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Abstract: Schizophrenia is a mental illness that affects an estimated 21 million people worldwide. The
literature establishes that electroencephalography (EEG) is a well-implemented means of studying
and diagnosing mental disorders. However, it is known that speech and language provide unique and
essential information about human thought. Semantic and emotional content, semantic coherence,
syntactic structure, and complexity can thus be combined in a machine learning process to detect
schizophrenia. Several studies show that early identification is crucial to prevent the onset of illness
or mitigate possible complications. Therefore, it is necessary to identify disease-specific biomarkers
for an early diagnosis support system. This work contributes to improving our knowledge about
schizophrenia and the features that can identify this mental illness via speech and EEG. The emotional
state is a specific characteristic of schizophrenia that can be identified with speech emotion analysis.
The most used features of speech found in the literature review are fundamental frequency (F0),
intensity/loudness (I), frequency formants (F1, F2, and F3), Mel-frequency cepstral coefficients
(MFCC’s), the duration of pauses and sentences (SD), and the duration of silence between words.
Combining at least two feature categories achieved high accuracy in the schizophrenia classification.
Prosodic and spectral or temporal features achieved the highest accuracy. The work with higher
accuracy used the prosodic and spectral features QEVA, SDVV, and SSDL, which were derived from
the F0 and spectrogram. The emotional state can be identified with most of the features previously
mentioned (F0, I, F1, F2, F3, MFCCs, and SD), linear prediction cepstral coefficients (LPCC), linear
spectral features (LSF), and the pause rate. Using the event-related potentials (ERP), the most
promissory features found in the literature are mismatch negativity (MMN), P2, P3, P50, N1, and
N2. The EEG features with higher accuracy in schizophrenia classification subjects are the nonlinear
features, such as Cx, HFD, and Lya.

Keywords: schizophrenia; speech; EEG; ERP; features; emotional state

1. Introduction

Mental health is a dynamic state of internal balance that enables individuals to use
their abilities harmoniously with society’s universal values, their basic cognitive knowledge,
and their social skills and to express, modulate, and acknowledge their emotions. Mental
health can be influenced by adverse life situations, social functions, and the relationship
between the body and mind [1,2].
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People with severe mental illness have a reduced average life expectancy of 10
to 20 years compared to the general population, especially if the disease is chronic [3].
Schizophrenia is a chronic and severe mental illness with heterogeneous presentations [4]
that directly affects the lifestyles of more than 20 million adults worldwide [5,6].

According to the Diagnosis and Statistical Manual of Mental Disorders, fifth edition
(DSM-5), schizophrenia disorders can be defined as “abnormalities in one or more of
the following five domains: delusions, hallucinations, disorganized thinking (speech),
grossly disorganized or abnormal motor behavior (including catatonia), and negative
symptoms” [7].

Making an early diagnosis of a mental illness helps to provide proper treatment
and recovery for patients. Current methods of diagnosing schizophrenia are based on
observations and interviews conducted by psychiatrists. However, this method can be
prone to human error and very time-consuming [8].

Evaluating the cognitive system via characteristics such as attention, perception,
memory (functional and explicit), cognitive control, and speech behavior allows the charac-
terization of mental disorders [9].

Speech and language contain relevant information about human thought. For compo-
nents such as semantic and emotional content, semantic coherence (meaning), structure,
and syntactic complexity can be analyzed [10]. Additionally, speech is a complex signal
of variable duration that carries both linguistic information and emotion [11]. Cognitive
and thought disorders manifest in how speech is produced and what is said [12]. Lin-
guistic disorganization may be neurologically underpinned by the dysfunction of the
non-dominant hemisphere, such as in epilepsy, which is lateralized in the non-dominant
hemisphere [13,14].

Due to a low cost, relatively easy access, and non-invasive means (although schizophre-
nia subjects may hardly accept them), electroencephalograms (EEG) are commonly used to
diagnose schizophrenia. EEGs are electrical signals that describe brain activity with good
temporal and spatial resolution [8].

Some features can be similar to other disorders, which can limit technological advances.
The knowledge of speech features and EEG biomarkers associated with schizophrenia is
essential to help diagnostics.

According to the American Society for Clinical Pharmacology and Therapeutics, a
biomarker is defined as “a characteristic that is objectively measured and evaluated as an in-
dicator of normal biological processes, pathogenic processes, or pharmacological responses
to a therapeutic intervention”. These biomarkers serve as a tool to affect prognoses [15].

Technological solutions in mental health may consider several ethical and liable
issues and respect the patient’s privacy. The authors of [16] suggest that implementing
AI in the psychiatric area can be critical because of different opinions between doctors
and researchers.

The medical diagnostic support tools cannot be seen as a final diagnostic but can be
seen as a support tool, and the diagnosis is still under medical responsibility.

Performing an early diagnosis of a mental illness helps to provide proper treatment
and recovery for patients. Current methods of diagnosing schizophrenia are based on
observations and interviews conducted by psychiatrists. In the context of schizophrenia,
several evaluation scales are used to differentiate the severity of the diagnosis. The most
common are the Negative Symptom Assessment (NSA), the Brief Psychiatric Rating Scale
(BPRS), the Scale for the Assessment of Negative Symptoms (SANS), and the Positive and
Negative Syndrome Scale (PANSS).

The NSA was initially created with 25 items and was later changed by Axelrod
et al. in 1993 [17] to 16 items, becoming the most widely used version. These items are
based on communication, social engagement, affect/emotion, motivation, and retardation.
Each item and global negative symptoms are rated on a 1-to-6-point scale in which “1”
represents no reduction in normal behaviors associated with the item and “6” represents
a severe reduction in or absence of the behavior. The rating scale also includes a ”9” for
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a “not ratable” definition [18]. The main limitation of the NSA is its high reliance on
functioning or behaviors, for which severity is measured by the type and frequency of
social interactions. The NSA’s 16 items include a prolonged time to respond, restricted
speech quantity, impoverished speech content, inarticulate speech, emotion: reduced range,
affect: reduced modulation, affect: reduced display, reduced social drive, poor rapport with
the interviewer, reduced sexual interest, poor grooming and hygiene, a reduced sense of
purpose, reduced hobbies and interests, reduced daily activity, reduced expressive gestures,
and slow movements.

The BPRS was used to assess clinical symptoms. The BPRS is an 18-item scale. Each
item or symptom is rated discretely from “1” (not present) to “7” (extremely severe). Two
calibrated raters conducted the BPRS session using a semi-structured clinical interview
in [18,19]. The items of the BPRS are somatic concern, anxiety, emotional withdrawal,
conceptual disorganization, guilt feelings, tension, mannerisms and posturing, grandiosity,
depressive mood, hostility, suspiciousness, hallucinatory behavior, motor retardation,
uncooperativeness, unusual thought content, and blunted affect.

The SANS is one of the most widely used symptom rating scales for schizophrenia.
The SANS is a clinician-administered scale developed to ascertain and quantify negative
symptoms in inpatients and outpatients with schizophrenia. The SANS comprises 25
negative symptoms representing five domains: affective flattening or blunting (unchanging
facial expression, decreased spontaneous movements, paucity of expressive gestures, poor
eye contact, affective nonresponsivity, inappropriate affect, lack of vocal inflections, and
global rating of affective flattening), alogia (poverty of speech, poverty of content of speech,
blocking, increased latency of response, and global rating of alogia), avolition/apathy
(grooming and hygiene, impersistence at work or school, physical anergia, and global
rating of avolition/apathy), anhedonia/asociality (recreational interests and activities,
sexual activity, ability to feel intimacy and closeness, relationships with friends and peers,
and global rating of anhedonia/asociality), and attention disturbances (social inattentive-
ness, inattentiveness during mental status testing, and global rating of attention,). Each
item is scored on a six-point scale (0–5) with higher scores indicating greater severity of
negative symptoms [20]. The main disadvantage is a single focus on the positive and
negative symptoms.

The PANSS is among the best-validated instruments to assess positive, negative, and
general psychopathology associated with schizophrenia. The PANSS is a standardized
clinical interview that assesses the presence and severity of positive and negative symptoms
and general psychopathology for people with schizophrenia within the last week. Of the
30 items, seven are positive, seven are negative, and sixteen are general psychopathol-
ogy symptoms. The PANSS item are divided into three categories: the positive scale,
which includes delusions, conceptual disorganization, hallucinatory behavior, excitement,
grandiosity, suspiciousness, and hostility; the negative scale, which includes blunted affect,
emotional withdrawal, poor rapport, passive–apathetic social withdrawal, difficulty in
abstract thinking, lack of spontaneity and flow of conversation, and stereotyped thinking;
and the general psychopathology scale, which includes somatic concern, anxiety, guilt
feelings, tension, mannerisms and posturing, depression, motor retardation, uncoopera-
tiveness, unusual thought content, disorientation, poor attention, lack of judgment and
insight, disturbance of violation, poor impulse control, preoccupation, and active social
avoidance. The symptom severity for each item is rated according to the anchor points
on the 7-point scale (1 = absent; 7 = extreme) [21]. The main disadvantages of PANSS are
the lack of sensitivity in predicting global cognitive functioning, the failure to differentiate
between negative symptoms and depression, and frequently incorrect calculations.

Although the medical community accepts these scales, they have some limitations,
such as subjectivity, in which the opinion may not be the same among those who assess
the symptoms, thus hindering an accurate evaluation. The complexity and variation of
symptoms may vary from person to person, and it is not possible to define a pattern among
individuals diagnosed, thus compromising how to accurately quantify or measure the
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symptoms, which may affect confidence in the scales. Cultural and linguistic barriers, a
lack of standardization between the different scales, the time taken to make an assessment
based on the available scales, and their coverage of symptoms (the scales may not assess
all the feelings present in the individual) also call into question the performance of the
scales. It is convenient to combine these scales with more clinical features to mitigate
these disadvantages.

