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Abstract

Remote sensing data covering large geographical areas can be easily accessed and

are being acquired with greater frequency. The massive volume of data requires an

automated image analysis system. By taking advantage of the increasing availability

of data using computer vision, we can design specific systems to automate data anal-

ysis and detection of archaeological objects. In the past decade, there has been a rise

in the use of automated methods to assist in the identification of archaeological sites

in remote sensing imagery. These applications offer an important contribution to

non-intrusive archaeological exploration, helping to reduce the traditional human

workload and time by signalling areas with a higher probability of presenting archaeo-

logical sites for exploration. This survey describes the state of the art of existing

automated image analysis methods in archaeology and highlights the improvements

thus achieved in the detection of archaeological monuments and areas of interest in

landscape-scale satellite and aerial imagery. It also presents a discussion of the bene-

fits and limitations of automatic detection of archaeological structures, proposing

new approaches and possibilities.
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1 | INTRODUCTION

The many satellites orbiting Earth obtain huge volumes of images

from its surface. As a result, a massive amount of data is available for

analysis, making it necessary to optimize the manual methods gener-

ally used by archaeologists (Câmara & Batista, 2017; Parcak, 2009;

Somrak et al., 2020). Moreover, the increase in intensive soil usage

results in constant changes to the landscape due to modern land-use

requirements, placing greater pressure on cultural heritage. In order to

resolve this problem, automated approaches have been applied to

detect monuments on a regional/local scale within the field of archae-

ology (Cerrillo-Cuenca, 2017; Davis & Douglas, 2021; Soroush

et al., 2020; Trier et al., 2009). Even though many monuments have

been identified, many may still remain undiscovered. The latter are lia-

ble to disappear or be destroyed, either by time or directly by human

action. To speed up archaeological discovery and benefit from the

existing imagery, automatic classification systems are being developed

as tools to discover new archaeological monuments and protect them

from the risk of being destroyed (Cheng & Han, 2016; Kvamme, 2016;

Luo et al., 2014; Opitz & Herrmann, 2018).
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Automatic feature extraction (FE) for the detection of archaeo-

logical monuments from remote sensing images (RSI) started over

30 years ago (Lemmens et al., 1993). After this period, work in this

area appears to have been suspended. However, with the increase

in computational capabilities over the past decade, together with

improvements to the quality of aerial and satellite images, the auto-

mation of feature detection in remote sensing images has become

more accurate and different methods have been proposed for the

detection of archaeological objects (Davis, 2021; Menze

et al., 2006).

Our main goal is to present the current state of the art for appli-

cations that use automatic image detection, focusing on approaches

for landscape-scale aerial/space-borne remote sensing exploration of

archaeological sites, while also highlighting the need to develop spe-

cific methods for the identification of archaeological structures, given

the particular features of the imagery or the specific nature of the

monuments to be identified.

The remainder of this text is organized as follows. Section 2

provides the necessary background to automatic methods for

detecting monuments and areas of interest from landscape-scale

satellite and aerial imagery, while Section 3 describes the most com-

mon automatic detection data-based approaches used to identify

monuments and areas of interest in images. The knowledge-based

approach is presented in Section 4, followed by a discussion of the

current challenges in Section 5, proposing promising line of research

for advancing the field. Finally, the conclusions are presented in

Section 6.

2 | AUTOMATIC RECOGNITION OF
ARCHAEOLOGICAL SITES IN IMAGERY

Automatic methods applied to architectural and microtopographic

alterations covering large areas of land are an effective method for

visualizing known sites and surveying landscapes for previously unrec-

orded sites (Freeland et al., 2016). The main goals for this automation

are (i) to reduce manual work; (ii) to standardize the methods of analy-

sis by creating replicable workflows and (iii) to increase the probability

of successful detection of archaeological remains (Davis, Andriankaja,

et al., 2020). Computer vision approaches and algorithms for pattern

recognition in this area have been used to convert the image data into

tangible information, extract knowledge from it, and make digital pro-

specting as effective as possible.

Computer vision is concerned with developing techniques that

enable the computer to analyse and evaluate visual data (e.g., image

and video) using different techniques such as image pattern recogni-

tion, which deals with the identification and classification of objects in

images. Automatic detection is a technique which classifies an object

based on initial knowledge or statistical information from its pattern,

or both (Bishop, 2006). According to de Boer (2005), pattern recogni-

tion is a set of techniques that makes use of ‘feature extraction,

discriminant analysis, principal component analysis, cluster analysis,

neural networks and image processing to search for data with a set of

predefined characteristics’ (de Boer, 2005. p. 245). These techniques

are applied using various approaches and methodologies to classify

objects from images, as shown in Figure 1.

F IGURE 1 Steps often used for supervised
automatic analysis of remote sensing data for CH
detection
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Automatic imagery detection is a data-based method that is

highly dependent on data, and the trend towards automation results

from the availability of more complex and high-quality data (Freeland

et al., 2016). Data collection involves the extraction and storage of

data from various data catalogues held by agencies and different

regional initiatives involved in Earth observation (such as the

European Space Agency [ESA],1 Committee on Earth Observation Sat-

ellites [CEOS],2 National Aeronautics and Space Administration

[NASA]3 and United States Geological Survey [USGS]4). These organi-

zations provide Earth observation imagery obtained from different

sources and sensors (Arvor et al., 2013).

When using Earth observation imagery, the first goal is to extract

relevant information from the image and thus gain knowledge of its

geographical area (Lang et al., 2019). Recognizing and classifying

familiar or unfamiliar patterns quickly and accurately is one of the

goals in pattern recognition. Different algorithms can be used to

achieve these goals, taking segmentation, feature detection and classi-

fication as the main keywords. Surveys using aerial and spatial data

provide more extensive ground coverage than pedestrian survey

methods can provide. Automatic classification combined with visual/

manual inspection allows for the use of domain knowledge, provided

by a specialist, and the detection of additional information, thus pro-

viding a sound basis for subsequent laboratory and field surveys (Trier

et al., 2015; Trier & Pilø, 2012). These inspections consist of different

intrusive (e.g., ground survey) and non-intrusive (e.g., remote sensing

techniques such as image analysis) prospection approaches to the

detection and study of archaeological monuments on the ground

(Drewett, 2011).

The presence of already known archaeological objects is con-

firmed using prior field surveys. However, in order to validate an

unknown object recognized by an automatized approach, a posterior

confirmation by a domain specialist is necessary (Câmara &

Batista, 2017; Davis, 2019; Rowlands & Sarris, 2007). Thus, subse-

quent validation by means of an expert laboratory analysis signifi-

cantly reduces the number of false positives, that is, images that the

automated system incorrectly classifies as containing relevant objects.

This can either be validated by a test stage (see Figure 3) or later con-

tradicted by fieldwork—since field surveys reveal and validate the

detection made by automated procedures. When the characteristics

that describe the objects are known, they can be used to label the

data. At this point, two different approaches may be taken: (a) This

newly acquired annotation is fed back into the system and the model

for incorporating this knowledge is retrained—which is the most com-

mon machine learning (ML) approach (Figure 1)—or (b) the model is

kept to be used without changes.

This description helps to demonstrate that automatic classifica-

tion methods are a good tool for detecting archaeological monuments.

