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Abstract: Liver ischemia-reperfusion injury (LIRI) is a major cause of the development of complica-
tions in different clinical settings such as liver resection and liver transplantation. Damage arising
from LIRI is a major risk factor for early graft rejection and is associated with higher morbidity
and mortality after surgery. Although the mechanisms leading to the injury of parenchymal and
non-parenchymal liver cells are not yet fully understood, mitochondrial dysfunction is recognized
as a hallmark of LIRI that exacerbates cellular injury. Mitochondria play a major role in glucose
metabolism, energy production, reactive oxygen species (ROS) signaling, calcium homeostasis and
cell death. The diverse roles of mitochondria make it essential to preserve mitochondrial health in
order to maintain cellular activity and liver integrity during liver ischemia/reperfusion (I/R). A
growing body of studies suggest that protecting mitochondria by regulating mitochondrial biogen-
esis, fission/fusion and mitophagy during liver I/R ameliorates LIRI. Targeting mitochondria in
conditions that exacerbate mitochondrial dysfunction, such as steatosis and aging, has been successful
in decreasing their susceptibility to LIRI. Studying mitochondrial dysfunction will help understand
the underlying mechanisms of cellular damage during LIRI which is important for the development
of new therapeutic strategies aimed at improving patient outcomes. In this review, we highlight the
progress made in recent years regarding the role of mitochondria in liver I/R and discuss the impact
of liver conditions on LIRI.
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1. Introduction

Hepatic malignancies, acute liver failure and end-stage liver disease are commonly
treated by liver transplantation. In recent years, the success of liver transplantation has
improved, but unfortunately, the number of patients on waiting lists keeps growing [1].
Current efforts are to increase the pool of liver donors, for instance, by including marginal
liver donors [2]. Liver ischemia-reperfusion (I/R) injury (LIRI) contributes to organ shortage
as healthy livers and livers from marginal donors are susceptible to this type of damage [3],
which can eventually result in acute and chronic rejection.

The liver has a remarkable ability to regenerate following toxic or physical damage.
Upon liver injury, complex physiological and cellular events take place to fully restore
the lost hepatic mass while adequate hepatic function is maintained to preserve body
homeostasis. This ability allows the liver to successfully recover from resection and trans-
plantation. Generally, LIRI is comprised by two distinct phases. The initial phase starts
with interruption of hepatic circulation. During this phase (ischemia), nutrient and oxygen
deprivation, pH changes, and adenosine triphosphate (ATP) depletion together lead to the
aberrant formation of reactive oxygen species (ROS) and eventually cellular injury starts to
set in. In the following phase, reperfusion of the liver exacerbates the damage initiated dur-
ing ischemia due to metabolic disturbances and induction of a proinflammatory immune
response (reviewed in [4,5]).
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Mitochondria are critical players in energy and glucose metabolism, as well as in the
regulation of several signaling pathways. Dysfunction of mitochondria is tightly linked
with many human pathologies and aging [6,7]. Maintenance of mitochondrial health is thus
required to ensure cellular and body homeostasis. Mitochondrial biogenesis, mitochondrial
fission/fusion, and mitophagy are the main mechanisms that guarantee proper mitochon-
drial function in adaption to multiple stresses. Impaired mitochondrial function is one
of the main causes for liver damage following I/R, however, the underlying mechanisms
are still not completely comprehended. Their full understanding is likely to instigate the
development of novel strategies capable of improving the surgical outcome of liver trans-
plantation and resection, as well as leading to the implementation of measures that could
decrease the number of patients on waiting lists. The current state of pharmacological and
surgical approaches utilized to improve LIRI has been discussed in depth elsewhere and
will not be reviewed here [8]. In the current review, we summarize the mitochondrial mech-
anisms underlying LIRI and discuss how maintenance of mitochondrial quality control
contributes to the amelioration of LIRI. The impact of hepatic steatosis and liver aging on
I/R injury will also be topics of discussion.

2. Cellular and Molecular Mechanisms of LIRI

The liver is an essential organ in vertebrate animals that is responsible for a complexity
of functions, including biotransformation of xenobiotics, regulation of metabolites and
nutrients, and maintenance of body homeostasis. Loss of hepatic function can have a
dramatic effect on the organism, and it can even be fatal [9,10]. As the main parenchymal
liver cells, hepatocytes are responsible for conducting most liver functions, while liver non-
parenchymal cells support hepatocytes’ function. These include liver sinusoidal endothelial
cells (LSECs), biliary duct cells (cholangiocytes), hepatic stellate cells (HSCs), and Kupffer
cells. LIRI arises from a complex and intertwined network events taking placing after
an ischemic insult that involve the interaction between the different liver cell types. In
broad strokes, I/R results in hepatocyte and LSEC death due to metabolic disturbances
and oxidative damage. Aggravation of the initial ischemic injury by reperfusion leads to
the development of a strong inflammatory immune response due to release of damage-
associated molecular patterns (DAMPs) and proinflammatory cytokines, and activation
of the complement system. In turn, activation of Kupffer cells, recruitment and adhesion
of neutrophils, and platelet activation sustain the inflammatory immune response which
exacerbates LIRI (reviewed in [5]). LIRI compromises liver repair mechanisms and impairs
liver function which may result in organ failure.

Liver cells are arranged in functional structural units, lobules, that are repeating
hexagonal-shaped histological units subdivided into three separate concentrical zones [11].
Each zone has different metabolic functions. Catabolic processes, such as gluconeogenesis
and β-oxidation, are prevalent in the oxygen-enriched periportal zone (zone 1) that receives
arterial blood through the portal triads, while anabolic processes, such as glycolysis and
lipogenesis, are prevalent in the pericentral zone (zone 3) where non-oxygenated blood
that has flown through the liver sinusoids is drained into the central vein. The mid-lobule
zone (zone 2) is thought to be a transitional zone with no specific function. Hepatocytes
from different zones may not only have distinct metabolic functions but also contribute
differently to the repopulation of liver cells during liver homeostasis and liver regeneration
after injury [12]. Each liver zone is differently affected by liver I/R injury. Compared with
the periportal and mid-lobule zones, the pericentral zone is more sensitive to hepatic I/R
injury [13–15]. Pericentral hepatocytes are thought to be more vulnerable to anoxia-induced
injury than periportal hepatocytes, because zone 3 has a lower oxygen concentration [11,16].
Spatial transcriptomic analysis showed that zones 1 and 3 have different profiles following
I/R. While zone 3 is characterized by differentially expressed genes related to the inflam-
matory response, unfolded protein response, autophagy and metabolic pathways, zone 1 is
mainly enriched in metabolic pathways [17]. The authors also showed that macrophages
are mainly recruited to zone 3 which is associated with a higher inflammatory response
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following I/R. The higher presence of KCs, HSCs, and epithelial cells in zone 1 may be
related to greater protection against I/R injury [17].