The benefits of using speech and EEG features as a supplement to the scales currently in
use include objectivity, as the features are measured with specialized equipment, reducing
the influence of subjective factors (such as differences in opinion between clinicians);
sensitivity, as the evaluation of speech and EEG features may be more sensitive than a scale
based on human auditory perception; and, finally, ease of application, making it a tool to
support medical diagnoses.

The development of systems based on AI using biological features such as the ones
discussed in this work may contribute in the near future to improve accuracy, allow the
diagnosis with less time and resources, and contribute to preventing psychotic breaks.

This manuscript presents the research on the most used speech features and EEG
biomarkers described in the literature for the diagnosis of schizophrenia [22].

The manuscript is organized into five sections. The current section contextualizes
schizophrenia and its recognition and presents a short overview of the usage of machine
learning methodologies in pathology identification/diagnosis. Section 2 presents the
methodology used to carry out the narrative literature review. Section 3 contains theoretical
information about speech biomarkers, state-of-the-art developed works with speech fea-
tures, and an approach to speech emotion detection. The methods using EEG in schizophre-
nia and corresponding biomarkers are discussed in Section 4. This section includes theo-
retical information about ERP biomarkers in schizophrenia. The most used features are
described in Sections 3 and 4. Finally, the Discussion and Conclusions section highlights
how speech in schizophrenia manifests itself, how the speech/EEG files are collected, and
the features of speech and EEG that might be promising for identifying schizophrenia in
future applications.

Machine Learning Classification

Using machine learning, an increasing number of researchers attempt to distinguish
patients with schizophrenia from healthy people. Figure 1 shows the generic block diagram
for an approach to schizophrenia suggestion or classification.
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The feature acquisition step aims to collect data (speech files or EEG biomarkers). It is
possible to perform signal preprocessing in this step. The preprocessing methods remove
corrupted or noisy signals [23].

The acquisition of speech files is much easier than EEG, but there is one shortcoming:
a recording audio contains at least two different voices (patient and interviewer). However,
it does not occur when the task is reading. To control this, many tools, such as a Voice
Activity Detector (VAD) and diarization methods, are now available to remove unwanted
information (for example, the voice of medical staff or background noise).

The EEG is a non-linear and non-stationary signal that requires different signal process-
ing operations to cancel different types of noise artefacts, such as systematic blinking and
thermal noises. The Fourier transform could not represent the temporal evolution of this
type of signal. Different time–frequency domain-based approaches, such as a short-time
Fourier transform or a wavelet transform, are applied to address this issue. A stimulus for
the oddball auditory paradigm is typically used for EEG acquisition.



Bioengineering 2023, 10, 493 5 of 31

The feature extraction field is an essential process because the information from it
can compromise the success of a developed model. It is crucial to extract a clean signal
(without artefacts).

Because of the variability of speech signals, feature extraction in speech files is difficult.
Generally, signal-processing techniques such as framing, which consists of dividing the
original signal into blocks (frames), are used. Thus, in each segment, different types of
features are extracted. Some authors apply techniques, such as PSD, to map the EEG files in
higher dimensional spaces. On the other hand, the majority of authors use a decomposition
method (e.g., discrete wavelet transform) and divide the files into sub-bands to calculate
the energy of each cerebral area.

In machine learning, various tools are tested with multiple combinations of settings to
find the best solution for the problem of suggestion or classification.

2. Methodology

The literature review on speech and EEG features for the diagnosis of schizophrenia
was carried out on four databases: Scopus, Web of Science (WoS), PubMed, and IEEE
Xplore. We considered published works between 2010 and 2021.

For the speech features, the inclusion criteria had to be mentioned in the title or abstract.
Any topic outside this study’s main goal (e.g., the study of medication effect or therapeutic
evaluation) was excluded. The inclusion criteria for the speech part were schizophrenia,
speech or voice, features or parameters, detection or prediction, and machine learning.
A total of 11 references were obtained in Scopus and 10 in WoS. The keywords on the
IEEE Xplore and PubMed databases were “schizophrenia and speech features”. The search
received 10 references on IEEE Xplore and 6 references on PubMed. Of the 37 results found,
11 were the same paper retrieved from different sources and 2 were discarded because
the documents were unavailable. Four more papers known by the authors were included,
resulting in a total of 28 articles.

For EEG biomarkers, the inclusion criteria used were “schizophrenia and features” and
“EEG” and the search was limited to the title and the abstract. The search found 9 references
in Scopus, 8 in the WoS, 10 in PubMed, and 3 in the IEEE Xplore. Of the 30 results, 2 from
Scopus and 2 from WoS were discarded because of unavailability, 5 because they did not fit
into the research context, and 3 because they were repeated in databases. Therefore, only
18 articles remained.

3. Speech Features

Speech contains several measurable features that indicate aspects of cognitive health [12],
so acoustic changes observed in subjects with schizophrenia are conceptualized as a com-
ponent of negative symptoms [24–26].

Prosodic features permit the identification of the type of component of speech that
refers to the way words are spoken and also show the characteristics of the speaker or
speech. In other words, they show whether a statement is an affirmation or a question,
whether irony or sarcasm is present, in addition to contrast, emphasis, and focus [24].

Language can be influenced by four factors: the participants, the situation, the
conversation topic, and the speaker’s function [27]. For identifying schizophrenia via
speech in two different languages, it is essential to understand that some languages have
faster speakers than others (for example, Japanese or Spanish speakers speak faster than
Mandarin speakers).

In schizophrenia, negative symptoms are divided into five domains: blunted affect,
asociality, alogia, anhedonia, and avolition [28]. Blunted affect and alogia are defined in
terms of reduced vocal prosody [29], asociality consists of reduced social activities and
interactions, anhedonia is diminished experience of pleasure related to current or future
activity, and avolition is diminished motivation and lack of drive resulting in reduced
initiation and maintenance of goal-directed activities [30].
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Speech in subjects with schizophrenia is perceived as a negative symptom because it
is mainly reflected in a lack of emotion (blunted affect) and poor speech (alogia) [24].

Other speech symptoms in schizophrenia include slow speech, reduced pitch variabil-
ity, more pauses, and less synchronization in syllable variability [25,28].

Concerning features related to semantic analysis, schizophrenic speech was less se-
mantically coherent and less connected [31]. Incoherence is also typical in schizophrenia,
although there may be tangentiality (irrelevant answers to questions), derailment (loss of
association between two sentences), illogical speech, and indirect speech [32].

An emotional state can be an important biomarker in schizophrenia [28], and it is
possible to recognize emotions with automatic analysis via speech [33]. Emotions consist
of psychological states that derive from different strands, such as personal experiences,
physiological conditions, and behavioral and communicative reactions [11].

The last paragraphs identified three levels of features expressed in speech. Features
extracted directly from the speech level include prosodic, spectral, temporal and statistic
features. Features extracted from the semantic features level include coherence, connected
speech, derailment, illogical speech, and indirect speech. Finally, the other features are
related to the level of emotional state.

Speech production in patients with schizophrenia is usually stimulated via clinical inter-
views [27,32], free speech activities [26,33–36], image description [37–39] or reading [32,34,40].
Free speech can be compromised in people with a diagnosis of schizophrenia. Therefore,
techniques such as asking patients to report activities or plans for the future [41,42], tasks
done the previous day [43], and dreams [44] can be implemented. Narrative of Emotions
Tasks can also be used during medical consultation [32].

It is possible to obtain speech using mobile phones, computers, and tablets, which is
more advantageous compared to neuroimaging methods that can be more expensive and
invasive [2].

The features in the temporal domain are simple to relate to the perceptive properties of
speech, thus making it a better infrastructure for further use by the psychiatric community.
Some works have used these features, including [43,44].

Acoustic feature extraction can be done with software/algorithms such as OpenSmile,
Covarep, pyAudioAnalysis, OpenEAR, and Praat [2].

Although all the studied works use continuous speech, some authors have used
parameters (jitter and shimmer) that are more suited to be extracted from sustained speech.
As such, the recordings can be divided into clips with short durations [45].

Using speech as a biomarker has the following advantages: it is difficult to hide
symptoms; it directly expresses emotion and thought via its linguistic content; it indirectly
reflects neural modulation via motor and acoustic variation; and its set of advantages can
be generalized to different languages because vocal anatomy is similar.

3.1. State of the Art (Speech)

Considering what has been reviewed thus far, the works that use speech to diagnose
schizophrenia are limited, which may be due to the difficulty in obtaining authorization to
collect a speech dataset. Typically, the authors record the dataset used. However, within
this limitation, most of the works, as in the case of [28,46], are based on speech in a natural
context. Speech patterns in schizophrenia have also been analyzed in some works but to a
lesser extent, as in the case of [46].

According to this study, the features used to identify schizophrenia are divided into
four categories: prosodic, spectral, temporal, and statistical features. However, in addition
to these characteristics, a quantitative measure, namely, the number of words (verbosity),
was used.