Automation assists in filtering out the massive amount of data, limiting

the images to those that will later require human analysis, and pro-

vides a good alternative to traditional fieldwork prospection by sup-

porting the detection of environments with a higher chance of

providing archaeological sites and facilitating the identification and

management of the architectural heritage (Bowen et al., 2017;

Câmara & Batista, 2017; Cheng & Han, 2016). We believe it is impor-

tant to emphasize that automation should be regarded as an aid rather

than a substitute for traditional visual inspection, serving as a part of

the research process that is integrated into a broader methodology.

The following section highlights the most common approaches used

for the automatic detection of monuments and areas of interest in

landscape-scale satellite and aerial imagery.

3 | AUTOMATIC CLASSIFICATION FOR
MONUMENT DETECTION

In image classification, the input data are either an image interpreted

as a numerical grid of pixel values or a set of features derived from

the image, which aim to predict the correct class of the input image.

In the case of archaeological applications, according to Sevara et al.

(2016), two methodologies are traditionally used for image analysis:

pixel-based image classification and object-based analysis. However,

the latter uses the image data set and integrates the image content

into the classification procedure (Sevara et al., 2016). Neither method

takes precedence over the other, and both have produced successful

results. More recently, there has been growing interest in the use of

Convolutional Neural Networks (CNN) for object detection (Maggiori

et al., 2016; Verschoof-van der Vaart & Landauer, 2021). This

approach is known to learn contextual features on different scales.

The different approaches make use of image segmentation, feature

extraction and subsequent image classification, which is achieved by

using different variables such as shape, the texture of existing vegeta-

tion, the information contained within the pixels' attributes, and

region, among many others (Bowen et al., 2017; Cerrillo-

Cuenca, 2017; Davis & Douglas, 2021; De Laet et al., 2007; Guyot

et al., 2018; Kalayci et al., 2019; Luo et al., 2014; Trier et al., 2009).

Pixel-based classification techniques rely on establishing a rela-

tionship between each pixel, or group of pixels, and a specific target

class and on the separability of the classes. To establish this relation-

ship, pixels with similar attribute values form an arrangement describ-

ing a relevant feature for classification (Maggiori et al., 2016; Sevara

et al., 2016). Pixel features may be derived from different original

input data, such as aerial/space-born imagery, or geospatial features

generated as digital terrain models (Doneus, 2013; Hesse, 2010;

Menze et al., 2006). On the other hand, object-based classification

starts with image segmentation - a process that aggregates the pixels

into images of objects, whereas traditional image classification

methods classify individual pixels. Unlike pixel-based methods,

object-based image analysis (OBIA) methods have at least four new

components for image analysis in comparison to pixel-based

classification - the segmentation procedure, nearest neighbour classi-

fier, incorporation of expert knowledge, and feature space optimiza-

tion (Platt & Rapoza, 2008). In this method the first OBIA take other

components into account for the image analysis, such as shape,

texture and morphology (Davis, Andriankaja, et al., 2020), functioning

as a ‘… link between the pixel world and the vector world …’ (Arvor
et al., 2013).

CÂMARA ET AL. 155
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Object-based approaches are a valuable method for detecting cul-

tural heritage in remote sensing imagery. Since the beginning of the

21st century, new methods for extracting information from images

have been implemented (Davis, 2019; De Laet et al., 2007; Guyot

et al., 2018; Lambers et al., 2019). In this context, new developments

in computer vision help tackle issues arising with object-based image

analyses and improve imagery recognition methods. Object-based

analysis approaches work by starting with the analysis of the image in

terms of the object(s) to be found for subsequent image classification.

OBIA techniques are applied to split an image into basic objects that

describe the features of the target, beginning with image segmenta-

tion techniques, followed by the object classification step that runs

the segmented objects through a series of decision rules based on the

characteristics of the target (Freeland et al., 2016; Sevara et al., 2016).

Finally, CNN approaches are artificial neural network architec-

tures capable of modelling complex and highly nonlinear functions

and extracting the relevant features of the image. These networks use

multiple specialized layers between the input (data) and output

(results) layers (Maggiori et al., 2016) that collectively encompass

(i) feature extraction and (ii) classification (Lambers et al., 2019). In

fact, in addition to the input and output layers, a CNN is comprised of

at least three sequential components: a convolutional layer, responsi-

ble for analysing the inputs and extracting (learning) features from

images, thus eliminating the need for manual feature extraction and

turning images into feature maps; a pooling layer, capable of summa-

rizing the information obtained from the convolutional layer and

reducing the dimensions of the feature maps, thus enabling the

objects to be detected independently of their location within the

image; a fully connected layer that makes use of the latter summariza-

tions as inputs to classify the image, based on the correlation between

the resulting feature maps and the class labels (Caspari &

Crespo, 2019; Lambers et al., 2019).

The ongoing technological advances both in remote sensors,

allowing for the capture of very-high-resolution data, and in computer

vision, make automatic monument detection and classification a

promising area of research. In order to automate detection of archae-

ological objects (such as barrows, burial mounds, enclosures, settle-

ments, tells and qanats, among others) using RSI, researchers have

developed and applied methods using different approaches (de Laet

et al., 2007; Lasaponara et al., 2016; Lasaponara & Masini, 2011;

Trier & Pilø, 2012; Zingman et al., 2016). According to Cheng and Han

(2016), approaches for object detection in optical remote sensing

images can be classified into five main categories:

1. template matching-based object detection,

2. knowledge-based object detection,

3. OBIA-based object detection,

4. ML-based object detection,

5. Deep Learning (DL)-based object detection.

Detection based on template matching, a high-level computer

vision technology, is flexible, relatively straightforward to use, and

was one of the most popular object detection methods. Its success in

archaeology stems from the fact that it is common for archaeological

monuments to display geometric shapes (such as circles and rectan-

gles), while these shapes are rare in natural landscapes (Cheng &

Han, 2016; Lambers et al., 2019). This technique essentially generates

an ‘ideal’ template representing the object in question (either hand-

crafted or learned from the available data), which is then searched for

throughout the image, using rotations or translations of the generated

templates (Cheng & Han, 2016; De Boer, 2005; Trier et al., 2009).

Due to the use of spatial data presenting geographical compo-

nents, applications for the detection of objects based on Geographic

Object-Based Image Analysis (GEOBIA) have also been widely used

by archaeologists in the last 15 years and are an integral part of

object-based classification approaches. Used to describe data that

represents features or objects on the Earth's surface (whether human-

made or natural), this approach has been used, with different objec-

tives, to classify land-use and land cover or to detect archaeological

features, and therefore represents the majority of applications found

in the field of archaeology (Davis, 2019; Sevara et al., 2016). GEOBIA

encompasses techniques that enable an image to be split into mean-

ingful and discrete segments of non-overlapping units based on a set

of specific criteria (e.g., shape and scale), providing representations in

which, ideally, each split segment would correspond to real-world

objects. The segmentation parameters are obtained either through a

time-consuming trial-and-error process (Freeland et al., 2016) or by

using point-based, edge-based, region-based or combined segmenta-

tion techniques (Sevara et al., 2016).

On the other hand, some studies have come to formally regard

object detection as a classification problem, opting to use machine

learning techniques for object detection, since these methods can be

used to aid analysis and data management (Cheng & Han, 2016).

Recently, with the advent of deep learning (a branch of machine learn-

ing), more accurate results are being obtained. However, the focus of

the analysis remains the recognition of simple types of structures that

are normally large and distinctive on the ground (Davis, 2021).

