
this paper). That is, it minimises the square sum of the distances from each data point to its
assigned grouping centre [70]. The Euclidean distance equation is represented below in
Equation (1) [60,61,69,71].

dist(xi, xj) =

√√√√ D
∑
d=1

(xi,d − xj,d)2 (1)

where xi, xj—are two sequence points and D represents the dimension.
The K-means approach can be quite sensitive to the initial value chosen for the number

of clusters (k), which, if improperly defined, can significantly affect the result of the
clustering process, the number of iterations needed to reach algorithm convergence, as
well as the accuracy and complexity of the clustering algorithm [59,60,68]. Therefore, to
minimise the influence of the initial choice of k and define the optimal number of clusters,
it is common to use decision support methods. The Elbow method is a technique used for
this purpose, in which the cost function is calculated for different values of k during the
clustering process [61]. Usually, it is plotted a graph of the cost function as a function of
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different values of k is plotted and, from this graph, it is possible to identify the “elbow”
point that indicates the optimal number of clusters.

Ek =
k
∑
r=1

1
nr

Dr (2)

where k denotes the size of the cluster, nr represents the number of data points in the cluster
and Dr is the sum of the distances between all points within the cluster.

2.3. Gated Recurrent Unit (GRU)

The GRU was introduced by Cho et al. [72] and is based on LSTM, with a relatively
simpler structure requiring fewer parameters for its formation, having only two gates
(Figure 1) [73–79]: the reset gate is a mechanism that can be used to help with model
encryption, allowing one to determine the amount of past information that can be forgotten;
the update gate, on the other hand, is responsible for combining the entry and forgetting
gates in an LSTM model, allowing one to determine the degree of the previous hidden
state that will be used to update the current state. Both the reset gate and the update gate
are mechanisms used to solve the leak gradient problem in neural networks, since they
allow the manipulation of the information in intermediate layers without losing relevant
information for future predictions [76]. According to the authors, what makes these
mechanisms special is their ability to maintain long-term memories, without removing
relevant information for future predictions, which enables a better model performance.

Figure 1. Recurrent Gated Neural Network.

Then, the GRU has an update gate z and a reset gate r to simplify the memory block
structure of the original LSTM network. The input of the GRU network being xt, the
formula to calculate the next output and state value in GRU is [73,75–77,80,81]:
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1. The algorithm starts with the calculation of the update gate zt for time step t
(Equation (3)):

zt = σ(Wz.[ht−1, xt]); (3)

when connecting the network unit, the value xt is multiplied by its respective weight
Wz, as well as the value ht−1, which contains the information of the previous units
in t − 1. The results of these multiplications are then summed, and an activation
function sigmoid is applied to normalise the result between 0 and 1. In this way, the
relevant information is kept and irrelevant information is filtered out.

2. The reset gate allows the model to determine how much past information should be
forgotten, thus controlling how much information is retained (Equation (4)):

rt = σ(Wr.[ht−1, xt]) (4)

3. In this step, new memory content is introduced that uses the reset gate to store the
most important information from the past. After obtaining the toggle signal, the
toggle reset activation function is used to obtain the reset data and combine them with
the tanh activation function, resulting in h̃t.

h̃t = tanh(Wh.[rt ∗ ht−1, xt]) (5)

tanh is capable of controlling the range of output values between −1 and 1. It is
possible to observe that the input data are incorporated and the hidden information is
regulated by the tanh activation function.

4. Finally, the vector ht is calculated to contain the relevant information of the current
unit and transmit it to the next stage of the network, determining what should be
kept from the previous stages ht−1. The end result, ht, contains the current unit and
previous step information that is relevant to the final output (Equation (6)):

ht = (1− zt)× ht−1 + zt ∗ h̃t (6)

Through direct training, it can be inferred that the state of the reset gate rt controls the
combination between the input xt and the previous state ht−1. On the other hand, the zt
update gate determines the use of current and previous-time information.

