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Abstract: Robust methods to compute tissue displacements in optical coherence elastography (OCE)
data are paramount, as they play a significant role in the accuracy of tissue elastic properties estima-
tion. In this study, the accuracy of different phase estimators was evaluated on simulated OCE data,
where the displacements can be accurately set, and on real data. Displacement (∆d) estimates were
computed from (i) the original interferogram data (∆ϕ ori) and two phase-invariant mathematical
manipulations of the interferogram: (ii) its first-order derivative (∆ϕd) and (iii) its integral (∆ϕint).
We observed a dependence of the phase difference estimation accuracy on the initial depth location
of the scatterer and the magnitude of the tissue displacement. However, by combining the three
phase-difference estimates ( ∆dav), the error in phase difference estimation could be minimized. By
using ∆dav, the median root-mean-square error associated with displacement prediction in simulated
OCE data was reduced by 85% and 70% in data with and without noise, respectively, in relation to the
traditional estimate. Furthermore, a modest improvement in the minimum detectable displacement
in real OCE data was also observed, particularly in data with low signal-to-noise ratios. The feasibility
of using ∆dav to estimate agarose phantoms’ Young’s modulus is illustrated.

Keywords: optical coherence elastography; phase-resolved OCE; displacement estimation; Young’s
modulus

1. Introduction

Evaluation of tissue biomechanical properties can provide important information for
disease diagnosis and monitoring. Tissue stiffness has long been recognized as a biomarker
of disease. Its assessment by palpation was already performed in ancient Egypt, and it is
still a common tool for physical diagnosis in clinical practice [1]. Quantitative assessment
of tissue biomechanics can be performed non-invasively using elastography techniques,
including optical coherence elastography (OCE).

First introduced in 1998 by J. M. Schmitt [2], OCE is still an emerging technique for
assessing tissue elasticity. This imaging modality combines optical coherence tomography
(OCT) with a locally applied force to induce tissue displacement [3]. There are different
implementations of OCE, varying the type of mechanical loading of the tissue (e.g., contact
or non-contact, static, quasi-static, or dynamic, localized or global), the OCT scanning

Sensors 2023, 23, 3974. https://doi.org/10.3390/s23083974 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083974
https://doi.org/10.3390/s23083974
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5672-8266
https://orcid.org/0000-0002-0188-7761
https://orcid.org/0000-0001-9455-1206
https://orcid.org/0000-0002-6677-2754
https://doi.org/10.3390/s23083974
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083974?type=check_update&version=2


Sensors 2023, 23, 3974 2 of 14

protocol, and the method used to quantify tissue deformation [3–6]. Nonetheless, they are
all based on the detection of tissue deformation from consecutive OCT scans.

Speckle-tracking or phase-resolved techniques can be used to obtain tissue displace-
ments. Speckle-tracking methods are based on intensity information and, therefore, typi-
cally require large displacements, making them unsuitable for imaging fragile tissues [7].
Phase-resolved measurements instead use phase difference information [6,7]. This provides
nanoscale displacement sensitivity [3]. Combined with the microscale spatial resolution of
OCT systems, OCE enables measurement scales unattainable by other elastography meth-
ods [3]. Therefore, its application in medical research has gained momentum, especially in
ophthalmology [8–10].

The system’s phase stability is a determinant for the measurement precision of phase-
resolved OCE. Imperfect timing synchronization is the primary source of phase instabil-
ity [11]. This problem is more relevant for swept-source systems due to the frequency
jitter introduced by wavelength sweeping with mechanically moving mirrors. Several
approaches have been considered and implemented to minimize the timing errors that
lead to phase jumps. Commonly used solutions involve the generation of optical timing
references. To correct for the nonlinearity of the swept-source frequency sweeps, Mach-
Zehnder Interferometer (MZI) optical clocks are typically used. Fiber Bragg Gratings (FBG)
are used as a wavelength-dependent trigger signal to synchronize the source sweep with
the data digitization by the data acquisition (DAQ) board [11]. Other solutions include the
implementation of a second reference arm to measure time-induced phase variations, as
proposed by Vacok et al. [12]. The authors greatly improved the system’s sensitivity by
calibrating the phase using the recorded phase noise [12]. Recently, Li et al. described a
40-fold increase in phase stability by using a common-path OCE configuration, achieving
displacement sensitivities of 0.3 nm [13]. These configurations significantly improve the
phase stability of the system and, consequently, the precision of phase-resolved measure-
ments. However, they also require changes to the instrument’s setup that are not always
possible or desirable.

