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Abstract: The Salvia L. genus (Lamiaceae) is largely used in the pharmaceutical and food industry.
Several species of biological relevance are extensively employed in traditional medicine, including
Salvia aurea L. (syn. S. africana-lutea L.), which is used as a traditional skin disinfectant and in wounds
as a healing remedy; nevertheless, these properties have not been validated yet. The aim of the
present study is to characterise S. aurea essential oil (EO), unveiling its chemical composition and
validating its biological properties. The EO was obtained by hydrodistillation and subsequently
analysed by GC-FID and GC-MS. Different biological activities were assessed: the antifungal effect
on dermatophytes and yeasts and the anti-inflammatory potential by evaluating nitric oxide (NO)
production and COX-2 and iNOS protein levels. Wound-healing properties were assessed using the
scratch-healing test, and the anti-aging capacity was estimated through the senescence-associated
beta-galactosidase activity. S. aurea EO is mainly characterised by 1,8-cineole (16.7%), β-pinene
(11.9%), cis-thujone (10.5%), camphor (9.5%), and (E)-caryophyllene (9.3%). The results showed an
effective inhibition of the growth of dermatophytes. Furthermore, it significantly reduced protein lev-
els of iNOS/COX-2 and simultaneously NO release. Additionally, the EO exhibited anti-senescence
potential and enhanced wound healing. Overall, this study highlights the remarkable pharmacologi-
cal properties of Salvia aurea EO, which should be further explored in order to develop innovative,
sustainable, and environmentally friendly skin products.

Keywords: antifungal; anti-inflammatory; senescence; wound healing; sage; Salvia aurea L.; essential oil

1. Introduction

Medicinal plants have several organoleptic characteristics that contribute to their high
value in the pharmaceutical, nutraceutical, cosmetic, and food industries. Their secondary
metabolites are emerging as potential candidates for new anti-inflammatory and anti-fungal
drugs [1–3]. Among others, aromatic species from the Lamiaceae family are well known for
their richness in essential oils, demonstrating a wide range of biological effects, including,
in particular, anti-inflammatory and antifungal [4–8]. One of the largest and most important
genera of this family is the genus Salvia L., which comprises nearly 1000 species [9]. Some of
these are cultivated worldwide for their culinary use as well as for medicinal purposes; in
fact, they have long been employed in folk medicine [10,11]. Many species show important
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biological properties, including antibacterial, antifungal, antioxidant, anti-inflammatory,
anticancer, hypoglycemic, and antidementia effects [12,13].

Although this genus has been extensively studied, there is still a great interest in those
species that can be cultivated (domesticated) and used for health-promoting properties.
In fact, it is well known that secondary metabolites are the result of plant/environmental
interactions. Therefore, studies on the domesticated population can provide relevant
information on whether secondary metabolites and their related biological properties vary
from the native population. Among these, Salvia aurea L. (syn. S. africana-lutea L.) is an
important aromatic species that is used for medicinal purposes in the Western Cape (South
Africa) and is cultivated in many parts of the world as an aromatic/medicinal plant as
well as ornamental (urban furniture). This species is a grey-green branched aromatic shrub
that grows to about 2 m, with petiolate leaves that accumulate its essential oil in glandular
trichomes and presents characteristically large and golden-brown flowers [14]. It is native
to South Africa, where its geographical distribution extends westwards from the Cape
Peninsula towards Namaqualand as well as eastwards from the Cape in the direction of
Port Alfred in the Eastern Cape Province. It is often called either “beach sage, sandsalie”,
which is typical of the dune environment, or “brown dune sage” for the characteristic
colour of its flowers [15,16].

S. aurea is known for its several uses in traditional medicine, notably as an anti-
inflammatory and medicinal wash for the treatment of wounds and skin affections. Further-
more, this species is also used for the healing of bronchitis and other respiratory ailments
reinforcing its antimicrobial properties [17,18].