Gosztolya et al. [43] used only temporal features obtained from spontaneous speech,
such as articulation rate, speech tempo, duration of utterance, number of pauses, duration
of pauses, pause duration rate, pause frequency, and average pause duration. The authors
achieved 70–80% accuracy in classifying subjects with schizophrenia diagnosis [43].
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Other authors used two categories of features. Kliper et al. [24] used temporal and
prosodic features to identify schizophrenia, depression and control. The parameters used
include spoken ratio, utterance duration, gap duration, pitch range, the standard deviation
of pitch, power standard deviation, mean waveform correlation, mean jitter, and mean
shimmer. These parameters allowed the classification of control vs. schizophrenia with an
accuracy of 76.19%, control vs. depression with an accuracy of 87.5%, and schizophrenia vs.
depression with an accuracy of 71.43%. For multiclass classification they achieved 69.77%.

Martínez-Sánchez et al. [42] and Rapcan et al. [47] showed that patients with schizophre-
nia tend to have slow speech, reduced pitch variability, and a more significant number of
pauses. Rapcan et al. [47] investigated the fundamental frequency (F0) and the relative
variation of vocal pitch and, using temporal and prosodic features, attempted to study the
total speech duration but did not find a statistical significance and argued that the lack of
academic qualifications of the subjects under analysis compromised the results.

Compton et al. [26] also used two categories of features but, in their case, used prosody
and spectral categories. They studied schizophrenic patients and healthy subjects with and
without aprosody. They concluded that patients with aprosody present lower F0, F2, and
intensity/loudness values.

The severity of negative symptoms in the first outbreak of schizophrenia is correlated
with the second-order formant F2. This conclusion was obtained after the study with
fundamental frequency F0 and the first and second-order formants F1 and F2 [34].

He et al. [48] also detected negative symptoms using the parameters: symmetric
spectral difference level (SSDL), quantification error and vector angle (QEVA), and standard
dynamic volume value (SDVV), thus discriminating subjects with and without a diagnosis
of schizophrenia with an accuracy of 98.2% (with decision trees).

Other authors used three categories of speech features. To identify cognitive and
thought disorders. Voleti et al. [12] tried to find acoustic features of speech. These disorders
include various neurological impairments (e.g., dementia) and psychiatric conditions
(e.g., schizophrenia). Prosodic articulation temporal and vocal quality features were used.
Temporal features include the duration of voiced segments and the duration of silent
segments. The prosodic features covered loudness, periodicity measures, and F0. The
spectral or articulation features comprise formant frequencies (F1, F2, and F3) and MFCCs.
They also used jitter, shimmer, and harmonic-to-noise ratio (HNR) features.

Parola et al. [49] analyzed three categories of parameters, qualitative indices, quanti-
tative analysis, and multivariate machine learning (ML) tools. Using ML, the results are
more promising. For schizophrenia and healthy identification, free speech-based studies
provide higher differences between groups.

Some authors used features of all four categories. Agurto et al. [45] could predict psy-
chosis with 90% accuracy using prosodic, spectral, temporal, and statistical measures. The
feature set was formed for spectral characterization by MFCCs, spectral slope, interquartile
range (IQR), maximum energy, and frequency. For vowel characterization, they used F1,
F2, and F3 (frequencies and their corresponding bandwidth). For voice quality, they used
jitter (local absolute value and ppq5), shimmer (local absolute and apq5), autocorrela-
tion, harmonic-to-noise ratio (HNR), and noise-to-harmonic ratio (NHR). For the rhythm
changes, pauses (threshold of −25 dB and minimum duration of 100 ms) and voiced parts
were considered. For each category mentioned above, the authors calculated the median,
IQR, pct5, pct95, skewness, kurtosis, total interventions, speech rate, articulation rate, and
speech/non-speech ratio (and corresponding percentages). In addition, they calculated
speech rate/velocity of speech and articulation rate. These equations are indicators of
cerebral activity, and, using them, it is possible to obtain a cerebral processing rate.

Tahir et al. [4] state that using a Multi-Layer Perceptron (MLP) neural network clas-
sifier allows an assessment of negative symptoms using the features of speaking rate,
frequency, and volume entropy. The author also experimented with other types of features
such as prosodic features (F0), spectral features including first, second, and third order
formants (F1, F2, F3), MFCCs, amplitude (minimum, maximum, and mean volume), con-
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versational/temporal features including duration of speech, speaking turns, interruptions,
interjections, and statistical features such as entropy.

Similar to the aim of the previous study, Low et al. [2] concluded that features such as
peak slope, linear predictive coefficients, and mean pause duration are directly correlated
with schizophrenia. Quasi-open Quotient—QOQ, F1 range, articulation rate, pause rate,
speech rate, time talking, and mean intensity are negatively correlated with schizophrenia.
Moreover, the parameters including total number of pauses, mean speech duration, inten-
sity variability, and F0 variability, among others, despite being used in many studies, do
not show any correlation with schizophrenia.

Other authors used the semantic level of features. Mota et al. [31] evaluated the
structural characteristics of each interview conducted so that each interview was converted
into a graph in which each word is represented by a node and the temporal sequence
between two words is represented by an edge (margin). The same procedure was performed
every 30 consecutive words to analyze the verbosity. After this procedure, the authors
evaluated the number of edges (margins) and the node connection. For semantic analysis,
the median semantic distance between two sentences was calculated using latent semantic
analysis (LSA). The authors stated that schizophrenia speech produces fewer linked words
and less semantic coherence via the structural and semantic features.

On the other hand, for the prediction of psychotic outbreaks (in young people at
high clinical risk—CHR), Bedi et al. [50] evaluated semantic and syntactic features. They
detected two features in semantic coherence: the minimum semantic distance for first-order
coherence (e.g., the minimum coherence or maximum discontinuity between two sentences)
and the average semantic distance for first-order coherence (e.g., the average coherence
between sentences). With the studied features, the authors could predict the development
of psychosis with 100% accuracy.

The formal linguistic aspects of auditory verbal hallucinations (AVHs) indicate that
speaking in the first person is less common in hallucinated speech. Sentences have no
grammatical connectivity; speech has no connection and, usually, it is personalized. Thus,
although there are individual variations, there is a linguistic profile of typical speech in
people with verbal auditory hallucinations [51].

Some works combine speech acoustic features with text features. Xu et al. [52] tran-
scribed the interviews (with software help), so it was possible to use speech and text
parameters. The verbal speech parameters were LIWC, diction, Latent Dirichlet Allocation,
and Doc2vec features. The non-verbal speech parameters were composed of conversa-
tional, OpenSmile, and DisVoice elements, thus distinguishing diagnosed and undiagnosed
subjects with an accuracy of 76.2% [52,53].

One work’s authors [47] suggest that the lack of academic qualifications can com-
promise studies in this context. To increase performance, techniques could be applied as
suggested in [17], in which speech is transcribed and text parameters are used simultane-
ously with the speech parameters.

Speech analysis was also combined with other parameters. In [28], the algorithm’s
performance increased when body movements were implemented as input parameters.
For example, [28] applied low-level descriptors (LLD) and body movements to detect
negative symptoms. The LLD set is composed of intensity, loudness, MFCC (12), pitch (F0),
probability of voicing, F0 envelope, 8 LSF (Line Spectral Frequencies), and Zero-Crossing
Rate. Using an SVM classifier with the LLD alone, the authors obtained an accuracy of
79.49%. If these features were combined with body movements, the accuracy improved
to 86.36%.

Feature selection procedures were also implemented. To make a selection of the most
promising parameters in the identification of schizophrenia via speech, Espinola et al. [25]
used the Particle Swarm Optimization (PSO) method. Out of a set of 33 features, zero-
crossing rate, Hjorth parameter complexity, average amplitude changes, mean absolute
value, kurtosis, third and fourth moments, maximum amplitude, peak frequency, power
spectrum ratio, mean, and total power (12 out of 33) were selected. With SVM, the au-
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thors reached an accuracy of 91.79% in classifying subjects with and without a diagnosis
of schizophrenia.

Argolo et al. [53] concluded that structured interviews or task descriptions are the
most commonly used for automated speech evaluation in these studies, similarly to studies
based on free speech.

One of the most used machine learning tools is SVM, which has an accuracy rate
between 70% and 91.79%. Using MLP, one author [4] obtained an accuracy of 81.3%.
Utilizing Linear Discriminant Analysis (LDA), the authors of [47] achieved 79.4% accuracy.
Using Signal Processing Algorithms, the authors of [42] achieved 93.8% accuracy in the
discrimination between patients and controls. With decision trees, another author [48]
obtained 98.2%. Lastly, the best accuracy achieved was obtained in the work of [50], which
had an accuracy of approximately 100%, but for the prediction of psychotic outbreaks.

Although the set of previously analyzed features can indicate typical characteristics of
schizophrenia, they do not identify schizophrenia exclusively. Other mental disorders or
an anatomic deformation in the vocal tract can compromise these features. Therefore, the
combination of several features is required for a schizophrenia diagnosis.

A summary of the features most used in the literature is presented in Table 1. The most
frequently used speech parameters are divided into four main categories. The prosodic
category features mostly used are F0, Intensity/Loudness/Amplitude, Jitter, and Shimmer.
In the spectral category, the features more frequently used are frequency formants F1, F2,
and F3 and MFCCs. The temporal features mostly used are utterance duration, the duration
of pauses, and the number of pauses. For quantitative measures, some authors, such
as [31,45,54], suggest that the number of pauses can be promising. Finally, the statistical
features mostly used are the number of words and verbosity.

Table 1. Speech features used to identify schizophrenia.