The precision and accuracy of the method used to estimate the phase difference also
play an important role in the correct assessment of tissue elasticity [6]. Several methods
have been proposed to obtain the phase difference from successive interferograms. The
most direct approach is obtained by subtracting the phases of consecutive interferograms
acquired at the same location within a short period of time [6,7], but this is very sensitive
to noise [7]. To increase the signal-to-noise ratio (SNR) and stability, a 2D autocorrelation
approach has been proposed by Loupas et al. [14]. This method exploits depth-wise phase
information for phase difference estimation. The size of the axial window is variable. How-
ever, to obtain an adequate SNR improvement while maintaining a high displacement axial
resolution, it cannot be greater than 2% of the imaging depth [7]. Simultaneous averaging
of the phase difference in the lateral and axial directions using a rectangular window has
also been proposed to increase the robustness of the estimation [15]. This approach has
been combined with intensity-based pixel-scale displacement tracking (speckle-tracking)
to reduce additive noise and displacement-related decorrelation [15]. Phase averaging
combined with a vector method has also been proposed, where incremental vectors of
lateral and vertical phase variations are generated from the complex-valued signals to
further reduce additive noise and eliminate the need for phase unwrapping [16,17].

The long-term goal of our research efforts is the early detection of neurodegeneration,
namely the detection of Alzheimer’s disease (AD) in its asymptomatic phase, by measuring
changes in the mechanical properties of the retina, the visible part of the central nervous
system. Significant changes in the brain’s elastic properties have already been detected
in AD patients [18–20]. Moreover, cell mechanic properties appear to be affected by the
accumulation of amyloid beta that is characteristic of AD senile plaques [21]. Our goal
is to detect subtle changes in retinal elasticity, highlighting the importance of accurately
estimating tissue displacements. The goal is to detect subtle changes in tissue elasticity,
highlighting the importance of accurately estimating tissue displacements. Reductions in
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axial and temporal resolution due to the averaging of signals in depth and lateral directions
must also be avoided.

In this study, we evaluated the performance of the original phase difference estimation
method to better understand the influence of the magnitude of tissue displacement as
well as the scatterer’s depth location on the accuracy of the estimated phase difference
from successive scans and to develop alternative solutions to improve the accuracy of
phase difference estimation. In addition to the estimation of the phase difference from the
raw interferogram data, we also evaluated the estimates from two phase-invariant math-
ematical manipulations of the interferogram: (i) the first-order derivative of the original
interferogram and (ii) the integral of the original interferogram, and from a combination
of the three approaches. The performance of each method was evaluated on numerical
simulations of OCE data, with and without noise, and real data.

2. Theory

In phase-resolved measurements, the sample displacement ∆d is obtained by estimat-
ing the phase difference ∆ϕ [6] as:

∆d = ∆ϕ
λ0

4πn
(1)

where, λ0 is the center wavelength of the laser and n is the refractive index of the sample.
As mentioned above, there are several methods to estimate ∆ϕ[z] at depth z, with different
accuracies and sensitivities to noise.

The A-scan intensity and phase are obtained from the measured interferogram F[k]
by the inverse discrete Fourier transform (IDFT). F[k] is a discrete signal with N samples
corresponding to the wavenumbers swept by the laser source from kmin to kmax. Hence,

f [z] =
N−1

∑
k=0

F[k]ej2πkz/N (2)

where j is the complex unit and the complex function f is discrete in space z. OCT A-scans
are defined by the magnitude of f [z], that is, Ascan[z] = | f [z]|, with z = 0, . . . , N − 1, and
the phase ϕ[z] given by the angle ∠ of f [z].

