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Abstract

We find experimental plans for hypothesis testing when a prior ordering of experi-
mental groups or treatments is expected. Despite the practical interest of the topic,
namely in dose finding, algorithms for systematically calculating good plans are still
elusive. Here, we consider the intersection-union principle for constructing optimal
experimental designs for testing hypotheses about ordered treatments. We propose
an optimization-based formulation to handle the problem when the power of the test
is to be maximized. This formulation yields a complex objective function which we
handle with a surrogate-based optimizer. The algorithm proposed is demonstrated
for several ordering relations. The relationship between designs maximizing power
for the intersection-union test (IUT) and optimality criteria used for linear regression
models is analyzed; we demonstrate that [UT-based designs are well approximated by
C-optimal designs and maximum entropy sampling designs while D 4 -optimal designs
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are equivalent to balanced designs. Theoretical and numerical results supporting these
relations are presented.
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Mathematics Subject Classification 62K05 - 90C47

1 Motivation

Researchers in different areas often have prior beliefs about the order or direction
of the parameters in comparisons. For example, a researcher might anticipate that a
clinical treatment /5 performs better than another (41), and simultaneously that both
are better than a control. Confirming these beliefs corresponds to testing the hypotheses
that u;, the expected outcome of /5, is larger than that of w1 from /1, which in turn
outperforms the control with expectation . Specifically, the hypotheses to be tested
are Hi: o < 1 < o vs. Hy: ug = w1 = wo with at least one strict inequality in Hj.
H; is an order-constrained hypothesis, and includes more information than that of the
simple alternative Hy: u; # ju; for at least one pair of i, j wherei # j € {0,1,2}. A
major advantage of testing such one-sided hypotheses is that power can be increased
or equivalently, that a smaller sample size is needed for equivalent power.

The problem of testing the homogeneity of the means of K groups against an
ordered alternative was first addressed by Bartholomew (1959a,b). The incorporation
of order constraints allows improving the precision of the estimators, as measured by
their mean squared errors, and increasing the power of the associated tests (Davidov
and Herman 2012; Farnan et al. 2014; Davidov et al. 2014).

Despite the large body of literature on optimal design of experiments for parameter
estimation and model discrimination, the optimal design of experiments for testing
among groups is rarely addressed. An exception is that of finding optimal designs for
comparing test treatments with a control, first introduced by Dunnett (1955, 1964).
Later, the optimal allocation problem was solved by Bechhofer (1969), Bechhofer and
Turnbull (1971), Bechhofer and Nocturne (1972).

Papers addressing the optimal design of experiments for ordered treatments are
scarce. They are typically based on likelihood ratio tests, being designated restricted
likelihood ratio test (RLRT) designs if they explicitly incorporate the ordering relations
and unrestricted likelihood ratio test (ULRT) designs otherwise. Hirotsu and Herzberg
(1987) demonstrated that the optimal design allocates weights only to extreme groups,
see also Antognini et al. (2021). An alternative formulation, using the weights of
Abelson and Tukey (1963), circumvents this problem, with some weight being given to
all groups. Singh et al. (1993, 2008) evaluated the power function for various ordering
schemes and found the optimal designs for three and five subgroups. Vanbrabant et al.
(2015) investigated the effect of sample size reduction, when an increasing number of
constraints is included into the hypothesis and obtained tables for a specified power
level via Monte-Carlo sampling. Recently, Singh and Davidov (2019) proposed a
minimax formulation for finding experimental designs for testing in the presence of
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order restrictions. The approach allows obtaining designs with more power than those
of Dunnett (1955) and Singh et al. (1993). However, the authors noted that the designs
obtained, although maximizing power, do not allocate any observation to intermediate
groups, if any. Singh and Davidov (2019) also noted that, unlike likelihood ratio
tests, intersection-union tests (IUT) lead to optimal designs in which observations are
allocated to all groups. The authors derived theoretical results for designs for some
order relations but pointed out the complexity of generalizing to other orderings. Our
methodology uses IUT to provide a general systematic approach to find experimental
designs for ordered treatments.

This paper contains four elements of novelty: i. an optimization-based formulation
to find optimal (exact) experimental designs for ordered treatments using the IUT-
principle; ii. the use of surrogate-based optimization (SBO) to handle the complexity
of the optimal design problem; we believe this to be the first paper that uses SBO to
handle problems in the optimal design of experiments for IUT tests; iii. the application
of the proposed methods to different ordering relations and treatments; and iv. the
demonstration that IUT—based optimal designs are close to exact C-optimal and
maximum entropy designs while the balanced designs are equivalent to exact Da-
optimal designs.

The paper is organized as follows. Section 2 provides the background and the nota-
tion used to formulate the optimal design problem and solve it with SBO. Section 3
introduces the formulation used to solve the IUT design problem. Comparisons for
different ordering schemes and distances between groups are presented in Sect. 4. Sec-
tion 5 analyzes the relation between IUT-based designs and designs using alphabetic
optimality criteria when the focus is on the parameters of the model. Section 6 reviews
the formulation and offers a summary of the results obtained.