Hepatocytes and LSECs are the most susceptible cells to liver I/R-induced death [18,19],
and thus we will mainly focus on them. But their sensitivity to warm (37 ◦C) and cold (4 ◦C)
ischemia is different. While warm ischemia is observed in clinical settings such as liver
transplantation, liver resection, and trauma, cold ischemia is typically found in the setting
of liver transplantation, from the moment when the liver is cold stored for transport until
it is implanted into the recipient. During warm ischemia, the interruption of blood flow
leads to anoxia and nutrient depletion causing the decline of ATP synthesis. Consequent
disturbances in intracellular metabolic processes cause acidification of the cytosol due to
lactate accumulation. Once the blood flow is restored, reoxygenation leads to an increase
in the production of mitochondrial ROS, cells are overloaded with calcium ions (Ca2+),
and the pH of the tissue returns to physiological levels [4,20]. These events trigger the
opening of the mitochondrial permeability transition (MPT) pore resulting in the loss of
mitochondrial membrane integrity and subsequent hepatocyte death. Opening of the MPT
pore allows molecules whose molecular mass is inferior to 1.5 kDa to diffuse freely across
the inner mitochondrial membrane (IMM) [21]. In physiological conditions, the transient
opening of the MPT pore is linked to mitochondrial energy metabolism, regulation of
ROS signaling and mitochondrial Ca2+ signaling [22]. However, during I/R, prolonged
MPT pore opening results in the dissipation of the proton motive force, uncoupling of
oxidative phosphorylation, and mitochondrial swelling, which, in turn, lead to apoptotic
and necrotic cell death [22,23]. In parallel, damaged parenchymal liver cells release DAMPs
such as nuclear DNA, histones, heat shock proteins, ATP, mitochondrial formyl peptide,
and mitochondrial DNA (mtDNA) that activate an inflammatory immune response [4,5].
The proinflammatory response is initiated due to the activation of Kupffer cells by DAMPs.
Once they become activated, they produce ROS and release proinflammatory cytokines and
chemokines [24]. Consequently, additional increase in ROS production foments cellular
damage and apoptosis. The release of cytokines and chemokines augments the inflamma-
tory response after reperfusion due to recruitment of monocytes, neutrophils and T cells,
resulting in the exacerbation of hepatocellular injury [24].

On the other hand, studies report that LSECs are most susceptible to injury during
cold storage [19,25,26]. Changes to their physiology and function result in the impairment
of their viability. The transcription factor Krüppel-like factor 2 (KLF2), typically expressed
by LSECs, is implicated in vasodilation, and has anti-thrombotic and anti-inflammatory
effects. During cold ischemia, KLF2 is downregulated alongside with endothelial nitric
oxide synthase (eNOS), thrombomodulin, and nuclear factor erythroid 2-related factor
2 (Nrf2). Restoration of these genes in cold stored rat livers prevents liver damage [27].
LSECs also release DAMPs that contribute to the development of an immune response and
express adhesive molecules that promote neutrophil binding [26].

3. Mitochondrial Function and Dynamics during Liver I/R

Mitochondria efficiently produce chemical energy (ATP) through oxidative phosphory-
lation in most eukaryotic cells. These organelles have a wide variety of important functions
other than energy metabolism, including metabolism of lipids, amino acids and nucleotides,
ROS signaling, calcium homeostasis, and apoptosis [28]. Perturbations to mitochondrial
health have serious effects on whole-body homeostasis. Mitochondrial dysfunction has
been reported in several diseases involving different organs, such as the liver. In fact,
impaired mitochondrial function hinders liver function and contributes to many liver
diseases, such as steatosis, non-alcoholic steatohepatitis (NASH), and diabetes [6,29]. As
a central coordinator of body glucose and energy metabolism, the liver heavily relies on
mitochondria to fully satisfy its functional needs. In the setting of liver I/R, excessive
production of ROS and mitochondrial membrane permeabilization, which all result in
impaired mitochondrial function, are leading causes of hepatocyte death and LIRI. Tar-
geting mitochondria with antioxidants confers protection against oxidative stress arising
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from ROS and has hepatoprotective effects against LIRI. For example, N-acetylcysteine
(NAC) has been reported to reduce liver injury after I/R injury by decreasing ROS levels,
proinflammatory cytokines, and cell death [30,31]. Similarly, targeting mitochondria with
coenzyme Q10 protects against LIRI by reducing oxidative stress [32,33].

A variety of mitochondrial quality control mechanisms are activated in response to
stress for the preservation of a normal mitochondrial environment [34,35]. The adaptation
of mitochondrial function to stress depends on the fine-tuned coordination between nuclear
and mitochondrial genomes [36]. To fully optimize mitochondrial function and preserve
cellular homeostasis, mitonuclear communication acts in parallel with mitochondrial qual-
ity control mechanisms, which include mitochondrial biogenesis, mitochondrial dynamics,
and mitophagy. For instance, the generation of functional mitochondria through mitochon-
drial biogenesis implicates the transcription and translation of genes from both nuclear and
mitochondrial genomes. The quantity and quality of mitochondria therefore relies upon the
equilibrium between mitochondrial proliferation and degradation. Disrupting this balance
results in the decline of cellular function and cell death, which is a feature found in several
pathologies [37]. Deficient mitochondrial biogenesis results in mitochondrial stress and
decreased mitochondrial mass, while impaired mitophagy leads to the build-up of defective
mitochondria. The remodeling of the mitochondrial network is also complemented by
processes of mitochondrial fission and fusion. While fusion allows functional mitochondria
to join the mitochondrial network, fission is important to separate damaged mitochondria
from the network consequently leading to their clearance through mitophagy [38].

Defects in mitochondrial quality control impair the renovation of the mitochondrial
pool and exacerbate mitochondrial and cellular damage after liver I/R (Figure 1) [39,40].
Nutrient and oxygen deprivation during the ischemic period disrupts cellular respiration
interfering with ATP synthesis. Paradoxically, reoxygenation further aggravates mito-
chondrial function due to accumulation of free radicals [41] and excessive uptake of Ca2+

into mitochondria [42]. Ca2+ participate in vast biological pathways as important signal-
ing molecules [43]. The constant dynamic state of mitochondria makes them important
organelles in the maintenance of cellular Ca2+ homeostasis, being able to uptake high quan-
tities of these molecules. However, the excessive accumulation of Ca2+ in mitochondria
during I/R results in the collapse of mitochondrial membrane potential. Together with de-
creased mitochondrial biogenesis and compromised mitochondrial dynamics, these factors
trigger the permanent opening of MPT pores that results in mitochondrial depolarization
and swelling [23,40,44]. Consequently, the onset of MPT induces cell death by apoptosis
and necrosis [45].

