
Pré-Publicações do Departamento de Matemática
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Abstract: This paper deals with a generalization of a certain interpolative pro-
cedure introduced by U. Matter [9] by which from given Banach ideals A and B
a new scale of Banach ideals (A,B)ϕ is generated. In particular we elaborate the
connection of our construction to interpolation theory. As an application we con-
sider the ideal of (p, ϕ)-absolutely continuous operators which occurs when A is the
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Keywords: Banach ideals, approximation numbers, interpolation.
AMS Subject Classification (2000): 47B10.

1. Introduction and Notation

This introductory section serves as a survey of known results on absolute
continuity in the setting of operators between Banach spaces. The main
purpose here is to give motivation for our further studies of this notion.
Throughout the work, we shall use standard Banach space notation that
may be found in [5].

Let Ω be a compact topological space. Consider a weakly compact operator
T defined on the space C(Ω) consisting of all real valued continuous functions
on Ω with values in some Banach space X. A result of R.G. Bartle, N.
Dunford and J. Schwarz from [1] asserts that there exists a certain control
measure µ for the operator T . More precisely, it can be shown that for every
ε > 0 there exists a positive constant N(ε) such that

‖Tf‖ ≤ N(ε)

∫
|f |dµ + ε‖f‖ for every f ∈ C(Ω).

Motivated by the above property C. P. Niculescu introduced in his pioneering
work [11] and [12] the class of absolutely continuous operators with respect
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to a certain seminorm. A systematic study of this notion was initiated in the
work of H. Jarchow, U. Matter [9, 10, 7] and F. Räbiger [14].

In order to generalize the ideas of Niculescu the following definition was
considered in [9]. Let T ∈ L(X, Y ), S ∈ L(X, Z) and R ∈ L(X, W ) be
operators between Banach spaces X, Y, Z and W . An operator T is said to
be absolutely continuous with respect to (S, R), denoted by T ≪ (S, R), if
for arbitrary ε > 0 there is a constant N(ε) ≥ 0 such that

‖Tx‖ ≤ N(ε)‖Sx‖ + ε‖Rx‖ for all x ∈ X. (1.1)

In the case X = W and R = IX , we call such an operator T absolutely
continuous with respect to S and denote this by T ≪ S. It was shown by C.
P. Niculescu that T ≪ S if and only if T ′′ ≪ S ′′.

Let us now consider the notion of absolute continuity of operators from
the operator ideal point of view. For definitions and facts from operator
ideal theory we refer the reader to the monograph [13]. Recall that for an
operator ideal A its injective hull Ainj consists of all operators T ∈ L(X, Y )

that become a member of A by extending the codomain X
T
→ Y

J
→ Y0. Here

J denotes an injection into a suitable Banach space Y0. Due to the extension
property we may take Y0 = ℓ∞(I) with an appropriate index set I. An ideal
is called injective if A = Ainj. Injectivity of A implies that the associated
class of Banach spaces is stable when passing to subspaces. The following
result of H. Jarchow and A. Pe lczyński characterizes the closed injective hull

A
inj

of A, see [6].

Theorem 1.1. Let A be a quasinormed operator ideal. An operator T ∈

L(X, Y ) belongs to the closed injective hull A
inj

of A if and only if there exist
a Banach space Z and an operator S ∈ A(X, Z) such that T ≪ S.

We conclude this section by stressing an important connection of this notion
with interpolation theory. Let us consider for a fixed r > 0 the function
N(ε) = ε−r as a function appearing in (1.1). More precisely, for a fixed θ ∈
(0, 1) and x ∈ X computing the minimum value of the function f : R+ → R+

given by f(t) = tθ/(θ−1)‖Sx‖ + t‖Rx‖, which controls the right hand side of
inequality (1.1), shows that the definition of absolute continuity of operators
is equivalent to the following statement:

‖Tx‖ ≤ ‖S̃x‖1−θ‖Rx‖θ for all x ∈ X. (1.2)
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Here S̃ denotes a constant multiple of the operator S occurring in (1.1).
The value of the underlying constant is ((1 − θ)/θ)θ + (θ/(1 − θ))θ. The
inequalities of type (1.2) play an important rôle in interpolation theory, see
[3]. This problem will be discussed in detail in Section 3.

Let us now consider the function ϕ : R
2
+ → R+ given by ϕ(s, t) = s1−θtθ.

Then the condition (1.2) reads as follows

‖Tx‖ ≤ ϕ(‖Sx‖, ‖Rx‖) for all x ∈ X. (1.3)

For simplicity of notation, we write here S instead of S̃. Interesting ques-
tions that arise from the above considerations are the following: For which
functions ϕ : R

2
+ → R+ does (1.3) already imply T ≪ (S, R), and conversely,

does the existence of a function ϕ such that (1.3) holds already follows from
T ≪ (S, R)?

To answer these questions let us define the class AC consisting of all
continuous, positively homogeneous, concave functions ϕ : R

2
+ → R+ with

ϕ(s, 0) = ϕ(0, t) = 0 and ϕ(1, 1) = 1. Taking into account the homogeneity
of ϕ we often put ϕ(s, t) = sρ(t/s) with ρ : [0,∞) → R+. The function ρ is
also non-decreasing, concave and continuous with ρ(0) = 0 and ρ(1) = 1. It
was shown by F. Räbiger in [14] that the following statements are equivalent

• T ≪ (S, R).
• There exists a function ϕ ∈ AC such that (1.3) holds.