2.4. Hidden Markov Models (HMMs)

An HMM is a statistical modelling technique widely used to model sequential data
such as time series. Its dynamic Bayesian network structure is relatively simple, but it
can capture complex patterns of temporal dependence between observable variables and
latent (unobservable) variables [82]. It is developed on the basis of the Markov chain,
which is a discrete memoryless random process responsible for describing the relationship
between the sequence of states of the next moment with the current one [83–85]. An
HMM is an evolution of a Markov chain that requires two stochastic processes, adding
a random relationship between the sequence of states and the observation vector, and
where the sequence of states cannot be directly observed [83,84,86–89]. Then, an HMM
is a probabilistic time series model, doubly stochastic, which includes the transition of
hidden states and emitting observations [90]. The hidden state transition, which follows
Markov chains, is the actual state within the system, mapped by observable states, which
are directly observed and have a correlation with the hidden states [90–93].
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A typical HMM can be expressed by λ = (N, M, π, A, B) [82–84,90,91,93,94], where:

• N represents the number of hidden states, where a certain state qt ∈ S, S = S1, S2, ..., SN;
• M is the number of observable states, where the observation at time t corresponds to

the hidden state qt and is represented by Ot ∈ V, V = V1, V2, ..., VM;
• π is the initial distribution of the hidden states, where πi = P(q1 = Si);
• A is the matrix of transition probabilities between hidden states, where A = aij N∗M

and where aij equals:

aij = P(qi+1 = Sj|qi = Si), 1 ≤ i, j ≤ N (7)

• B is the emission matrix, where the probability that the jth hidden state generates the
ith observable state is represented, where B = bjk N∗M. bjk is represented by:

bjk = P(Ot = Vk|qt = St), 1 ≤ j ≤ N, 1 ≤ k ≤ M (8)

There are three problems that need to be solved to use an HMM in an integrity
assessment and health-status prediction of equipment [83,93]:

• Evaluation

Using the model λ = (π, A, B) and an observation sequence O = O1, O2, ..., OT ,
the probability of the observation sequence O is determined by the forward–backward
algorithm. This algorithm evaluates the model with the most suitable observation.

• Training

It consists of training the model with the HMM, where given a sequence of observa-
tions, the model parameters are re-evaluated to maximise the likelihood. The Baum–Welch
algorithm is a learning technique for tuning the parameters of an HMM model based
on observed data, establishing the relationship between the parameters of the old and
new HMM model, and continuing to iterate until convergence is achieved. Specifically,
the HMM elements, λ = (π, A, B), are identified such that the likelihood, P(O|λ), of the
observation sequence O given the λ model is maximised [87,92].

• Decoding

The ideal state sequence is created in order to ensure that the likelihood will reach
its highest value given the model, λ, and the observation sequence, O. Viterbi’s method
solve the HMM decoding problem, inferring the HMM’s most likely series of hidden states,
S [91].

3. Methodology

In order to explain the procedure and methodology used in the case study presented
in this article, we can follow Figure 2, where the whole process used is schematized.

First, several data were collected over time through several sensors, Xp(t), attached
to the equipment. These data subsequently went through a data cleaning phase whose
goal was to eliminate/replace everything that decreased the integrity of the set to analyse.
After that, they passed to an optimization phase of observable states, with the objective of
improving the observations that mapped the hidden states of the HMM. In this way, the
optimization of observable states started with a feature creation of the data set, to obtain
more information about the data collected from the equipment, since continuous and
variable features over time can provide a prediction of possible failures [51]. By comparing
the extracted features to the original signal, the feature extraction sought to gather more
precise data that increased the accuracy of the performance assessment [1]. In order to
generate features and consequently reduce the dimension of the data, a time-window
processing method [51] was used. Time windows with different intervals can be created
depending on the study to be performed. A feature generation method was applied in
the time domain, where several features were created in each of the time windows. The
features chosen for the characterization of the equipment failure behaviour were chosen
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according to the articles [47,95] as they showed that they related well to the detection of
deviations in equipment behaviour.

Figure 2. Methodology used to make a diagnosis and prognosis of the equipment through HMM-GRU.

After creating the time-domain features, a feature selection and dimensional reduction
process, namely PCA, was used. Here, the aim was to work only with important features,
the principal components, as well as to solve the curse of dimensionality by reducing the
number of features and thus increasing the speed. From the various existing data reduction
methods, PCA-based data compression is the most widely used technique and has superior
performance in terms of reconstruction error [58]. From the point of view of equipment
health diagnosis, the reduction of class representation speeds up the decision phase [57].
Moreover, as [96] explained, highly correlated features lead to overfitting, and the PCA tech-
nique is applied to remove the highly correlated features based on the correlation matrix,
thus increasing the prediction accuracy. Without increasing the computational complexity,
it considers potential correlations between the answer variables [97], transforming the data
into uncorrelated features that assist in converting the data from a high-dimensional to
a low-dimensional space, retaining the maximum amount of information [98]. As there
were large differences between the ranges of the variables that were provided as inputs
to the PCA, a normalisation of the data was first performed. Through normalisation, the
amplitude of the initial continuous variables contributes equally to the analysis. Features
with larger amplitudes do not overlap features with smaller amplitudes, thus not leading
to one-sided results [54]. Therefore, the data were first transformed into comparable scales.
This was performed using a Zscore normalisation (Equation (9)), where the mean was
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subtracted and divided by the standard deviation for each value of each feature, causing
all features to be standardized to a zero mean and one standard deviation.