2 Notation and background

This section establishes the nomenclature used in the representation of the models. In
Sect. 2.1 we overview the ANOVA model used to describe the ordered treatments test
and introduce its equivalent graph-based representation. In Sect. 2.2 the IUT funda-
mentals and their use in the context of optimal design of experiments are introduced.
Finally, Sect. 2.3 overviews the fundamentals of SBO which serve for solving the
optimal design problem for the IUT criterion.

In our notation, bold face lowercase letters represent vectors, bold face capital
letters stand for continuous domains, blackboard bold capital letters are used to denote
discrete domains and capital letters are adopted for matrices. Finite sets containing ¢
elements are compactly represented by [¢]] = {1, ..., }. The transpose operation of
a matrix or vector is represented by “T”. The cardinality of a vector is represented
by card(e), the trace of a matrix by tr(e), and ldet(e) represents In[det(e)]. The n-
element row vector of ones is represented by 1,, and the square identity matrix of size
n is represented by /,,.
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Fig. 1 Examples of ordering schemes: a simple ordering (SO); b tree ordering (TO); ¢ umbrella ordering
(UO); d bipartite ordering (BO); and e complex tree ordering (CTO)

2.1 Ordered treatments ANOVA model

The sequence of (partially) ordered means can be represented as an order graph (Hwang
and Peddada 1994). Examples of the most common ordering schemes are shown in
Fig. 1. The vertices (or nodes) represent group means and an arrow from vertex 1 to
w; signifies that u; > ;. Vertices are called roots when there are only arrows leaving
them, leaves when there are only arrows arriving, and intermediate when leaving and
arriving arrows are involved. Let R be the set of roots in a ordering scheme, L the
set of leaves, and P the set of ordering relations (corresponding to directed arrows)
wi < uj, i, jef{l,..., p}.r = card(R) is the number of roots, / = card(L) the
number of leaves and p = card(P) the number of ordering relations [i.e., pairs (7, j)
in PJ.

The goal of experimental design for hypothesis testing is maximizing the power of
rejecting the null hypothesis, Ho, in favor of an alternative hypothesis, Hy, through
the allocation of individuals to treatments. Let the number of individuals included
in the study be N, with K being the number of treatments; the first is reserved to
be the control group. Further, let u = (w1, ..., ug)T be the vector of means of the
K treatments; [Ty = {u € RX : u; = up = --- = ug) is the set of parameter
(equality) relations under Hy, and T} = {u € R : QO pu > OIT,} the parameter
inequalities under H; where Q € RP*K is an ordering matrix (also known as a
contrast matrix), 0, is the p—element row vector of zeros and p is the number of
ordering relations. Consequently, we have 1y C IT;. In subsequent sections we use
My : {(weRK: Qu=>s 1;} to generically represent a larger class of tests where the
distance of means is located at §(> 0) from the null. Here, § is the difference between
treatment means which for simplicity we assume equal for all pairs (i, j) in P. Matrix
Q is formed by elements Q; ; € {—1,0, +1} where —1 is associated with groups
with dominated means and +1 with groups with dominant means, O to the absence of
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a relationship, and p is the number of ordering restrictions or, equivalently, of arrows
in the graph. In this paper we consider that the matrix of contrasts is known a priori
and is fixed. Problems where the initial ordering is not confirmed by the experimental
design are out of the scope of the paper, as they require treating the values of Q as
additional parameters to be inferred from experiments.

The one-way analysis of variance (ANOVA) model considered in this study is
represented as

Vi,j = Mi + € j, ()

where y; ; is response of ith experimental group to jth experiment where i €
{I,....K} and j € {1,...,n;}. The mean of group i is J;, i € [K], n; is the
number of individuals allocated to group i, Z;K: (7 = N and N is the total num-
ber of individuals tested. The errors €; ; are assumed i.i.d. with normal distribution
N0, 02), where o is the standard deviation.

Herein, & is a K—point design supported at 1,...,k, ..., K treatments with ny
replicates allocated to treatment k, subject to Z,le ny = N. In what follows, let
n be the vector of all possible replicates at the design points, with .Qg = {n; €
Zxo : Zle ng = N, k € [K]} being a K — 1-dimensional standard simplex
(containing K -groups allocation) where the superscript stands for the total number of
individuals to allocate and the subscript for the number of groups; Zx is the set of
non-negative integers. An experimental design is compactly represented by

1 - k -.- K
é_(lfl*l ... nk PRI nK)’

where the first line is for group ordering, and the second for the number of individuals
allocated to each group. Thus, E’I\(’ = [K] x .Qg is the set of all K-group feasible
(ordered) exact designs constrained to .Q[]g . This paper addresses the calculation of
exact optimal designs, where by exact we mean small sample designs where the
numbers of observations at design points are integers that sum to N. The optimization
problem is complex and finding optimal exact designs is computationally challenging,
especially when the IUT principle is used.