Let us now present the contents of this paper in some detail. In the next
section we present a generalization of a interpolative procedure introduced
by U. Matter [9] by which from given Banach ideals A and B a new scale
of Banach ideals (A,B)ϕ is generated. In Section 3 we stress an important
connection of our construction to interpolation theory. As an application in
Section 4 we characterize (p, ϕ)-absolutely continuous operators by a special
factorization property through a suitable interpolation space. The last sec-
tion is devoted to give some applications to approximation quantities and
entropy numbers.

2. An interpolative ideal procedure

This section presents a procedure by which, from given operator ideals A
and B, a scale of new ideals (A,B)ϕ is generated. For definitions and basic
facts on operator ideals we refer the reader to the monograph [13]. Recall
that L denotes the ideal of all operators between arbitrary Banach spaces.
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In what follows, let ϕ ∈ AC. We start our considerations by showing the
superadditivity of ϕ. This property will be frequently used in the sequel.

Lemma 2.1. For any ai, bi ≥ 0 the following inequality holds

n∑

i=1

ϕ(ai, bi) ≤ ϕ

(
n∑

i=1

ai,

n∑

i=1

bi

)
. (2.1)

Proof : By the definition of concavity the inequality

n∑

i=1

λiϕ(ai, bi) ≤ ϕ

(
n∑

i=1

λiai,

n∑

i=1

λibi

)

holds for every λi ≥ 0 with
∑n

i=1 λi = 1. The homogeneity of ϕ gives

n∑

i=1

cλiϕ(ai, bi) ≤ ϕ

(
n∑

i=1

cλiai,

n∑

i=1

cλibi

)
for every c > 0.

Taking cλi = 1 for every i = 1, . . . , n gives the claim.

We are now in a position to present a generalization of the procedure
introduced by U. Matter in [9]. An operator T ∈ L(X, Y ) belongs to (A,B)ϕ

if there exist Banach spaces Z, W and operators S ∈ A(X, Z), R ∈ B(X, W )
such that

‖Tx‖ ≤ ϕ(‖Sx‖, ‖Rx‖) for all x ∈ X. (2.2)

It is easy to see that the above defined class possesses the ideal property. To
show that TV ∈ (A,B)ϕ(X0, Y ) for V ∈ L(X0, X) and T ∈ (A,B)ϕ(X, Y )
we choose operators S ∈ A(X, Z), R ∈ B(X, W ) according to (2.2). Then
SV ∈ A(X0, Z) and RV ∈ B(X0, W ). We check at once that

‖TV x‖ ≤ ϕ(‖SV x‖, ‖RV x‖) for all x ∈ X0.

To deduce that UT ∈ (A,B)ϕ(X, Y0) for U ∈ L(Y, Y0) and T ∈ (A,B)ϕ(X, Y )
let us take the ‖U‖-multiple of operators appearing in (2.2). By homogeneity
of ϕ we obtain

‖UTx‖ ≤ ‖U‖‖Tx‖ ≤ ‖U‖ϕ (‖Sx‖, ‖Rx‖) = ϕ (‖‖U‖Sx‖ , ‖‖U‖Rx‖)

for all x ∈ X. In order to see that (A,B)ϕ is a linear space, we provide the
following alternative characterization of operators belonging to this class.
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Proposition 2.2. An operator T belongs to (A,B)ϕ if and only if there
exist some n ∈ N, Banach spaces Zi, Wi and operators Si ∈ A(X, Zi), Ri ∈
B(X, Wi), i = 1, 2, . . . , n, such that

‖Tx‖ ≤

n∑

i=1

ϕ(‖Six‖, ‖Rix‖) for all x ∈ X. (2.3)

Proof : The only if part is obvious. In order to prove the converse implication
let

Z =
( n⊕

i=1

Zi

)
1

and W =
( n⊕

i=1

Wi

)
1
.

We define operators S : X → Z and R : X → W by

S =

n∑

i=1

JZ
Zi

Si and R =

n∑

i=1

JW
Wi

Ri,

where JZ
Zi

: Zi → Z denotes the canonical injection. By lemma 2.1 we obtain

‖Tx‖ ≤

n∑

i=1

ϕ(‖Six‖, ‖Rix‖) ≤ ϕ

(
n∑

i=1

‖Six‖,

n∑

i=1

‖Rix‖

)
= ϕ(‖Sx‖, ‖Rx‖),

which finishes our proof.

Now it follows from Proposition 2.2 that with operators T1, T2 ∈ (A,B)ϕ

and numbers λ1, λ2 also λ1T1 +λ2T2 ∈ (A,B)ϕ. Hence (A,B)ϕ is an operator
ideal.

From now on, we assume that α, β are quasinorms on A,B, such that A
and B, respectively, become quasinormed Banach ideals. We now consider
the following maps, which are connected to part (2.2) and (2.3), respectively:
For each operator T ∈ (A,B)ϕ we put

(i)
γ(T ) = inf ϕ(α(S), β(R)),

where the infimum ranges over all operators S, R such that inequality
(2.2) holds,

(ii)

γ(T ) = inf
n∑

i=1

ϕ(α(Si), β(Ri)),

where the infimum ranges over all n ∈ N and all operators Si, Ri such
that inequality (2.3) holds.
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We recall that a mapping α : A → R+ (in particular we can consider a
quasinorm) is said to have the ideal property if for V ∈ L(X0, X), T ∈
A(X, Y ) and U ∈ L(Y, Y0) the following inequality holds

α(UTV ) ≤ ‖U‖α(T )‖V ‖.