ZScore =
xi − X̄

stddev(X)
(9)

After the normalisation, the data were fed to the PCA that was responsible for trans-
forming the orthogonal orientations moving them in the direction of the bigger variability
of the data. These new vectors, known as principal components, can be thought of as new
axes that offer the best perspective for visualizing and analysing data in order to make
the differences between findings more obvious. The original answer variables are con-
verted into uncorrelated principal components after the original data are mapped to a new
vector [97]. It is also a widely used technique when, as is the case with the methodology
in this paper, it is necessary to check the clustering trend of the data. PCA, in an effort to
preserve all pertinent information, employs projection methods from high-dimensional
spaces to lower-dimensional subspaces [99].

Once the PCA phase was over, the new variables, the principal components, were
input into the clustering process, which is a multivariate analysis technique to judge the
degree of similarity between objects in order to classify them [59,70]. This was done over
time in order to understand the clusters that were forming. The clusters were sorted in
descending order with cluster 1 having the most data, cluster 2 having the second most
data and so on. Cluster 1 was the cluster that appeared most often over time since it was the
one with the most data and the last cluster was the rarest. To perform this step, K-means
clustering was used. K-means clustering is an unsupervised learning algorithm, used to
highlight the intrinsic properties and laws of the data [69]. Among the various existing
clustering types, K-means clustering was chosen because it is [65,69] relatively simpler
with an easy implementation and fast convergence, it has a strong interpretation ability
and it can handle a large number of observations efficiently. According to [100], K-means
clustering is the most useful tool for data mining, summarization, probability density
estimation and many other essential tasks. Due to the findings’ clarity and high scalability,
it has recently become one of the most widely used algorithms in data analysis [101]. It
is suitable for the reduction of large-scale original failure scenarios [66]. To cluster data,
first, it defines the number of clusters, k, and then the data sets are assigned to each of the
k clusters. The goal is to minimise the square sum of the distances from each data point
to its assigned cluster centre. The distance between the data points and the centre of the
clusters is calculated in order to assign the data to the nearest clusters. This is repeated
for several iterations until convergence is reached [70]. With this analysis, we only had
observations optimized by clusters where each cluster represented one observation. These
new observations served as the HMM’s inputs to train the model and conduct equipment
diagnosis. The HMM fitted well with the detection method whose spectrum states were
unknown but the receiver could be determined [93]. In this case, the collected and pro-
cessed observations came from the sensors and the hidden states that represented the
health state of the equipment. The objective of the HMM was, through the observable
states, to determine which hidden states best applied to each observation over time. To
this end, three hidden states were defined that represented the diagnosis of the health
state of the equipment: hidden state 1 represents the “State of good functioning”; state
2 represents the “Alert state”; state 3 represents the “State of bad functioning”. To use
the HMM as a classifier, the HMM parameters whose sizes are determined in advance
must be determined by training [90]. Thus, first, the Baum–Welch algorithm was used
to train and update the initial parameters of the HMM, λ, that could explain the obser-
vation sequence. That is, the HMM parameters were identified such that the probability,
P(O|lambda), of the observation sequence O given the lambda model was maximised [92].
Based on the observed state sequence, the HMM training first calculated the maximum
probability of the model parameters [91]. After obtaining the parameters of the HMM,
λ , finally, the diagnosis of the equipment was performed through the Viterbi algorithm
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that indicated which hidden states best applied over time. That is, the Viterbi algorithm
used dynamic programming to find the maximum likelihood path and finally performed a
prediction on the HMM [91]. It is a dynamic programming algorithm to find the most likely
sequence of hidden states called the Viterbi path that results in a sequence of observed
events [85]. The HMM was used to make the diagnostic classification of the equipment,
since it is a model suitable for continuous dynamic signal processing and its function is able
to discover the hidden state with a higher probability, through a sequence of observations
(in our case, coming from the clustering) [83]. According to the author, in statistical learning
theory, an HMM is most efficient in pattern recognition processing. HMMs have often been
used for recognising changing behaviours of dynamic features of a system [90], modelling
time-series-based phenomena due to their computational efficiency and because they can be
used to build data-driven models that provide characteristic indicators [92] and modelling
nonstationary and complex random physical processes of machine condition deterioration;
the hidden Markov model (HMM) is able to perform both monitoring and diagnosis [102].