2.2 Intersection union tests

In this section we review the fundamentals of intersection-union tests, a common
alternative to likelihood ratio tests, which is appropriate when the null hypothesis is
expressed as a union of sets. A seminal version of IUT was proposed by Lehmann
(1952), and later named by Gleser (1973). Applications of IUT to quality control
problems were discussed by Berger (1982) and Saikali and Berger (2002). Berger
and Hsu (1996) uses IUT to formalize bioequivalence tests, and Xiong et al. (2005)
consider the application to two-arm clinical trials.
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In our context, the IUT is used to test

Ho= |J HS” vs. Hi= () HY 2
@i,))eP @i, ))eP

where Hg’j ) is the null hypothesis for the (i, j)th pair of treatments (i.e., u; =
wj, (i,j) € P) and Hﬁi’j) is the alternative hypothesis (i.e., u; — ;i > 8 (>
0), (i, j) € P). The rationale behind an IUT is that the overall null hypothesis, Hy,
can be rejected only if each of the individual null hypotheses, Hg ) can be rejected.

Each pair of hypotheses Hg D ys Hii’j ) can be tested using the statistic

()A’j_)A’i) ninj
i) = , 3
8G.0) o ni+n; &)

where g is a column vector with p elements g; j, (i, j) € P. The null hypothesis
for pairs (i, j) requires u; = ;; consequently g ;) will follow a standard normal
distribution for all pairs (i, j) € P. The global null hypothesis is rejected if g, j) >
Ca» (i, j) € Pwithcy = @~ 1(1—a,0, 1) where ' (1 —a, 0, 1) is the inverse of the
100 x (1 — &) % percentage point of the standard normal distribution. It is noteworthy
that only one critical value (cy) is used for comparing all the pairs of treatments
considered. When o in (3) is unknown, it can be replaced by the usual mean squared
error estimator, s, and the normal cdf is replaced by a noncentral t-distribution with
the ratio (y = vi)/s being the measure of the effect size (Cohen 1988).

Intersection-union tests differ from union-intersection tests in not requiring multi-
plicity adjustment (Tamhane 1996, Sect. 3.3). Consequently, the design problem for
intersection-union tests is simpler than that for union-intersection tests.

Now, let ¢ = ¢ 1; be a p-elemental vector populated with the critical values c,.
Vector g follows a p-dimensional multivariate (non-central) normal distribution with
mean v and a p x p correlation matrix R, i.e. N,,(v, R). The elements of v € R” are
represented as follows

nin; é nin;j

Vi, j) = ni~|-nj_0' P @i, j)eP.
The matrix R contains the correlation between pairs (i, j) € P, each term depending
on n. The sample size as well as the effect size increase the power of a statistical test
(Cohen 1988). Herein, we consider the most inefficient scenario where the differences
of means under analysis are equal to 6.

The power function measuring the probability that the test (2) rejects Hy when H;
is true is

w(gle,v, B) =P | (1] {ga)) > ca} | = P(c,v, R), (4a)
@i,))eP
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where @ (¢, v, R) is the cumulative multivariate normal distribution function for the
p-dimensional domain ®!_, [c4, +00(€ RP, given by

+00 +00

d(c,v,R) = / ~-~/¢(z,v,R)dz, 5)

1

R is the correlation matrix between pairs of ordering relations, say (i, j) and (k, ),
and

_ —1 _
Sz, R) = _(z WT R (z v):| ©)

I
2 et R) P [ 2

is the multivariate normal distribution function on z. R is a positive definite matrix
formed by elements o j), 1), With (i, j), (k,1) € P relating the pairs of ordering
relations (Lee and Spurrier 1995; Dunnett and Sobel 1954; Dunnett 1955; Bretz 1999):

1 ifi=knj=1I
/Wr:j)% ifG=knj£DV(=ILANi#k)

0 otherwise.

P,k =

When R is not positive definite, which may occur in some initial iterations of SBO, we
use the nearest symmetric positive definite (nspd) matrix (in the sense of Frobenius
norm) computed with the algorithm of Higham (1988). The multivariate normal cdf
is numerically computed with adaptive quadrature methods for bivariate and trivariate
cases (Drezner 1994; Genz 2004), and a quasi-Monte Carlo integration scheme for
more than 3-dimensions (Genz and Bretz 2002).The positive definiteness of R is
required, and is checked in each iteration before the computation of the multivariate
normal cdf. The positive definiteness of R is checked by: i. finding the respective
minimum eigenvalue [Anin (R)]; and ii. deciding whether the property holds (or not).
When Anin (R) is larger than a small constant €, the matrix is considered to be positive
definite otherwise the positive definiteness validation check fails, and it is replaced by
the corresponding nspd matrix. Here, we use € = 1 x 1078,

The optimal design aims at maximizing (4) by choice of the number of replicates
of each of the K treatments under analysis, n, in the space of feasible designs EII\(’ We
note the objective function is computationally challenging as it involves computing
@ (c, v, R) and the nspd of the correlation matrix, if needed. Apart from the complexity
of constructing the gradient and the Hessian information, the problem is non-convex
due to i. the decision variables (n) being integer; ii. the necessity of approximating
R by the nspd when required; and iii. the possible existence of multiple optima. The
statistical approximations of numerically expensive objective functions in continuous
Bayesian experimental designs, or for integrals in likelihood expressions, are consid-
ered by Overstall and Woods (2017) and Waite and Woods (2015) among others.
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2.3 Surrogate-based optimization

In this section we introduce the fundamentals of SBO which is used for solving the
problem outlined in Sect. 2.2.