Proposition 2.3. Both maps γ and γ possess the ideal property. Moreover,
the map γ is a norm on (A,B)ϕ.

Proof : We prove the first statement only for γ. The proof for γ is similar.
Let V ∈ L(X0, X) and U ∈ L(Y, Y0). Let S, R be operators such that

‖Tx‖ ≤ ϕ(‖Sx‖, ‖Rx‖)

holds. Observe that

‖(UTV )x‖ ≤ ‖U‖‖T (V x)‖ ≤ ‖U‖ϕ(‖S(V x)‖, ‖R(V x)‖)

= ϕ(‖‖U‖SV x‖ , ‖‖U‖RV x‖).

So S̃ = ‖U‖SV and R̃ = ‖U‖RV are admissible operators in the definition
of γ(UTV ). We obtain

γ(UTV ) ≤ ϕ(α(‖U‖SV ), β(‖U‖RV )) ≤ ‖U‖ϕ(α(S), β(R))‖V ‖.

Taking the infimum over all operators S and R gives the claim.
We only have to show the triangle inequality in the second statement. For

that reason, let T1, T2 ∈ (A,B)ϕ and assume that S1, . . . , Sm; R1, . . . , Rm are
such that

‖T1x‖ ≤

n∑

i=1

ϕ(‖Six‖, ‖Rix‖) and ‖T2x‖ ≤

m∑

i=n+1

ϕ(‖Six‖, ‖Rix‖)

for some n < m. Obviously

‖T1x + T2x‖ ≤

m∑

i=1

ϕ(‖Six‖, ‖Rix‖).

We then have

γ(T1 + T2) ≤
n∑

i=1

ϕ(α(Si), β(Ri)) +
m∑

i=n+1

ϕ(α(Si), β(Ri))

Turning to the infimum on the right hand side gives the claim.
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Theorem 2.4. Let ρ be a submultiplicative function, i.e. there exists constant
c > 0 such that

ρ(st) ≤ cρ(s)ρ(t) for every s, t ∈ R+.

Assume also that α, β are ideal norms. Then

γ(T ) ≤ γ(T ) ≤ c γ(T ). (2.4)

In other words, both maps are equivalent provided that the function ρ is sub-
multiplicative.

Proof : The left hand inequality in (2.4) is obvious. First we prove that the
following inequality holds for any ξ, η, τ ∈ R+:

ϕ(ξ, η) ≤ c ϕ
(
ϕ(1, τ)ξ, ϕ(1/τ, 1)η

)
. (2.5)

This inequality is equivalent to

ξρ
(η

ξ

)
≤ c ϕ(1, τ)ξ ρ

(
ϕ(1/τ, 1)η

ϕ(1, τ)ξ

)

which follows from the submultiplicativity of ρ by

ρ

(
η

ξ

)
≤ c ρ(τ)ρ

(
1

τ

η

ξ

)
.

Now let operators Si ∈ A(X, Zi), Ri ∈ B(X, Wi), i = 1, 2, . . . , n be such that

‖Tx‖ ≤
n∑

i=1

ϕ(‖Six‖, ‖Rix‖).

For the proof of the second inequality in (2.4) let us define

ξi := ‖Six‖, ηi := ‖Rix‖, τi :=
β(Ri)

α(Si)
.

Furthermore, let

Z =
( n⊕

i=1

Zi

)
1

and W =
( n⊕

i=1

Wi

)
1
.

and define S ∈ A(X, Z), R ∈ B(X, W ) by

S :=

n∑

i=1

ρ(τi)J
Z
Zi

Si and R :=

n∑

i=1

1

τi
ρ(τi)J

W
Wi

Ri.
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Then we have

‖Sx‖ =

n∑

i=1

ρ(τi)‖Six‖ and ‖Rx‖ =

n∑

i=1

1

τi
ρ(τi)‖Rix‖.

Using Lemma 2.1 and the inequality (2.5) yields

‖Tx‖ ≤

n∑

i=1

ϕ(‖Six‖, ‖Rix‖) =

n∑

i=1

ϕ(ξi, ηi) ≤ c

n∑

i=1

ϕ
(
ρ(τi)ξi,

ρ(τi)

τi
ηi

)

≤ cϕ
( n∑

i=1

ρ(τi)ξi,
n∑

i=1

ρ(τi)

τi
ηi

)
= cϕ(‖Sx‖, ‖Rx‖).

Furthermore, we obtain

ϕ(α(S), β(R)) ≤ ϕ
( n∑

i=1

ρ(τi)α(Si),
n∑

i=1

ρ(τi)

τi
β(Ri)

)

=
n∑

i=1

α(Si)ρ(τi)ϕ(1, 1) =
n∑

i=1

ϕ(α(Si), β(Ri)),

which finishes the proof.

To show the completeness of (A,B)ϕ we consider (Tn) ∈ (A,B)ϕ(X, Y ) such
that

∑∞
n=1 γ(Tn) < ∞. Our aim is to find an operator T ∈ (A,B)ϕ(X, Y )

such that γ (T −
∑n

i=1 Ti) tends to zero as n → ∞. By assumption there are
Banach spaces Zi, Wi and operators Si, Ri such that ‖Tix‖ ≤ ϕ(‖Six‖, ‖Rix‖)
for all x ∈ X. Moreover, we obtain that

∑∞
i=1 α(Si) and

∑∞
i=1 β(Ri) are finite.