Now, considering two successive interferograms, F0 and F1, acquired at the same
lateral location of two instants in time, t0 and t1, with t1 = t0 + ∆t, ∆ϕ[z] can be estimated
as [6,7]:

∆ϕ[z] = ϕ1[z]− ϕ0[z] (3)

∆ϕ[z] = tan−1 Im{ f1}Re{ f0} − Re{ f1}Im{ f0}
Re{ f1}Re{ f0}+ Im{ f1}Im{ f0}

(4)

where Im and Re are the imaginary and real parts of the complex function f , respectively.
In this formulation, the phase difference is computed using only one evaluation of the
inverse tangent function, which improves the numerical accuracy over subtracting the
separately computed phases. However, it is still sensitive to noise [7].

In this work, we introduce the estimation of ∆ϕ[z] from phase-difference-invariant
mathematical variations of the original interferogram: (i) the first-order derivative and
(ii) the integral of the original interferogram, respectively computed using a first-order
finite difference approximation of the derivative Fd[k] ≈ F′[k] = (F[k + 1]− F[k− 1])/2
and Fint[k] =

∫ k
0 F(u)du approximated by the trapezoidal rule. These approximations

were chosen because both are second-order numerical schemes and therefore have similar
performance. The phase differences ∆ϕd[z] and ∆ϕint[z] were then calculated from f d[z]
and f int[z], respectively, using Equation (4) after the IDFT.
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3. Materials and Methods
3.1. System Setup

This study used a home-built swept-source OCE (SS-OCE) system. A schematic
representation of the system is shown in Figure 1. It consists of an SS-OCT with a swept-
source laser (Axsun, Excelitas Technologies Corp., Mississauga, ON, Canada) emitting at a
center wavelength of 1040 nm with a bandwidth of 110 nm and a repetition rate of 100 kHz,
coupled with a piezoelectric actuator to induce tissue displacement. The output of the
laser source is split by a 90 to 10 optical fiber coupler, with 90% of the light being used to
generate the interferograms and the remaining 10% being directed into a FBG. The light
reflected from the FBG, at a wavelength of 990 ± 1 nm, is converted to an electrical signal
by a photodiode and directed to a digital delay and pulse generator (DG535, Stanford
Research Systems, Sunnyvale, CA, USA) to generate trigger pulses with appropriate timing
and amplitude for data acquisition.
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formed by coupling the sample and reference reflected light using a 50 to 50 optical fiber 
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Displacements were induced using a piezoelectric actuator (P-287, Physik Instru-
mente GmbH & Co. KG, Karlsruhe, Germany). The tip of the contact rod is circular, with 
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Figure 1. Schematic representation of the system used for the swept-source optical coherence elas-
tography (SS-OCE) system employed. C—Collimator, L—Lens, M—Mirror, GM—Galvanometric
mirrors, ADC—Analog-to-digital converter channel.

The light is further split 90 to 10 between the sample and reference arms to generate the
interferograms. In the sample arm, the light is delivered to and collected from the sample
using a 50 to 50 optical fiber coupler. An LSM03-BB objective (Thorlabs, Inc., Newton, NJ,
USA), with an effective focal length of 36 mm and an entrance pupil diameter of 4 mm,
was used to focus the light onto the sample. In the reference arm, the light is reflected from
a fixed reference mirror. A fiber polarization controller removes polarization variations
between the sample and reference signals. The resulting interference fringes, formed by
coupling the sample and reference reflected light using a 50 to 50 optical fiber coupler,
are detected by a balanced photodetector that subtracts the two signals to remove the
common-mode noise. A DAQ board (X5-400M, Innovative Integration, Inc., Indianapolis,
IN, USA) digitizes the photodetector output using the FBG-generated trigger. In addition,
the inverted signal of the FBG transmission is recorded in the second analog-to-digital
converter (ADC) channel of the DAQ board for further post-processing jitter correction.
The clock signal is provided by the internal MZI clock of the laser source.