Dermatophytes, particularly those of Trichophyton, Epidermophyton, and Microsporum,
are frequently associated with superficial mycoses [19]; however, immunocompromised
individuals can be affected by invasive infections [20].

During these infections, fungal epitopes [21,22] bind to Toll-like receptors (TLRs),
triggering the activation of a pro-inflammatory state. One of the most significant pathways
associated with this condition is the nuclear factor kappa B (NF-κB) pathway, which
involves the secretion of inflammatory cytokines and the synthesis of pro-inflammatory
enzymes, for example, the inducible Nitric Oxide Synthase (iNOS) and the Cycloxygenase-
2 (COX-2) [23]. These enzymes are responsible for nitric oxide (NO) and prostanoids
production, respectively [24,25].

Furthermore, dermatophytes often lead to skin lesions [26]. Therefore, wound healing
is needed to regenerate the damaged tissue; otherwise, the wound becomes chronic [27].

Fungal infections are still an unmet clinical need since the etiological agents are often
associated with resistance to therapy and lead to relapses, while conventional drugs are
widely associated with adverse effects [28]. Moreover, several fungal strains are known to
be resistant to current antifungal agents [29,30]. Anti-inflammatory drugs have also been
linked to several adverse effects [31]. Therefore, it is crucial to develop new strategies that,
in addition to treating fungal infections, can also inhibit the pro-inflammatory state that is
evoked during infection.

Given its traditional uses, it is likely that S. aurea might have concurrent antifungal
and anti-inflammatory activities. However, these properties have been tested by a limited
number of studies on a narrow range of microorganisms [32–34]. Furthermore, to the best
of our knowledge, no studies have reported the wound-healing properties of S. aurea so
far. Therefore, this work aims to characterize the essential oil of S. aurea (sandsalie) when
domesticated in a coastal area of the island of Sardinia. Considering the oil variation with
regard to season and locality, this territory was chosen for its similarities with the South
African Fynbos ecoregion, S. aurea native territory [35,36]. In addition, we validated some
of the traditional uses ascribed to this species, particularly those related to antimicrobial,
anti-inflammatory, and wound healing uses. Anti-senescence effects were also disclosed to
further promote interest in this plant.
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2. Results
2.1. Chemical Composition of S. aurea Essential Oil

S. aurea leaves were subjected to hydrodistillation, obtaining the essential oil (EO) with
0.54% (w/w) yield. In Table 1, EO-identified compounds and their relative percentages are
listed by their elution order. Thirty-six compounds were identified, for a total of 98.8%.

Table 1. Chemical composition of S. aurea essential oil.

RI RI (Litt) Compound Area, %

925 921 tricyclene 0.1
927 924 α-thujene 1.0
934 932 α-pinene 4.7
951 946 camphene 3.9
973 969 sabinene 0.7
980 974 β-pinene 11.9
989 988 myrcene 2.1
1017 1014 α-terpinene 0.7
1024 1022 ortho-cymene 0.4
1029 1024 limonene 1.5
1033 1026 1,8-cineole 16.7
1044 1044 (E)-β-ocimene 0.3
1056 1054 γ-terpinene 1.2
1068 1065 cis-sabinene hydrate 0.2
1084 1086 terpinolene 0.3
1100 1095 linalool 0.3
1107 1101 cis-thujone 10.5
1117 1112 trans-thujone 6.9
1146 1141 camphor 9.5
1169 1165 borneol 2.7
1178 1174 terpinen-4-ol 0.4
1192 1186 α-terpineol 0.2
1343 1345 α-cubebene 0.5
1364 1373 α-ylangene 0.3
1371 1374 α-copaene 0.7
1415 1417 (E)-caryophyllene 9.3
1424 1430 β-copaene 0.6
1432 1439 aromadendrene 0.8
1449 1452 α-humulene 3.0
1469 1478 γ-muurolene 1.6
1486 1495 γ-amorphene 0.3
1493 1500 α-muurolene 0.3
1507 1513 γ-cadinene 0.5
1513 1522 δ-cadinene 1.8
1574 1582 caryophyllene oxide 0.4
1587 1592 viridiflorol 2.4