Put Z =
(⊕∞

i=1 Zi

)
1

and W =
(⊕∞

i=1 Wi

)
1
. Now the completeness of A

and B yields

α
(
S −

n∑

i=1

Si

)
n→∞
−→ 0 and β

(
R −

n∑

i=1

Ri

)
n→∞
−→ 0
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with S =
(⊕∞

i=1 Si

)
1

and R =
(⊕∞

i=1 Si

)
1
. Consequently, we obtain for

T =
(⊕∞

i=1 Ti

)
1

that

γ
(
T −

n∑

i=1

Ti

)
≤ ϕ

(
α
(
S −

n∑

i=1

Si

)
, β
(
R −

n∑

i=1

Ri

))
.

Moreover we have

∥∥(T −
n∑

i=1

Ti)x
∥∥ ≤

∞∑

i=n+1

ϕ (‖Six‖, ‖Rix‖) ≤ ϕ
( ∞∑

i=n+1

‖Six‖,
∞∑

i=n+1

‖Rix‖
)

= ϕ
(∥∥(S −

n∑

i=1

Si)x
∥∥,
∥∥(R −

n∑

i=1

Ri)x
∥∥
)
.

This shows our assertion.
We have thus proved that if ρ is submultiplicative then [(A,B)ϕ, γ] is a

Banach ideal and γ is equivalent to the norm γ. We collect the results
obtained so far in the following theorem.

Theorem 2.5. Let ϕ ∈ AC and ρ : [0,∞) → R+ be given by ϕ(s, t) =
sρ(t/s). Let A and B be operators ideals. Then (A,B)ϕ is an operator
ideal. If, moreover, (A, α), (B, β) are quasinormed Banach ideals and ρ is
submultiplicative, then [(A,B)ϕ, γ] is a Banach ideal where γ is given by (ii)

Straightforward computation yields the following reiteration property.

Proposition 2.6. Let ϕ, ϕ0, ϕ1 ∈ AC. Then
(
(A,B)ϕ0

, (A,B)ϕ1

)
ϕ
⊂ (A,B)ϕ(ϕ0,ϕ1).

Proof : Assume that T ∈
(
(A,B)ϕ0

, (A,B)ϕ1

)
ϕ
(X, Y ). Then we find Banach

spaces Z, W and operators T0 ∈ (A,B)ϕ0
(X, Z) and T1 ∈ (A,B)ϕ1

(X, W )
such that

‖Tx‖ ≤ ϕ(‖T0x‖, ‖T1x‖) for all x ∈ X.

By definition, for Ti ∈ (A,B)ϕi
(X, Y ), i = 0, 1, we find Banach spaces Zi, Wi

and operators Si ∈ A(X, Zi) and Ri ∈ B(X, Wi) such that

‖Tix‖ ≤ ϕi(‖Six‖, ‖Rix‖) for all x ∈ X, i = 0, 1.
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Define S = S0 ⊕1 S1 and S = R0 ⊕1 R1. By the monotonicity of ϕ, ϕ0 and ϕ1

we obtain

‖Tx‖ ≤ ϕ(‖T0x‖, ‖T1x‖) ≤ ϕ (ϕ0(‖S0x‖, ‖R0x‖), ϕ1(‖S1x‖, ‖R1x‖))

≤ ϕ (ϕ0(‖Sx‖, ‖Rx‖), ϕ1(‖Sx‖, ‖Rx‖)) .

This shows that T ∈ (A,B)ϕ(ϕ0,ϕ1)(X, Y ), which completes the proof.

3. Factoring through interpolation spaces

Let us start this section by recalling some basic notation and results from
interpolation theory. A pair of Banach spaces (X0, X1) is said to be an in-

terpolation couple (or compatible couple) if both spaces are continuously
embedded into a certain Hausdorff topological vector space V . For an inter-
polation couple (X0, X1) we put

∆(X0, X1) = {x ∈ X0 ∩ X1 : ‖x‖∆ = max(‖x0‖X0
, ‖x1‖X1

) < ∞},

Σ(X0, X1) = {x ∈ X0 + X1 : ‖x‖Σ = inf
x=x0+x1

{‖x0‖X0
+ ‖x1‖X1

} < ∞}.

The linear spaces ∆(X0, X1) and Σ(X0, X1) equipped with the norms ‖ · ‖∆

and ‖·‖Σ, respectively are Banach spaces. A Banach space X is said to be an
intermediate space with respect to (X0, X1) if ∆(X0, X1) →֒ X →֒ Σ(X0, X1)
(continuous inclusion). If additionally for every linear operator T : X0+X1 →
X0 + X1 such that the restrictions T0 : X0 → X0 and T1 : X1 → X1 are
bounded we have that T : X → X is bounded, then we refer X to as
interpolation space with respect to (X0, X1). Let (X0, X1) and (Y0, Y1) be
interpolation couples. From now on, the notation T : (X0, X1) → (Y0, Y1)
means that T : Σ(X0, X1) → Σ(Y0, Y1) is a linear operator such that the
restrictions of T given by T0 : X0 → X1 and T1 : Y0 → Y1 are bounded. A
functor F from the category of all compatible couples into the category of
all Banach spaces is called interpolation functor (or interpolation method) if
for any couple (X0, X1) the Banach space F(X0, X1) is an intermediate space
and T : F(X0, X1) → F(Y0, Y1) is bounded for all couples (X0, X1), (Y0, Y1)
and any T : (X0, X1) → (Y0, Y1). The closed graph theorem implies that for
any interpolation functor F there exists a constant C > 0 such that we have

‖T : F(X0, X1) → F(Y0, Y1)‖ ≤ C max
(
‖T : X0 → Y0‖, ‖T : X1 → Y1‖

)
.