Table 1 presents an overview of the different methodologies and

types of image data used in the detection of archaeological monu-

ments in landscape-scale satellite and aerial imagery.

3.1 | Feature extraction

The different approaches to object detection share general similarities

in their respective processes, given that they must first perform

diverse feature extraction and feature fusion techniques at various

levels, followed by the creation and training of classification models to

detect objects of interest. Depending on which type of process the

object detection is based on, the degree of complexity varies. This

section will expand on each of the five, previously described, main

classes of object detection methods for RSI.

In the first phase, as shown on the left of Figure 2, original input

data is typically preprocessed and prepared so that the relevant fea-

tures are extracted and later used for training/teaching a model that is

able to recognize objects of interest (Bishop, 2006). Preprocessing

156 CÂMARA ET AL.
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means performing tasks such as cleaning the original image or summa-

rizing the original data through dimensional reduction. Following this,

feature extraction is usually used to transform the original input,

i.e. the raw image pixels, into a new and more representative dimen-

sional data space for features (Cheng & Han, 2016; Opitz &

Herrmann, 2018). For images, feature extraction is used to obtain a

representation of an object in a lower-dimensional space (Chen

et al., 2013), and thus, high-dimensional features are transformed into

more compact and distinctive ones, reducing the dimensions of the

feature space but still allowing for the detection of objects (Cheng &

Han, 2016). Next, an additional step known as feature fusion can also

be applied. Feature fusion is part of a group of data fusion techniques

responsible for enhancing image analysis results by incorporating data

from various sources to help extract information. In remote sensing,

TABLE 1 RSI data in conjunction with ML methods for identification of archaeological monuments

Reference Country Data Methodology Goal

de Boer (2005) Netherlands ALS Template matching Identify burial mounds

Menze et al. (2006) Syria, Turkey

and Iraq

SRTM Morphometrical variables and RF

algorithms (ML)

Identify tells

de Laet et al. (2007) Turkey VHR fused MS

and PAN

ED + KNN Identify archaeological features

Trier et al. (2009) Norway PAN Template matching Identify burial mounds

Trier and Pilø (2012) Norway ALS Template matching Identify pit structures

Chen et al. (2013) USA MA Statistical classifiers PCA/LDA Identify archaeological sites

Luo et al. (2014) China Google earth Edge detection Identify tops of qanat shafts

Lasaponara et al. (2014) Peru VHR satellite

images

Autocorrelation statistics and K means

(ML)

Extract looting patterns

Trier et al. (2015) Norway ALS Template matching Identify mound structures

Zingman et al. (2016) Switzerland PAN CNN classifier (DL + ontologies) and

rectangle detector

Identify rectangular enclosures

Lasaponara et al. (2016) Turkey PAN and MS Unsupervised classification ISODATA

(GEOBIA and ML)

Identify and map features linked to

buried archaeological remains

Freeland et al. (2016) Tonga ALS Inverted mound algorithm (GEOBIA) Identify and map settlement patterns

Sevara et al. (2016) Sweden and

Austria

ALS Minimum distance classification and

homogeneity classification

Burial mounds

Cerrillo-Cuenca (2017) Spain ALS (Morphometrical) topographic position

index and Hough circle function

(GEOBIA)

Identify prehistoric barrows

Trier et al. (2016) Norway ALS CNN (DL) and SVM classifier Identify charcoal burning platforms

Guyot et al. (2018) France ALS RF classifier (ML) Identify burial mounds

Lambers et al. (2019) Netherlands ALS Citizen science and R-CNN classifier

(DL)

Identify multi-class archaeological

objects

Trier et al. (2019) Scotland ALS Pre-trained (DL) Identify different archaeological

objects

Davis, Sanger, and

Lipo (2019)

USA ALS GEOBIA + template matching Identify mounds and shell-rings

Abate et al. (2020) Italy MS TCT + PCA matching Neolithic settlements

Davis, Andriankaja,

et al. (2020)

Madagascar MS SVM + OBIA Predict cultural deposit location

Davis, Buffa, and

Wrobleski (2020)

USA ALS Inverted mound algorithm (GEOBIA) Predict cultural deposit location

Soroush et al. (2020) Iraq Historic

satellite

imagery

CNN Identify qanats

Verschoof-van der Vaart

and Landauer (2021)

Netherlands ALS R-CNN Detect archaeological object classes

Abbreviations: ALS, airborne laser scanner; ED, edge detection; HCAL, hierarchical categorization and localization; KNN, k-nearest neighbours; LIDAR,

Light Detection And Ranging; LDA, linear discriminant analysis; MS, multispectral; ML, machine learning; PAN, panchromatic; PCA, principal components

analysis; RF, random forest; TCT, tasselled cap transformation; VHR, very-high-resolution.
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these techniques could be applied on three different processing

levels: at the pixel level, where raw data from multiple sensors is

merged into common resolution data (e.g., pan-sharpening) in an

effort to improve spatial and spectral resolution alongside structural

and textural details; at the feature level, where similar segmented

objects in different data sources are aligned and have their spectral,

spatial and textural features extracted then fused to aid in statistical

or neural network assessments; at the decision level, which merges

extracted information, such as the selection of a relevant feature from

a group of extracted features (Rajbhandari et al., 2019).

In the case of RSI, learning is achieved by using a set of data con-

taining examples of known (labelled) data; that is, images are labelled

as containing the objects of interest (positive matches) or as not con-

taining these objects (negative matches), in order to train a classifying

model to detect the object in question (see Figure 2, on the left). After

the results are validated via a controlled test using already known

examples whose labels have been hidden in order determine the valid-

ity of the model's classifications, and if the performance is satisfac-

tory, the trained model is used to predict the existence of new

relevant areas of interest that should contain unknown monuments

(Cheng & Han, 2016; Guyot et al., 2018). This last phase is depicted in

Figure 2, on the right. Whenever images are identified that relate to a

new discovery or confirm that it does not exist or, in other words,

whenever new images are labelled, they can be added to the training

set used to teach a new model and update the previous one.

Figure 3 expands the left side of Figure 2, highlighting the main

stages in the creation of a recognition system based on ML methods:

feature extraction, feature fusion, dimensionality reduction, classifier

training and evaluation via a testing phase, in which the model is eval-

uated using data that has not been fed into the training.

Deep learning-based object detection is a particular area within

ML that refers to special classes of artificial neural network architec-

tures employing multiple specialized layers, which explain the deep-

ness (Maggiori et al., 2016). According to Lambers et al. (2019), the

most widely used architecture is the aforementioned CNN, consisting

of multiple layers that encompass feature extraction, in which features

are learned using several sequencing layers of increasing complexity

to model the image's features into a feature map that preserves the

spatial relationship between pixels, a pooling stage to enhance gener-

alization and avoid overfitting, and a final classification. This approach

has the advantage of learning to generalize and draw features auto-

matically from the data without having to rely on a previously defined

hand-crafted set of rules for feature extraction. These architectures

tend to present excellent levels of accuracy for image classification,

consistently outperforming humans. However, a huge (massive) num-

ber of labelled examples are needed as input for the training phase.