Surrogate-based optimization falls into the class of polynomial response surface
methods and is typically used to handle problems involving complex and black-box
functions, say r (x), where the cost of fitting and evaluating the surrogate model is much
less than a function evaluation and there are no algebraic expressions for the gradient
nor for the Hessian matrix (Bhosekar and Ierapetritou 2018; Kim and Boukouvala
2020). The approach involves three stages: i. simulate the “real (complex) model”,
which may or may not be a black box model, for a limited number of well chosen data
points; ii. construct an “approximate model”—a surface model—based on generated
data; and iii. solve (optimize) the approximate model (also designated surrogate model)
to generate a new set of points that emulate the “real model” but whose computation
is much faster. Then iterate the three stages until convergence of the response of f (x)
to r(x) is attained for a point x (Miiller and Woodbury 2017).

The models are generally formulated as

mi)r(l f(x) (8a)
st.rx) <0 (8b)
X, € Zsg forv €1, (8¢)

where f(e) is the computationally cheap objective function that approximates the
more complex one r(x), (8b) denote the set of computationally expensive black-box
inequality constraints, X is the finite domain of decision variables. Equation (8c)
accounts for problems involving integer variables, say ¢ variables x,, ¢ € [; I is the set
of integer variables.

The surrogate model is created from an initial number of simulations generated
according to a sampling plan. Among the techniques used for generating initial sam-
pling points the most common are the Latin Hypercube (LHC) designs (Miiller and
Day 2019). Among the surrogate models, i.e. f(e), the most commonly used are
interpolating models such as kriging (Martin and Simpson 2005) and Radial Basis
Functions (RBFs) (Powell 1992; Buhmann 2009). Both model types have been used for
optimizing problems with computationally expensive objective functions, see Miiller
et al. (2013) for an example. Polynomial regression models and multivariate adaptive
regression splines can also be used but they are non-interpolating surrogate models.

The iterative part of the algorithm has a sequence of steps: i. fit/update the surrogate
model f(x) using the set of sampling points available, i.e. B, = {(x;, r(x;)) : i €
(1,...,n}}; ii. determine the “best point”, xP*! = arg minyg m(Xx) since the last
surrogate reset, where m(x) is a merit function that includes both the surrogate
function and a distance from existing points; iii. generate a set of £ trial points,
Dpe = {x}f’i‘/ﬂ =x +e : e € RY ;e [¢]) by adding normal random per-
turbations scaled by the bounds in each dimension i € [d] to x"*; iv. determine
the merit function at trial points and find the optimum (also designated the “adaptive
point”), x242P; v, evaluate r(x*4%P), then update B, = B, U x*¥ with this new
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point and update the surrogate function, f(x) ; vi. if (x29%) < r(xP*!), the “best
solution” is replaced by the adaptive point and the procedure iterated from step i.; vii.
otherwise, the adaptive point is not included in B,; viii. the scale length is updated
and the procedure iterated from step i. (Regis and Shoemaker 2013). When integer
variables are included in the problem, as here, the algorithm is similar, except for the
computation of the minimum of the merit function where three different methods of
sampling random points are used. Here, the merit function balances exploration—
filling the gaps between the existing sample points by sampling in different zones
of the optimization domain—and exploitation—using the available sample points to
find an optimum (Regis and Shoemaker 2007). Alizadeh et al. (2020) provide a recent
review of the application of surrogate models in optimization. There are various tools
for surrogate optimization available; see, for example, Miiller and Woodbury (2017),
Eriksson et al. (2019), Le Digabel (2011), Miiller (2014), Miiller (2016). In Sect. 3
we use the algorithm proposed by Regis and Shoemaker (2007) which in turn uses a
cubic RBF with a linear tail as the surrogate model (Gutmann 2001).