Displacements were induced using a piezoelectric actuator (P-287, Physik Instrumente
GmbH & Co. KG, Karlsruhe, Germany). The tip of the contact rod is circular, with a
diameter of approximately 1.3 mm. It was positioned approximately 1.5 mm to 4.5 mm
from the scan line of the OCT beam (Figure 1, inset). Mechanical vibrations were triggered
by a transient pulse signal synchronized with the galvanometric mirrors and the FBG-
generated trigger to initiate data acquisition using a field-programmable gate array (FPGA).
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The width, delay, and amplitude of the transient pulse signals were controlled by an
arbitrary function generator (AFG3101C, Tektronix, Beaverton, OR, USA).

Numerical Simulations

The performance of the phase difference estimators was first tested on numerical sim-
ulations of the OCE data. Based on the specifications of the swept-source laser used in our
system, simulated interferograms for a single scatterer in a medium with a refractive index
of 1.38 were generated using Matlab 2021a (MathWorks®, Natick, MA, USA). Considering
the spectral intensity distribution of the swept-source laser S(k) and that the refractive
index n was constant with depth, the simulated interference signals I(k) were generated
as [22]:

I(k) = S(k)
[

aReik2r +
∫ ∞

0
a(z)eik2(r+nz)dz

]2
(5)

where k is the wavenumber swept by the laser, ranging between kmin and kmax within
N discrete samples, aR stands for the amplitude of the reference, a(z) is the backscatter
amplitude of the object at depth z and, 2r and 2(r + z ) are the path lengths in the reference
and object arms, respectively. The autocorrelation term resulting from Equation (5) was
neglected. The IDFT was then used to retrieve the intensity and phase of the simulated
interferogram. The scatter’s depth location is precisely adjusted by changing the length
of the object’s arm 2(r + z ). A depth-wise shift of 90 nm in each direction was imposed
to estimate the phase difference between the two interfaces. In these simulations, the
interface shift was limited to ±90 nm relative to the initial location to avoid consideration
of phase unwrapping.

The theoretical axial resolution of a swept-source system with the above specifications
in a medium with a refractive index of 1.38 is approximately 6.7 µm. To better simulate
the results obtained with this system, the initial location of the scatterer was moved 7 µm
in steps of 10 nm, comprising 710 depth locations (Figure 2). A depth range between
300 µm and 307 µm was chosen because it corresponds to the highest SNR of the system
described above. For each location, the scatterer was shifted over a range of 180 nm, and the
phase difference was computed. The error in phase difference estimation of each method
was evaluated under ideal conditions (no noise) and after adding the system noise (real
data) to the generated interferogram. The system noise was approximately 47.73 LSBrms
(least significant bit root-mean-square). The original and the shifted interferograms were
subjected to random noise of the same level.
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3.2. Phase Difference Measurements

All methods were implemented using Matlab 2021a (MathWorks®, Natick, MA, USA).
The workflow is shown in Figure 3. The original phase difference estimate (∆ϕori) was
obtained after the IDFT of each interferogram to obtain the respective A-scan magnitude
and phase. The phase difference between consecutive A-scans was then calculated using
Equation (4) (Figure 3A). For the proposed phase difference estimators, the first-order
derivative (Fd[k]) and integral (Fint[k]) of the original interferogram were computed prior
to the IDFT. An approximation of Fd[k] was obtained using the difference between the
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discrete channels (Figure 3B). For an approximation of Fint[k], the cumulative integral
using the trapezoidal method was used (Figure 3C). Following the IDFT, ∆ϕd and ∆ϕint

were estimated from Equation (4). Phase unwrapping was applied to the estimated phase
differences ∆ϕori, ∆ϕd, and ∆ϕint, affecting the displacement estimation error of all methods
equally. Equation (1) was used to calculate the displacements ∆dori, ∆dd, and ∆dint, from
the estimated phase differences ∆ϕori, ∆ϕd, and ∆ϕint, respectively.
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3.3. Real Data Acquisition
3.3.1. Static Conditions

The OCT interference signal of a highly reflective sample (gold-coated mirror) was
used to determine the temporal stability of the system and the performance of each estima-
tor under static (real) conditions, i.e., without inducing any displacement. The influence
of the imaging depth, and consequently the SNR, was evaluated by changing the relative
depth location of the sample. Data were recorded at optical path differences (OPDs) be-
tween 0 µm and 3000 µm in steps of 500 µm, with OPD = 0 µm being the depth location
with the highest measured SNR (71.19 dB) and OPD = 3000 µm the lowest (40.16 dB).