If C can be chosen equal to one then we say that F is an exact interpolation
functor. Fundamental examples of the exact interpolation methods are the
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real method of interpolation (·, ·)θ,p with 0 < θ < 1 and 1 ≤ p ≤ ∞ which
takes its origins from the classical Marcinkiewicz theorem and the complex

method of interpolation [·, ·]θ. The idea of this method goes back to the
Riesz-Thorin theorem.

In the sequel for t > 0 let tR denote the real line R equipped with the
norm ‖x‖tR = t|x|. If F is an exact interpolation functor, its characteristic

function ϕ is defined by

ϕ(s, t)R = F(sR, tR).

In particular we may work with a function from the class AC. For a com-
patible pair (X0, X1) of Banach spaces, we define (X0, X1)ϕ,1 as the space of
all x ∈ Σ(X0, X1) for which there exists a sequence (xn) ⊆ ∆(X0, X1) such
that x =

∑∞
n=1 xn in Σ(X0, X1) and

∑
n≥1 ϕ(‖xn‖0, ‖xn‖1) < ∞. Equipped

with the norm

‖x‖ϕ,1 = inf
{∑

n≥1

ϕ(‖xn‖0, ‖xn‖1) : x =
∞∑

n=1

xn

}

(X0, X1)ϕ,1 becomes a Banach space. It can be shown, that the space (X0, X1)ϕ,1

is an interpolation space. Moreover the interpolation functor (·, ·)ϕ,1 turns
out to be exact and ϕ is its characteristic function. In addition, the interpo-
lation functor (·, ·)ϕ,1 possesses a certain minimal property in the following
sense. If F is an arbitrary exact interpolation functor and ϕ is its character-
istic function, then for any Banach couple (X0, X1) the following inclusion
holds

(X0, X1)ϕ,1 ⊆ F(X0, X1).

In addition, the embedding constant is less than one, i.e the above inclusion
is a contraction. For more information and proofs we refer the reader to [2]
and [3].

In what follows, let X0, X1 be Banach spaces such that X0 →֒ X1. Let us
deal with sequences given by

ak := ρ(2−k) and bk := 2kρ(2−k) for k ∈ N.

Next, observe the following basic properties

(i) The sequence (ak) is decreasing.
(ii) The sequence (bk) is increasing.
(iii) ρ(τ) ≤ max{1, τ} for any τ ∈ R+.
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For x ∈ X0, define the following expressions.

u(x) = inf
{ n∑

k=1

ϕ(‖xk‖0, ‖xk‖1) : n = 1, 2, . . . ; xk ∈ X0; x =

n∑

k=1

xk

}
.

v(x) = inf
{ ∞∑

k=1

ϕ(‖xk‖0, ‖xk‖1) : xk ∈ X0; x
X1=

∞∑

k=1

xk

}
.

w(x) = inf
{

max
( ∞∑

k=1

‖akxk‖0,

∞∑

k=1

‖bkxk‖1

)
: xk ∈ X0; x

X1=

∞∑

k=1

xk

}
.

Observe that any representation x
X1=
∑∞

k=1 xk with xk ∈ X0 such that
either

∑∞
k=1 ϕ(‖xk‖0, ‖xk‖1) < ∞ or

∑∞
k=1 ‖akxk‖0 < ∞ is absolutely con-

vergent. All above expressions are norms on X0. The following proposition
tells us that these norms are equivalent provided that the function ρ is sub-
multiplicative.

Proposition 3.1. If ρ(st) ≤ cρ(s)ρ(t) for every s, t ∈ R+ then

v(x) ≤ u(x) ≤ c w(x) ≤ 2c v(x) for all x ∈ X0.

Proof : The inequality v(x) ≤ u(x) is trivial.

Let us show that u(x) ≤ c w(x). For that, assume x
X1=
∑∞

k=1 xk with
xk ∈ X0 satisfies

∑∞
k=1 ‖akxk‖0 < ∞ and

∑∞
k=1 ‖bkxk‖1 < ∞. Given n ∈ N,

define x̃n = x −
∑n

k=1 xk ∈ X0. Since
∥∥∥∥∥an

(
x −

n∑

k=1

xk

)∥∥∥∥∥
0

≤ an‖x‖0 +
n∑

k=1

ak‖xk‖0 ≤ an‖x‖0 +
n∑

k=1

‖akxk‖0,

the sequence (‖anx̃n‖0) is bounded. Since

‖bnx̃n‖1 ≤ bn

∞∑

k=n+1

‖xk‖1 ≤

∞∑

k=n+1

‖bkxk‖1

is a null sequence, we can, for given ε > 0, choose n large enough that

ϕ(‖anx̃n‖0, ‖bnx̃n‖1) < ε.