3.1. Mitochondrial Biogenesis

The dynamic nature of mitochondria allows the reshaping of the mitochondrial net-
work in adaptation to stresses of different natures. Mitochondrial biogenesis and mi-
tochondrial dynamics are governed by a sophisticated signaling network involving the
activation of many transcription factors in response to intracellular signals and environ-
mental stimuli, such as nutrients and oxygen availability, growth factors or toxins [35].
Peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1-alpha (PGC-1α) is
the master regulator of energy metabolism being involved in many biological pathways,
such as mitochondrial biogenesis, adaptive thermogenesis and glucose and fatty acid
metabolism [46,47]. Activation of PGC-1α and its downstream transcription factors, includ-
ing nuclear respiratory factors (NRF1 and NRF2) and mitochondrial transcription factor A
(TFAM), stimulates the transcription and replication of mtDNA. mtDNA encodes multiple
subunits of the mitochondrial respiration chain complexes and therefore is essential for the
genesis of new mitochondria [48,49].
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Figure 1. Mitochondrial quality control during liver ischemia/reperfusion injury (LIRI). Disrup-
tion of mitochondrial quality control processes, such as mitochondrial biogenesis, mitochondrial
fission/fusion, and mitophagy, leads to mitochondrial dysfunction and is believed to exacerbate
of LIRI.

Mitochondrial damage is one of the main causes for LIRI [8,50–52]. Studies report
that both mitochondrial number and mtDNA content decrease during liver I/R [50,53],
suggesting that both mitochondrial function and mitochondrial quality control mecha-
nisms are compromised. In fact, mitochondria from rats subjected to liver transplantation
were characterized by having poor bioenergetics and collapsed membrane potential [54].
As expected, a compromised oxidative phosphorylation, resulting in decreased energy
production and altered hepatocyte morphology, led to the onset of LIRI. Pretreating the
animals with berberine was sufficient to preserve mitochondrial function and to prevent
tissue injury [54] (Table 1). Berberine is a natural compound with promising mitochondrial
protective effects. Berberine prevents and reverts mitochondrial dysfunction by stimulating
mitochondrial biogenesis through activation of the sirtuin 1 (SIRT1)-AMP-activated protein
kinase (AMPK) axis [55,56]. During I/R, preconditioning with berberine increased the
content of mitochondrial biogenesis-related proteins, such as PGC-1α, SIRT1 and SIRT3 [54].
Similarly, activation of heme oxygenase-1 (HO-1) in mice previous to I/R attenuated LIRI
through improvement of mitochondrial function and regulation of mitochondrial quality
control [57,58]. Maintenance of a mitochondrial healthy pool by activation of HO-1 using
either cilostazol or hemin involved the activation of PGC-1α, NRF-1 and TFAM, which
was associated with the increase of mtDNA copy number and mitochondrial mass. In fact,
proteins relevant to mitochondrial biogenesis were found to be downregulated during
I/R [50,53]. Activation of the SIRT1-AMPK pathway by treating mice with genipin or the
SIRT1 activator, SRT1720, was effective in protecting mice against LIRI [50,53].
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Table 1. Interventions that ameliorate or protect against liver ischemia/reperfusion injury (LIRI) by
interfering with mitochondrial quality control mechanisms.

Intervention Species/Model Mechanism Effect on
Mitochondria Reference

Mitochondrial biogenesis

Berberine Wistar rats –

↑ ATP content
↓ ROS
↑Mitochondrial
biogenesis markers

Martins et al. [54]

Cilostazol Mice
HepG2 cells

Activation of HO-1 and
Nrf2

↑Mitochondrial
biogenesis markers
↑Mitochondrial
function

Joe et al. [57]

Hemin Mice Activation of HO-1

↑Mitochondrial
biogenesis markers
↑ Fission/fusion
markers
↑Mitophagy

Hong et al. [58]

Genipin Mice Activation of AMPK
and SIRT1

↑Mitochondrial
biogenesis markers
↑ Fission/fusion
markers
↑Mitophagy

Shin et al. [50]

SRT1720 Mice Activation of SIRT1

↑Mitochondrial
biogenesis markers
↑Mitochondrial
function
↑Mitochondrial mass

Khader et al. [53]

Isolongifolene Mice Activation of AMPK
and PGC1α ↓ Oxidative stress Li et al. [59]

Sirt1 overexpression Mice (Ad-SIRT1)
Primary hepatocytes

Interaction between
SIRT1 and MFN2

↓MPT
↓Mitochondrial
dysfunction

Biel et al. [60]

Mitochondrial fission/fusion

Alr overexpression
Mice (Ad-HSS)
BEL-7402 cells
(Ad-HSS)

–

↑Mitochondrial
function
↓Mitochondrial ROS
↓Mitochondrial-related
apoptosis

Jiang et al. [61]

Alr overexpression HSS+/– mice
HepG2 cells

Translocation and
activation of DRP1 ↑ Fission markers Zhang et al. [62]

Irisin Mice
HL-7702 cells

Inhibition of excessive
fission (through
inhibition of DRP1 and
FIS1)

↑Mitochondrial
biogenesis markers
↑Mitochondrial
content
↓ Oxidative stress

Bi et al. [40]

Alr silencing ALR+/– mice
DRP1 SUMOylation
and recruitment to
mitochondria

↓Mitochondrial fission Huang et al. [63]

Fto overexpression Mice (Ad-FTO) Inhibition of DRP1
↓Mitochondrial
fragmentation
↓ Oxidative stress

Du et al. [64]

Tlr4 silencing TLR4-KO mice Activation of IL6 and
TNFα pathways

↑Mitochondrial
biogenesis markers
↑Mitochondrial fusion
markers
↓ ROS

Zhang et al. [65]

Silibinin Wistar rats – ↑Mitochondrial fusion
markers Qajari et al. [66]
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Table 1. Cont.