F IGURE 2 Workflow for supervised model
learning for specific image data (on the left) and its
interactive usage: After validation/field
exploration, the result may be used to retrain the
model (on the right), thus incorporating new
knowledge.
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The challenge for using deep learning-based resources involves the

use of very large datasets (labelled archaeological objects) to achieve

human-like performance in detecting all variables present in archaeo-

logical structures and landscapes. In order to benefit from these

approaches, strategies such as transfer learning and data augmenta-

tion are mainly used, which reduce the required number of confirmed

instances, thereby extending their use to many fields that had previ-

ously been restricted due to their smaller datasets, as it is the case

with archaeology (Lambers et al., 2019; Soroush et al., 2020).

3.2 | Automatic classifiers

As previously stated, the feature extraction phase is commonly fol-

lowed by the creation and training of an automatic classifier capable

of identifying objects of interest. These classifiers are usually varia-

tions on classic machine learning model classifiers. This

section examines how each of the five object detection approaches

achieve automatic classification. Overall, it can be considered that

object detection based on template matching, GEOBIA, and ML create

their classifiers through variations on the so-called supervised/

unsupervised ML models or DL detectors created from existing CNN

architectures.

In general, following the extraction and creation of an ‘ideal’ tem-

plate, object detection based on template matching searches through

an image using rotations or translations of the generated templates

and computes a similarity or correlation measurement that indicates

the probable presence of the template (Cheng & Han, 2016; de

Boer, 2005; Trier et al., 2009). However, this method has limited

application, since the detection of complex data can be time-

F IGURE 3 Training and test data are two sets of examples required to build an automatic classification method to detect objects in images.

They are used in the two steps that must apply the same techniques for feature extraction: feature fusion and data classification. The training
phase develops the learning or building of the model, and the test phase, which should use ‘new observations’, evaluates the model's capacity for
generalization (Bishop, 2006).
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consuming and tends to generate a high rate of false classifications,

both false positives—classifying an image in which the object is not

present as a positive match—and false negatives—classifying an image

in which the object is present as not matching. In the case of

GEOBIA-based detection, following the segmentation process respon-

sible for feature extraction, multi-class labelling is applied by proceed-

ing with a series of decision rules based on the target object's

characteristics (such as geometry, spectral values, neighbourhood rela-

tionships or semantic groupings) to assign classes to each of the seg-

ments (Freeland et al., 2016; Sevara et al., 2016).

Automatic classifiers generated through classic ML can be divided

into two main categories, namely those using supervised or unsuper-

vised methods. Regardless of the approach employed, the general

process for producing the best possible supervised classifier is split

between a training and a subsequent testing phase, as shown in

Figure 3. The training phase attempts to build (train) the classifier that

best identifies the object of interest in annotated images. This is

achieved by applying algorithms that recognize relationships between

features observed in the image and its predefined class. In order to

determine whether the developed model is the best possible one for

detecting the object of interest, a test must be performed by feeding

the model annotated images that have never been used in the training

phase, whose class is withheld. These images must be preprocessed in

the same way, so that the features used in the training phase are

available for the images in the test set. Since the images are now used

without any information on their predefined class, the prediction

results are compared with the corresponding annotated class, result-

ing in a quantification of the correct matches and incorrect predictions

(Bishop, 2006), thus evaluating how the model would perform in a real

case scenario. The classic methodological approach is to experiment

with different processing, feature extraction and machine learning

algorithms to determine the best possible model for the data. Once

the best model is established, the classifier is tuned and is ready for

application with real new data.

In supervised ML, relevant features are selected from the data

before model training, using a set of labelled or annotated data.

Supervised methods allow an expert to use his/her domain knowledge

to fine-tune a learning algorithm over a predetermined feature space

to train it how to recognize objects (Sevara et al., 2016). It should be

noted that architectural heritage typically presents a high number of

variables (e.g., shape, colour, texture, building materials and depth of

archaeological remains) linked to soil surface characteristics

(e.g., desert, forest, mountain and rural areas). This usually makes it

difficult to extract features and select the image parameters (spectral

channels, band combination, etc.) used to process and detect the sub-

tle signals which typically characterize archaeological remains

(Câmara, 2017; Lasaponara et al., 2016). On the other hand, unsuper-

vised ML is applied to problems where there is a need to understand

which patterns may automatically be discovered in a set of unlabelled

input data. These methods can be applied to discover groups of similar

objects within the data (Bishop, 2006), which is known as clustering.

Unlike supervised classification approaches, unsupervised approaches

do not require the a priori definition of classes, thus allowing for the

discovery of unknown relations shared among groups of input data,

and may require only a minimal amount of training data (Lasaponara

et al., 2014).

Finally, on the subject of automatic classifiers developed using DL

techniques, as previously stated, this approach avoids the manual

extraction of features. The state-of-the-art CNN architectures can be

separated into two groups, depending on the number of detections

they execute: the single-stage detectors (e.g., You Look Only Once or

Single Shot Multibox Detector) or the two-stage detectors

(e.g., Faster Region-based CNN or Mask Region-based CNN)

(Verschoof-van der Vaart & Landauer, 2021; Soviany &

Lonescu, 2018). According to Soviany and Lonescu (2018), single-

stage detectors detect objects in a single stage by learning the class

probabilities and bounding-box coordinates of the object in question

from the input image (Soviany & Lonescu, 2018). This allows models

that make use of this type of CNN architecture to perform much fas-

ter than the two-stage detectors, at the cost of lower accuracy rates.

In contrast, two-stage detector architectures perform two rounds of

detections: the first to generate regions of interest in the input image

through the application of Region Proposal Network and the second

to learn the class probabilities and bounding-box coordinates of the

regions of interest. Models implementing this type of architecture

have the highest accuracy rates, at the cost of being slower than

single-stage detectors. In aerial/satellite archaeological research, two-

stage detectors are the primary choice, due to their capacity to detect

multiple objects (regions) of interest within a larger image when com-

pared to obtaining a single object from the input image. Moreover,

their higher accuracy rates not only produce higher true positives, or

correct identification matches but, even more importantly, a reason-

ably low number of false positives (Lambers et al., 2019; Soroush

et al., 2020).

3.3 | Approaches and methodologies

This section will expand on the various types of approaches to object

detection described above by outlining successfully implemented pro-

cesses for object detection based on template matching, GEOBIA,

ML, DL and knowledge-based methods, respectively.

Approaches using template matching for the automatic detection

of archaeological features have been well-demonstrated in de Boer

(2005); Davis, Lipo, and Sanger (2019); Trier et al. (2009); Trier and

Pilø (2012); and Trier et al. (2015). Among these, de Boer (2005) suc-

ceeded in constructing a template resembling burial mounds using

LIDAR images in the form of a sinusoidal template in cross-section,

but circular if seen from above (de Boer, 2005). In addition, the Trier

et al. (2009) use of MS and PAN images proved successful in creating

a ring-shaped template, with various radii and different thicknesses,

for the detection of ring marks (Trier et al., 2009). The same general

approach can be found in Trier and Pilø (2012), where the authors

succeeded in detecting pits in LIDAR images by creating ring-shaped

templates with various radii (Trier & Pilø, 2012). Finally, Trier et al.

(2015), using ALS images, managed to successfully develop a mound-
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shaped template for different radii (Trier et al., 2015). Currently, tem-

plate matching is being used in object-based approaches, as we will

describe, allowing for the use of statistical probabilities generated

from features extracted from an image, such as shape, texture and

pattern.