3 Formulation for optimal design of experiments

In this section we introduce optimization formulations for finding K -treatment designs
for ordered relations.
The optimization problem is as follows:

max @(c, v, R) (9a)
n
st.e; > @ (1 —a,0,1), ie[p] (9b)
O [mM e %)
vijh)=—|——, (, c
@ o\ ni+n; o/
Equation (7) (9d)
R =Api p.«n} @ J), k1)eP (%e)
K—1
ng=N-Y m (9f)
k=1
ne Zso, n <N lg. 9g)

Equation (9a) is the objective function, (9b) is used to construct ¢, (9c) finds the mean
difference for all pairs of treatments, (9d) computes the elements of the correlation
matrix and (9e) estimates the correlation matrix between ordered pairs. To reduce
the degrees of freedom of the problem by one and simultaneously avoid the need
to include an integer equality constraint (which may cause additional problems for
the optimization solver), the simplex condition that guarantees that the summation of
replicates to all groupsis N is reformulated; the last treatment, K, receives any trials not
previously allocated, see (9f). Finally, Eq. (9g) sets the domain of decision variables.
The problem falls into the general form presented in (8) where (9b—9f) form the set
of equations represented by (8b), and (9g) corresponds to Eq. (8c); the complexity
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of evaluating the objective function is notorious. Furthermore, the problem may have
multiple optima. However, the equality constraints in (9) are explicit relations that can
be computed sequentially with the objective function being a function of previously
evaluated quantities.

The initial sample provided to the solver is formed by a set of max (20, 2X) points
generated with a LHC sampling algorithm on the integer domain of interest. Then,
the objective function (9a) is evaluated at the initial sample of points. The results
are used to construct and optimize an approximate model, and new “improvement”
points are added to the initial sample. This procedure is iterated until convergence.
We use two stopping criteria in the numerical solution: i. reaching the maximum
number of function evaluations, which was set to 700 in all problems solved; and
ii. the tolerance of the objective function. To stop we require absolute and relative
improvements of the objective function below 1x107° and 1x107°, respectively, in
150 consecutive iterations. The procedures that support the examples presented in
this study were coded in Matlab® and call the SBO solver available on this platform—
surrogateopt—and MISO, asolver developed by Miiller (2016) for Mixed Integer
Surrogate Optimization problems. All computations in this paper were carried using
an AMD 8-Core processor machine running 64 bits Windows 10 operating system
with 3.80 GHz.

4 Results

This Section presents optimal designs obtained by employing the formulation derived
in §3. All the results were obtained with 0 = 1 and § = 0.7 except when explicitly
stated otherwise. We call a design uniformly distributed (or uniform) when the number
of individuals allocated to each treatment is equal to N /K.

To help in the interpretation of the tables of results, each of the columns of the
optimal designs is for a treatment; the first line is the treatment identifier (i) and the
second line gives the respective value of n;, Vi in the order graph (see Fig. 1). In Sect.
4.1 we study the influence of significance level, N and 6 on optimal designs obtained
for simple ordering. In Sect. 4.2 we find optimal designs for other ordering relations.
All examples presented in the following sections require less than 2 min of CPU time.

4.1 The impact of significance level, sample size and difference between
treatment means on optimal designs for simple ordering

In this Section we analyze the impact of the significance level (), N and § on optimal
designs obtained for simple ordering with K € {3,4,5,6,7}. As an example, the
ordering matrix Q for K =3 is

-1 1 0
Q= ( (N 1> '
First, we study the impact of the significance level and find the optimal designs for
o =0.05and @ = 0.025, with N = 60 and § = 1.0 for K € {3, 4, 5}. To avoid small
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values of power in the results for K € {6, 7}, for those cases § is increased to 1.5. The
symbol A is used to measure the percentage improvement of the power of the IUT-
based designs relative to the equivalent balanced designs. The results are presented
in Table 1, and are in good agreement with the theoretical results derived by Singh
and Davidov (2019)[Theorem7]. The optimal designs found for both «’s are close,
but not necessarily equal. Although the displayed designs are equal, for other settings
they may not be so. Further, as expected, the designs obtained for higher significance
levels ensure higher power. For constant §, the power of the optimal designs decreases
with the number of ordering relations, and the designs become almost symmetric with
respect to the middle treatment. Small distortions are observed relative to symmetry
which are attributable to the integer nature of the decision variables, n.

Now, we study the influence of N on optimal designs; « is fixed to 0.05 and § = 1.0.
The optimal designs obtained for N = {30, 45} are in Table 8 in Appendix A, and
allow comparison with those obtained for N = 60 in Table 1. The comparison reveals,
as expected, that increasing N increases the power. The relative optimal allocations
are similar to those obtained for N = 60 (see Table 1). The designs are also nearly
symmetric where the point of symmetry is the middle group.

Finally, we analyze the impact of § on optimal designs. Table 9 in Appendix contains
the designs obtained for § = {0.9, 1.1} for K € {3, 4, 5} and § = {1.4, 1.6} for
K € {6, 7} assuming N = 60 and o = 0.05. To get a clearer picture of the influence of
3, these designs can be analyzed together with those obtained for § = 1.0and § = 1.5
in Table 1. The values of é used for simulation were obtained by the addition and
subtraction of 0.1 to reference values. The designs follow the trends found before and
are equal to those in Table 1. Similarly, the designs are symmetrical, and one notices
that the power increases with 4.