Intervention Species/Model Mechanism Effect on
Mitochondria Reference

Mitophagy
2-Methoxyestradiol AFL mice Activation of SIRT1 ↑Mitophagy Cho et al. [67]
AICAR db/db mice ↑Mitophagy Zhijun et al. [68]

UC-MSC transfusion Mice
L02 hepatocytes Activation of AMPKα

↓Mitochondrial ROS
↑Mitophagy Zheng et al. [69]

Pterostilbene Mice
L02 hepatocytes Activation of PINK1

↓Mitochondrial
dysfunction
↓Mitochondrial ROS
↑Mitophagy

Shi et al. [70]

25-Hydroxycholesterol Sprague Dawley rats
Activation of
PINK1/Parkin
pathway

↑Mitophagy Cao et al. [71]

Resolvin D1 Mice Activation of TRX2

↑Mitophagy markers
↓Mitochondrial
swelling
↓ Oxidative stress
↑Mitochondrial
biogenesis markers
↑Mitochondrial fission
markers

Kang et al. [72]

CHOP silencing CHOP-KO mice Activation of
DRP1-Beclin1 pathway

↓ ROS
↑Mitophagy Zhou et al. [73]

Alr overexpression Brown-Norway rats
(Ad-ALR) Activation of MFN2

↑Mitochondrial
function
↑Mitophagy

Kong et al. [74]

↑, increase; ↓, decrease; Ad, adenovirus; AFL, alcoholic fatty liver; AICAR, 5-aminoimidazole-4-carboxamide
ribonucleotide; ALR, HSS, augmenter of liver regeneration; AMPK, AMP-activated protein kinase; ATP, adenosine
triphosphate; CHOP, CCAAT/enhancer-binding protein homologous protein; DRP1, dynamin-related protein
1; FIS1, mitochondrial fission 1 protein; FTO, fat mass and obesity associated; HO-1, heme oxygenase-1; IL6,
interleukin 6; KO, knockout; MEF, mouse embryonic fibroblasts; MFN2, mitofusins 2; MPT, mitochondrial
permeability transition; Nrf2, nuclear factor erythroid 2-related factor 2; PGC-1α, Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha; PINK1, phosphatase and tensin homologue-induced putative
kinase 1; ROS, reactive oxygen species; SIRT1, sirtuin 1; TLR4, toll-like receptor 4; TNFα, tumor necrosis factor α;
TRX2, thioredoxin 2; UC-MSC, umbilical cord-derived mesenchymal stem cell.

The energy sensing protein AMPK plays an important role in the regulation of mi-
tochondrial homeostasis and metabolism. Under conditions of energy stress, AMPK is
activated to, simultaneously, reduce energy consumption and increase ATP synthesis via
stimulation of catabolic pathways [75]. To preserve mitochondrial health, AMPK activates
the downstream transcription factor PGC-1α, in a process which requires SIRT1 and which
stimulates mitochondrial biogenesis, dynamics, and quality [76]. It is thought that inducing
the AMPK-PGC-1α signaling pathway protects mice livers against LIRI [59], since AMPK
has protective effects against inflammation, oxidative stress, and apoptosis, which are all
underlying pathological causes of I/R [59,77]. Evidence suggests that SIRT1 is necessary
for the activation of AMPK through a positive feedback cycle [76]. Given its role in stress
responses and its relevance in mitochondria [78], it is plausible to think that it has an impor-
tant role in LIRI. Indeed, prolonged ischemia causes SIRT1 depletion in hepatocytes and its
levels are not restored after reperfusion. Consequently, loss of SIRT1 leads to mitochondrial
dysfunction and necrosis after I/R [60]. Activation of SIRT1 during I/R improved the
clearance of defective mitochondria through mitophagy and led to the suppression of MPT
and necrosis thereby attenuating LIRI [60]. Similarly, increasing SIRT1 levels protected
fatty livers against LIRI by decreasing oxidative stress, activating AMPK, and suppressing
apoptosis [79]. Curiously, mitofusin-2 (MFN2), a key protein for mitochondrial fusion, was
found to have an important role after LIRI. Silencing MFN2 in cells overexpressing SIRT1
abolished the cytoprotective effect of SIRT1 [60].
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3.2. Mitochondrial Fission and Fusion

Mitochondrial turnover is crucial for cellular wellbeing. To prevent mitochondrial
dysfunction and cellular damage, cells rely on the permanent balance between mitochon-
drial biogenesis, dynamics and mitophagy. Mitochondrial networks adapt to various
cytosolic signals by transitioning between different states. Mitochondria become ener-
getically more efficient when in a hyperfused state whereas clearance of dysfunctional
organelles is favored when in a microfused state [80,81]. Transition between these two
states requires events of mitochondrial fission and fusion. Upon post-translational mod-
ification of dynamin-related protein 1 (DRP1) in the cytosol, DRP1 is translocated to the
outer mitochondrial membrane (OMM) where it interacts with its receptors mitochondrial
fission factor (MFF), mitochondrial dynamic proteins of 49 kDa (MID49), MID51, and
mitochondrial fission 1 protein (FIS1) [81–83]. The subsequent oligomerization of DRP1
leads to the constriction and scission of mitochondria. Whereas mitochondrial fusion is
initiated with the association between molecules of MFN1 that are anchored to the OMM of
the two organelles, the interaction between optic atrophy protein 1 (OPA1) and cardiolipin
promotes the fusion of the IMM [81–83]. It is believed that MFN2 has a similar role to
MFN1 in mitochondrial function, however it has not been fully elucidated yet [81,83].

A growing body of evidence supports the suggestion that I/R injury is influenced by
mitochondrial dynamics [63,84–86]. Excessive mitochondrial fragmentation is thought to
increase cell susceptibility to the MPT onset [87] and to trigger cell death by apoptosis [88],
which are hallmarks of LIRI. Reducing mitochondrial fission suppressed the MPT pore
opening and decreased cell death after cardiac I/R injury [89]. Moreover, preserving mi-
tochondrial function and suppressing apoptosis during I/R protected mice livers against
LIRI [61] (Table 1). Studies have reported that the content of mitochondrial fission- and
fusion-related proteins including DRP1 and MFN2 is altered with liver I/R, suggesting that
mitochondrial dynamics mechanisms are imbalanced during liver I/R [50,58]. Therefore,
it is reasonable to assume that manipulation of mitochondrial fragmentation by directly
targeting fission and fusion during liver I/R might have protective effects against LIRI.
Indeed, decreasing DRP1 protein levels reduced mitochondrial fission and attenuated
LIRI [40,50,58]. Similarly, administration of the hormone irisin protected mice against
LIRI by inhibiting DRP1 and FIS1, increasing mitochondrial biogenesis and suppressing
apoptosis [40]. Overexpression of augmenter of liver regeneration (ALR) in mice granted re-
sistance over LIRI [61,62]. ALR suppressed the phosphorylation and translocation of DRP1
to the OMM in a mechanism involving cyclin-dependent kinase 1 (CDK1) and cyclin B [62].
Normal activation of DRP1 is regulated by post-translational modifications such as phos-
phorylation and SUMOylation [90,91]. Curiously, SUMOylation of DRP1 was also found to
be controlled by ALR [63]. Manipulation of DRP1 SUMOylation through ALR protected
hepatocytes from mitochondrial fragmentation and injury after I/R [63]. Furthermore,
decreasing the levels of Drp1 methylated mRNA and its translation impaired DRP1-related
mitochondrial fission and ameliorated LIRI [64]. Further evidence suggests that regulation
of mitochondrial fusion may also have beneficial effects after I/R. Knocking-out toll-like
receptor 4 (TLR4), a protein involved in inflammation, resulted in the upregulation of
MFN2 and PGC-1α, and thus improving mitochondrial function and reducing LIRI [65].
However, amelioration of LIRI was also verified by treating mice with silibinin which
decreased the levels of mitochondrial fusion-related proteins MFN1 and OPA1 [66].