GEOBIA approaches have become increasingly popular since the

beginning of the 21st century, with many applications and methods

developed in this area (Lang et al., 2019; Magnini &

Bettineschi, 2019). Emerging trends use object-based methods in mul-

tiple subfields (e.g. object-based feature extraction) in conjunction

with statistical algorithms, and these are being applied with great suc-

cess, achieving satisfactory detection results (de Laet et al., 2007;

Guyot et al., 2018). These categories are not necessarily independent,

since different methods can be used within the same project to obtain

better results or to identify which method is better in each case

(Cheng & Han, 2016; Davis, Andriankaja, et al., 2020; De Laet

et al., 2007; Guyot et al., 2018; Lambers et al., 2019). An example can

be seen in Cerrillo-Cuenca (2017), who used LIDAR data, GEOBIA

methodology, morphometric and morphological classification methods

to identify and extract, with a 46% success rate, terrain shapes to

locate tomb structures dispersed throughout the Extremadura region

in Spain (Cerrillo-Cuenca, 2017). LIDAR data has been gaining atten-

tion and producing increasingly accurate results when stochastic

classifiers are used with different datasets (Lasaponara &

Masini, 2011). Guyot et al. (2018) used LiDAR-derived digital terrain

model data, ML, and a GEOBIA method for the identification of

megalithic funerary structures in the Carnac, Quiberon and Gulf

regions of Morbihan (France). This work combined multi-scalar ter-

rain analysis methods with Random Forest algorithms for classifica-

tion. The authors report having obtained 1% false positives, 98%

true positives, plus the identification of a Neolithic tomb previously

unknown in the Carnac region, thus validating the use of ML to

identify and classify monument typologies (Guyot et al., 2018).

Davis, Andriankaja, et al. (2020) used satellite imagery from

Sentinel-2, SVM, and OBIA to predict the location of previously

unrecorded cultural deposits and analyse previously recorded

archaeological sites in Madagascar, obtaining a classification

accuracy of 93.6% with SVM and 97.7% with OBIA in the chosen

environmental land-type (Davis, Andriankaja, et al., 2020).

Regarding ML approaches within the field of remote sensing

archaeology, visual features extracted from two-dimensional

(2D) data are obtained by analysing spatial relationships such as

shape, texture, composition patterns and electromagnetic behaviour.

It is possible to analyse other variables such as topographic informa-

tion in different ways when structures are present that alter the ter-

rain by using three-dimensional (3D) data (Barcel�o & Barcel�o, 2009;

Davis, 2019). Regardless of the data used, sophisticated mechanisms

are required to analyse all of the complex archaeological features. In

the light of this, researchers have been using different data (individu-

ally or combined), such as 2D and 3D imagery, to map and identify

archaeological structures, as seen in Menze et al. (2006) in which the

authors developed a semi-automated method to detect cells in the

Near East/Mesopotamian region. This study used digital terrain model

elevation SRTM, Landsat ETM imagery to assess the sites detected in

the SRTM, morphometric variables (e.g. shape), and a Random Forest

algorithm for classification. This was one of the first studies to use 3D

topographic datasets to automatically detect archaeological features

(Davis, 2019; Menze et al., 2006). Another example can be seen in

Orengo et al. (2020), who performed a multitemporal analysis on

synthetic-aperture radar data alongside multispectral images obtained

from Sentinel-1 and Sentinel-2 satellites, respectively, to show the

potential of machine learning-based classification that makes use of

cloud-based computational processing for the remote detection and

mapping of archaeological mounded settlements in arid environments

(Orengo et al., 2020).

Other studies have instead used unsupervised ML capacity to

group similar pixels in order to automatically create meaningful clus-

ters from the input data and have proved their relationship to actual

features in known monument locations, in addition to applying pat-

tern recognition techniques to identify circular archaeological tops of

qanats (Luo et al., 2014) and circular traces of illegal excavations in

Peru (Lasaponara et al., 2014). This has also proved capable of detect-

ing buried archaeological remains, even when the features are partially

or completely unknown and characterized by a very small spectral

separability from the background, by grouping more similar pixels, fol-

lowed by the application of segmentation to the resultant groups to

obtain those which are geometrically shaped (Lasaponara et al., 2016).

By proving existing correlations between created clusters and anthro-

pological and ecological features present in known sites, other studies

have been able to detect new sites, as in Klehm et al. (2019), in which

evidence was detected for previously unidentified Iron Age sites in

Botswana (Klehm et al., 2019).

In the past decade, ML has been used to support archaeologists

in the assessment and classification of areas of interest that may con-

tain archaeological monuments, thus speeding up the classification

process and increasing the success rate. This new approach differs

from other methods as it does not require pre-acknowledgment of

the target object under analysis and can learn which class is to be

identified from the data input. In Chen et al. (2013), principal compo-

nents analysis and the linear discriminant analysis algorithm were used

to detect, in 8-band multispectral Worldview-2 data, areas likely to

contain archaeological sites in Irwin, CA, USA (Chen et al., 2013).

Machine Learning-based image recognition has been used to automat-

ically detect archaeological monuments (Cerrillo-Cuenca, 2017; Trier

et al., 2009; Trier et al., 2015), identify potential damage in archaeo-

logical sites (Bowen et al., 2017; Lasaponara et al., 2014), map archae-

ological features (Lasaponara et al., 2016), establish social analyses

(organizations and settlements) (Cerrillo-Cuenca, 2017) and for predic-

tive modelling of archaeological sites based on ecological proxies and

anthropological knowledge (Klehm et al., 2019; Thabeng et al., 2019;

Yaworsky et al., 2020).

ML methods can improve feature selection, generate implicit

knowledge, extract rules faster than humans and improve the detec-

tion of features. Recently, DL has shown a greater potential to reduce

false positive results, which have so far remained high in the

automatic detection of archaeological monuments.
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Conversely, DL approaches used to detect archaeological sites

have been applied since 2016. In Zingman et al. (2016), different

methodologies are used to detect ruins of livestock enclosures in

alpine areas, using high-resolution RSI. Several feature vectors were

generated for the study from pre-trained deep convolutional net-

works (e.g., GoogleNet, AlexNet and OverFeat) to compare and evalu-

ate developed rectangularity-size features. Although linear classifiers

trained from rectangularity-size features outperformed any other

method in these images, the evaluation showed that using features

obtained from pre-trained deep CNN architectures produces a detec-

tor that performs well. In the latter case, the generic features

(obtained at some intermediate layer of the network) proved benefi-

cial in detecting low contrasts and enabled the linear classifier to be

retrained with examples of non-rectangular enclosure shapes to

extend the detection of objects (Zingman et al., 2016).

Another good example can be found in Trier et al. (2016),

using DL for semi-automatic mapping of charcoal kilns from ALS. A

CNN was used to extract features from a DTM derived from the

ALS in Norway. Ignoring its last layer, where features are mapped

to classes, and instead directly using the features as input to train

a linear SVM classifier, this model was able to detect 84.5% of the

known kilns (Trier et al., 2016). Thus, the authors achieved better

results in comparison to previous attempts that relied on the semi-

automatic detection of ring-shaped remains of burial mounds based

on the template matching approach. The latter only achieved a

64% success rate for detecting the known rings (Trier et al., 2009).

Significantly, the former reduced the false classification results by

almost half (Trier et al., 2016). Recently, Trier et al. (2021) used

LIDAR and R-CNN to map cultural heritage (grave mounds, pitfall

traps in deer hunting systems, and charcoal kilns) from Norway,

detecting 75% of the predicted cultural heritage objects with only

24% false positives. However, when this same methodology was

applied to a large landscape, the accuracy was drastically reduced

(Trier et al., 2021).