The submultiplicativity of ρ implies

ϕ(s, t) = sρ

(
t

s

)
≤ c sρ(2−k)ρ

(
2k t

s

)
= c s akρ

(
bkt

aks

)
= c ϕ(aks, bkt)
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for all s, t ≥ 0 and k = 1, 2, . . ..
Hence

u(x) ≤

n∑

k=1

ϕ(‖xk‖0, ‖xk‖1) + ϕ(‖x̃n‖0, ‖x̃n‖1)

≤ c

n∑

k=1

ϕ(‖akxk‖0, ‖bkxk‖1) + cϕ(‖anx̃n‖0, ‖bnx̃n‖1)

≤ c

∞∑

k=1

ϕ(‖akxk‖0, ‖bkxk‖1) + cε ≤ cϕ

(
∞∑

k=1

‖akxk‖0,

∞∑

k=1

‖bkxk‖1

)
+ cε

≤ c max

(
∞∑

k=1

‖akxk‖0,

∞∑

k=1

‖bkxk‖1

)
+ cε.

Since ε > 0 was arbitrary, we obtain

u(x) ≤ c max

(
∞∑

k=1

‖akxk‖0,
∞∑

k=1

‖bkxk‖1

)
.

Taking the infimum on the right side yields

u(x) ≤ c w(x).

Finally, we have to prove that

w(x) ≤ 2 v(x) for all x ∈ X0.

So assume x
X1=
∑∞

k=1 xk with xk ∈ X0 and
∑∞

k=1 ϕ(‖xk‖0, ‖xk‖1) < ∞. As
already observed, this implies the convergence of

∑∞
k=1 ‖xk‖1. Let

In = {k ∈ N : 2n‖xk‖1 ≤ ‖xk‖0 ≤ 2n+1‖xk‖1}.

Since ‖xk‖1 ≤ ‖xk‖0, we have
⋃

n≥0 In = N. Set yn =
∑

k∈In
xk. Then

x
X1=
∑∞

k=1 yk. Now, it follows that

∞∑

n=0

‖anyn‖0 ≤
∞∑

n=0

∑

k∈In

‖ρ(2−n)xk‖0 =
∞∑

n=0

∑

k∈In

ϕ(‖xk‖0, 2−n‖xk‖0)

≤
∞∑

n=0

∑

k∈In

ϕ(‖xk‖0, 2‖xk‖1) ≤ 2
∞∑

k=1

ϕ(‖xk‖0, ‖xk‖1).
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Consequently we obtain
∞∑

n=0

‖bnyn‖1 ≤
∞∑

n=0

∑

k∈In

‖2nρ(2−n)xk‖1 =
∞∑

n=0

∑

k∈In

ϕ(2n‖xk‖1, ‖xk‖1)

≤

∞∑

n=0

∑

k∈In

ϕ(‖xk‖0, ‖xk‖1) =

∞∑

k=1

ϕ(‖xk‖0, ‖xk‖1).

Altogether

w(x) ≤ max

(
∞∑

n=0

‖anyn‖0,
∞∑

n=0

‖bnyn‖1

)
≤ 2

∞∑

k=1

ϕ(‖xk‖0, ‖xk‖1).

Turning to the infimum on the right hand side yields the claim.

We generalize now a result obtained by U. Matter, see [10, Theorem A].

Theorem 3.2. Let T ∈ L(X, Y ), S ∈ L(X, Z) be such that

‖Tx‖ ≤ ϕ(‖Sx‖, ‖x‖) holds for all x ∈ X.

Let ker(S) denote the kernel of S. Moreover, let ρ be submultiplicative. Then
there exists an operator D : (X/ ker(S), Z)ϕ,1 → Y such that the operator
T factors as follows: T = DJϕQ, where Q and Jϕ denote the canonical
quotient map X → X/ ker(S) and the continuous embedding X/ ker(S) →֒
(X/ ker(S), Z)ϕ,1, respectively. In other words, the following diagram com-
mutes:

X
T

−−→ YyQ

xD

X/ ker(S)
Jϕ

−−→ (X/ ker(S), Z)ϕ,1

Proof : Consider the canonical factorization of S

S : X
Q

−→ X/ ker(S)
S̃

−→ Z.

By (2.2) we have ker(S) ⊂ ker(T ). This implies that T factors as follows

X
Q

−→ X/ ker(S)
P

−→ X/ ker(T )
T1−→ Y.

We may write T = T̃Q, where T̃ = T1P . Furthermore, from (2.2) we obtain

‖T̃ x̃‖ ≤ ϕ(‖S̃x̃‖, ‖x̃‖) for all x̃ ∈ X/ ker(S).
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For x̃ ∈ X/ ker(S) with x̃ =
∑n

k=1 x̃k we have

‖T̃ x̃‖ ≤

n∑

k=1

‖T̃ x̃k‖ ≤

n∑

k=1

ϕ(‖S̃x̃k‖, ‖x̃k‖).

Proposition 3.1 ensures that there exists a constant C > 0 such that

‖T̃ x̃‖ ≤ C‖x̃‖ϕ,1

Define D0 : X/ ker(S) → Y, D0(x̃) := T̃ x̃. By density we may extend the
operator D0 to a continuous map D : (X/ ker(S), Z)ϕ,1 → Y . Of course
T = DJϕQ.