Total identified 98.8

Hydrocarbon monoterpenes 28.8
Oxygenated monoterpenes 47.4
Hydrocarbon sesquiterpenes 19.8
Oxygenated sesquiterpenes 2.8

RI, retention index determined on a HP-5ms fused silica column relative to a series of n-alkanes RI (Litt), retention
index reported from Adams library [37]. Compounds were identified by comparing their mass spectra (MS) and
retention indices (RI) with those reported in Adams and NIST02 libraries [37,38].

Furthermore, 47.4% of the compounds are oxygenated monoterpenes, 28.8% hydrocarbon
monoterpenes, 19.8% hydrocarbon sesquiterpenes, and 2.8% oxygenated sesquiterpenes.

Chemical analysis revealed that S. aurea oil’s most representative components were 1,8
cineole (16.7%), β-pinene (11.9%), cis-thujone (10.5%), camphor (9.5%), (E)-caryophyllene
(9.3%), trans-thujone (6.9%), α-pinene (4.7%), camphene (3.9%), and α-humulene (3.0%).
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2.2. Antifungal Effect of Salvia aurea

The macrodilution broth method was used to assess the antifungal activity, as re-
ported in Table 2. Trichophyton mentagrophytes, T. rubrum, and Epidermophyton floccosum are
the most sensitive strains to EO activity. Specifically, EO showed a fungicidal effect for
T. mentagrophytes and E. floccosum.

Table 2. Minimum inhibitory (MIC) and lethal (MLC) concentrations of S. aurea essential oil
against dermatophytes.

Strains
S. aurea Fluconazole

MIC a MLC MIC b MLC

Trichophyton mentagrophytes FF7 1.25 1.25 16–32 32–64
T. rubrum CECT 2794 1.25 2.5 16 64

T. mentagrophytes var. interdigitale CECT 2958 5 >5 128 ≥128
T. verrucosum CECT 2992 5 >5 >128 >128

Microsporum canis FF1 5–2.5 >5 128 128
M. gypseum CECT 2908 5 >5 128 >128

Epidermophyton floccosum FF9 1.25 1.25 16 16
a MIC and MLC are expressed in µL/mL (v/v); b MIC and MLC are expressed in µg/mL (w/v).

2.3. Anti-Inflammatory Potential of S. aurea

To assess the anti-inflammatory potential of S. aurea, we resorted to the lipopolysaccharide
(LPS)-stimulated macrophages model. As expected, in the presence of LPS, the macrophages
released NO to the medium, where it was detected as a nitrate ([NO] = 43.03 ± 7.74 µM).
Interestingly, S. aurea EO reduced the NO release evoked by LPS dose-dependently (Figure 1A,
IC50 = 1.07 µL/mL). The dose of 1.25 µL/mL was selected to unveil the underlying mecha-
nisms as it inhibited NO production by more than 50%, was devoid of toxicity (Figure 1B),
and was a dose that inhibited the growth of dermatophytes.
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Figure 1. Effect of S. aurea EO on nitrite production. In (A), the tests were performed on LPS-
stimulated macrophages (measurement after 1 h of pre-treatment with EO and subsequently 24 h
of stimulation with LPS). (B) Represents the cell viability after 24 h of EO treatment. Results show
the mean ± SEM. Statistical significance (* p < 0.05, **** p < 0.0001) was determined by either LPS or
control comparison, through one-way ANOVA and consequent Dunnett’s multiple comparison test.