We now consider in more detail the optimal design obtained for K = 3, N = 60,
o =1.0,5 = 1.0 and ¢ = 0.05 (first line of Table 1). Figure 2 displays the power
of designs obtained by varying n| and n, within the integer set [58] such that n3 =
N —ny —na, n3 > 0. The response surface is convex, the maximum coinciding with
the optimal design found in Table 1. Finally, we note that all IUT-based designs are
more powerful than the equivalent balanced designs, the increment ranging from 0 to
about 3.7%. Thus the loss of power from use of balanced designs is small. Further, the
exact designs obtained from rounding the approximate designs of Singh and Davidov
(2019) will also perform well as they are better than balanced designs.

4.2 Optimal designs for other ordering relations

In this section we find optimal designs for the other ordering arrangements in Fig. 1
except complex tree ordering which is practically uncommon. All cases were solved
for N = 60 and two values of «; 1. 0.05; and ii. 0.025.

First we consider the umbrella ordering scheme and find designs for K = {3, 5, 7}
where the middle treatment is allocated to the maximum g. Specifically, when K = 3
the dominant treatment is allocated to k = 2 and uy — 1 = 2 — 3 = 6. Similar
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Fig. 2 Objective function for experimental designs obtained varying nq and np for K = 3, N = 60,
o=10,8=07and a = 0.05

approaches were followed for K = {5, 7}. For K = 3 the ordering matrix is

-1 1 0
Q= ( 0 1 —1) '

Here, we consider § = 1.0 for K € {3, 5} and § = 1.5 for K € {7}. Table 2
presents the resulting optimal designs, which are symmetric. As expected, the power
of the designs for « = 0.05 are larger than those for « = 0.025 . The symmetrical
allocation is independent of the significance level.

Now, we consider the tree ordering. The treatment allocated to k = 1 (first column

in the contrast matrix) corresponds to the control group in many-to-one hypothesis
testing. Specifically, for K = 3,

-1 1 0
o=(21 o 1)
The optimal designs for tree ordering with K = {3, 4, 5, 6, 7} are in Table 3. For
comparison we set § = 1.0 for K € {3, 4, 5} and § = 1.5 for K € {6, 7}. We note
that i. as with other ordering schemes, the power of the optimal designs decreases as
K increases; and ii. more individuals are allocated to the control group than to other
groups. As for previous ordering schemes, the power increases with « but the designs

are not substantially affected by the significance level. For K = {3, 4} these designs
are in good agreement with those of Dunnett (1955).
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602 B.P.M. Duarte et al.

Finally, for the bipartite ordering (see Fig. 1) we find optimal designs for K = 5
and p = {5, 6} corresponding to the ordering matrices

10100 -1 0100
-1 0010

-1 0010 10001

Or=|—-10001] and O, = ,

0 —-1100

0 —-1010

0 -1001 0 —-1010
0 —1001

respectively. Matrix Q5 includes an additional ordering relation between (1 and u3,
and p is 6; the number of ordering relations for Q; is 5. Table 4 shows the optimal
designs found for the two ordering matrices. The designs are the same for both values
of «, with the designs obtained for O being slightly less powerful.

5 Relating the IUT criterion to other optimality criteria

In this Section we analyze the relation between the IUT-based designs of previous
sections and the optimal designs obtained from other criteria such as those from
alphabetic optimality. Because of the similarity of the ANOVA model to a multivariate
linear regression model, there is interest in criteria that can be used for parameter
estimation in regression. We first consider the D 4 -optimality criterion (see Sect. 5.1),
then C—optimality, also known as Ap—optimality, is considered (see Sect. 5.2);
finally, in Sect. 5.3 the maximum entropy criterion is considered. Optimal designs are
obtained for all of these criteria and compared with IUT-based designs.

5.1 Da: optimal designs

Here we analyze the relation between IUT designs and Da—optimal designs. Dao—
optimality is the generalization of D—optimality when interest lies in estimating
only s linear combinations of the parameters, represented by AT p (Sibson 1974;
Atkinson et al. 2007). In our context A = QT, s = p and the number of param-
eters to be estimated is K. Here, the set of contrasts of interest is E@) = Q pu.
The variance-covariance matrix of the estimates @ is C &) = Q0 [M(E )]_1 o7,
where M (&) is the Fisher Information Matrix (FIM) for the model (1); [M ()]~ =
diag(1/ny, ..., 1/ng) is a K x K matrix, n; being the number of individuals allo-
cated to treatment i. We note that C (&) depends on the design which also affects the
correlation matrix resulting from the standardization of C (&), here denoted as R(&).
The D-optimality criterion is applied to C ().