The minimum detectable displacements were calculated to determine the resolution
of each estimator. Fundamental limitations of the minimum detectable displacement in
phase-sensitive measurements are phase stability and the precision of the ∆ϕ computation.
The former is limited by the system’s temporal stability and is inherently related to the
instrument’s setup. The measured temporal stability of the system was 396.9 ± 46.7 ps [23].
No changes were observed in the system’s temporal stability with a decrease in the sys-
tem SNR.

The displacement resolution is linearly dependent on the standard deviation of the
measured phase difference (σ∆ϕ), as shown in Equation (1) [6]. Thus, the σ∆ϕ was calculated
as a metric of the minimum detectable displacement. The lower the error associated with
the displacement estimation, the higher the accuracy. The root-mean-square error (RMSE)
was computed to provide additional information about the accuracy of the displacement
estimation.

3.3.2. Dynamic Conditions

Data were collected using the Motion-Brightness (M-B) scanning protocol [3]. Axial
scans were repeated 768 times at a fixed spatial location to track surface motion at high
frame rates, corresponding to a scan time of 7.68 ms per location. B-scans were generated
by temporally aligning the different spatial locations. Imaging was performed at 256 lateral
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locations. Data were acquired over an approximately 3 mm line in steps of 11.72 µm
(Figure 1, inset).

Transient pulses were used to induce motion in homogeneous agarose phantoms.
The surface motion was generated once at each spatial location, with a delay of 100 µs
(corresponding to 10 interferograms), using transient pulses with widths between 100 µs
and 600 µs, in steps of 100 µs, with a fixed amplitude of 50 mV. A total of three measure-
ments were made for each pulse width. The average laser power at the sample arm was
approximately 1.06 mW.

The estimator with the highest accuracy in both simulated and static data was then
used to obtain the phase difference at the phantom boundary. The surface displacement
was calculated using Equation (1) to derive the elastic modulus (Young’s modulus) of the
phantom, E = 3ρC2

s , where ρ is the material density and Cs is the shear wave velocity.
The refractive index of agarose phantoms was calculated from their concentration c as
np = 0.0014c + 1.333 [24].

The propagation velocity of the generated surface waves (Rayleigh waves) CR was ob-
tained from the propagation distance of a transient pulse ∆D during the time
∆t as CR = ∆D/∆t. The Cs was then obtained using the correlation Cs = 1.05CR [7]. Av-
erage cross-correlations between tissue displacement curves over time (n = 10) in 0.5 mm
increments were used to obtain ∆D.

3.4. Phantom Preparation

Homogeneous agarose phantoms, with tissue-mimicking properties, were prepared
by gently mixing agar with distilled water at a high temperature (85 ◦C) in concentra-
tions of 10 g/L, 15 g/L, and 25 g/L while stirring. Glass microspheres, with diameters of
152 ± 32 µm, were added to the mixture at a concentration of 10 g/L to increase optical
scattering. The mixture was then placed in containers for molding and cured for approx-
imately 24 h. The resulting phantoms were cylindrical, with diameters and heights of
approximately 5.2 cm and 3.5 cm, respectively.

3.5. Statistical Analysis

Statistical differences between the squared errors of the ∆ϕ estimators were assessed
using the nonparametric Wilcoxon test for paired samples after the Kolmogorov-Smirnov
test was used to reject the normality hypothesis. Differences were considered significant at
a significance level of 0.05.

4. Results
4.1. Simulation Results

A simulation of the interferogram expected from our OCE system was generated
to better calculate the error associated with phase difference estimation using different
methods. The initial location of the scatterer varied over 7 µm (710 depth locations).