Category
of Feature Feature Work

Pr
os

od
ic

C
ha

ra
ct

er
is

ti
cs

F0/Pitch [4,12,17,26,28,34,42,47,55,56]

Intensity/Loudness/Amplitude [4,12,17,25,26,28,45,47,56]

Jitter
Shimmer [12,24,45]

HNR [42]

NHR [45]

Quantization Error and Vector Angle (QEVA);
Standard Dynamic Volume Value (SDVV) [48]

Articulation rate [39,52]

Peak slope [2]

Sp
ec

tr
al

C
ha

ra
ct

er
is

ti
cs MFCCs [4,12,17,28,45]

F1
F2 [4,12,17,26,34,45,56]

F3 [4,12,17,25,45,56]

Line Spectral Frequencies (LSF); [55]

Linear Predictive Coefficients (LPC) [2]

Symmetric Spectral Difference Level (SSDL) [48]
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Table 1. Cont.

Category
of Feature Feature Work

Te
m

po
ra

lC
ha

ra
ct

er
is

ti
cs

Zero-crossing rate [24,27]

Duration of pauses [2,12,42,43,47,49,57]

Utterance duration [4,17,24,40,43,44,47,49,58]

Number of pauses [43,45,47]

Gap duration [25,43]

The proportion of silence [12,49]

Total recording time [47]

Voiced/unvoiced percentages; voiced/unvoiced
ratio; velocity of Speech [45]

St
at

is
ti

ca
lM

ea
su

re
s

Quasi-open Quotient (QOQ) [2]

Number of words; verbosity (use of excessive
words) [31,44,57]

Speaking turns, interruptions, and interjections [12,46]

Probability of voicing [55]

IQR (interquartile range) of MFCCs and
F0 variation [45]

Skewness and kurtosis (of log Mel freq. band);
mean value (of waveform Correlation, jitter, and

shimmer), slope sign changes
[24,57]

Third, fourth, and fifth moments; Hjorth
parameter activity; mobility and complexity;

waveform length
[56]

Minimum semantic distance for first-order
coherence; mean semantic distance for

first-order coherence
[50]

Pitch range; standard deviation of pitch; power
standard deviation; mean waveform correlation [24]

Table 2 shows the parameters used by several authors organized according to the
categories to which they belong. Not all of the authors mentioned in Table 2 attempted
to identify schizophrenia via speech; therefore, the “accuracy” column contains a short
description. In the case of these authors, no accuracy was reported, and the table presents
only theoretical conclusions. In work [50], the authors achieved 100% accuracy but in
classifying psychotic outbreaks in young people at CHR. Therefore, this work is excluded
from this accuracy comparison.

Using a single category, the accuracy varies between 80 and 93% (the temporal and sta-
tistical features, respectively) No author has used the category of spectral parameters alone.

The most common approach is to use a combined set of parameters (two or more
categories). With two categories, the best result obtained was using prosodic and spectral
parameters, as in the work of [48] (98% accuracy). Using three categories, the best result
was obtained with prosodic, spectral, and temporal features (92% accuracy in [25]). Using
the four categories, the maximum accuracy of 90% was achieved in two works.

The use of temporal features alone does not present a discriminant power that can be
considered for the identification of schizophrenia, and similarly to other authors, it will
be an advantage to combine at least two categories of parameters. The more promising
category are the prosodic and spectral features.

The prosodic features F0 and its derived ones, such as QEVA, SDVV, and the spectral SSDL
(derived from the spectrogram), have the best performance in schizophrenia classification.
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Table 2. Accuracy of the speech features in the classification.

Number of Used
Categories Categories Ref. Accuracy (%)

1

Prosodic [39] To evaluate the relative contributions of motor and cognitive
symptoms on speech output in persons with schizophrenia

Temporal

[27] Language and thought disorder in multilingual schizophrenia

[40] Understanding constricted affect in schizotypal via
computerized prosodic analysis,

[43] 80

[49]
They identified weak untypicalities in pitch variability related
to flat affect and stronger untypicalities in proportion of spoken
time, speech rate, and pauses related to alogia and flat affect.

[58] 93.8% (emotion detection)

Statistical

[31]
They characterized the relationship between structural and

semantic features, which explained 54% of negative symptoms
variance.

[46] 93

[50] 100 (psychotic outbreaks in young people at CHR).

[57] 87.56

2

Prosodic and
Spectral

[26] The authors used such methods to understand the
underpinnings of aprosody.

[28] 79.49

[34] F2 was statistically significantly correlated with the severity of
negative symptoms.

[48] 98.2

Temporal and
Statistical [44] 85

Prosodic and
Temporal

[42] 93.8

[47] 79.4

Acoustic and Text
Features [52,53] 76.2

3

Prosodic, Spectral,
and Temporal

[4] 81.3

[17] 90.5

[25] 91.79

Prosodic, Spectral,
and Statistical

[55] 82

[56]

The association between disorganized speech and adjunctive
use of mood stabilizers could perhaps be understood in the

context of a relationship with impulsiveness/aggressiveness or
in terms of deconstructing the Kraepelinian dualism.

Prosodic, Temporal,
and Statistical [24] 87.5

4
Prosodic, Spectral,

Temporal, and
Statistical

[2] The authors provide an online database with their search results
and synthesize how acoustic features appear in each disorder.

[12] 90

[45] 90
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3.2. Speech Features Description

This section describes the speech features mentioned previously.
The fundamental frequency (or pitch) measures the frequency of vibration of the vocal

folds; consequently, its inverse is the fundamental or glottal period. There are several
methods for estimating the fundamental frequency. The most robust is estimating the first
peak of the normalized autocorrelation of the signal [59].

The intensity (loudness or amplitude) is defined as the acoustic intensity in decibels
relative to a reference value and is perceived as loudness [2].

Jitter measures deviations in frequency between consecutive glottal periods, and this
commonly used method is based on the DSYPA algorithm (dynamic programming project
phase slope algorithm). This algorithm estimates the opening and closing instants of the
glottis (glottal closure instant) [59]. Jitter can be measured in four different ways, but the
most used ways are relative jitter (jitter) and absolute jitter (jitta). Relative jitter is the mean
absolute difference between the consecutive glottal periods divided by the mean period
and is expressed as a percentage. The absolute jitter is the variation of the glottal period
between cycles (the mean absolute difference between consecutive periods) [60].

The shimmer is related to the magnitude variation along the glottal periods, which
can be measured in four different ways. Relative Shimmer (Shim) and Absolute Shimmer
(ShdB) are the most used. Relative Shimmer is defined as the mean absolute difference
between the magnitudes of consecutive periods divided by the mean magnitude and
is expressed as a percentage. The Absolute Shimmer is expressed as the peak-to-peak
magnitude variation in decibels [60].

The remaining determinations forms of jitter and shimmer are not used because in a
statistical study carried out by [61] they did not show statistically significant differences
between jitter and relative shimmer correspondingly.

The Harmonic-to-Noise Ratio (HNR) measures the ratio between harmonic and noise
components, quantifying the relationship between the periodic component (harmonic
part) and aperiodic components (noise). HNR can be measured by the ratio between the
amplitude of the first peak of the normalized autocorrelation, considering that this is the
energy of the harmonic component of the signal, and its difference to one, that is the noise
energy. This feature can be obtained with Equation (1), where H is the harmonic component
given by the energy of the signal’s first peak of the normalized autocorrelation. The final
value of HNR is the average along all segments [60].

HNR(dB) = 10 ∗ log10
H

1−H
(1)

The Noise-to-Harmonic Ratio NHR can be calculated by Equation (2). To determine
the autocorrelation, it is necessary to multiply the normalized autocorrelation of a segment
of a speech signal by the normalized autocorrelation of a window (ex. Hanning window).
Then, the first peak of the segment signal is the autocorrelation.

NHR = 1−Autocorrelation (2)

The Quantization Error and Vector Angle (QEVA) contain two indicators, the mean
value of the cumulative error and the mean value of the vector angle. Both indicators are
calculated based on the fundamental frequency curve and fit the fundamental frequency
curve. The QEVA permit evaluates the stability and similarity of the successive fundamental
frequencies of the speech signals [48].

The Standard Dynamic Volume Value (SDVV) considers the monotonous speed and
intensity of speech. Considering the speaking behavior of schizophrenic people, it is related
to flat affect in schizophrenic patients. The calculation is divided into three steps. The
first step is the intensity calculation based on voice segments (Equation (3)), where Mws
represents the intensity of speech, M is the number of voice segments, ω denotes the voice
segment, L is the length of one voice segment, i denotes the index of speech content from a
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speaker, j represents the index of voice segments in the speech content, and r is adopted to
regularize the amplitudes of voice segments.

Mws =

 1
ML

M

∑
i=1

L

∑
j=1

ω(i, j)

r

(3)

The next step consists of determining the normalized exponent variance calculation
using Equation (4), where Vs represents the exponent variance in a sentence; s(n) denotes
the normalized sentence; s(n) is the mean value of all the data points in the sentence,
including those in the word intervals; Sl is the length of the whole sentence; and t is also
adopted as r.

Vs =

(
∑(s(n)− s(n))

2

Sl

)t

(4)

The last step consists of the standard dynamic volume value calculation using
Equation (5). It aims to represent the intensity variations in speech signals more objectively.

SDVV =
St

l
(ML)r

∑M
i=1 ∑L

j=1 w(i, j)r

∑
(

s(n)− s(n)
)2t (5)

The Velocity of Speech and Articulation Rate (Equations (6) and (7)) correspond to the
ratio between the number of syllables and the total time recorded with and without the
duration of pauses.

Velocity of Speech =
Number of Syllables
Total Time Recording

, (6)

Articulation Rate =
Number of Syllables

Total Time Recording (after pause remove)
, (7)

The peak slope corresponds to the slope of the regression line that fits lof10 of the
maxima of each frame [2].