4. (p, ϕ)-absolutely continuous operators

Our goal in this section is to investigate some important examples of the
interpolative construction introduced in Section 2. We begin by reviewing
some of the needed results on absolutely p-summing operators. Suppose that
1 ≤ p < ∞. Recall that an operator T ∈ L(X, Y ) is said to be abso-

lutely p-summing or just p-summing, if it takes weak ℓp-sequences (xn) of X
(i.e. (〈xn, x

′〉) ∈ ℓp for all x′ ∈ X ′) to strong ℓp sequences (Txn) of Y (i.e.
(‖Txn‖) ∈ ℓp). In fact T is p-summing if and only if there exists a constant
C such that for any choice of n ∈ N and x1, . . . , xn ∈ X,

( n∑

i=1

‖Txi‖
p
)1/p

≤ C sup
x′∈BX′

( n∑

i=1

|〈xi, x
′〉|
)1/p

.

The least constant C for which the above inequality holds is denoted by
πp(T ). The class of p-summing operators endowed with the norm πp con-
stitutes an injective maximal Banach ideal denoted by [Πp, πp]. The funda-
mental characterization of p-summing operators developed by A. Pietsch (see
[13]) may be formulated as follows. An operator T ∈ L(X, Y ) is p-summing
if and only if there exist a constant C ≥ 0 and a regular probability measure
µ on BX ′ such that for each x ∈ X

‖Tx‖ ≤ C
(∫

BX′

|〈x, x′〉|pdµ(x′)
)1/p

.

By applying the definition of (A,B)ϕ to ideals [A, α] = [Πp, πp] and [B, β] =
[L, ‖ · ‖] we may consider the Banach ideal [Πp,ϕ, πp,ϕ] := [(Πp,L)ϕ, γ] of all
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(p, ϕ)-absolutely continuous operators. By Theorem 2.4, the ideal norm πp,ϕ

is equivalent to

π̃p,ϕ(T ) = inf
λ
{ϕ(πp(S), λ) : ‖Tx‖ ≤ ϕ(‖Sx‖, λ‖x‖)},

provided that ρ is submultiplicative. The subsequent result characterizes
(p, ϕ)-absolutely continuous operators by a special factorization property
through a suitable space given by the interpolation method (·, ·)ϕ,1.

Theorem 4.1. Let ρ be submultiplicative. For every operator T ∈ L(X, Y ),
the following statements are equivalent

(i) T is (p, ϕ)-absolutely continuous.
(ii) There exist a probability measure µ on BX ′ and a constant C > 0 such

that
‖Tx‖ ≤ ϕ(C‖Jµx‖, ‖x‖), for every x ∈ X,

where Jµ : X → Lp(µ) is the restriction of the canonical map Jp :
C(BX ′) → Lp(µ) and is given by x 7→ 〈x, ·〉.

(iii) There exist a probability measure µ on BX ′, a constant C > 0 and
an operator R : (X/ ker(Jµ), Lp(µ))ϕ,1 → Y such that ‖R‖ ≤ C and
T = RJµ,ϕQ. In other words, the following diagram commutes:

X
T

−−→ YyQ R

x

X/ ker(Jµ)
Jµ,ϕ

−−→ (X/ ker(Jµ), Lp(µ))ϕ,1

Proof : The equivalence of (i) and (ii) follows immediately from the definition
of (p, ϕ)-absolutely continuous operators and the Pietsch factorization theo-
rem for p-summing operators. For a proof of the implication (iii) to (i) ob-

serve that the continuous embedding J̃µ : X/ ker(Jµ) → Lp(µ) is p-summing.
This fact together with the properties of interpolation norms shows that
the embedding Jµ,ϕ : X/ ker(Jµ) → (X/ ker(Jµ), Lp(µ))ϕ,1 is (p, ϕ)-absolutely
continuous. We finally show (ii) ⇒ (iii). By assumption there is a probabil-
ity measure µ on BX ′ such that

‖C−1Tx‖ ≤ ϕ(‖Jµx‖, ‖x‖) for all x ∈ X.

Thus by setting Z = Lp(µ) and S = Jµ and applying Theorem 3.2, we obtain
that C−1T = DJµ,ϕQ for a suitable operator D : (X/ ker(Jµ), Lp(µ))ϕ,1 → Y .
Finally the operator R = CD possesses the desired properties.
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5. Applications to approximation quantities and entropy

numbers

We start with the introduction of some basic notation for approximation
quantities and entropy numbers of linear operators between Banach spaces.
Given a closed linear subspace M of X, the inclusion mapping of M into X
will be denoted by JX

M . The k-th Gelfand number of T ∈ L(X, Y ) is given
by

ck(T ) = inf{‖TJX
M‖ : M ⊂ X and codimM < k}.

The k-th entropy number of a bounded set M ⊂ X is defined as

εk(M) = inf
{
ε > 0 | ∃x1, . . . , xk ∈ X such that M ⊂

k⋃

i=1

(xi + εBX)
}
.

Furthermore the k-th inner entropy number of a bounded set M ⊂ X is given
by

ϕk(M) = sup
{
ρ > 0 | ∃x1, . . . , xk ∈ M such that ‖xi−xk‖ ≥ 2ρ for i 6= k

}
.

For an operator T ∈ L(X, Y ) between Banach spaces we put

εn(T ) = εn(T (BX)) and ϕn(T ) = ϕn(T (BX)).

Moreover, we study the quantities

en(T ) = ε2n−1(T ) and fn(T ) = ϕ2n−1(T ),

called dyadic entropy numbers and inner dyadic entropy numbers, respec-
tively. For any operator T ∈ L(X, Y ) we have

fn(T ) ≤ en(t) ≤ 2fn(t). (5.1)

The speed of convergence to zero of a sequence of entropy numbers measures
”quality” of compactness of the operator under consideration.