The LPS binding to the Toll-like receptor 4 (TLR4) triggers NF-κB nuclear translocation,
which consequently causes the expression of inducible nitric oxide synthase (Nos2) and
cycloxygenase-2 (Ptgs2) [39]. Then, we evaluated whether the EO could potentially regulate
the levels of these proteins. As expected, in LPS-treated macrophages, an increase in the
protein levels of both iNOS and COX-2 was observed (Figure 2A–C). The presence of
S. aurea essential oil at the dose of 1.25 µL/mL could lead to a significant decrease in the
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protein levels of both proteins, especially iNOS. These results suggest that the essential oil
might modulate the NF-κB pathway.
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Figure 2. Effect of S. aurea EO on iNOS and COX-2 levels. (A) Shows representative blots. The positive
(+) and negative (-) signals represent the presence or absence of the condition in the row. (B) Focuses
on the semi-quantitative analysis of iNOS protein levels. Panel (C) focuses on the semi-quantitative
analysis of COX-2 protein levels. Tubulin content was used to normalize the protein levels of
iNOS and COX-2. Results show the mean +/- SEM. Statistical significance (* p < 0.05, *** p < 0.001,
**** p < 0.0001) by either LPS or a control (CT) comparison was determined after one-way ANOVA
test and consequent Dunnett’s multiple comparison test.

2.4. Wound Healing Properties of S. aurea Essential Oil

Considering the uses of S. aurea for wound treatment [18], we hypothesized that the
essential oil might enhance wound healing. Indeed, our results show that the EO promoted
cell migration (Figure 3A,B) without affecting cell viability (Figure 3C).
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Figure 3. Effect of S. aurea essential oil on wound healing. (A) Shows a representative phase-
contrast image of NIH 3T3 fibroblasts, respectively, in the absence (CT) and presence of S. aurea EO
(1.25 µL/mL) at 0 h, 12 h, and 18 h post-scratch. (B) Expresses the percentage of a closed “wound”.
(C) Shows the effect of S. aurea EO on NIH 3T3 fibroblast viability. Results show the mean ± SEM.
Statistical significance (* p < 0.05) by control (CT) comparison was established after two-way ANOVA
test followed by Sydák’s multiple comparison test or one-way ANOVA followed by Dunnett’s
multiple comparison test.
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2.5. Anti-Senescence Potential of S. aurea Essential Oil

Keeping in mind that the traditional uses ascribed to S. aurea are associated with the
treatment of age-related diseases [40], we assessed the effect on cell senescence. Resorting to
the etoposide-induced cell senescence, we observed senescence-associated β-galactosidase
activity (Figure 4A,B). Interestingly, when the essential oil was added in the recovery
phase, this feature was reduced, suggesting that the essential oil appeared to prevent
cell senescence.
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Figure 4. Effect of S. aurea EO on cell senescence. (A) Shows representative phase-contrast images of
NIH 3T3 fibroblasts subjected to etoposide treatment (24 h etoposide incubation followed by 72 h of
recovery period) in the absence (CT) or presence of S. aurea EO. (B) Expresses the percentage of X-gal-
positive cells. Results show the mean ± SEM. Statistical significance ( ** p < 0.01, **** p < 0.0001) by
control (CT) or etoposide (Eto) comparison was assessed after one-way ANOVA test and consequent
Dunnett’s multiple comparison test.

3. Discussion

This study provides the essential oil profile of S. aurea domesticated on the island of
Sardinia. We reported that its EO was characterized by 47.4% of oxygenated monoterpenes,
mainly 1,8-cineole, cis/trans-thujone and camphor, 28.8% of hydrocarbon monoterpenes,
mainly β-pinene, and 19.8% of hydrocarbon sesquiterpenes, with (E)-caryophyllene, and
α-humulene, while only 2.8% of oxygenated sesquiterpenes.

When compared with the literature, a clear qualitative and quantitative difference in
native S. aurea EOs composition emerges. In particular, the major components reported
were α-pinene, myrcene, o-cymene, spathulenol, and α-eudesmol [32]. Moreover, these
alterations are reflected in the relative percentages of the main classes of compounds. In fact,
here, we found a substantial decrease in oxygenated sesquiterpenes (2.8%), whereas they
accounted for 18.9% and 41.7% in two different studies of the Western Cape region [33,41].