The Mel Frequency Cepstral Coefficients (MFCC) are used to obtain an approximation
of the perception of the human auditory system to the frequencies of sound. They are
calculated via the frequency spectrum of small windows of the speech signal, which is
obtained by the Fast Fourier Transform (FFT). Subsequently, the frequency spectrum is
subjected to a bank of triangular filters, equally spaced in the Mel frequency scale, via the
discrete cosine transform applied to the output of the filters. Between 13 and 20 coefficients
are usually determined. Finally, energy and delta (variations along the sequence of MFCCs
speech segments) are calculated [60].

The frequency formants F1, F2, and F3 correspond to the first, second, and third peaks
in the spectrum resulting from a human vocal tract resonance.

The linear predictive coding (LPC) coefficients are the best method to predict the
values of the next time point of the audio signal using the values from the previous n time
points, which is used to reconstruct filter properties [2].

Symmetric Spectral Difference Level (SSDL) reflects the distribution of frequency
components in the speech spectrum. It is calculated using Equation (8) [48], where N is the
number of words in one emotional text; n is the word index; m denotes a factor for adjusting
the symmetric amplitude difference; and a is the exponential factor, which constrains the
distribution range of SSDL values.

SSDL =
1

N.10a ∑N
n=1

∑
fs
d−1
i=1

∣∣∣Sn
(

f
(

fs
d − i

))
− Sn

(
f
(

fs
d + i

))∣∣∣m.fn
(

fs
d − i

)
Cn

, (8)
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Cn is the inverse of En (Equation (9)):

Cn =
1

En
En =

∫ fs/d

0
Sn(fn)dfn (9)

The Zero-Crossing rate (ZCR) is the rate at which the signal changes from positive to
negative and back, which is defined in Equation (10), and sgn x(k) in Equation (11).

ZCR =
1

2N

N

∑
k=1
|sgn x(k)− sgn[x(k− 1)]| (10)

sgn[x(k)] =
{

1, x(k) ≥ 0
−1, x(k) < 0

(11)

The utterance duration corresponds to the time taken to say the utterance, and the
number of pauses corresponds to the number of silences in the speech without counting the
silence of occlusions in the stop consonants. The duration of pauses corresponds to the time
duration of these silences. The gap duration is any segment of recording with no subjects’
speech [24]. The proportion of silence (in percentage) is the relationship between the
duration time of all silence segments (without the occlusion of stop consonant) and the total
duration of the speech. The total recording time is the total duration of the conversation.

Voiced and unvoiced percentages correspond to the relationship between speech and
silence in total time recorded in the discourse. Quasi-open Quotient (QoQ) is the ratio of
the vocal folds’ opening time [2]. The number of words and verbosity correspond to the
number of words in the discourse. Speaking turns correspond to the number of changes
between the speakers in the discourse. The interruption is when someone speaks and is
interrupted. The interjection corresponds to a sound that contains no information (e.g.,
“hmmm”).

The probability of voicing is the probability that speech is present and generally
returns a row vector with the same length of speech signal. This value can be obtained with
a function such as “voiceActivityDetector” in Matlab Software.

The Interquartile range (IQR) is the difference between the upper and lower quartile
in an order data set. The skewness is a measure of the lack of symmetry; the data are
symmetrical if it looks the same to the left and right of the center point. The kurtosis is a
measure of the relative peakedness of a distribution. The slope sign changes are a statistical
feature defined as the number of times the slope of the signal waveform changes sign
within an analysis window. The Hjorth feature is divided in three parameters: activity,
mobility, and complexity. The activity gives a measure of the squared standard deviation of
the amplitude of the signal x(t) (Equation (12)), the mobility represents the mean frequency
or the proportion of the standard deviation of the power spectrum (Equation (13)), and
the complexity indicates how the shape of a signal is like a pure sine wave and gives an
estimation of the bandwidth of the signal (Equation (14)) [62].

activity = var(x(t)) (12)

mobility =

√
activity(x′(t))
activity (x(t))

(13)

complexity =
mobility (x′(t))
mobility(x(t))

(14)

The minimum and mean semantic distance for first-order coherence are measured as
an index of “disorder” in the text [50].
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3.3. Emotion Detection in Speech

It is not easy to understand human emotions quantitatively, but understanding them
is fundamental to human social interactions. The best way to analyze them is by assessing
facial expressions or speech [63].

The emotional state is vital for ensuring a good lifestyle and can be influenced by
social relations, physical conditions, or health status. Various sources of information such
as facial expression, brain signals (EEG), and speech can be used to identify a person’s
emotion [63].

There are six basic emotions, including anger, happiness/joy, disgust, surprise, fear,
and sadness, and a neutral emotional state. The other emotions are derived from these [54].

Since anhedonia (the inability to feel pleasure or satisfaction), hallucinations, and
delirium are symptoms of schizophrenia, the last two of which can be accompanied by
strong emotions, these symptoms can lead to a decrease in motivation and a limitation
of social life. Hallucinations and delusions can also lead to an increase in anxiety and
stress levels.

Emotions are convoluted psychological states composed of several components, such as
personal experience and physiological, behavioral, and communicative reactions [11]. Studies
with schizophrenic people show that they suffer difficulties in emotional recognition [64].

An emotional state is a feature in patients with schizophrenia [2]. Figure 2 represents
the most common emotions in schizophrenia. If possible, finding an emotional state based
on speech features may be a further advantage for applications in the future context of
this work.
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Modulations in pitch [41] often control the emotional state. Most of the relevant
developed work is based on using prosodic analysis to recognize emotional features.

Emotion classification is one of the most challenging tasks in speech signal process-
ing [65]. In the work developed in [58], the authors show that acoustic and prosodic
information can be combined and integrated with a speech recognition system using
suprasegmental states. The same authors state that prosodic information is essential for the
reliable detection of a speaker’s emotional state.

Speech emotion recognition (SER) parameters can be divided into acoustic and non-
acoustic. Within acoustic, they can be grouped into different categories: prosody, spectral,
wavelet, nonlinear, speech quality, and deep learning-based (encoder). The prosody fea-
tures, mainly derived from F0, discriminate well between high and low arousal emotions
(sad and happy). Spectral features extract the energy content of different frequency bands;
the most used in emotion recognition are MFCC, Linear Predictive Cepstral Coefficients
(LPCC), and Perceptual Linear Prediction (PLP) coefficients. The wavelet-based features
provide better temporal resolution for the high-frequency components and better frequency
resolution for the low-frequency components. Voice quality features measure the attributes
related to the vocal cords (e.g., jitter, shimmer, instantaneous pitch, phase, energy, autocor-
relation, harmonic-to-noise ratio (HNR), normalized noise energy (NNE), and glottal noise
excitation (GNE)). Nonlinear features capture the complexity of speech signals on different
emotions. The most popular are correlation dimension (CD), largest Lyapunov exponent
(LLE), Hurst exponent (HE), and Lempel–Ziv complexity. The deep-learning-based features
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are directly given to a machine learning tool, such as a convolutional neural network (CNN)
or a long–short-term memory network (LSTM). The encoder layer of the deep-learning
architecture model contains the abstract features of input speech. Non-linguistic features
include non-verbal activities, such as laughter or crying, that can be detected using an
automatic speech recognition system [66].

Paralinguistic features include attitudinal, intentional, and stylistic information [67].
They are essential for understanding and interpreting the pronunciation and identification
of an emotional state [42]. Word choice likely indicates a speaker’s emotional state [58].

For the detection of an emotional state, the MFCCs [68–70], zero crossing rate, energy,
the entropy of energy, spectral centroid, spectral spread, spectral entropy, spectral flux,
spectral roll-off, chroma vector, and chroma deviation [71] were used in previous studies.

Yadav et al. [72] presented a method to detect moments in the emotional state us-
ing Zero Time Windowing (ZTW) based on spectral energy. This method sums up the
three spectral peaks at each instant of the sample Hilbert envelope of Numerator Group
Delay (HNGD).

4. EEG in Schizophrenia

Electroencephalography (EEG) provides a non-invasive tool [73] for the study of the
brain’s temporal and spatial register of electric activity. The study of schizophrenia via
electrophysiological activity focuses on many aspects, including not only finding and
explaining deficits but also correlating them with symptoms, cognitive domains, heredity,
and even medication [74].

Schizophrenia is a complex and heterogeneous disease, manifesting deficits that
underlie many overlapping pathological mechanisms distributed across multiple brain
regions. Patients with schizophrenia have sensory processing deficits [75–77] and high-
level attention-dependent cognitive deficits [78]. These deficits can be assessed by the
time-locked EEG activity in stimuli called ERPs [79] and extracting the features. In some
studies, such as [80–82], EEG signals are recorded with eyes closed and resting using
multiple channels, usually at a sampling frequency over 250 Hz [81–83].

EEG oscillations are considered biomarkers or features of complex states in health and
schizophrenia persons [84]. The oscillatory activity of the EEG in schizophrenia patients
indicates abnormal temporal integration and interregional connectivity of brain networks
during neurocognitive function [84]. EEG signal analysis can be performed in the time,
frequency, and time–frequency domains [85].

Abnormalities in functional and structural networks are associated with schizophrenia,
in which they show less dispersion of excitation flow in prefrontal and premotor areas [73]
with the prefrontal cortex (a region critical for working memory performance) being a brain
region responsible for schizophrenia [83,86].

Brain connectivity can be briefly divided into structural connectivity (SC), functional
connectivity (FC), and effective connectivity (EC) [87]. Neural oscillations can be measured
by extracranial EEG and represented in specific frequency bands: delta (1–3 Hz), theta
(4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–80 Hz). EEG signals have
shown that there is a significant difference in activity in the theta frequency band and, in
particular, an increase in the lower frequencies (delta and theta) in patients with psychotic
disorders [79,88]. Delta and alpha frequencies may provide a useful neurophysiologi-
cal biomarker for delineating psychotic disorders [89]. In patients with schizophrenia,
oscillatory disturbances in the gamma wave are also common.