Each method’s performance depended on the scatterer’s initial depth location. The
error, measured as the difference between simulated and measured displacements associ-
ated with ∆dori, ∆dd, and ∆dint, was lower for a total of 267, 204, and 239 depth locations,
respectively, out of the 710 depth locations tested. This shows that, depending on the initial
depth location of the scatterer, ∆dori will be a better approach 37.61% of the time, while ∆dd

will be a better approach 28.78% of the time, and ∆dint will be a better approach the remain-
ing 33.66% of the time. Figure 4 shows examples of the error associated with displacement
estimation at three different depths, where either ∆dori (Figure 4A), ∆dd (Figure 4B), or
∆dint (Figure 4C) estimators yielded values closer to the real ones (lower error).
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distributions of the RMSE of the displacement computation for all depth locations, ob-
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Figure 4. Representative displacement estimation error of simulated interferograms shifted 90 nm
depth-wise in both directions using the original interferogram, ∆dori, the first-order derivative, ∆dd,
and the integral, ∆dint of the generated interferograms. Three depth locations are shown where
∆dori (A), ∆dd (B), and ∆dint (C) have lower displacement errors. In all cases, the best displacement
estimation is achieved by the average of the three methods (∆dav).

As expected, when zero displacements (static) were simulated, the error associated
with the displacement calculation was zero for all methods. Increasing the magnitude
of the simulated displacement in any direction decreased the accuracy of all methods.
Interestingly, although the error associated with displacement computation increased
with distance for all methods, they showed different trends. As shown in Figure 4, the
estimation errors for ∆dori and ∆dd and ∆dint had opposite and complementary trends. As
the magnitude of the displacement induced increased, ∆dori tended to underestimate the
displacement, while ∆dd and ∆dint tended to overestimate it. In view of this, we propose
a novel displacement estimator ∆dav computed from ∆ϕav which combines all the phase
difference estimation approaches as ∆ϕav = (∆ϕ ori + ∆ϕd + ∆ϕint)/3. The error associated
with the estimation of ∆dav is also shown in Figure 4. As observed, ∆dav provides a more
accurate prediction of the displacement than either approach alone.

The RMSE was used to evaluate the quality of each estimator. The kernel density
distributions of the RMSE of the displacement computation for all depth locations, obtained
with ∆dori and ∆dav in simulations without and with noise, are shown in Figure 5. The
proposed approach performs better, with a pronounced decrease in the median error and
interquartile range (IQR). Detailed values are given in Table 1.
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Figure 5. Kernel density estimates of the root-mean-square error (RMSE) of displacement estimation
in simulated interferograms without and with noise using the original (∆dori) and the proposed
estimator (∆dav). The median (dashed) and the first and third quartiles (dotted) are shown.
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Table 1. Detailed values of the displacement root-mean-square error (RMSE) distribution in simulated
interferograms without and with noise using the original (∆dori) and the proposed estimator (∆dav).
Data with noise are presented as the mean± standard deviation. * Statistically significant at p < 0.001.

1st Quartile 2nd Quartile 3rd Quartile IQR
∆dori(pm) 23.1 42.3 70.5 47.5
∆dav(pm) 20.6 29.9 48.1 27.6Without

Noise % 89.3 70.7 68.3 58.1

With
Noise

∆dori(pm) 38.9 ± 6.1 57.2 ± 7.4 83.7 ± 7.0 44.8 ± 6.7
∆dav(pm) 33.8 ± 6.5 * 49.1 ± 8.2 * 68.1 ± 9.4 * 34.3 ± 5.8 *

% 86.8 ± 7.1 85.5 ± 5.2 81.1 ± 4.7 76.3 ± 9.5

As expected, a decrease in performance was observed for both methods when noise
was added to the generated interferogram. Nevertheless, the proposed estimator (∆dav)
performs significantly better than the original one (∆dori).