However, this chemical difference was not unexpected as, according to some authors,
it depends not only on genetic characteristics but also on a plant’s life cycle, growing season,
harvest season, soil properties, and stress agents [32,41].

In particular, with regard to S. aurea, a consistent chemical diversity was found accord-
ing to seasonality and harvest territory [32,41]. In fact, Lim Ah Tock et al., 2020, considered
populations of the Western Cape area and evidenced a high degree of intraspecific variabil-
ity, accounting for 47.8% [32,33,41]. Furthermore, they analysed the HCA dendrogram of
these populations, where a clear cluster separation appeared in S. aurea, to be responsible
for the substantial chemical variation [41].
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In addition to the mentioned factors that impact EO chemical composition, it is known
that post-harvest treatment, storage conditions, and extraction methods also contribute to
the chemical variability [42,43]. With this in mind, the differences that were observed here
might be attributed to any of these factors.

The reported biological activities confirm the traditional uses attributes of S. aurea,
particularly those associated with inflammatory and microbial infections.

We report that the EO inhibited the growth of dermatophytes, thus validating the use
ascribed for the treatment of skin ailments [18]. The S. aurea essential oil is known to be
effective against Brevibacterium [44], Staphylococcus aureus, Klebsiella pneumoniae, Bacillus
cereus, and Escherichia coli [32,33]. Other studies reported antimicrobial activities for non-
volatile extracts [14,45,46]. Regarding the major compounds found in S. aurea EO, it was
reported that 1,8-cineole presented weak activity against the tested dermatophytes [47]. The
inhibition of plant pathogens was also reported for 1,8-cineole [48–51]. The antimicrobial
potential of β-pinene was also widely reported against several yeasts and filamentous fungi,
including Trichophyton spp. [52–56]. Cis-thujone, a relevant compound in this essential
oil, also exerted antimicrobial activity [57,58]. On the other hand, weak antimicrobial
activity was reported for the camphor [59–61]. The sesquiterpene β-caryophyllene exerted
antimicrobial activity against different fungi and bacteria [3,62–64]. These results suggest
that β-pinene, cis-thujone, and β-caryophyllene might be major contributors to the activity
reported for S. aurea.

Due to the traditional use of S. aurea in the treatment of inflammatory-related ail-
ments [18], we aimed to validate these effects. Indeed, our results show that the EO
inhibited the production of NO in LPS-stimulated macrophages and concomitantly re-
duced the protein levels of iNOS and COX-2: two pro-inflammatory enzymes relevant to
the inflammatory response. To the best of our knowledge, only one study addressed the
anti-inflammatory potential of S. aurea by showing the inhibitory capacity of lipoxygenase-5
activity [33]. Regarding isolated compounds, several studies reported the anti-inflammatory
activity of 1,8-cineole [65–70], including clinical trials [71]. Furthermore, it is known that
this compound inhibits COX-2 activity [66] and prevents the nuclear translocation of
NF-κB [65,72]. β-pinene significantly decreased NO production in both LPS-stimulated
macrophages [73] and IL-1β-activated chondrocytes [74]. It also showed a chemotaxis inhi-
bition in neutrophils [75]. Camphor’s anti-inflammatory potential is widely reported using
both in vivo and in vitro models [76–78]. β-Caryophyllene also exerted anti-inflammatory
effects in colitis [79], skin wound excisions [80], and sepsis [81] in animal models. Other
in vitro and in vivo approaches highlight the anti-inflammatory action of this sesquiter-
pene [82,83]. The results suggest that the activity observed in S. aurea could be due to the
presence of these compounds, which might act synergistically.