EEG microstate features are appropriate for schizophrenia classification. Microstates
segment the EEG signal until a quasi-steady state analysis is obtained [84].

Many studies use machine learning algorithms for computer-aided diagnosis from
fMRI and EEG, and in particular, EEG based on functional connectivity [87]. These neu-
roimaging scans can capture irregularities in functional connectivity in subjects diagnosed
with schizophrenia and reflect electrophysiological dysfunction [80].
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The following sections present the review of the features extracted from EEG and
event-related potential (ERP) EEG biomarkers (understood as a measurable indicator of
some biological state or condition) in patients with schizophrenia.

4.1. EEG Features

This section describes the main features that can be used to diagnose schizophrenia
with an EEG signal. The spatial position in 64 EEG electrodes can be observed in Figure 3.
Additional details about the EEG approach can be found in [90].

Bioengineering 2023, 10, x FOR PEER REVIEW 18 of 33 
 

 
Figure 3. Depiction of the sixty-four electrodes’ layouts on a 2D representation of the scalp. 

To explain the underlying abnormalities in patients diagnosed with schizophrenia, a 
multi-set canonical correlation analysis (MCCA) was performed by [85] to combine func-
tional magnetic resonance imaging (fMRI), EEG, and structural magnetic resonance im-
aging (sMRI) parameters. In the work of Shim et al. [80], three sets of parameters were 
used: sensor-level parameters (124 parameters), source-level parameters (314), and a com-
bination of both. 

On the other hand, some authors researched something more specific. Bougou et al.  
[87] focused on the delta and theta bands (0.5–8.5 Hz) by applying a Butterworth, order 5, 
band-pass filter to study the connectivity. The authors calculated connectivity measures: 
cross-correlation (COR), quadratic magnitude coherence (COH), imaginary part of quad-
ratic magnitude coherence (iCOH), phase-locked value (PLV), phase-locked index (PLI), 
p-index (RHO), transfer entropy (TE), mutual information (MI), Granger causality (GC), 
partial directed coherence (PDC) and directed transfer function (DTF). 

Vittala et al. [73] used transcranial magnetic stimulation (TMS) combined with EEG 
to alter and measure the neurophysiological parameters of cortical function, including os-
cillatory activity, cortical inhibition, connectivity, and synchronization. 

Using the nonlinear features, including complexity (Cx), Higuchi fractal dimension 
(HFD), and Lyapunov exponents (Lya), the authors of [91] increased the prediction of a 
schizophrenia classifier up to 100%. With the decomposition of the EEG into wavelets of 
six levels (thus creating seven sub-bands), it is also possible to diagnose subjects with 
schizophrenia with a high accuracy [82]. 

Based on the phase space dynamics (PSD) of EEG signals C, it can be confirmed that 
the PSD shape of the Cz channel (Figure 3) in schizophrenia is more regular than in 
healthy people and can be applied as a biomarker. Via graphical analysis, it is also possible 
to identify schizophrenia. The PSD maps of signals from the EEG to a higher dimensional 
space, and the features to be used are extracted with (up to) 19 channels. Generally, the 
PSD of EEG signals is a suitable technique for discriminating between healthy and schiz-
ophrenic groups. Furthermore, the Cz channel is better than other channels at detecting 
schizophrenia using the PSD of EEG signals [88]. 

According to Akbari et al. [88], the best accuracy (94.8%) is obtained with graphical 
features, namely, the summation of distances between Heron’s circular (SDHC), the sum-
mation of the shortest distance from each point relative to the 45-degree line (SH45), and 
the summation of the area of the triangles making successive points and the coordinate 
center (TACR), as obtained from 12 channels. This procedure was performed by using the 
phase space dynamic (PSD) of EEG signals. First, the PSD of two EEG signals was plotted 
on Cartesian space, and then graphical features were extracted to evaluate the chaotic be-
havior of PSD based on healthy and schizophrenic subjects. The PSD of EEG signals can 

Figure 3. Depiction of the sixty-four electrodes’ layouts on a 2D representation of the scalp.

To explain the underlying abnormalities in patients diagnosed with schizophrenia,
a multi-set canonical correlation analysis (MCCA) was performed by [85] to combine
functional magnetic resonance imaging (fMRI), EEG, and structural magnetic resonance
imaging (sMRI) parameters. In the work of Shim et al. [80], three sets of parameters
were used: sensor-level parameters (124 parameters), source-level parameters (314), and a
combination of both.

On the other hand, some authors researched something more specific. Bougou et al. [87]
focused on the delta and theta bands (0.5–8.5 Hz) by applying a Butterworth, order 5, band-
pass filter to study the connectivity. The authors calculated connectivity measures: cross-
correlation (COR), quadratic magnitude coherence (COH), imaginary part of quadratic
magnitude coherence (iCOH), phase-locked value (PLV), phase-locked index (PLI), p-index
(RHO), transfer entropy (TE), mutual information (MI), Granger causality (GC), partial
directed coherence (PDC) and directed transfer function (DTF).

Vittala et al. [73] used transcranial magnetic stimulation (TMS) combined with EEG
to alter and measure the neurophysiological parameters of cortical function, including
oscillatory activity, cortical inhibition, connectivity, and synchronization.

Using the nonlinear features, including complexity (Cx), Higuchi fractal dimension
(HFD), and Lyapunov exponents (Lya), the authors of [91] increased the prediction of a
schizophrenia classifier up to 100%. With the decomposition of the EEG into wavelets
of six levels (thus creating seven sub-bands), it is also possible to diagnose subjects with
schizophrenia with a high accuracy [82].

Based on the phase space dynamics (PSD) of EEG signals C, it can be confirmed
that the PSD shape of the Cz channel (Figure 3) in schizophrenia is more regular than
in healthy people and can be applied as a biomarker. Via graphical analysis, it is also
possible to identify schizophrenia. The PSD maps of signals from the EEG to a higher
dimensional space, and the features to be used are extracted with (up to) 19 channels.
Generally, the PSD of EEG signals is a suitable technique for discriminating between healthy
and schizophrenic groups. Furthermore, the Cz channel is better than other channels at
detecting schizophrenia using the PSD of EEG signals [88].
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According to Akbari et al. [88], the best accuracy (94.8%) is obtained with graphical
features, namely, the summation of distances between Heron’s circular (SDHC), the sum-
mation of the shortest distance from each point relative to the 45-degree line (SH45), and
the summation of the area of the triangles making successive points and the coordinate
center (TACR), as obtained from 12 channels. This procedure was performed by using the
phase space dynamic (PSD) of EEG signals. First, the PSD of two EEG signals was plotted
on Cartesian space, and then graphical features were extracted to evaluate the chaotic
behavior of PSD based on healthy and schizophrenic subjects. The PSD of EEG signals
can be transferred to successive triangles. By averaging the coordinates of the corners of
each triangle, the centroid coordinate of the triangle is obtained, and it is the same as the
centroid of the corresponding Heron’s circle. The SDHC quantifies the variability of the
PSD. It can be used to evaluate the complexity of PSD. The SH45 measures the width of
the PSD shape from the bisector of the first and third trigonometric regions, and TACR
measures the variation rate of the PSD shape of EEG signals [88].

Baygin et al. [8] proposed a model for the automatic detection of schizophrenia based
on Collatz conjectures (Collatz conjecture is a mathematical model used in information
security applications) using EEG. This model can generate features, is highly accurate,
and requires little time to run, allowing it to achieve a 99.47% correct classification. This
model comprises three stages. The first consists of a new feature generation with Collatz
Conjecture, named the Collatz pattern. Combining the Collatz pattern and the maximum
absolute pooling decomposer creates new multilevel features (low-level and high-level
features). The second step involves applying the iterative neighborhood components
analysis to select the clinically significant features. The last step consists of choosing
features fed to the K-nearest neighbors (KNN) classifier for the automated detection of
schizophrenia [8].

The hit rates for identifying schizophrenia conditions using EEG parameters range
from 82.36% [87] to 100% [91]. Using EEG parameters, the authors of [8] applied a combi-
nation of techniques and KNN classifiers, achieving the classification accuracy of 99.47%
and 93.58% in two datasets using 19 and 10 channels, respectively. Using various Machine
Learning tools such as Support Vector Machine and the leave-one-out cross-validation
training procedure, the authors of [91] correctly classified 88.24% of the cases. Random
Forest classifier with Direct Transfer Function obtained a correct classification of 82.36%
in the work of [87]. The authors of [88] used KNN and a generalized regression neural
network (GRNN) and achieved 94.8% accuracy. The maximum accuracy was obtained with
a probabilistic neural network (PNN) reaching 100%. The accuracy reported in previous
works was measured in different datasets, making the comparison unfair.

4.2. Description of EEG Features

This section describes the previously mentioned EEG feature details.
The cross-correlation (COR) corresponds to a measure of the similarity of two series

as a function of the displacement of one relative to the other and the quadratic magnitude
coherence (COH) between two variables, corresponding to the cross-spectral density func-
tion, which is derived from the FFT of cross-correlation normalized by their individual
auto-spectral density functions. The imaginary part of the quadratic magnitude coherence
(iCOH) is derived by keeping only the imaginary part of the complex numbers, which is
the coherence [87].