A different case is presented by Verschoof-van der Vaart et al.

(2020) in describing WODAN 2.0, a workflow using DL for the auto-

matic detection of multiple archaeological objects such as barrows,

Celtic fields and charcoal kilns. In order to reduce the false positive

results caused by specific regions, a new approach was developed

using Location-Based Ranking and Bagging, which led to an improved

performance (varying between 17% and 35%). However, general

automatic approaches still cannot match or exceed human perfor-

mance (Verschoof-van der Vaart et al., 2020).

Recent studies using a pre-trained and adapted ResNet18 CNN

architecture on an ImageNet database and ALS data to assess existing

developments were developed on the island of Arran, Scotland (Trier

et al., 2019). Different results were obtained for each class of monu-

ment analysed: 73% of the roundhouses were detected with just four

false positives, whereas predictions of small cairns and shieling hut

monuments presented a higher number of false positives. The known

huts in this area are small, with a diameter of less than 3 � 5 m, while

the data used for training the model involved sizes of 16 � 16m. Nev-

ertheless, this study showed the potential for these methodologies in

archaeology and highlighted that it is possible, albeit difficult, to

detect small monuments (Trier et al., 2019).

The most recent uses of DL to detect archaeological sites in RSI

involve applying CNN algorithms in combination with other methods,

yielding highly accurate results (Lambers et al., 2019; Trier

et al., 2016; Zingman et al., 2016). In particular, Lambers et al. (2019)

demonstrated a method that combines a Faster R-CNN architecture

and a two-tier citizen science project to survey archaeological objects

in the Netherlands. This project detected new potential barrows and

charcoal kilns in a largely forested area of circa 1,100 km2, located in

Veluwe in the Netherlands (Lambers et al., 2019).

To sum up, researchers use different data and different

approaches to extract information from images, coupled with other

methods such as citizen science, knowledge-based methods, and

GEOBIA. Although RF and CNN algorithms have presented interesting

results in recent years, these types of archaeological site classification

approaches are still recent and only a few applications exist in large-

scale fieldwork.

4 | KNOWLEDGE-BASED METHODS

While new technologies and methodologies have been developed and

assist in understanding data, new information on different archaeolog-

ical sites is still being discovered every day, and vast amounts of

remote sensing images are being acquired and require proper classifi-

cation, processing and interpretation. We are living in the so-called

information age, in which knowledge about monuments, acquired

over the centuries, but especially in the last two decades, is being

accumulated and registered in different ways, resulting in a need for

standardization and digitalization.

Humans cannot search massive databases and manipulate huge

sets of rules, and the help provided by ontological data representation

models in this process has therefore been gaining attention. In this

sense, the format of the contextual data has become a major area of

interest in aerial and satellite archaeology, since the information on

monuments and their surrounding environment provides context for

the images and can also enable both humans and machines to improve

their understanding of each available image. Thus, one focus of the

current research trend has been developing methods and routines to

automatically extract relevant information from images, as discussed

at the annual Conference on Computer Applications and Quantitative

Methods in Archaeology (CAA) in 2016.

When working with spatial data, prior knowledge is needed in

order to understand and extract the correct information from images,

as well as to set the classification rules for this extraction. Experts

need to convert their visual perception into a classification rule set.

These definitions are symbolic and expressed on the basis of human

perceptual knowledge. For data to be understood by a machine, sym-

bolic knowledge must be converted into a numerical representation

that maintains relations, which can be achieved through the use of

ontologies (Arvor et al., 2019). Simultaneously, these standard fea-

tures can be used to infer implicit knowledge through deductive and
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inductive inference, thus helping users to deal with complexity and

uncertainty, two fundamental problems that make visual detection

difficult.

Biological cognitive systems can easily exploit all scenarios and

learn through experiences and examples, using this as a hybrid form

of inference that allows them to discover different parameters. In con-

trast, computer vision solutions applied to data-based methods such

as CNN use inductive inference, in which a priori knowledge is

encoded by a static design (Lang et al., 2019). Knowledge-based tech-

niques, on the other hand, provide the domain knowledge representa-

tion of the object and its surroundings given by a domain expert

(Lambers et al., 2019; Trier et al., 2019) and the knowledge-based sys-

tem makes use of all available knowledge to emulate the reasoning of

an expert. Classification based on ontology is a knowledge-based

approach and the innovation in using an ontology concerns how

knowledge is represented and formalized (Arvor et al., 2019).

Knowledge-based detection of objects has featured in attempts

to resolve the high number of false positives found in previous classi-

fication techniques due to problem complexity, that is, the large vol-

ume of knowledge relevant to the problem (e.g., previous experience

with similar cases, precise knowledge of certain specific aspects of the

objects to be detected). The detection of archaeological sites in one

image requires domain knowledge of the object in question (key fea-

tures) and its surroundings and requires the analysis of different

parameters (Câmara, 2017; Câmara & Batista, 2017). For example, an

expert interested in identifying vegetation and soil use in Portugal can

gather information on this from different data sources, such as the

Corine Land Cover (CLC), a contribution to the Land Cover Use Sys-

tem (COS) proposed by the Direção Geral do Territ�orio (DGT). The

CLC consists of an inventory of land cover, presenting 44 classes that

describe which areas are occupied by artificial surfaces, agricultural

areas, forest and semi-natural areas, wetlands or water bodies. This

data can be inserted into a knowledge-graph which contextualizes

what is shown in the image and helps identify what exists in the

region (e.g., in agricultural areas, it is possible to determine past and

current soil use, permanent crops, types of crops, pastureland and dif-

ferent agricultural areas). In Câmara and Batista (2017), the CLC was

used to identify patterns in the ground where dolmens can be found

and determine whether the soil use interferes with their conservation

(Câmara & Batista, 2017).

Symbolic knowledge of objects is often implicit in traditional

remote sensing, as users generally implement the rules directly, based

on trial-and-error tests and prior domain information, without formal-

izing them. Humans can describe the objects and their context ver-

bally/semantically (Nuninger et al., 2020), although for the knowledge

to be interoperable between humans and machines, it is necessary to

formalize and develop explicit rules for it and convert perceptual/

symbolic knowledge into numerical knowledge. The use of

knowledge-based methods makes it possible to represent symbolic

and numerical knowledge both from the real world and from the point

of view of the image, so that it can be used to represent and develop

the sharing of understandable information, while facilitating the analy-

sis of the massive volume of RSI (Davis, Andriankaja, et al., 2020; Lang

et al., 2019). Moreover, through the knowledge represented in an

ontology, it is possible to infer facts that contextualize the information

that is to be classified.