3.3. Mitophagy

Cell survival depends on the quality of the mitochondrial pool. Accumulation of
damaged mitochondria have dire consequences for a cell’s fate. Excessive increase in
mitochondrial Ca2+ can lead to mitochondrial dysfunction [92,93]. High levels of Ca2+ in-
duce the MPT, leading to mitochondrial swelling and triggering the release of cytochrome
c, which result in apoptotic death [94]. Thus, cells must ensure proper elimination of
defective mitochondria. The removal and recycling of unwanted organelles is accom-
plished through autophagic processes that include macroautophagy, microautophagy, and
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chaperone-mediated autophagy. In macroautophagy, the major class of autophagy, cellular
material is engulfed in autophagosomes that then fuse with lysosomes. The enclosed
material is promptly degraded by hydrolytic enzymes in autolysosomes [95]. The se-
lective removal of mitochondria through macroautophagy is denominated mitophagy.
Mitophagy ensures adequate cellular homeostasis as its inhibition results in the collapse of
mitochondrial function contributing to several human diseases such as metabolic disor-
ders, Alzheimer’s disease, cancer and aging [96,97]. Two main regulatory pathways are
responsible for the regulation of mitophagy in mammals, ubiquitin-mediated mitophagy
and receptor-mediated mitophagy. These pathways will not be covered here in depth
as it is beyond the scope of the current review and they have been extensively reviewed
elsewhere [96,98]. Briefly, ubiquitin-mediated mitophagy is dependent upon the interaction
between phosphatase and tensin homologue-induced putative kinase 1 (PINK1) and Parkin.
Under basal conditions, PINK1 is quickly degraded by ubiquitin-proteasome system after
being recruited to the IMM [99]. However, depolarization of mitochondria hinders mito-
chondrial import and so PINK1 remains stabilized in the OMM [100]. Autophosphorylation
of PINK1 leads to the recruitment and activation of Parkin in damaged mitochondria [101].
Substrates of Parkin such as MFN, Miro, and voltage-dependent anion channel (VDAC)
are poly-ubiquitinated due to its E3 ligase activity being recognized by adaptor proteins
that are anchored to microtubule-associated protein 1A/1B light chain 3 (LC3) proteins in
the phagophore [98]. Clearance of mitochondria through receptor-mediated mitophagy in-
volves proteins such as BCL2 interacting protein 3 (BNIP3), BCL2 interacting protein 3 like
(NIX) and FUN14 domain containing 1 (FUNDC1) [96,98]. These mitophagy receptors are
localized in the OMM and interact directly with LC3 to initiate mitochondrial engulfment
and degradation.