Once the diagnosis of the equipment was made, it was possible to move on to a
prognosis with the aim of predicting the condition of the equipment in the future, using a
DNN algorithm for the time series prediction. According to the literature, deep learning
has become an active and promising area of research, and the most widely used deep
learning algorithms are the recurrent neural network (RNN), the long short-term memory
(LSTM), the convolution neural network (CNN), and the gated recurrent unit (GRU) [81].
In this paper, the GRU recurrent neural network was used, which is a simplification of the
LSTM architecture, being able to train more quickly because there are fewer parameters to
modify. Furthermore, it can also avoid gradient leakage issues [103]. According to recent
research, recurrent units are simpler, necessitating the use of RNNs with smaller memory
requirements and less demanding training algorithms. GRU uses the so-called update and
reset gate, which are the two vectors that determine what information should be passed to
the output, addressing the gradient leakage issue of a standard RNN [81]. According to the
author, the GRU’s unique quality is that they can be taught to retain information over the
long term without forgetting it or deleting information that is unrelated to the prediction.
The goal here was to use this neural network to make a prediction of a few days both on
the optimised observable states of the K-means clustering and directly on the hidden states
of the HMM. In this way, it was possible to see in which of the cases we obtained better
values from the GRU model. Since the predictions were made on smaller optimized states,
the GRU network was chosen since it showed better results on smaller and less frequent
datasets [104,105]. The advantage of GRU cells is that they are as powerful as LSTM cells,
even for small datasets [105].

4. Case of Study
4.1. Data Preparation

For this study, we used data collected from a company in the paper industry. More
specifically, data were acquired from a pulp-drying press, whose objective is to remove
moisture from the pulp. This is a very important process in the production flow, so
this equipment needs a type of PdM maintenance. For this, six sensors attached to the
equipment were used, collecting observations continuously (every 5 min) over time. Each
of the sensors collected values of different magnitudes, as follows: current, hydraulic level,
torque, pressure, rotation speed and temperature. With these magnitudes, it was possible to
obtain a better picture of the state of the health of the equipment. The data had three years
of history, and we used 83,329 data points collected for each of the six sensors (Figure 3).
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Figure 3. Amplitude of each of the variables under study over time without data preparation.

The quality of the data collected is an aspect to be taken into account, since it may
present some flaws in automated data collection processes. This causes inaccurate or
incorrect data to be collected. To find meaningful information from big data, it is essential
to perform a preprocessing of the data [106]. This step is of utmost importance to ensure
reasonable results, whether it is analysis with exploratory data mining, classification or
building a good and robust predictive model. Thus, data cleaning was performed to
remove data incoherence and increase data integrity. To do this, a program was created
that replaced duplicate data, nonexistent data and zeros with the average of their sign.
It was chosen not to remove what could be outliers, since they could represent a real
malfunction of the equipment and therefore add value to the prediction. We also replaced
the equipment stoppages (by the respective average of each signal), since these could be
confused with malfunctioning and could reduce the effectiveness of the prediction. A
program was created that, when detecting that current, torque, pressure and speed were
below a certain threshold at the same time, would be seen as a shutdown of the equipment
(Figure 4). The data used for the study are represented in Figure 5.

Figure 4. Equipment stoppages over time.
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Figure 5. Final signal used for the equipment health status study.

4.2. Feature Generation

After increasing the integrity of the data, they were divided into temporal windows
with the aim of creating various time domain features (Table 1).

Table 1. Mathematical equations for time domain-based statistical features.