The phase-locked value (PLV) characterizes the phase synchronization between two
narrow-band signals, and the phase-locked index (PLI) is a measure of phase-lock that is
zero in the case of linear mixing and nonzero when there is a consistent nonzero phase
difference between the two signals. The p-index (RHO) quantifies the deviation of the cyclic
relative phase distribution from the uniform distribution, approximating the probability
density by the relative frequencies obtained with histograms of relative phases [87].

The transfer entropy (TE) measures the time-asymmetric transfer of information
between two processes. Mutual information (MI) quantifies the amount of information
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that can be obtained about a random variable by observing another. Granger causality
(GC) states that, for two simultaneously measured signals, one can predict the first signal
better by incorporating the past information from the second signal than when only using
information from the first signal. The directed transfer function (DTF) is similar to Granger
causality but uses the elements of a different transfer matrix [87].

Complexity (Cx) consists of numerical information that is transformed into symbolic
information after distinct words are created by decomposing symbolic sequences [91],
which are encoded by the length of L(n). This feature can be defined by Equation (15):

Cx =
L(n)

n
(15)

The Higuchi fractal dimension (HFD) measures the self-similarity and irregularity of a
time series. This feature is estimated using the slope of the linear fit over the log–log plot of
the size and scales of the time series. The range of values is between 1 and 2. The Lyapunov
exponents (Lya) show the average growing ratio of the primary distance between two
neighboring points in the phase space [91]. Equation (16) can calculate this feature:

‖δXi(t)‖
‖δXi(0)‖ = 2λit(t→ ∞)

λi = lim
t→∞

1
t log2

‖δXi(t)‖
‖δXi(0)‖

(16)

where the distance between the point at time 0 is defined by ‖δXi(0)‖ and the point at time
t is defined by ‖δXi(t)‖.

The phase space dynamics (PSD) of EEG signals can be transferred to successive trian-
gles by averaging the coordinates of corners of each triangle ((ai, ai+1),(ai+1, ai+2),(ai+2, ai+3)),
by which it is possible to obtain the centroid coordinate of the triangle. This coordinate
is the same as that of Heron’s circle. The summation of distances between Heron’s circle
(SDHC) [88] is computed as a graphical feature and is defined by Equation (17):

PSDHC =
m−4

∑
i=1

√(
ai+1 + ai+2 + ai+3

3
− ai + ai+1 + ai+2

3

)2
+

(
ai+2 + ai+3 + ai+4

3
− ai+1 + ai+2 + ai+3

3

)2
(17)

The summation of the shortest distance from each point relative to the 45-degree line
(SH45) quantifies the data scatter rate around the 45-degree line. The SH45 measures the
width of the PSD shape from the bisector of the first and third trigonometric regions, known
as a line y = x [88]. It can be described by Equation (18):

SH45 =
m−1

∑
i=1

|ai+1 − ai|√
2

(18)

The summation of the area of the triangles making successive points and the coordinate
center (TACR) measures the variation rate of the PSD shape of the EEG signal [88]. The
TACR is defined by Equation (19):

TACR =
m−2

∑
i=1

∣∣∣∣∣∣det

0 ai ai+1
0 ai+1 ai+2
1 1 1

∣∣∣∣∣∣ (19)

4.3. ERP Biomarkers in Schizophrenia

The EEG activity time-locked to stimuli is denominated event-related potentials (ERPs).
ERPs are commonly used to capture neural activity related to sensory processes and consist
of the averaged neural activity upon the repeated presentation of the same stimulus [92].

While studying the brain’s response to stimuli, participants might elicit spontaneous
and involuntary neural activity during any moment of the recording. The neural response
to stimuli is highly sensitive to the subject’s attention, the presence of motor acts, and
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inner thoughts, introducing random segments of activity in the signal that might even
overshadow the targeted response. Conversely, the neural activity evoked by that particular
stimulus will always be present at the moment of its presentation. Consequently, the
spontaneous and variable activity will be filtered out by averaging activity across trials
with the same stimulus, whereas the signal phase-locked to stimuli onset will become
evident [83].

ERPs are widely used in EEG analysis since they are relatively simple to compute.
Furthermore, classifiers are rarely used. To discriminate them, more straightforward statis-
tical methods, such as Analysis of Variance (ANOVA), are often enough and constitute the
majority of the methods used for this type of EEG analysis. As a result, the results presented
here for using ERPs to diagnose schizophrenia are reported from the statistically significant
differences found in both the latency and amplitude of these ERPs when comparing healthy
subjects and patients to the diagnosis of schizophrenia within the mentioned studies.

In many cases, the auditory task (hearing a beep) is used to measure the cognitive
decline in schizophrenia with ERP waveform alteration and reduced activity in specific
cortical regions in schizophrenia [77]. Figure 4 represents the main ERP biomarkers.
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Mismatch negativity (MMN) is a component of ERP or an event-related magnetic
field (ERMF) that occurs in response to unexpected and rare stimuli in the surrounding
environment. It is considered an important parameter for neuropsychiatric disorders and
for schizophrenia, in particular [93].

The N1 component consists of a negative deflection at about 100 ms [76]. It is evident
when an unexpected stimulus is presented [79]. A reduced N1 amplitude during vowel
vocalization compared to passive listening and directed inner speech compared to a silent
condition is seen in controls but not in patients [94,95].

Of the various ERPs (Figure 4), the components P50 (or Pa), N1, MMN, and P3 have
received the most attention, as they are reliably impaired in schizophrenia and are, therefore,
considered the most promising biomarker data [90].

The P50 (or Pa) is the earliest and smallest ERP component in auditory amplitude,
reaching a general positive peak between 40 and 75 ms [96]. It is used to measure sensory
switching using a conditioning test paradigm that involves the repeated presentation of a
pair of auditory stimuli, S1 (condition) and S2 (test). The increased amplitude measurement
(S2/S1) in patients is well established in the literature [97] and is related to their inability to
filter the incoming flow of information and protect the brain from information overload [98].
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Although its association with neuropsychological processes is still ambiguous [99], the P50
and S2 amplitude ratios have been linked to performance and attention [100]. In addition,
P50 suppression impairment seems to be present in the risk phase, the prodromal phase,
and the first episode [101].

The P3 component reflects information processing associated with attention and mem-
ory mechanisms [90]. For auditory stimuli, it consists of a positive peak deflection of
250–400 ms in adulthood [79]. Still, its latency and amplitude vary significantly depending
on biological factors (e.g., genetics, intelligence, age, and smoking status, among oth-
ers) [90]. A P3 component is triggered during oddball tasks in which multiple stimuli are
presented and one of them occurs infrequently. A fair amount of research involves this
ERP component as a P3 amplitude deficit, especially when evoked by auditory stimuli [78].
This is considered the most consistent and robust finding in schizophrenia [78,102,103].

Mismatch Negativity (MMN), typically generated 100 to 250 ms after stimulus onset,
can be used as an objective index of sound discrimination accuracy and auditory sensory
memory [90]. It is generated by the brain’s automatic response to any change in auditory
stimulation that exceeds a specific threshold, roughly corresponding to the behavioral
discrimination threshold [90]. Impoverished MMN production, reflected in attenuated
amplitudes, is also a consistent finding in schizophrenia [104]. Interest is growing in study-
ing MMN impairment with more complex paradigms (e.g., multiple sensory dimensions,
complex sounds, and changes in stimulation patterns). These complex paradigms activate
more complex brain regions as opposed to simpler deviations (e.g., pitch, duration, and
intensity) that activate lower levels of the auditory system [105].

Although both ERPs share common mechanisms, MMN and P3 most likely portray
different dysfunctions in schizophrenia.

Recent studies [105] indicate that MMN deficits generated during auditory tasks
contribute to 18.7% of the variance in P3 deficits when both are examined. This proves
that the high-level attention-dependent cognitive deficits central to schizophrenia do not
originate from potentially preceding impairments at lower sensory, perceptual, or cognitive
processing levels [78].

Some works used temporal, demographic, and time-frequency features of EEG. Zhang
et al. [92] employed temporal features N1, N1TD, P2, P2TD (TD is time duration), and an
EEG baseline as well as demographic (education and age) and temporal frequency features
(power spectrum). These features were taken from an EEG-ERP with 9 electrodes: Fz, FCz,
Cz, FC3, FC4, C3, C4, CP3, and CP4 (see Figure 3).

Kim et al. [84] used microstate and conventional EEG features extracted from five
regions of interest (ROI): left anterior (Fp1, F7, and F3), right anterior (Fp2, F4, and F8),
left posterior (T7, C3, P7, P3, and O1), right posterior (C4, T8, P4, P8, and O2), and central
(Fz, Cz, and Pz) (see Figure 3). However, ERPs allow healthy and schizophrenic subjects’
discrimination based on P3, MMN, or N1 biomarkers and resting state signal complexity.
Statistical measures or oscillatory power are also successful [106].

A bibliographic review revealed that nine authors used EEG to extract the gamma
wave power spectrum (30–80 Hz), visual evocation potentials, alpha oscillations, power
spectral density, functional connectivity, P3, N170, gamma event-related synchronization
and correlation, intra-regional phase synchronization, event-related potential, and the
average relative power in the Delta (1–4 Hz) and theta (4–8 Hz) frequency bands [107].

5. Discussion and Conclusions

As schizophrenia is a heterogeneous disease with multiple abnormal mechanisms
and causes, it is essential not to consider a sample as an analysis of the whole. This may
produce inconclusive results. To solve this, the sample can be divided based on symptoms,
comorbidity, or patient-specific diagnosis [108–110].

The databases used in other studies are collected by the authors themselves with
a limited number of samples. The acquisition of the signals (speech and EEG) is one
challenging aspect of these works, which explains why no databases have been found.
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This work aims to identify speech and EEG characteristics that allow the identification of
subjects with and without schizophrenia.