Multiple types of cell death contribute to the development of liver damage following
liver I/R. Necrosis is the most predominant, although programmed cell death pathways
such as apoptosis, ferroptosis, and pyroptosis are also implicated [4,102,103]. Autophagy is
typically associated with cell death pathways but it can also act as a mediator of apopto-
sis, or it can even occur independently (autophagy-dependent cell death) [104]. Nutrient
starvation is a trigger of autophagy via regulation of canonical AMPK and mammalian
target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathways [105]. In brief, acti-
vation of AMPK inhibits mTORC1 which results in the activation of Unc-51 like autophagy
activating kinase (ULK1), marking the initiation of autophagy [106,107]. The formation
of the autophagosome is characterized by the sequential assembly of protein complexes
that involve the recruitment and activation of proteins as beclin-1 (BECN1), ATG7 and
LC3 [108]. The mechanisms underlying autophagy during and after liver I/R have been
a topic of great debate for the past years as they appear to have a duality of effects [109].
Which possibly results from the employment of different I/R models, utilization of dif-
ferent treatments, and different conditions [103,109,110]. Nonetheless, manipulation of
autophagy remains an appealing therapeutic that warrants further studies to clarify the
complex mechanisms underlying it during LIRI. Moreover, the enhancement of mitophagy
during I/R has shown promising effects [50,67,69]. It is believed that despite nutrient
depletion during prolonged ischemia being a trigger of autophagy, the energy deficiency
that accompanies it is a major factor in its impairment [23,111]. Loss of ATP is likely to halt
autophagosome formation and thus to impair autophagy and mitophagy [23,112]. Similarly,
in an advanced stage of reperfusion the accumulation of Ca2+ in mitochondria leads to
activation of calpains and in turn proteins implicated in the autophagy machinery, such
as ATG7 and BECN1, are hydrolyzed [112]. Energy insufficiency in association with the
degradation of autophagy-related proteins contributes to a vicious cycle in which failure
to remove deficient mitochondria leads to ROS accumulation, uncoupling of oxidative
phosphorylation and cell death. Exploring mitophagy as a therapeutic approach holds
great promise not only in diverse pathological conditions but also in aging [97]. Indeed,
mitophagy modulators such as urolithin A and spermidine have been shown to have
therapeutical potential against physiological decline [113,114].
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Mitophagy-mediated elimination of unhealthy mitochondria is expected to enhance
mitochondrial and cellular health by impairing the onset of the MPT and improving mito-
chondrial function, thereby preventing hepatocellular death after LIRI. An increasing num-
ber of studies report that mitophagy is disturbed during I/R. After I/R both autophagy- and
mitophagy-related proteins are dysregulated, which is likely to be correlated with impaired
mitochondrial function, cell death, and progression of LIRI. Although the mechanisms of
mitophagy during I/R are still not fully understood, modulation of mitophagy seems to
have beneficial effects for the amelioration of LIRI (Table 1). Treatment of mice with genipin
before I/R is suspected to restore ubiquitin-dependent mitophagy after I/R as shown by the
increase in mitochondrial Parkin [50]. SIRT1 and AMPK are likely to be interconnected and
to play a relevant role in the regulation of mitophagy during I/R since inhibition of SIRT1
decreased phosphorylation of AMPK and impaired the effects of genipin on LIRI [50]. I/R
injury is aggravated in alcoholic fatty liver-induced mice being characterized by impaired
autophagy and mitophagy, increased inflammatory response and extensive hepatocellular
death. Pretreatment with 2-methoxyestradiol restored the expression of autophagy-related
proteins including BECN1, ATG5, ATG7, LC3-II, and Parkin. This was found to attenu-
ate LIRI through a SIRT1-dependent mechanism [67]. Actually, SIRT1 is also thought to
induce mitochondrial autophagy through direct deacetylation of MFN2 [111]. In a recent
study, stimulation of mitophagy using 5-aminoimidazole-4-carboxamide ribonucleotide
(AICAR), an AMPK activator, during I/R in diabetic mice improved an already aggravated
I/R injury. Oxidative stress was attenuated and PINK1/Parkin-related mitophagy was
stimulated [68]. Besides being deeply involved in the regulation of energy metabolism,
AMPK also regulates a variety of aspects crucial for mitochondrial homeostasis. It is known
to regulate mitochondrial biogenesis, dynamics and mitophagy [75]. Its participation in
these processes was found to be crucial for its role in the regulation of I/R injury [115,116].
However, the signaling pathways by which it contributes to the amelioration of LIRI are
still being uncovered. Additional evidence supports the role of AMPKα in the alleviation of
LIRI [69]. Transfusion of mesenchymal stem cells into mice after reperfusion attenuated I/R-
induced hepatocellular damage through activation of AMPKα-mediated PINK1-dependent
mitophagy [69]. Similarly, both 25-hydroxycholesterol and pterostilbene improved LIRI via
activation of PINK1-mediated mitophagy [70,71]. Gu and colleagues provided evidence
suggesting that PINK1 is translocated to mitochondria upon I/R through mitochondria-
associated membranes, and knocking down PINK1 aggravates LIRI by increasing the pool
of dysfunctional mitochondria [117]. Moreover, modulation of Parkin also seems to be
beneficial for I/R injury. Treatment of mice with resolvin D1 improved mitochondrial
health by reducing mitochondrial swelling, decreasing oxidative stress, and modifying
mitochondrial-related proteins including PGC1α, NRF1, TFAM, DRP1, PINK1 and Parkin.
Additionally, it was found that the observed effects were mediated by thioredoxin 2 (TRX2)-
thioredoxin-interacting protein (TXNIP) signaling which is being discovered as a regulator
of mitochondrial quality [72]. Parkin deficiency exacerbates LIRI in rats by suppressing
mitophagy [118]. Other pathways of mitophagy are also involved in I/R. For instance,
Zhou and colleagues demonstrated that CCAAT/enhancer-binding protein homologous
protein (CHOP) knockout decreased hepatocellular death during LIRI. The absence of
CHOP led to upregulation of DRP1 and BECN1 and thus increased mitophagy following
I/R in mice [73].

The synergy between improved mitochondrial biogenesis and mitophagy resulted in
an increased cellular tolerance against LIRI. Mitophagy is interconnected with mitochon-
drial dynamics as evidenced by Kong and colleagues, where silencing Mfn2 impaired the
effects of ALR during LIRI primarily by impairing ubiquitin-dependent mitophagy [74].
However, most previous studies share a common limitation. The lack of a methodology to
directly analyze mitophagy has led to the utilization of indirect methods, such as measuring
the content of autophagy- and mitophagy-related proteins.
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4. Impact of Liver Conditions on LIRI

The increasing demand for liver transplants has led to an alarming number of patients
on waiting lists [1,2]. In spite of significant improvements in the past few decades that have
improved the success of liver transplantation and improve the quality of life of patients
post-surgery, many patients with end-stage liver disease die while waiting for transplanta-
tion [119]. Inclusion of marginal liver donors in the liver donor pool is a plausible strategy
to neutralize these effects [2]. Currently, liver steatosis and advanced donor age are among
the main reasons to discard available livers due to their higher susceptibility to I/R injury
that contributes to post-surgery complications and lower survival rate. Decreasing the
detrimental effects of I/R injury in livers from marginal donors would increase the number
of donors and improve the outcome of liver surgery. The development of such strategies is
dependent on the understanding of the underlying mechanisms of I/R injury in livers from
marginal donors. In the following sections, we will discuss the impact of age and steatosis
in liver transplantation and possible strategies to minimize liver susceptibly to I/R injury
(Table 2).

Table 2. Interventions that ameliorate or protect against liver ischemia/reperfusion injury (LIRI)
during non-alcoholic fatty liver disease (NAFLD) and aging.

Intervention Species/Model Mechanism of Action References

NAFLD

Ucp2 silencing UCP2-KO ob/ob mice
Increased ATP levels
Increased mice survival following
I/R

Evans et al. [120]

Ucp2 silencing UCP2-KO primary hepatocytes

Increased cellular viability
Increased ATP levels
Increased mitochondrial
membrane potential

Evans et al. [121]

Renalase HFD mice
HepG2

Increased NAD+ levels and
activation of SIRT1
Decreased ROS production
Increased mitochondrial function

Zhang et al. [122]

Aging

Simvastatin Wistar rats
Inhibition of HMG-CoA
Decreased hepatocellular damage
Decreased oxidative stress

Hide et al. [123]

Ischemic and glucose
preconditioning Mice Increased ATP levels Selzner et al. [124]

Sirt1 and Mfn2 overexpression Mice
Primary hepatocytes

Prevention of mitochondrial
dysfunction
Prevention of MPT pore opening
Increased mitophagy
Prevention of cell death

Chun et al. [125]

Calpastatin overexpression Mice
Primary hepatocytes

Mitochondrial elongation
Prevention of MPT pore opening
Prevention of mitochondrial
depolarization
Prevention of necrosis

Flores-Toro et al. [126]

Ischemic and rapamycin
preconditioning Mice Increased autophagy Jiang et al. [127]

Plasma from young mice Sprague Dawley rats
Primary hepatocytes

Activation of AMPK/ULK1
pathway
Increased autophagy

Liu et al. [128]

AMPK, AMP-activated protein kinase; ATP, adenosine triphosphate; HFD, high fat diet; HMG-CoA, hydroxy-
methylglutaryl coenzyme A; I/R, ischemia/reperfusion; KO, knockout; MFN2, mitofusin-2; MPT, mitochondrial
permeability transition; NAD, nicotinamide adenine dinucleotide; NAFLD, non-alcoholic fatty liver disease;
ROS, reactive oxygen species; SIRT1, sirtuin 1; UCP2, uncoupling protein 2; ULK1, Unc-51 like autophagy
activating kinase.