The uniform design is Dy—optimal for any model Q p when Q has rank K — 1.
This follows from the invariance of the ordering induced by D-optimality with respect
to any regular reparameterization, see Pukelsheim (1993)[Sect. 6.2], corroborated by
Rosa (2018)[Sect. 3.2]. Thus, approximate Dp—optimal designs for  are uniform,
that is balanced, designs. The extension of the result to exact Dyo—optimal designs is
straightforward, only requiring that N/K be integer. When N /K is non-integer the
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604 B.P.M. Duarte et al.

designs allocate | N /K | to each group and the remaining N — K | N /K | are allocated
indifferently, one to each different group; here | e is the floor operator. Since balanced
designs were used in Tables 1, 2, 3 and 4 for comparing power, we omit further
presentation here. We recall that balanced designs have less power than IUT designs
(the difference is 2.15% on average). Consequently, the Day—optimality criterion
produces designs that under perform IUT designs when the purpose is hypothesis
testing.

5.2 C-optimal designs

In this section we relate IUT-based designs to C-optimal designs. The C-optimality
criterion is used when several linear combinations of parameters are of interest and
we minimize tr{Q [M(£)]~' QT} where Q is the matrix of contrasts.

In our settings, C-optimality (see Silvey (1980)[p. 48] and Atkinson et al. (2007)[p.
143]) provides designs which are almost powerful as IUT designs. An approximate
C-optimal design for model (1) is obtained by solving the following optimization
problem

min tr[C(§)] :sn}:ill‘ll]( w[Q M@ Q71 (10)

gegNK

For evidence that the design criterion (10) is connected to IUT designs, we consider
a tree ordering relation. For tree order the mean vector of z = (z(1, 1), ..., 2(1, kK))T
isp =1g(B) Ix—1, where g(f) = VB —=B)/[B(K =2+ 1], B =ni/N,» =
VN 8 /o (Singh and Davidov 2019). Since the power function is an increasing function
of g(B), for large XA the power is maximized when g () is also maximized. It can be
shown that g(8) attains its maximum when 8 = Byt = Bcopt = 1I/(VK — 1+ 1).
Therefore, for large A’s, the proportion assigned by the IUT design to the control group
is Brut(= Bc-opt) andis (1 — Brur) /(K — 1) to each treatment group. For these designs
the ratio of control to treatment allocation is /K — 1 which coincides with Dunnett’s
allocations for control versus multiple treatments comparisons. See especially Figs.
1 and 2 of Dunnett (1955). Theorem 1 establishes properties of C-optimal designs
which we compare with IUT-based designs.

Theorem 1 For a contrast matrix Q an approximate C—optimal design is given by
SC—opt = (wC—opt,la s wC—opt,K)T, where

/4 Tq;

_ VA e e K], (11)
Zf:l ququ

WC-opt,i =

q; is the ith column of Q.

The proof follows from Pukelsheim (1993)[Corollary 8.8] by assuming that X = I,
and K = QT (to simplify the comparison we follow the original nomenclature with
K being the matrix containing the set of linear parametric combinations of interest).
Two immediate corollaries follow from (11).
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Corollary 1 Approximate C-optimal allocations for simple ordering are given by
WC-opt,1 = WC-opt,K = 2/[2 + (K — 2)\/5] and WC-opt,2 = WC-opt,K—1 = 1 -
2 wC—opt,l)/(K -2).

Corollary 2 For a bipartite ordering relation, approximate C—optimal allocations are
given by

1

=card(7?,) + /card(£) card(R)
1

WC-opt, j anrd(ﬁ) + /card(£) card(R)

Now, we formulate the optimization problem to determine exact C-optimal prob-
lems in the design space E% . The optimal design problem is

WC-opt,i for i € [card(R)] and

for j € [card(L)].

min t[C(§)] (12a)
st.C(E) =0 M@ 0T (12b)
1/n1
IME]! = (12¢)
l/l’lK
1pn=N (12d)
ne Zgo (126)

This problem was solved with a MINLP formulation proposed by Duarte et al. (2020)
using the GAMS environment (GAMS Development Corporation 2013). Specifically, a
MINLP global solver based on the branch-and-reduce algorithm—BARON (Sahinidis
2014)—is used.

Table 5 presents the C-optimal designs for the setups used for computing IUT
designs for simple and tree ordering relations, i.e. N = 60, 0 = 1, § = 1.0 for
K € {3, 4, 5} and 6 = 1.5 for K € {6, 7}. The results show that C-optimum
designs have power only very slightly less than those of the IUT designs. Further,
C-optimal designs are in good agreement with i. IUT designs (see Tables 1 and 3); ii.
the designs found by Dunnett (1955) for tree ordering relations for K € {3, 4}; iii.
approximate designs predicted by Corollary 1; and iv. the maximum entropy designs
to be described in Sect. 5.3. The results for umbrella ordering for K € {3, 4, 5} and
bipartite ordering for both contrast matrices (Q1 and Q) in Table 6 show the same
trends. The designs are again similar to IUT designs and the approximate designs of
Corollary 2 for biregular ordering.