Ontologies are ‘a means to formally model the structure of a sys-

tem, i.e., the relevant entities and relations that emerge from its

observation, which are useful to our purposes’. (p. 2) (Guarino

et al., 2009). They are defined as ‘explicit specifications of conceptu-

alizations’. (p. 8) (Guarino et al., 2009) and are a commonly used and

powerful way to represent knowledge. Ontologies are created to

facilitate the sharing and reuse of information while increasing the

shared understanding of knowledge of a domain between machine

and man, enabling machines to process and collect resources intelli-

gently, while simultaneously facilitating communication between the

various devices in the network (Morais & Ambr�osio, 2007). The

World Wide Web Consortium has adopted several languages to rep-

resent ontologies, such as the Resource Description Framework,

which provides a basic structure to describe any concept and its asso-

ciations/attributes in triples (subject-predicate-object). The Web

Ontology Language, OWL, defines how to model the knowledge

semantically in Resource Description Framework (Liebig, n.d.;

Harvey & Raskin, 2011; Stock et al., 2011). These are the interna-

tional languages used to represent the most widely used ontologies in

information systems, and there is now a series of software packages

to support the development of different studies that use semantic

models to work with spatial data (Garozzo et al., 2017; Nys

et al., 2018; Rajbhandari et al., 2017).

The development of ontologies that support working with

Earth observation data may require a collection of different upper

and local ontologies for different purposes. Upper ontologies con-

sist of general terms common to all domains and should be used

to achieve greater semantic interoperability between different sys-

tems, providing a common starting point for formulating definitions.

Several upper ontologies have been proposed, such as the General

Multilingual Environmental Thesaurus and the Web for Earth and

Environmental Terminology (Harvey & Raskin, 2011). In this

context, researchers from different areas, such as archaeology,

geology, geography and hydrology, who need access to various

data sets that are common to their respective areas of specializa-

tion can use these ontologies in combination with their domain

specificities.

Few academic and commercial projects for modelling and manag-

ing spatial–temporal data specifically target the field of archaeology,

with certain exceptions, such as the Archaeological Prospection Infor-

mation System (Doneus et al., 2019). However, there is no consis-

tency in data modelling and, of course, no physical database model

that is uniformly accepted or contains all the data in one place.

Despite this, various national archives (e.g., the Portuguese DGPC-

Portal do Arque�ologo and SIPA) and international archives (such as

UNESCO and ICOMOS) present information on archaeological monu-

ments that have already been mapped. Many of the knowledge-based

systems for archaeology are compatible with CIDOC-CRM (Bekiari

et al., 2021; Garozzo et al., 2017; Hyvönen et al., 2011; Koch

et al., 2019; Nys et al., 2018; Ronzino, 2015), a formal ontology that
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defines the semantics and structures of documents used in different

sources of cultural heritage data, which became an ISO Standard in

2006 (ISO 21127) (Bekiari et al., 2021).

5 | DISCUSSION

Automatic detection methods using RSI have been applied over the

last five years with success (Bowen et al., 2017; Davis, 2019; Guyot

et al., 2018; Sevara et al., 2016; Trier et al., 2016; Trier et al., 2019).

However, this methodology has met with scepticism, occasionally

justified by the fact that ‘structures and landscapes present a signifi-

cant number of variables’ and ‘the computer is incapable of perceiv-

ing subtleties related to cultural heritage’ (Hanson, 2010;

Parcak, 2009). This is due to the desire of some experts not to lose

control over any part of the interpretation process (Traviglia

et al., 2016), therefore expressing concerns over social and techno-

logical factors associated with the development of automated

approaches in the image analysis process for detection of cultural

heritage (Opitz & Herrmann, 2018).

Nevertheless, there are currently algorithms (mainly used for seg-

mentation and classification) that are able to identify relevant vari-

ables in the images and accurately detect objects in the soil using

various types of Earth observation data. Furthermore, different

approaches, such as the combination of spectral indexes commonly

used in satellite-based archaeology to capture the spectral signatures

of soil and crop marks for the identification of buried structures

(Abate et al., 2020), can contribute towards improving the classifica-

tion results. These authors took advantage of the fact that some

anthropogenic or natural buried structures such as ditches and walls

create spatial and spectral anomalies which can be perceived from the

way in which the objects and their background appear in the image.

Among the different approaches for automated classification, ML-

based experiments are increasingly on the rise and there is clearly a

great emphasis on methodologies applying ML that have appeared in

the last 15 years (Lasaponara et al., 2014; Lasaponara et al., 2016;

Menze et al., 2006), and more recently on using deep learning archi-

tectures (Verschoof-van der Vaart & Landauer, 2021; Guyot

et al., 2018; Kazimi et al., 2018; Lambers et al., 2019; Trier

et al., 2016; Zingman et al., 2016). In fact, for certain objects, and

given sufficient data, DL approaches can achieve or exceed 80%

accuracy (Lambers et al., 2019; Trier et al., 2016). Davis (2020b) has

quantified this rise in the explosion of worldwide research

using machine learning with archaeological remote sensing data.

While the use of machine intelligence in archaeology is widespread,

there is a geographic imbalance in use between Northern and

Southern studies since this technology mostly features in the litera-

ture for countries such as the United States or in Western Europe

(Davis, 2020b).

However, despite the previous examples, most cases of object-

based monumental architecture archaeological use study simple

archaeological objects such as mounds, qanats and shell craters

(Davis, 2021; Freeland et al., 2016). Since these types of object are

generally more uniform in nature and contain elements that present

similar behaviours, they can be defined with a limited set of descrip-

tors and parameters (Magnini & Bettineschi, 2019). Moreover, differ-

ent methods can be applied for the recognition of different objects.

Considering the examples previously mentioned, bounding-box

methods can be used for the detection of simple types of objects

(e.g., those presenting a circular, standardized pattern). For adjacent,

small, multiple and overlapping objects, methods such as Mask R-

CNN may be more suitable for localization and classification (Soroush

et al., 2020; Soviany & Lonescu, 2018; Trier et al., 2021; Verschoof-

van der Vaart et al., 2020).

Given the current capabilities of the different automation

methods that can be applied to improve recognition, one interesting

application that merits consideration in future studies is the detection

of small-scale monuments from larger scale cultural heritage proxies.

The smaller size of some structures, such as circular tombs in rugged

terrain, makes it difficult to map them in the field. Due to their size,

spectral similarity in imagery (e.g., neighbouring pixels) and the ten-

dency of these structures to erode and collapse over time, new

methods are needed to detect such small objects that blend in with

the surrounding environment (Schuetter et al., 2013). However, the

use of ML for automatic detection in RSI has great potential to speed

up the examination of large amounts of data and replicability of the

image analysis.

Machine learning makes it possible to train a machine to extract

features and detect different patterns, even with an enormous volume

of high dimensional data, and these techniques can be combined with

different approaches to build the best methodology for each project.

Recent studies are achieving greater success by using different com-

bined methods. GEOBIA, for example, which is designed to take local

variations into consideration (complex topological and non-topological

spatial relationships), has been used together with ML (Lasaponara

et al., 2016) or template matching methods (Davis, 2019), with prom-

ising results. Furthermore, by employing multiple morphological

parameters to detect archaeological sites, GEOBIA methods are also

adequate for the detection of smaller monuments and for structures

which present similarities, as in Cerrillo-Cuenca (2017) and Sevara

et al. (2016).