We reported that the essential oil from S. aurea promoted wound healing, which vali-
dated its uses for the treatment of open wounds. To the best of our knowledge, no studies
have reported the wound-healing properties of S. aurea. Regarding the isolated compounds,
1,8-cineole promotes cell migration in wound models both in vivo and in vitro [70,84,85].
Furthermore, it was reported that essential oil from Teucrium polium subsp. capitatum, rich in
β-pinene, increased wound healing [86]. The sesquiterpene β-caryophyllene also promoted
wound healing in a skin wound excision model [80]. Nevertheless, other compounds found
in lower amounts could contribute to the reported activity. Indeed, α-pinene promotes
wound healing in the animal model of an open wound [84]. Considering that essential oils
are complex mixtures, it is conceivable that the reported wound-healing properties might
be attributed to the synergic effects of several compounds.

We report, for the first time, an anti-senescence effect for S. aurea essential oil. Indeed,
cells treated with the essential oil presented a reduced number of senescence-associated
β-galactosidase-positive cells. Regarding isolated compounds, the number of studies
reporting their effect was scarce. Indeed, camphor prevents the increased activity of
senescence-associated β-galactosidase [87]. On the other hand, 1,8-cineole, the major
compound of this essential oil, induced cell senescence [88]. Considering the scarcity of
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studies, we can only hypothesise that the reported activity might be due mainly to the
camphor compound; however, the effect of minor compounds cannot be discarded.

4. Materials and Methods
4.1. Plant Material

African S. aurea seeds used for this study were acquired from a specialist store in
Italy. The seedlings were cultivated in the Laboratory of Plant Biology and Pharmaceutical
Botany of the University of Cagliari (UNICA). After 5 weeks, they were placed into a
“Planta Medica” greenhouse, according to the eco-physiological needs of the species. The
plants were then collected after two years of growth in their blooming period. The aerial
parts were immediately placed in an air-forced ventilation oven (FD 115, BINDER) until
completely dried (when they reached a constant weight). A voucher specimen was de-
posited at Herbarium Karalitanum (CAG) of the University of Cagliari, Italy, with voucher
number (6/23.8/V1).

4.2. Essential Oil Analysis

The essential oil was obtained by 3 h of hydrodistillation using a Clevenger-type
apparatus, according to the European Pharmacopoeia guidelines [89]. The subsequent
analysis by gas chromatography with flame ionization detection (GC-FID) and gas chro-
matography/mass spectrometry (GC-MS) were conducted according to [13]. Briefly, for
the GC analysis, an HP 5 capillary column was used, with an experimental procedure of
82 min at different temperatures, respectively, from 60 ◦C to 246 ◦C at a 3 ◦C/min rate,
which was then kept at 246 ◦C for 20 min. Helium (purity ≥ 99.9999%) was used as a carrier
gas at a 1 mL/min of flow rate. A total of 1 µL of the diluted sample (1:100 in n-hexane,
w/w) was injected by an autosampler with a 1:20 split ratio. Regarding the MS conditions,
a 240 ◦C transfer line, 200 ◦C EI ion source, and 150 ◦C of the quadrupole temperature
were used, with ionization energy of 70 eV and 3.2 scans s-1 at m/z of scan range (from
30 to 480). MSD ChemStation software (Agilent, rev. E.01.00.237, Santa Clara, CA, USA)
was used to manage and elaborate chromatograms and mass spectra. Finally, the obtained
compounds were identified by NIST02 and Adams libraries comparison [37,38]. The results
were further cross-checked by comparing the compounds’ experimental retention index
(RI) with the semi-polar phases that RI reported in the literature. Experimental RIs were
determined using two standard mixes of n-alkanes as the reference (C8–C20 and C21–C40,
respectively) with linear interpolation [90]. The percentages of the reported components
were computed on GC peak areas with no FID response factor correction.

4.3. Antifungal Activity

Seven dermatophyte strains were tested for S. aurea EO antifungal activity. Respec-
tively, three clinical strains were obtained from nail and skin isolation: Epidermophyton
floccosum FF9, Trichophyton mentagrophytes FF7, and Microsporum canis FF1. While the re-
maining four dermatophyte strains belonged to the Colección Espanõla de Cultivos Tipo
(CECT): T. mentagrophytes var. interdigitale CECT 2958, T. rubrum CECT 2794, T. verrucosum
CECT 2992, and M. gypseum CECT 2908. All strains were cultured in Sabouraud dextrose
agar (SDA) or Potato dextrose agar (PDA) prior to each test to ensure purity and viability.