4.1. Fatty Liver Disease

Obesity is a major concern for human health, especially in developed countries, as it
has been on the rise for many decades and is associated with many comorbidities. Obesity
increases the risk of developing several diseases including metabolic syndrome, type 2 dia-
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betes (T2DM), cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD) [129].
NAFLD is characterized by the accumulation of triglycerides in hepatocytes (hepatic steato-
sis) that prompts hepatocyte injury and death, as well as liver inflammation [130]. The
progression of NAFLD is related to cirrhosis and hepatocellular carcinoma (HCC). Hep-
atic steatosis is typically associated with obesity, as substantial accumulation of body fat
results in the dysfunction and death of adipocytes [131]. In turn, development of insulin
resistance due to secretion of cytokines and inflammatory mediators by adipocytes leads
to the release and accumulation of free fatty acids in hepatocytes [130]. This triggers the
synthesis of triglycerides by hepatocytes which is associated with the accumulation of
diacylglycerols intermediates that lead to the development of hyperglycemia [130]. The
excessive accumulation of free fatty acids in the liver makes it more susceptible to injury
due to mitochondrial uncoupling and overproduction of ROS through the mitochondrial
respiratory chain, stimulation of endoplasmic reticulum stress and activation of cell death
receptors [130,131]. Interestingly, mitochondria from injured hepatocytes release DAMPs
that activate HSCs and stimulate the progression into liver fibrosis [132]. Liver steatosis
increases the risk of morbidity and mortality after liver surgery including liver transplanta-
tion and resection [133]. NAFLD is a major risk factor for increased HCC recurrence after
liver transplantation [134,135]. Liver transplantation is associated with increased recurrence
of HCC, which is likely associated with LIRI [136,137]. The release of proinflammatory
cytokines, growth factors and ROS, as well as changes in the liver microenvironment, facili-
tate the formation and development of metastasis after liver transplantation [136,138–140].
While the role of mitochondria in HCC recurrence after liver transplantation is not well
understood, it can be assumed that mitochondrial function and health are important con-
tributors to HCC progression. Poorly regulated mitochondrial metabolism, dynamics, ROS,
and mitophagy exacerbate proliferation and growth of HCC cells and the development of
metastasis [141,142].

Steatotic livers are more vulnerable to I/R injury than non-steatotic livers. In fact,
the mechanisms underlying LIRI seem to be different for both cases [26,143]. Apoptosis
was shown to be the prevalent type of cell death after I/R injury in normal rat livers
while necrosis was the main type of death following I/R injury in steatotic rat livers [143].
Moreover, since mitochondrial dysfunction is a major contributor to the development and
progression of NAFLD [144], it might be a likely cause for the increased susceptibility of
steatotic livers to I/R injury. During NAFLD, loss of hepatic mitochondrial homeostasis
leads to increased oxidative stress that impairs mitochondrial respiration, causes lipid
peroxidation, increases the secretion of cytokines, and eventually leads to hepatocyte
death [145]. Indeed, higher generation of superoxide was observed during reperfusion
in fatty rat livers than in lean rat livers, which is thought to be linked to increased lipid
peroxidation and higher susceptibility to LIRI [41]. The superoxide anion is a main type
of ROS that when produced in excessive quantity is typically associated with damage to
mtDNA and mitochondrial-encoded respiratory chain proteins, thus deteriorating mito-
chondrial function [146]. ROS-mediated damage to mitochondrial respiratory complexes
may help explain the impairment of mitochondrial energy metabolism after I/R in steatotic
livers. Caraceni and colleagues demonstrated that oxidative phosphorylation is signifi-
cantly impaired in fatty livers [147]. In this study, complex I and ATPase activities were
found to be decreased during I/R and, after reperfusion, ATP levels were not recovered
in steatotic livers [147]. These results are consistent with a later study where the authors
show that warm I/R leads to mitochondrial complex I dysfunction and consequently to
higher susceptibility of steatotic livers to LIRI [148]. Complex I is a mitochondrial site that
is associated with significant ROS production [149]. Mitochondrial uncoupling protein 2
(UCP2) regulates metabolism by working as an uncoupler of oxidative phosphorylation
from ATP generation [150]. Interestingly, UCP2 deficiency ameliorated LIRI and increased
the survival of mice after I/R [120]. UCP2 was found to be responsible for hepatocyte sus-
ceptibility to hypoxia/reoxygenation by reducing mitochondrial membrane potential and
ATP levels [121]. Moreover, activation of the AMPK-SIRT1 signaling pathway by renalase
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mitigated oxidative stress and alleviated mitochondrial dysfunction in steatotic livers [122].
Induction of HO-1 in steatotic livers has also shown promise in the amelioration of steatotic
liver I/R injury [151]. Stimulation of mitochondrial function to decrease steatosis-induced
susceptibility to LIRI may be a promising strategy to increase the use of marginal liver
donors in liver transplantation.

4.2. Aging

Organismal function progressively declines during adulthood, eventually resulting
in death. For a long time, researchers have been looking for approaches to hinder this
functional decline to increase the health span and life expectancy of human beings. Current
efforts are focused on understanding the driving causes of aging and in the discovery of
anti-aging interventions, including nutrient restriction and natural compounds [152–154].
The causes of aging are currently summarized in well accepted hallmarks [155,156]. Mito-
chondrial and metabolic dysfunction have major roles in aging [7], since age progression
is accompanied by metabolic changes, decline of mitochondrial function, and decline of
autophagy efficiency [157–159]. The liver is a major regulator of systemic metabolism. But
despite having a notable resilience to aging its function still declines during aging, leading
to an increase of the incidence of liver diseases [160–162]. The decrease of its function
is correlated with impaired mitochondrial bioenergetics and increased oxidative injury
caused by mtDNA mutations, oxidative stress, and defects in oxidative phosphorylation.
Genomic instability, telomere attrition, epigenetic alterations, and deregulated nutrient sens-
ing pathways are some of the other causes underlying age-related liver dysfunction [161].
Evidence suggests that surgical interventions including liver transplantation, as well as
resection, have worse outcomes in aged patients than in younger patients [163,164]. Using
aged liver grafts for liver transplantation is associated with higher mortality of the recipi-
ent [162,165,166]. However, this is source of controversy as systematic reviews demonstrate
that the impact of age on liver interventions is not significant, ruling out age as an exclusion
criterion for liver resection [167,168]. However, more studies are warranted to clarify if this
controversy simply arises from careful liver donor selection or from the type of disease
that the patients have at the time of liver resection [169–171]. Nonetheless, the increased
morbidity and mortality associated with the outcome of liver transplantation is in part due
to sensitivity to LIRI. Aged livers have been associated with higher susceptibility to I/R in-
jury in the context of liver transplantation and resection [172–174]. In comparison to young
mice, adult mice had increased liver injury in response to I/R injury, which was shown to
be associated with altered inflammatory response and impaired neutrophil function [174].
Similarly, livers from 9 month-old rats that underwent warm I/R had increased hepatocel-
lular injury compared to livers from 2 month-old rats [173]. Following I/R, livers from old
animals were characterized by having increased cellular stress, reduced vasodilation and
sinusoidal capillarization [123]. Simvastatin inhibits hydroxy-methylglutaryl coenzyme A
(HMG-CoA) and is typically used to lower lipid blood levels. Its administration before I/R
in old animals protected their livers against damage [123].