4.2. Minimum Detectable Displacement

Both ∆dori and ∆dav were used to estimate the displacement from the same elastogra-
phy data in static conditions (real data) at different OPDs and their corresponding minimum
detectable displacements. The kernel density distributions of the RMSE associated with the
displacement estimation at 256 different lateral locations using ∆dori and ∆dav are shown in
Figure 6A. Figure 6B shows the normalized RMSE of all locations for all OPDs. As demon-
strated by the numerical simulation, the error associated with displacement estimation
was equivalent for ∆dori and ∆dav for small displacements, and both converged to zero
when no displacement was induced (Figure 4). Thus, for static measurements, equivalent
error distributions were expected for both methods (Figure 6A). Nevertheless, a significant
decrease in the overall RMSE was obtained for OPDs larger than 1000 µm (lower SNR).
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Figure 6. Kernel density estimates of the root-mean-square error (RMSE) displacement distribution
for 256 depth locations (A) and mean normalized RMSE (B) of a static gold mirror at multiple optical
path differences (OPD) using the original (∆dori) and the proposed estimator (∆dav). The median
(dashed) and the first and third quartiles (dotted) are shown. * Statistically significant at p < 0.001.

The minimum detected displacement at different OPDs was obtained from σ∆ϕori

and σ∆ϕav at 256 different locations using Equation (1) (Table 2). For OPDs equal to and
greater than 1000 µm, an improvement in the accuracy of the displacement estimation was
achieved using ∆dav estimation. Improvements between 0.01% and 0.37% were observed
depending on the imaging depth. No significant changes were observed for optimal SNR
(OPD = 0 µm).
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Table 2. Minimum detectable displacements at different optical path differences (OPDs) computed
using the original (∆dori) and proposed (∆dav) estimators. Data are presented as the mean ± standard
deviation of 256 lateral locations at each OPD.

Minimum Detectable Displacement (nm)

∆dori ∆dav %

OPD

0
µm 13.58 ± 1.99 13.58 ± 1.98 100.00 ± 0.05

500
µm 17.26 ± 1.88 17.25 ± 1.88 99.99 ± 0.08

1000 µm 16.86 ± 2.18 16.85 ± 2.18 99.91 ± 0.44
1500 µm 14.78 ± 1.98 14.77 ± 1.98 99.95 ± 0.33
2000 µm 12.67 ± 2.01 12.65 ± 2.02 99.89 ± 0.59
2500 µm 9.21 ± 1.44 9.19 ± 1.44 99.87 ± 0.16
3000 µm 6.46 ± 1.61 6.43 ± 1.61 99.63 ± 0.72

4.3. Phantom Displacement

The proposed displacement estimator (∆dav) was used to infer the elastic properties
of agarose phantoms with different elastic properties. Figure 7 shows the spatiotemporal
displacement map for a phantom with an agarose concentration of 10 g/L after a transient
pulse of 500 µs (Figure 7A), displacement curves at three lateral locations at progressively
higher distances from the piezoelectric actuator (0, 1.5, and 3 mm) (Figure 7B), and the
structural B-scan of the phantom’s interface superimposed with ∆dav at three times (3, 4,
and 5 ms).
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Figure 7. Spatiotemporal displacement map of a 10 g/L homogeneous agarose phantom after a
500 µs transient pulse (A), displacement curves at three lateral locations at progressively higher
distances from the piezoelectric actuator (B), and Rayleigh wave propagation at times 3, 4, and 5 ms
(C). The phase difference was estimated using the proposed estimator (∆dav).
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The propagation of the Rayleigh wave velocity was calculated using the displacement
estimation based on the ratio between the propagation distance and the time to reach the
maximum displacement. No discernible differences were observed when using transient
pulses of different widths. Therefore, all 18 measurements were used to obtain the shear
wave propagation velocity of each phantom. As expected, a linear increase in shear wave
velocity was observed with an increase in the phantom’s agarose concentration (Figure 8A),
which corresponded to an increase in the phantom’s Young’s modulus (Figure 8B).
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5. Discussion

Quantitative evaluation of tissue elastic properties by phase-resolved OCE depends on
the measurement noise, the precision of the phase difference estimation and hence the tissue
displacement, and the method used to derive the tissue’s Young’s modulus. Measurement
noise is intrinsically related to the phase stability of the system. This can be improved
by modifying the instrument setup, typically by introducing timing references. In this
study, an MZI clock and FBG-triggering were used to improve timing synchronization
and achieve temporal stabilities consistent with those reported in the literature [11,13,25].
Various approaches have also been proposed to reduce noise sensitivity and improve the
accuracy of phase difference estimation. However, these rely heavily on depth (often
combined with lateral) averaging of the interferogram data, which reduces their resolution.