5.1. Speech Features

Speech in schizophrenia is considered a component of negative symptoms [25,57]; thus,
analyzing proper speech features with a machine learning tool may be a promising method
to identify schizophrenia. However, the biggest challenge is discriminating schizophrenia
against other mental disorders, especially those with overlapping symptoms, such as
depression and bipolar disorders [109].

Schizophrenic speech is less fluent, contains more (and longer) pauses, and has less
pitch variability (fundamental frequency for each syllable).

In most studies using speech to identify schizophrenia, acoustic and time domain
parameters are extracted from continuous speech. Using speech as a biomarker has the
advantage of indirectly reflecting neural modulation via motor and acoustic variation,
revealing emotion and thought via linguistic content. It is also difficult to hide speech-
related symptoms. In addition, studies of speech can be generalized to different languages
due to the consistency of the structure of vocal anatomy.

To collect voices from patients diagnosed with schizophrenia, speech stimulation
techniques, clinical interviews, free speech tasks, descriptions of pictures or duties, or
reading tasks are implemented.

According to the literature review presented in the previous sections, several speech
parameters may be used as features. In Table 3, it is possible to see the features with more
influence on identifying schizophrenia via speech. The prosodic characteristics represent
speech aspects (beyond phonemes) and concern the auditory qualities of sound. The
spectral characteristics are obtained by converting the time-based signal into the frequency
domain, and temporal characteristics are calculated directly on the temporal waveform.

Table 3. Features with more influence on the identification of schizophrenia via speech.

Prosodic
Characteristics

• Fundamental frequency (F0) or Pitch
• Intensity/loudness

Spectral
Characteristics

• First, second, and third order formants (F1, F2,
and F3)

• Mel-Frequency Cepstral Coefficients (MFCCs)

Temporal
Characteristics

• Duration of pauses and sentences.
• Duration of the interval between words.

* Quantitatively, the quantity of words/pauses can be
considered (it is essential to consider that this quantity
can derive from several factors, such as the stimulation
task used or the individual’s schooling).

By analyzing speech, the emotional state, an essential feature of schizophrenia, can be
determined. Emotion recognition via speech is performed using the following steps: audio
input, preprocessing, feature extraction, classification, and output (emotion).

The emotional state is commonly evaluated by medical staff and is an essential fea-
ture of schizophrenia. Figure 5 presents the features most used for detecting emotional
states. Although acoustic speech analysis is a promising method to identify schizophrenia
situations, changing the approach to intelligent classifiers is challenging on many levels.
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5.2. EEG Biomarkers

Currently, to identify schizophrenia, in addition to medical interviews (based on the
PANSS scale or equivalent), EEGs, or more appropriately ERPs, are used.

The main disadvantage of using ERP is associated with its recording, in which patients
are subjected to time-consuming EEG sessions involving multiple trials and possibly
multiple paradigm conditions.

Most of the studied works used different electrodes. However, the most used elec-
trodes were Fp2, F8, Fp1, F7, F4, Fz, O1, O2, C4, P4, P3, F3, C3, Cz, and Pz (Figure 3).

The most promissory features of EEG are presented in Figure 6 and Table 4. The
features are grouped into sensor-level parameters, connectivity measures, and neurophysi-
ological, graphical, and non-linear features. They can vary between P3 ERP peak/latency,
averaged cortical source activity [80], Partial Directed Coherence (PDC), the Direct Transfer
Function (DTC) [87], complexity (Cx), the Higuchi fractal dimension (HFD), Lyapunov
exponents (Lya) [91], the summation of distances between Heron’s circle (SDHC), the
summation of the shortest distance from each point relative to the 45-degree line (SH45),
and the summation of the area of the triangles making successive points and the coordinate
center (TACR) [88]. Besides the [90] work that combines EEG with other techniques, the
nonlinear features, such as Cx, HFD, and Lya, are the most promising ones since they
achieved the highest accuracy (Table 4).

Table 4. References and accuracy obtained with EEG features.

Ref. Accuracy (%) Features

[85] 100 Combination of FMRI-SMRI-EEG

[80] 78.24 Combined sensor-level and source-level EEG features

[87] 82.36 Connectivity measures

[91] 100 Nonlinear features: complexity (Cx), Higuchi fractal
dimension (HFD), and Lyapunov exponents (Lya)

[88] 94.8 Phase space dynamic (PSD)

[8] 99.47 Collatz pattern technique

[92] 74.07 Features extracted from event-related potential (ERP).

[84] 75.64
Microstate features (duration, occurrence, and coverage),

conventional EEG features (statistical, frequency, and
temporal characteristics)
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One of the most commonly used EEG parameters in the study of schizophrenia, P3
(Figure 4), is also altered in bipolar disorders [109] and depression [110].

Figure 7 illustrates the ERP biomarkers. According to our study, the ERP components
presented in Figure 7 can be robust biomarkers to detect schizophrenia. In patients with
schizophrenia, the MMN has a decrease in amplitude and abnormal topographical dis-
tribution. The P2, N1, and N2 components have a reduced amplitude. In people with
schizophrenia, the P50 shows reduced suppression. One of the most robust ERP com-
ponents in schizophrenia is P3, in which its amplitude decreases. The P3 amplitude is
sensitive to alterations in positive symptoms. In the oldest patients, the P3 is generally
smaller in amplitude and longer in latency.
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5.3. Concluding Remarks

During this research, it was found that speech and EEG parameters can be promising
for diagnosing schizophrenia. However, nowadays, the medical community accepts EEG
parameters more often. What may condition both methods is the acquisition procedure.
Although it is easier to conduct speech acquisition, the equipment used may not be of suffi-
cient quality, and the environment may not have the right conditions for sound recording.
Though obtaining an EEG is not an invasive procedure, placing something on the scalp of
someone diagnosed with schizophrenia may cause the subject to exhibit unwanted behavior.
Another disadvantage is the access to ECG equipment, particularly for research purposes.

The speech parameters can be grouped into three levels: speech acoustic features,
semantic features, and emotional features. The most common acoustic features are divided
into four main categories: the prosodic category (F0, intensity/loudness, amplitude, jitter,
and shimmer), spectral category (F1, F2, F3 and MFCCs), temporal characteristics (utterance
duration, duration of pauses, and number of pauses) and statistical measures (number of
words and verbosity).

Concerning the accuracy achieved in previous works using speech features, the com-
bination of at least two categories achieved higher scores in the accuracy in classifying
schizophrenia subjects. The prosodic features were used in the works with higher accuracy
when combined with spectral or temporal features. The work with higher accuracy used
the prosodic and spectral features QEVA, SDVV, and SSDL that were derived from the F0
and spectrogram.

The most used EEG biomarkers are MMN, P2, P3, P50, N1, and N2, which are obtained
from ERPs. The EEG features with higher accuracy in schizophrenia classification subjects
are the nonlinear features, such as Cx, HFD, and Lya.

SVM is the machine learning tool used so far with the best research results.
Some researchers have also used other levels of parameters, such as text features and

body movements.
This research contributed to identifying the best set of features to use in future devel-

opments in the direction of the identification of schizophrenia with machine learning tools
as a support system.
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Abbreviations
Abbreviation Meaning
AI artificial intelligence
AVHs auditory verbal hallucinations
BPRS Brief Psychiatric Rating Scale
CD correlation dimension
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CHR high clinical risk
CNN convolutional neural network
COH quadratic magnitude coherence
COR cross-correlation
Cx complexity
DTF directed transfer function
EC effective connectivity
EEG electroencephalography
ERP event-related potentials
F0 fundamental frequency
F1, F2, F3 frequency formants
FC functional connectivity
fMRI functional magnetic resonance imaging
GC Granger causality
GNE glottal noise excitation
GRNN generalized regression neural network
HE Hurst exponent
HFD Higuchi fractal dimension
HNGD Hilbert envelope of numerator group delay
HNR Harmonic-to-noise ratio
I intensity/loudness
iCOH imaginary part of quadratic magnitude coherence
INCA iterative neighborhood component analysis
IQR interquartile range
KNN k nearest neighbors
LDA linear discriminant analysis
LIWC Linguistic Inquiry and Word Count
LLD low-level descriptors
LLE largest Lyapunov exponent
LPCC linear prediction cepstral coefficients
LSA latent semantic analysis
LSF linear spectral features
LSTM long-short-term memory network
Lya Lyapunov exponents
MCCA multi-set canonical correlation analysis
MFCC Mel frequency cepstral coefficients
MI mutual information
ML machine learning
MLP multi-layer Perceptron
MMN mismatch negativity
NHR noise to harmonic ratio
NNE normalized noise energy
NSA Negative Symptom Assessment
PANSS Positive and Negative Syndrome Scale
PDC partial directed coherence
PLI phase-locked index
PLP
coefficients

perceptual linear lrediction

PLV phase-locked value
PSD phase space dynamics
PSO particle swarm optimization
QEVA quantification error and vector angle
QOQ quasi-open quotient
RHO p-index
ROI regions of interest
SANS Scale for the Assessment of Negative Symptoms
SC structural connectivity
SD duration of pauses and sentences
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SDHC summation of distances between Heron’s circular
SDVV standard dynamic volume value

SH45
summation of the shortest distance from each point relative to the
45-degree line

sMRI structural magnetic resonance imaging
SSDL symmetric spectral difference level
SVM support vector machine

TACR
summation of the area of the triangles making successive points and the
coordinate centre

TE transfer entropy
WoS Web of Science
ZTW zero time windowing
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