Each RSI task using RSI employs a different methodology depend-

ing on the data type, the object, and the landscape (Lambers

et al., 2019; Lang et al., 2019). An example can be found in the identi-

fication of archaeological sites that evade detection due to dense veg-

etation, agricultural soil, pasture and other natural elements. LIDAR

data provides high levels of 3D spatial resolution to overcome this

challenge, detecting both small and large topographic features, as in

Cerrillo-Cuenca (2017) and Davis, Sanger, and Lipo (2019). It is also

possible to identify subtle relief features which are difficult to detect

from field surveys (Doneus, 2013; Hesse, 2010; Opitz &

Herrmann, 2018). Multispectral data enables the creation of multi-

spectral images by building up image layers, each representing a single

spectral band response to the same scene, thus providing the ability

to differentiate objects that cannot otherwise be resolved by differ-

ences in texture or shape.
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In order to significantly reduce the manual workload involved in

finding helpful information in the ‘oceans of data’, recent automatic/

semi-automated algorithms for image detection have shown that they

can effectively find patterns in the training data. However, in focusing

on the traces of extant or subsurface structural remains present in the

training images, such as different marks on the ground, automated

approaches fail to leverage the vast amount of background knowledge

(Fang et al., 2017). In this process, the machine can learn from previ-

ously specified features or train an algorithm to find a specific pattern

with particular variables, such as settlements, tracks or burial mounds.

Nevertheless, in using artificial intelligence to automate the data anal-

ysis process, the machine can encounter difficulties in terms of the

precision of detection of non-geometric archaeological features with

a more amorphous shape and structure, usually identified through

subtleties related to or generated by the presence of the object. The

incorporation of previous/semantic knowledge would naturally rein-

force automatic object detection, providing an informed decision that

would otherwise lack sufficient information to understand all the rules

linking observed properties, in order to co-occur the instances and be

capable of generalizing (Fang et al., 2017; Sonnemann et al., 2017).

Deductive (cognitive) tools such as knowledge bases can be used

as an enhancement for automatic systems to generalize information.

Cognitive systems seem to be inspired by how humans learn to gener-

alize and fill in the gaps based on available information (Nys

et al., 2018). Hence, hybrid approaches that combine inductive and

deductive processes are recommended for exploring RSI data. The

development of knowledge-based approaches is considered one of

the most important directions in RS research (Arvor et al., 2019;

Davis, 2021). Knowledge-based approaches in this context enable the

correct concepts to be associated with the entities and facilitate infor-

mation sharing by defining and standardizing vocabulary and seman-

tics, thus allowing for greater interoperability between systems and

enhancing the reasoning. Unlike the data-based methods that have

been used for a long time, knowledge-based approaches have recently

been gaining attention as a means of reducing existing data gaps and

addressing the needs of the end-user who deals with the automatic

detection of geospatial features complexes (Arvor et al., 2019;

Davis, 2020a).

Knowledge-based methods for RS data still need standards for

storing information to deal with the data flow that is constantly gener-

ated (Arvor et al., 2019). The lack of standardization in terms of collec-

tion, storage and interpretation, and the data dispersion,

inconsistency and inaccuracy are reasons cited as restricting the use

of automated approaches in this field (Casana, 2020; Orengo

et al., 2020). This lack of standardization stems from the fact that, for

a long time, databases have been created or maintained by different

individuals and institutions with different objectives, within a frame-

work of varied knowledge and understanding (Cooper &

Green, 2016). The Portuguese database Endovélico, for example,

started as a manual inventory that began to be digitized at the end of

the twentieth century and now has more than 35,000 archaeological

records registered by different experts over the past 40 years

(Bugalhão et al., 2002).

Different organizations have been concerned with data storage

methods and management and have joined forces at national and local

level to develop a database for the collection and storage of spatial

data. For example, the Archaeology Data Service provides information

on past research and the location of monuments from different coun-

tries, thus helping to organize and prevent future conflicts in existing

data by means of a protected repository for archaeological knowl-

edge, while also promoting non-destructive analysis. However, in

most databases, access to images is restricted or is not openly avail-

able for analysis, and in archaeology it has been common not to share

data (Gunnarsson, 2018).

Regardless of the archaeological reach of automatic approaches,

the subject has been attracting greater interest in recent years. It is fair

to say that computer vision systems are being driven by enhanced

computer processing power at hardware and software levels. Together

with the increasing image resolution levels (either spatial, spectral, radio-

metric, or temporal) and faster availability of data, technological

advancements are ensuring greater use and acceptance of automation

in image analysis (Opitz & Herrmann, 2018; Traviglia et al., 2016).

Despite its advances, archaeology still has a long way to go in

terms of cyberinfrastructure. At the same time, the standardization

and accessibility of the data itself must be revised and even enforced.

Hybrid approaches that use data-driven and knowledge-driven

approaches for RSI are an exciting development for the future of

automatic detection in archaeology. Another future direction is

related to the development of collaborative domain ontologies, mainly

dedicated to remote sensing science. With the increased availability

of data, the manual annotation of semantic content is becoming

unfeasible. Thus, new methods for capturing knowledge from machine

learning applications and automatically deriving new ontologies that

can represent this knowledge have emerged as a new research trend

(Arvor et al., 2019).

New advances in computer vision and artificial intelligence will

undoubtedly continue to exist alongside traditional investigation

methods, in an interactive and complementary relationship in which

the expertise of archaeologists plays an essential role in interpreta-

tion. Regardless of the approach used to work with the data, the inter-

pretation and validation of objects extracted from images is the

archaeologist's prerogative (Quintus et al., 2017; Traviglia et al., 2016;

Verdonck et al., 2017). In any case, in order to set up automated earth

image analysis/detection, it is necessary to start by feeding the auto-

mated systems with a large amount of data, which would be difficult

to visualize manually in the first place (Kazimi et al., 2018), given that

over the last century a gigantic ‘black box’ of data has been collected

and stored but is yet to be visualized.

6 | CONCLUSION

Nowadays, many satellites orbiting Earth generate remote images

which, together with the large amount of aerial images and airborne

laser scanning data, have produced vast quantities of surface images.

Remote sensing data covering large geographical areas can be easily
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accessed and is being acquired with increased frequency. On the other

hand, intensive soil usage and modern infrastructure requirements result

in constant changes to the landscape, placing cultural heritage under

greater pressure. Hence, we are faced with the need to speed up and

enhance the accuracy of archaeological prospection. By isolating areas

with a higher probability of containing heritage, automated approaches

to archaeological object identification provide faster monumental typol-

ogy detection. These tools facilitate access in hard-to-reach areas, pro-

vide protection for the existing cultural heritage and help develop

innovative technologies in the field of archaeology.

With very high-resolution data and improvements to modern

machine learning, automatic methods in archaeology show promise

for the future. In recent years, researchers have been using different

approaches, including those based on templates, GEOBIA, ML, DL and

knowledge-based methods to automatically detect archaeological

objects in RSI. In fact, automated image recognition techniques work-

ing with very large existing data sets have by now proved their worth

in the detection of archaeological monuments. Nevertheless, an analy-

sis of the literature highlights the need to develop new optimized pro-

cess methodologies to work with even more and even better data

that has become available over the years from new sensing devices.

Hence, it is imperative to design more precise automatic and fas-

ter classification systems, especially to identify smaller monuments,

since these are most at risk. To this end, analysis of the complex pat-

terns of human activity and landscape modification could enhance the

performance and thus the utility of these methods. Such a system

would not only contribute to the detection but also the preservation

of heritage monuments. In addition, it would enable researchers to

survey geographic areas that are physically difficult to access and to

limit development in regions that are more likely to contain monu-

ments. The results can be used both for planning fieldwork and for

preventing or redirecting construction in areas that are highly likely to

provide cultural monuments. Finally, it is important to note that such

a tool needs to incorporate multidisciplinary methodologies and tech-

nological innovations as the drivers for new archaeological research.
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