Minimal inhibitory concentrations (MIC) and the minimum lethal concentration (MLC)
of EO were performed according to the modifications suggested by the CLSI protocol for
macrodilutions [91]. Briefly, EO was diluted in DMSO (5–0.32 µL/mL) and then added to
the sterile test tubes. Inoculum was prepared by adjusting the turbidity to 0.5 McFarland
and then diluted in RPMI-1640 without glutamine and with 3-(N-morpholino) propane-
sulfonic acid (MOPS) pH 7.0 to a concentration of 1–2 × 104 CFU/mL, which was then
added to the test tubes containing the EO. The tubes were then incubated for 7 days at 30 ºC.
Afterward, tubes were assessed for fungal growth, and the lowest concentration where
no growth was observed was considered the minimum inhibitory concentration (MIC).
The lowest concentration where no growth was observed after plating the negative tubes
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in SDA for 7 days at 30 ºC was considered the minimum lethal concentration (MLC). A
reference antifungal compound, fluconazole (Pfizer), was used to control the sensitivity of
the tested microorganisms. The results were obtained from three independent experiments
performed in duplicate, and the results were expressed as the mean. Negative and positive
controls were also included, represented by a non-inoculated medium and inoculated
medium with the maximum DMSO concentration (1%), respectively.

4.4. Anti-Inflammatory Activity
4.4.1. Cell Culture

The mouse leukemic macrophage RAW 264.7 cell line, which belonged to the Amer-
ican Type Culture Collection (ATCC TIB-71), was cultured as previously reported by
our group [92].

4.4.2. Nitric Oxide Production

NO production was evaluated by assessing the concentration of nitrates in culture
supernatants using the Griess reagent [93]. Cells (0.6 × 106 cells/well) were cultured in
48-well culture plates. Macrophages were stabilized overnight, then pre-treated for 1 h
with EO (0.08–1.25 µL/mL) diluted in DMSO and subsequently activated with 50 ng/mL
of LPS for 24 h. LPS-stimulated macrophages and untreated macrophages were used as
the positive and negative controls, respectively. The Griess reaction was carried out as
previously described in our group [92]. DMSO at the highest concentration used (0.4%)
had already been shown by our group to have no anti-inflammatory or cytotoxicity activity
(data not shown).

4.4.3. Expression of Pro-Inflammatory Proteins, iNOS and COX-2

RAW 264.7 cells (1.2 × 106 cells/well) were cultured in 6-well plates and stabilized
overnight. Then, these cells were subjected to 1 h of incubation with EO at a 1.25 µL/mL
concentration, followed by 24 h of LPS activation (50 ng/mL). A negative control was
constituted of the untreated cells, and a positive control was constituted of only LPS-
treated cells. Cell lysates preparation followed the protocol previously performed by
Zuzarte et al. [92]

Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) content were
assessed by Western blot analysis as previously described [13]. For protein separation, an
electrophoretic run with 10%(v/v) SDS-polyacrylamide gels at 130 V was performed for
1.5 h. The protein lines were consequently blotted to polyvinylidene fluoride membranes
(previously activated with methanol) at 400 mA for 3 h. The membranes were then
incubated for 1 h at room temperature with non-specific IgGs with 5% (w/v) skim milk
in TBS-T. They were further incubated overnight at 4 ◦C with specific anti-iNOS (1:500;
R & D Systems) or anti-COX-2 (1:5000; Abcam, Cambridge, UK) antibodies. Finally, they
were washed for 30 min with TBS-T (10 min, 3 times) and incubated for 1 h at room
temperature with secondary antibodies (1:40,000; Santa Cruz Biotechnology, Dallas, TX,
USA) conjugated with horseradish peroxidase. The immunocomplexes detection was
performed by a chemiluminescence scanner (Image Quant LAS 500, GE, Boston, MA, USA).
Antibodies against tubulin (1:20,000; Sigma, St. Louis, MO, USA) were used as the loading
control. ImageLab software version 6.1.0 (Bio-Rad Laboratories Inc., Hercules, CA, USA)
was used for protein quantification.