5.3 Maximum entropy designs

Finally, we consider maximum entropy designs. Shewry and Wynn (1987) introduced
the notion of sampling by maximum entropy when the design space is discrete. They
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showed that the expected change in information provided by an experiment is max-
imized by the design that maximizes the entropy of the observed responses since
entropy is the negative of information. This kind of experimental design has been con-
sidered for certain spatial models, as well as in the selection of computer experiments
(Currin et al. 1991) and for finding Bayesian optimal experimental designs (Sebastiani
and Wynn 2000).

If the regression parameters are fixed, as they are for Q, the entropy criterion reduces
to maxg Idet[R(§)] where R(£) is the correlation matrix (Koehler and Owen 1996;
Jin et al. 2005). Since det[R(£)] = det[C (§)]/ ]_[f=1 Ci.i, where C; ; are the diagonal
elements of C (&), the problem is equivalent to max; ldet[C (§)] +1det{[/, o C(§ N1
(Anstreicher et al. 2001; Cover and Thomas 2006). Here I, o C(§) provides the
diagonal matrix formed by the diagonal elements of the matrix C (&) and o stands for
the Hadamard (or elementwise) product. Thus, the MINLP problem to find maximum
entropy designs is given by:

max 1det[C (£)] + 1det{[I, o C(§)]""} (13a)
st.CE) =0 [M®1! o7 (13b)
1/n
[ME] ! = (13¢)
l/nK
1"Tn=N (13d)
n € 75, (13e)

Table 7 presents the optimal maximum entropy designs obtained for simple and
tree ordering relations with (13). A MINLP global solver was also used to assure
global optimality. The designs obtained are similar to those produced by the IUT
criterion (see the results in Tables 1 and 3 and C-optimal designs in Table 5), and are
independent of «. We compared the power of the optimal maximum entropy designs
for « = {0.05,0.025} and observed that they are slightly less powerful than the
IUT, equivalent to C-optimal designs, although more powerful than uniform designs.
Howeyver, the relative differences are small.

6 Conclusions

In this paper we consider the optimal design of experiments for hypothesis testing
of ordered treatments employing the intersection-union test framework. The optimal
design problem was formalized as a mixed integer nonlinear programming problem.
Given the complexity of the objective function, a Surrogate-Based Optimization solver
was used for the solution. The results obtained are in good agreement with previous
theoretical results which are available for only a few cases. We tested the formulation to
study the influence of i. the confidence level; ii. the sample size; and iii. the difference
between treatment means (i.e., the effect size) for simple ordering relations (see Sect.
4.1). Optimal designs for other ordering relations are in Sect. 4.2. Typically, the optimal
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designs found are more powerful than balanced designs and ensure at least equal power
to those of Dunnett (1955) for tree ordering relations.

Singh and Davidov (2019) developed theoretical results supporting the construc-
tion of optimal experimental designs using the intersection-union test framework for
ordered treatments. Their results are limited to some ordering relations and number of
groups. They noted that the generalization is problematic due to the need of integrat-
ing a complex multivariate cdf. Here we have introduced a systematic way to handle
the problem of constructing exact designs, a problem which is both more challenging
than that of finding approximate designs and of immediate applicability. We have for-
mulated all our numerical design problems as Mixed Integer Nonlinear Programmes.
Given the complexity of the objective function, we use SBO to handle the resulting
formulation for IUT designs. We believe this is the first paper where this technique
has been used for the construction of exact designs. Our numerical approach allows
addressing more complex ordering schemes and more groups than those of Singh
and Davidov (2019). Although of the influence of the sample size on standardized
mean difference of pairs of treatments, the approximate optimal designs based on [UT
provide good estimates to exact optimal designs, see Singh and Davidov (2021). The
main reason is that they maximize the power function and that occurs when all values
of ¢; in (5) are equal. This requirement, in turn, is independent of the group size since
all of the ¢;’s are limited from above by ¢, .

Our MINLP formulation enabled us to compare the [UT designs with designs from
alphabetic optimality criteria used for model fitting. The theoretical results available
for C-optimality for ordered treatments are limited to simple and bipartite ordering
(the corollaries to Theorem 1). With the numerical formulation we have been able to
construct optimal designs for other ordering schemes, for example the tree ordering
results in Table 5. Finally, there are no theoretical results available for maximum
entropy designs, so that the numerical treatment is the only approach.

Our results show that [UT-based designs are well approximated by C-optimal and
maximum entropy designs which are superior to Dp—optimal designs that correspond
to uniform allocation schemes. The IUT-based designs are systematically slightly
more powerful than alphabetic designs while the increase in terms of complexity of
computation is marginal. While the former requires SBO to address the complexity
and non-convexity of the objective function, the latter criteria require a global MINLP
optimizer to guarantee the optimum is achieved.

Author Contributions BPMD: Research, Conceptualization, Methodology, Writing original draft prepara-
tion. ACA: Research, Validation, Reviewing and editing. SPS: Validation, Reviewing and editing. MSR:
Validation, Reviewing and editing.

Appendix: Optimal designs for simple order relation

Here we present the optimal designs for tree ordering resulting from varying N and 8.
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