Parameter Mathematical Equation Parameter Mathematical Equation

Mean
T1 =

N
∑

n=1
x(n)

N
A Factor T12 = T5

T2.T3

Standard deviation
T2 =

√
N
∑

n=1
(x(n)−T1)2

N−1
B factor T13 = T7.T8

T2

Variance
T3 =

N
∑

n=1
(x(n)−T1)2

N−1
SRM

T14 =

( N
∑

n=1

√
|x(n)|

N

)2

RMS
T4 =

√
N
∑

n=1
(x(n))2

N−1
SRM shape factor T15 = T14

T1

Absolute maximum T5 = max|x(n)| Latitude factor T16 = T5
T14

Coefficient of skewness
T6 =

√√√√ N
∑

n=1
(x(n)−T1)3

(N−1).T3
2

Fifth moment
T17 =

√√√√ N
∑

n=1
(x(n)−T1)5

(N−1).T5
2

Kurtosis
T7 =

√√√√ N
∑

n=1
(x(n)−T1)4

(N−1).T4
2

Sixth moment
T18 =

√√√√ N
∑

n=1
(x(n)−T1)6

(N−1).T6
2

Crest factor T8 = T5
T4

Median T19 = medianx(n)

Margin factor T9 = t5
T3

Mode T20 = modex(n)

RMS shape factor T10 = T4

1
N

N
∑

n=1
|x(n)|

Minimum T21 = minx(n)

Impulse factor T11 = T5

1
N

N
∑

n=1
|x(n)|
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The data were then divided into 6 h windows, in order to cover four daily operating
shifts. In total, 1158 temporal windows were created, where in each one there was a set
of 72 data. Then, for each window, 21 characteristics were taken for each one of the six
sensors, producing a matrix of 1158× 132.

4.3. PCA

The created features went through the PCA method in order to reduce the dimension
and also generate new features, the PCs, to use later in the K-means algorithm. In this
way, we increased computational speed and worked only with characteristics that were
really important for the study, which, although few in number, preserved most of the
information. To do this, a z− scrore normalisation of the data was first performed, since
they had different amplitudes (Figure 6).

Figure 6. All features normalised over time.

The normalised features were then fed into the PCA. Through the study of eigenvectors
and eigenvalues, we verified that 10 PCs preserved about 85% of the data variance, as we
can see in the Pareto chart represented in Figure 7.

Figure 7. Pareto graph with the percentage of preserved information vs. the number of PCs.
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4.4. K-Means Clustering

The matrix with the new characteristics, the PCs, resulting from the PCA were sent to
the clustering process where the objective was to group the data points that most resembled
each other in the same group. To do so, K-means clustering was used. The K-means
clustering algorithm followed the following procedure [33,59,65,71,101,107]:

Step 1. Determine the initial number of clusters k.
Step 2. Randomly select the initial k centroids cj, j = 1, 2, ..., k in the observations.
Step 3. Calculate the distance between observation and the initial centroid, and assign

the observed object to the cluster closest to the result, using Equation (1)
Step 4. Define a new centroid based on the average of the cluster variables

(Equation (10)).

cj =
1
Nj

∑
xi∈Sj

xi (10)

Step 5. Repeat Step 3 using the new centroid until the observed objects are not relocated
to another cluster.

This is an iterated process, which iteratively moves the centroids to minimise the total
variance within the cluster [67], with two conditions for terminating the iteration [61,65,69]:
the specified number of iterations is reached; the cluster centre no longer changes. This
paper used the second form. As found in the theoretical framework, to start the K-means
method, it is necessary to indicate the number of clusters, k. This was done using the elbow
method, one of the most used methods to select the number of clusters, using for this the
error sum of squares (SSE) vs. the number of clusters (Figure 8).

Figure 8. Elbow SSE method vs. no. of clusters.

Through the graph of the elbow method, we can see that from k = 4 to k = 6, an elbow
started to be created, where the SSE values decreased more slowly. This showed that the
number of clusters increased without significantly improving the SSE value. As the elbow
method graph alone was inconclusive, we also conducted a silhouette study (Figure 9) to
support the decision of the number of clusters.
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Figure 9. Silhouette method with silhouette coefficient vs. no. of clusters.

Starting from the elbow graph, where it was unclear which of k = 4, k = 5 or k = 6
to choose, through the silhouette graph, we concluded that k = 4 was the optimal choice
for this dataset. In this research, the silhouette index was used to evaluate the clustering
algorithm and choose the number k of clusters. The silhouette index is applied in cases
of exclusive partitioned clustering and takes into consideration measures of coherence
and separation of events in a cluster [108]. The silhouette function calculates the average
silhouette coefficient of all samples based on the average intracluster distance and the
average distance from the nearest cluster for each sample. Its index ranges from [−1, 1],
with high silhouette values reflecting good solutions for clustering processes.