Throughout this section we use symmetric quasi Banach sequence spaces.
By this term we mean a quasi Banach space E consisting of scalar sequences
such that ‖(xn)‖E = ‖(x∗

n)‖E. To avoid trivial cases we assume that E
contains a sequence with full support. For arbitrary Banach spaces X, Y we
define

L
(s)
E (X, Y ) = {T ∈ L(X, Y ) : (sn(T )) ∈ E}
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with s = c or s = e. The above linear space equipped with the quasi-norm
defined by

‖T |L
(s)
E ‖ = ‖(sn(T ))‖E,

becomes a quasi Banach operator ideal.
More information on entropy numbers and approximation quantities may

be found in [8] and [4].

Lemma 5.1. If T ∈ L(X, Y ), S ∈ L(X, Z) and R ∈ L(X, W ) are such that
(2.2) holds then

cn+m−1(T ) ≤ ϕ(cn(S), cm(R)). (5.2)

Proof : For given ε > 0 we may choose subspaces M and N of X such that

‖SJX
M‖ ≤ (1 + ε)cn(S) and codim(M) < n,

‖RJX
N ‖ ≤ (1 + ε)cm(R) and codim(N) < m.

Define L := M ∩ N . It is easy to verify that

codim(L) ≤ codim(M) + codim(N) < m + n − 1.

Using the above inequality we obtain

cn+m−1(T ) ≤ ‖TJX
L ‖ = sup

‖x‖≤1

‖(TJX
J )x‖ ≤ sup

‖x‖≤1

ϕ(‖(SJX
M)x‖, ‖(RJX

N )x‖)

≤ (1 + ε)ϕ(cn(S), cm(R)).

Letting ε → 0 we conclude that (5.2) holds.

Using a similar argument as in [13] we obtain the following inequality for
dyadic entropy numbers.

Lemma 5.2. If T ∈ L(X, Y ), S ∈ L(X, Z) and R ∈ L(X, W ) are such that
(2.2) holds then

en+m−1(T ) ≤ 2ϕ(en(S), em(R)). (5.3)

Proof : Suppose that σ0 > en(S) and σ1 > em(R). Then we find z1, . . . zq0
∈ Z

and w1, . . . wq1
∈ W with

S(BX) ⊆

q0⋃

h=1

{zh + σ0BZ} and R(BX) ⊆

q1⋃

h=1

{wh + σ1BW}
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respectively, and q0 ≤ 2n−1, q1 ≤ 2m−1. For given x1, . . . , xp ∈ BX with
p > 2(n+m−1)−1 we define

Ih := {i : Sxi ∈ zh + σ0BZ}.

Since
∑q0

h=1 card(Ih) ≥ p > q0q1, we have card(Ih0
) > q1 for some h0. Hence

there exist i, j ∈ Ih0
such that Rxi and Rxj belong to the same wh1

+ σ1BW .
This means that

‖Sxi − Sxj‖ ≤ 2σ0 and ‖Rxi − Rxj‖ ≤ 2σ1.

Thus we obtain

‖Txi − Txj‖ ≤ 2ϕ(σ0, σ1).

By (5.1) we obtain

en+m−1(T ) ≤ 2fn+m−1(T ) ≤ 2ϕ(σ0, σ1).

Since this is true for arbitrary σ0 > en(S) and σ1 > em(R), this completes
the proof.

Let E, E0, E1 be quasi normed sequence spaces. The function ϕ is said
to be (E, E0, E1)-regular, if for every non-decreasing, positive sequences (sn)
and (tn) the following inequality holds

∥∥(ϕ(sn, tn))
∥∥

E
≤ ϕ

(
‖(sn)‖E0

, ‖(tn)‖E1

)
. (5.4)

Example. In case when E = ℓp, E0 = ℓp0
and E1 = ℓp1

with 1/p = (1 −
θ)/p0 + θ/p1 and ϕ(s, t) = s1−θtθ for 0 < θ < 1 the above condition becomes
the Hlder inequality.

Im summary we can state the following result which generalizes results
obtained by H. Jarchow and U. Matter in [7].

Proposition 5.3. Let ϕ be a (E, E0, E1)-regular function. Then
(
L

(c)
E0

,L
(c)
E1

)
ϕ
⊆ L

(c)
E

and (
L

(e)
E0

,L
(e)
E1

)
ϕ
⊆ L

(e)
E .
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Proof : We give the proof only for the case of Gelfand numbers. The entropy
number case is similar. Let us assume that ϕ is a (E, E0, E1)-regular function.
Then using Lemma 5.1 and Inequality (5.4) we obtain

‖(cn(T ))‖E ≤ ‖ (ϕ(cn(S), cn(R))) ‖E ≤ ϕ
(
‖(cn(S))‖E0

, ‖(cn(R))‖E1

)
.

This completes the proof.

Acknowledgment. This is part of the author’s PhD thesis, written un-
der supervision of A. Hinrichs at the University of Jena. The autor would
like to express his deepest appreciation to him for great support and many
stimulating hints and comments.

References
[1] R. G. Bartle, N. Dunford, J. Schwarz, Weak compactness and vector measures, Canadian J.

Math., 7 (1955), 289-305.
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