In this study, we characterize the performance of phase difference estimation as a
function of the magnitude of the tissue displacement and the depth location of the scatterer.
The accuracy of the original phase difference estimation method (∆ϕori) was evaluated,
as well as that of phase-difference estimators derived from: (i) the first-order derivative
(∆ϕd), (ii) the integral (∆ϕint) of the interferogram data, and (iii) the combination of three
phase-difference estimators (∆dav). These estimators were tested on simulated OCE data in
which the displacements could be precisely adjusted and were known a priori. We observed
that the initial depth location of the scatterer affected the precision of the ∆dori, ∆dd, and
∆dint estimators. Each approach was the most accurate in 1/3 of the initial depth locations
tested. Since the initial location of the scatterer is not known from real measurements, we
predicted that the best displacement estimation would be achieved using a combination of
all approaches.

We demonstrated that ∆dav was the most accurate displacement estimator in the simu-
lated data. For small displacements, both methods achieved similar accuracy. However, as
the simulated displacement increased, the error associated with the estimation was lower
for ∆dav than for ∆dori. This was possible due to the complementary and opposite trends of
the ∆dori estimation and those from phase-invariant mathematical variations of the original
interferogram (∆dd and ∆dint). While the latter overestimated the simulated displacement
with increasing displacement, the former underestimated it. Overall, a reduction in the
median RMSE associated with displacement prediction of approximately 70% and 85% was
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observed for simulated data without and with noise, respectively. Despite the relatively
modest gain, our goal is to use OCE to detect changes in the mechanical properties of
the retina that may be associated with Alzheimer’s disease and other neurodegenerative
disorders before structural changes can be detected. Regardless of its magnitude, any
correction will bring us closer to our goal.

No significant changes were expected for static OCE data, as both methods converge
to zero in the absence of displacement. However, ∆dav resulted in an improvement in the
displacement estimation depending on the initial relative depth location of the sample
and, consequently, the SNR. The ∆dav resulted in a lower RMSE than ∆dori for imaging
depths at OPDs greater than 1000 µm, where the SNR is lower. Comparatively lower
minimum detectable displacements could be measured in signals with low SNR. Thus,
we have shown that the proposed method can significantly improve the resolution of
displacement estimation from phase data. It is noteworthy that the typical correlation
between the measured phase difference and the OCT SNR (σ∆ϕ ≈ 1/

√
SNR) [6] was not

found. However, since we aim to compare the accuracy of both methods, the absolute
values of the minimum detectable displacements do not have a direct impact.

The feasibility of the proposed method to estimate tissue displacement under dynamic
conditions was also evaluated. Based on ∆dav, the shear wave velocity was estimated for
phantoms with different elastic properties. As expected, an increase in agarose concentra-
tion resulted in an increase in the shear wave velocity and Young’s modulus. Although
the benefits of increased displacement measurement accuracy in wave-based OCE may
not be readily apparent, they can have a significant impact on elasticity estimation when
considering numerical methods. An example is the application of Newton’s method to a
wave solution represented by the method of fundamental solutions [26]. We have recently
shown that, when using Newton’s-type iterations to recover the elastic properties of the
medium, 1% noise in the data can lead to a two- to three-orders-of-magnitude higher error
in the recovered elastic coefficients [26].

We have illustrated that we can develop novel solutions to improve the accuracy
of phase estimation by considering external factors such as the magnitude of the tissue
displacement and the depth location of the scatterer. We have also illustrated that the
proposed estimator, obtained by combining three estimators for the phase difference,
although modest in gain, improves the accuracy of displacement estimation without the
loss of temporal or axial resolution. The main drawback of the proposed method is the
increase in computational time. However, it is important to mention that the improvement
comes at no cost since no changes to the optical setup or the instrument are required. The
proposed method is also easy to implement, independent of the system setup, and can even
be applied to previously recorded data.
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