Knowing the number of clusters, k = 4, the k-means clustering was performed and the
distribution of the clusters is shown in temporal form (Figure 10). The clusters are sorted in
descending order of the number of points, with the first cluster having the most values.

Figure 10. Cluster-optimised observations over time.
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4.5. HMM

After the clustering phase, we applied a classification phase, where the diagnosis of
the equipment was made through three hidden states: hidden state 1 represented the “good
working state”, state 2 represented the “alert state”, and state 3 was the “malfunctioning
state”. Thus, for the HMM, a doubly stochastic method, the observable states were repre-
sented by the clusters defined by the K-means clustering and the hidden states were the
health state of the equipment. We started by using the observable states to train the model
and obtain its parameters. This was performed using the Baum–Welch algorithm, which
employs a special case of the expectation–maximization algorithm to find local maxima
of P(O|λ) [92]. The HMM training first estimated the maximum likelihood of the model
parameters based on the observed state sequence. The Baum–Welch algorithm was then
used to calculate the transition probability A = aij, the observation probability B = bjk,
and the initial observation probability πi, from which the updated algorithm was used to
predict the hidden states, and the final algorithm resulted in the prediction of the equip-
ment’s health state. The accuracy was used to evaluate the model. For this, the observations
were divided in a temporal manner into training and test data, where 70% were used
for training and 30% for testing. The division was made in a temporal manner since the
diagnosis reported by the Viterbi algorithm represented the hidden states that best fitted
the observations over time. After the model was trained with 70% of the data, it generated
observable states with the same number of samples as the test data, in order to determine
the accuracy (Equation (11)).

Accuracy =
∑ (HMMGeneratedObservations = DataTest)

nSamples
∗ 100 (11)

As the parameters of the HMM were based on probabilities, observable states were
generated 10,000 times and the accuracy was taken as the average accuracy over the
10,000 runs. For this specific case, an accuracy of approximately 72% was obtained.

Once a good value for the accuracy of the model was obtained, the corresponding
parameters were used to determine the sequence of hidden states. For this purpose, the
Viterbi algorithm was used. The Viterbi algorithm finds the most probable sequence of
hidden states resulting from the sequence of clusters. Through Figure 11, we can verify the
evolution of the health status of the equipment throughout the study time.

Figure 11. Hidden states/diagnosis of equipment over time.
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4.6. Prognostic with GRU Model

Once the equipment diagnosis was made, the object in this phase was to make a
prediction, using the GRU network. The network was prepared to predict 7 days in the
future both the observable states that were input into the HMM, as well as the hidden states
of the classifier model.

Using a recurrent neural network with an encoder and decoder structure, we made
a prediction of the observable states over a period of 7 days into the future, correspond-
ing to one week. Figure 12 presents the prediction of the 7 days with a five-unit GRU
recurrent neural network, with a delay window of 3 days. The structure of the network
featured a relu activation function in the first layer and a relu function in the second layer.
Figure 13 represents the prediction after processing the data using the function of
Equation (12) for a better visualization of the model prediction results. The purpose
of that operation was to scale the predicted data, xn, to the same values as those of the
observable states.

ScaleValues = round([xn −min(xn)] ∗ [
nStates − 1

max(xn)−min(xn)
]) + 1 (12)

To validate the accuracy of the model, we used the errors MAPE (Equation (13)),
RMSE (Equation (14)), MAE (Equation (15)) and R2 (Equation (16)), which showed, re-
spectively, the following values of 5.49, 0.33, 0.086 and 0.68, showing a good evaluation of
the model.

MAPE =
1
n

n

∑
i=1

|xi − yi|
xi

(13)

RMSE =

√√√√√ n
∑

i=1
(yi − xi)2

n
(14)

MAE =
1
n

n

∑
i=1
|xi − yi| (15)

R2 = 1−
n

∑
i=1

(xi − yi)
2

(xi − y)2 (16)

where xi is the actual value, yi is the value predicted by the model, and n is the total number
of observations.

Using the same neural network with the same architecture, changing only the function
to a sigmoid in the last layer, with the same delay window, it was possible to perform
a prediction of the hidden states for the next 7 days as shown in Figure 14, which, after
scaling, persisted, as shown in Figure 15. The MAPE, RMSE, MAE and R2 errors of the
model evaluation had the values 2.79, 0.22, 0.035 and 0.71, respectively.
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Figure 12. Predicted training and test values for the observable states.