Aging is characterized by the progressive loss of mitochondrial function. With aging
the mitochondrial morphology is altered [175], the efficiency of oxidative phosphorylation
declines [176], and mitochondrial quality control mechanisms are impaired [159]. Since
mitochondrial dysfunction has a big impact on liver’s susceptibility to LIRI, it is possible
that aged livers might be more vulnerable to I/R injury in part because of age-related
mitochondrial dysfunction. Indeed, Selzner and colleagues noticed that hepatic ATP
content decreases after ischemia in both young and old mice. However, contrary to young
livers, ATP content is not recovered after reperfusion in the livers of old mice [124]. These
results hint that the impact of old age in oxidative phosphorylation and consequently on
ATP synthesis exacerbates LIRI. Preconditioning the livers of old mice with short periods
of I/R and glucose administration before ischemia was enough to increase ATP content
after reperfusion and protect against injury [124]. I/R injury was found to particularly
aggravate mitochondrial function in old mice as demonstrated by depletion of proteins
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relevant to maintain mitochondrial quality such as SIRT1 and MFN2 due to increased
expression of calpains [125]. Overexpression of SIRT1 and MFN2 reduced I/R injury in old
mice by preventing the opening of the MPT pore, stimulating mitophagy and promoting
mitochondrial function [125]. During I/R there is a decrease of calpastatin, which is an
inhibitor of calpains. This decrease is aggravated in old animals resulting in mitochondrial
dysfunction, impaired autophagy, and hepatocyte death. Its overexpression was shown to
be protective against LIRI [126]. The accumulation of unhealthy mitochondria during aging
is likely associated with a decline in mitophagy [97]. Age-associated defects in mitophagy
were found to exacerbate LIRI in mice as proteins that play essential roles in mitophagy
and autophagy, such as Parkin and ATG5, were found to be decreased in the livers of old
mice [177]. Actually, improving autophagy by administration of rapamycin and ischemic
preconditioning successfully protected livers from I/R injury in old mice [127]. Rapamycin-
mediated inhibition of mTOR was shown to improve mitophagy [178], and to have positive
effects on lifespan extension [179]. There are several strategies that are currently being
study to reverse aging. Parabiosis consists in uniting two living animals resulting in
the sharing of blood supply between the two [180]. Circulating factors present in the
blood of young mice are thought to have rejuvenating effects and has shown promising
effects on restoring synaptic plasticity and improving cognitive function in old mice [181].
Interestingly, administration of plasma from young mice to old mice before I/R attenuated
LIRI by improving autophagic activity due to activation of the AMPK/ULK1 signaling
pathway [128]. With age progression there is dysregulation of the immune system resulting
in a higher tendency for the development of inflammation [182]. Mitochondrial dysfunction
and activation of the nucleotide-binding domain and leucine-rich repeat containing protein
3 (NLPR3) inflammasome are potential mechanisms for age-associated inflammation. Since
one of the causes for LIRI is related to the inflammatory immune response, its suppression
might be a promising strategy to ameliorate LIRI in old livers. Recently, it was found that
hepatocytes from old mice release more mtDNA than those from young mice after I/R [183].
Circulating mtDNA has been recognized has being a proinflammatory DAMP [4]. Indeed,
increased release of mtDNA activated the NLPR3 inflammasome leading to the stimulation
of a macrophage-mediated proinflammatory response that exacerbated LIRI [183].

5. Concluding Remarks

This review provides current knowledge on mitochondrial quality control during LIRI
and proposes that the preservation of mitochondrial health is essential for improving patient
outcomes. Our knowledge of liver I/R has increased significantly over the last few decades.
Understanding the complex mechanisms underlying liver I/R is crucial for improving
the clinical success of liver surgeries such as liver transplantation and resection. The
ubiquity of mitochondria, as shown by their involvement in several metabolic and signaling
pathways, makes them extremely relevant organelles for the maintenance of whole-body
homeostasis. Dysregulation of mitochondrial function contributes to the development and
progression of many human diseases. As anticipated, mitochondria are also important for
liver I/R injury. The production of mitochondrial ROS, calcium overload, and increased
mitochondrial permeability are hallmarks of LIRI. These hallmarks are being targeted
by emerging strategies that focus on improving mitochondrial structure and function
through modulation of mitochondrial biogenesis and dynamics, as well as mitophagy.
Thus, a better understanding of mitochondrial and metabolic functions will allow the
development of novel interventions aimed at ameliorating LIRI in livers from healthy and
marginal donors, including steatotic and old livers. For instance, potential interventions
may include supplementation of preservation solutions with chemical compounds or even
administration of chemical compounds during reperfusion of the liver to increase the
success of the transplanted grafts.

Interestingly, the release of DAMPs from damaged mitochondria into the circulation of
liver donors correlates with early graft dysfunction in liver transplant recipients [184,185].
Dysregulation of mitochondrial function is implicated in graft dysfunction and rejection
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after liver transplantation [186]. Mitochondrial injury is closely related to the outcome of
liver transplantation. Indeed, improving mitochondrial function with machine perfusion
leads to improved graft function [8,187]. Machine perfusion allows the monitoring of
mitochondrial function and the detection of mitochondrial-related biomarkers [187,188].
Both parameters could help predict liver function before liver implantation and liver
morbidity and mortality after transplantation [187,188]. A clinical study found that poorly
performing mitochondria from human patients were correlated with worse complications
after liver transplantation [189].
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