4.5. Cell Migration
4.5.1. Cell Culture

The mouse embryonic fibroblast cell line NIH 3T3 (ATCC CRL-1658) was cultured as
previously described in [6].
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4.5.2. Cell Migration Assay

Cell migration was carried out using the scratch wound assay according to Martinotti
et al. [94] with slight modifications, as previously reported [13]. Briefly, NIH 3T3 fibroblasts
were seeded at 2.5 × 105 cells/mL and allowed to reach confluency. Afterward, the wound
was inflicted with a 200 µL pipette tip, and non-adherent cells were removed by washing
with PBS pH 7.4. DMEM with 2% FBS with or without the EO (1.25 µL/mL) being added.
The images were acquired at 0, 12, and 18 h post-scratch using a phase-contrast microscope,
and the wound area was measured using ImageJ/Fiji software. The results presented were
obtained using the following equation:

Wound closure (%) = (At = 0 h - At = x h)/At = 0 h × 100

where At = 0 h is the area of the wound 0 h after the scratch and At = x h is the area at 0 h,
12 h, and 18 h post-scratch.

4.6. Cell Viability

The effect of different concentrations of EO on the viability of macrophages and
fibroblasts was assessed using the resazurin reduction assay, as previously reported [6].

4.7. Etoposide-Induced Senescence

Senescence was evaluated using etoposide as a senescence inducer, as reported else-
where [95], with some modifications. Briefly, after 24 h of etoposide, the cells were further
incubated for 72 h in the presence or absence (CT) of S. aurea EO. Beta-galactosidase was
assessed using a commercially available kit according to the manufacturer’s protocol (#9860,
Cell Signalling Technology Inc., Danvers, MA, USA). The distinct blue colour staining indi-
cates beta-galactosidase activity. After colour developments, the wells were photographed
for subsequent image analysis. ImageJ software was used for quantitative analysis by
assessing the percentage of senescent cells.

4.8. Statistical Analysis

The experiments were performed at least in duplicate for three independent exper-
iments. Mean values ± SEM (standard error of the mean) are presented in the results.
Statistical significance for anti-inflammatory, cell viability, and senescence assays was
evaluated by a one-way analysis of variance (ANOVA) and Dunnett’s post hoc test using
GraphPad Prism version 9.3.0 (GraphPad Software, San Diego, CA, USA). While the statisti-
cal significance for cell migration assays was assessed using two-way ANOVA followed by
Sydák’s multiple comparison tests, p values < 0.05 were accepted as statistically significant.

5. Conclusions

This work reinforces the beneficial effects usually attributed to Salvia spp. by validating
some of the traditional uses ascribed to S. aurea. In addition, a singular chemical compo-
sition was disclosed with 1,8 cineole, β-pinene, cis-thujone, camphor, (E)-caryophyllene,
trans-thujone, α-pinene, camphene, and α-humulene as major compounds. We herein
report that the EO exerts antifungal, anti-inflammatory, and wound-healing effects, thus
validating the traditional uses associated with this species for the treatment of skin infec-
tions, inflammation-related diseases, and wounds.

In addition, this study reports, for the first time, that this species was able to exert anti-
senescence effects, thus further promoting interest in this species. Therefore, these results
highlight the role of S. aurea in mitigating inflammation and skin-associated infections, thus
reinforcing interest in dermo-cosmetics. While this study has shown that the production
of high-value metabolites with relevant biological activities can be promoted through
cultivation, an accurate chemical analysis of the cultivated plant is essential, considering
the extreme variability of the chemical profile as a result of genetic and environmental
factors (stress, soil properties, harvest season).
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