Figure 13. Scaled training and test predicted values for the observable states.
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Figure 14. Scaled training and test predicted values for the observable states.

Figure 15. Scaled training and test predicted values for the observable states.

5. Discussion

Starting with the diagnostic analysis of the health state of the production equipment,
we verified through Figure 11 that the HMM was able to detect with an accuracy close
to 72% several states 2 and 3 throughout the study time. We can see in Figure that failure
state 3 appeared four times over time, indicating equipment failure. The well-functioning
state, state 1, was almost constant, showing that the equipment was mostly in good
condition. Several alert states appeared that were quickly solved in order not to reach the
equipment failure state.

We also verified through Figures 5 and 11, that state 3, as predicted by the HMM,
happened when the values collected by the sensors escaped from the normal pattern of
behaviour. This was verified mainly in the periods February 2021 and March 2021, where
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we saw that the temperature and pressure sensors had a big drop in their measured values.
This indicated that the HMM was able to classify the health status of the equipment without
having any previous information about its operation or anomalies. Furthermore, this is a
nonsupervised methodology, capable of being used in any type of equipment with different
types of sensors. It is also capable of performing fault detection in real time, and through
the application of a DNN, the GRU, it is also capable of performing equipment prognostics.

The recurrent GRU neural network according to the literature review presents advan-
tages in predicting data of reduced size. This paper showed that the proposed model, a
five-unit GRU network, presented a good accuracy of the observed and hidden states of
the machine. In this way, it was possible to anticipate a fault detection 7 days ahead with
a high degree of accuracy. Normally, the future prediction is done on data collected by
sensors, and then it is necessary to run the whole fault-detection methodology. It should be
noted that, in our methodology, the prediction was made directly on clusters, optimized ob-
servable states, and also directly on hidden states classified by the HMM. In the prediction
made on the clusters, it was necessary to use the HMM classifier to obtain the operating
states of the equipment. When the prediction was made on the HMM states, we obtained
directly the health status of the equipment 7 days ahead. The GRU’s capacity to prevent
information overlap allows it to perform better with smaller quantities of training data
despite having a less complex architecture [103]. In terms of faster computation times and
superior results, the GRU also demonstrates the ability to outperform LSTM. Thus, through
our methodology, it is possible to directly detect the states of the equipment, through 7-day
prognostics, in a faster way, to obtain information in real time and be able to act more
quickly with regard to unexpected breakdowns.

6. Conclusions

This paper showed a methodology capable of making a diagnosis and prognosis of
the state of health of production equipment. First, data cleaning was conducted, followed
by the generation of statistical features in the time domain. After the feature generation, a
data normalisation and dimensional reduction were performed, through a PCA, to obtain
new features with more information and improve compactness. Then, K-means clustering
was used to group similar data into groups and create the observable states that were input
to the HMM. The HMM, in turn, was responsible for classifying the observable states into
hidden states that represented the state of health of the equipment, numbered from one to
three, where state 1 represented “Good Operation”, state 2 represented “Alert State” and
state 3 “Failure State”. After the detection of health states over time, it was possible to
make a prognosis directly on these states, or on the observable states obtained from the
clustering, 7 days ahead. For that, a GRU was used, which obtained good results with
these types of data. This is a generic methodology, which can be used in different types of
equipment, with different types of sensors. It works without prior information about the
behaviour of the equipment and can work in real time.

We conclude that through this methodology, it is possible to improve the quality of
CBM and PdM maintenance, thus improving the production flow and consequently, the
company’s profits.

In future work, other types of models will be applied to each of the steps in order
to check which combination obtains the best results. That is, in dimensional reduction,
other algorithms will be used, such as linear discriminant analysis (LDA), independent
component analysis (ICA), etc.; in the clustering, the Gaussian mixture model (GMM),
density-based spatial clustering of applications with noise (DBSCAN), among others.
Moreover, the realization of the prediction will use other DNNs that can get better results as
well as a prediction in bits through one-hot encode. Other types of statistics that can detect
the behaviour of the equipment will also be added. Finally, a classification algorithm will
also be implemented to input new data, collected by the sensors, in order to understand in
which cluster they best fit. This will lead to the implementation of a metric that will call for
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a new training session for the entire methodology if the data disperse significantly from
the previously created clusters.
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