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Artin glueings of frames correspond to adjoint split extensions in the category of 
frames and finite-meet-preserving maps. We extend these ideas to the setting of 
toposes and show that Artin glueings of toposes correspond to a 2-categorical notion 
of adjoint split extension in the 2-category of toposes, finite-limit-preserving functors 
and natural transformations. A notion of morphism between these split extensions 
is introduced, which allows the category Ext(H, N ) to be constructed. We show that 
Ext(H, N ) is equivalent to Hom(H, N )op, and moreover, that this can be extended 
to a 2-natural contravariant equivalence between the Hom 2-functor and a naturally 
defined Ext 2-functor.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
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1. Introduction

Artin glueings of toposes were introduced in [1] and provide a way to view a topos G as a combination of 
an open subtopos Go(U) and its closed complement Gc(U). This situation may be described as the ‘internal’ 
view, but we might instead look at it externally. Here we have that Artin glueings of two toposes H and N
correspond to solutions to the problem of which toposes G does H embed in as an open subtopos and N as 
its closed complement.

There is an analogy to be made with semidirect products of groups. We may either view a group as 
being generated in a natural way from two complemented subgroups (one of which is normal), or externally, 
view a semidirect product as a solution to the problem of how to embed groups H and N as complemented 
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subobjects so that N is normal. Of particular importance to us is that semidirect products correspond to 
split extensions of groups (up to isomorphism).

Artin glueings of Grothendieck toposes decategorify to the setting of frames and in this algebraic setting 
the analogy to semidirect products has been made precise. In [11] it was shown that Artin glueings correspond 
to certain split extensions in the category of frames with finite-limit-preserving maps. While these results 
were proved in the setting of frames, it is not hard to see that the arguments carry over to Heyting algebras. It 
is this view that we now extend back to the elementary topos setting. We now recall the main results of [11].

In the category of frames with finite-meet-preserving maps, there exist zero morphisms given by the 
constant ‘top’ maps. This allows us to consider kernels and cokernels. Cokernels always exist and the 
cokernel of f : N → G is given by e : G → ↓f(0) where e(g) = f(0) ∧ g. This map has a right adjoint 
splitting e∗ sending h to hf(0). Kernels do not always exist, but kernels of cokernels always do, and the 
kernel of e : G → ↓u is the inclusion of ↑u ⊆ G. The cokernel is readily seen to be the open sublocale 
corresponding to u and the kernel the corresponding closed sublocale. This immediately gives that the split 
extensions whose splittings are adjoint to the cokernel correspond to Artin glueings.

A notion of protomodularity for categories equipped with a distinguished class of split extensions was 
first introduced in [5]. In a similar way, in [11] (as well as the current paper) a distinguished role is played 
by those split extensions whose splittings are right adjoint to the cokernel.

With this correspondence established, the corresponding Ext functor was shown to be naturally iso-
morphic to the Hom functor. Each hom-set Hom(H, N) has an order structure and this order structure 
was shown to correspond contravariantly in Ext(H, N) to morphisms of split extensions. Finally, it was 
demonstrated how the meet operation in Hom(H, N) naturally induces a kind of ‘Baer sum’ in Ext(H, N).

In this paper all of the above results find natural generalisation to the topos setting after we provide 
definitions for the analogous 2-categorical concepts. (Also see the paper [16] by Niefield which appeared 
after we wrote this paper and discusses the relationship between (non-split) extensions and glueing in a 
very general context. The current paper uses split extensions and discusses the functorial nature of the 
construction for toposes in more detail.)

2. Background

2.1. 2-categorical preliminaries

There are a number of 2-categories and 2-categorical constructions considered in this paper and so we 
provide a brief overview of these here. All the 2-categories we consider shall be strict.

Briefly, a (strict) 2-category consists of objects, 1-morphisms between objects and 2-morphisms between 
1-morphisms. Phrased another way, instead of hom-sets between objects as is the case with 1-categories, for 
any two objects A and B we have an associated hom-category Hom(A, B).

Both 1-morphisms and 2-morphisms may be composed under the right conditions. If F : A → B and 
G : B → C are 1-morphisms, then we may compose them to yield GF : A → C. We usually represent this 
with juxtaposition, though if an expression is particularly complicated we may use G ◦ F . As with natural 
transformations, there are two ways to compose 2-morphisms — vertically and horizontally. We may compose 
α : F → G and β : G → H vertically to give βα : F → H, sometimes written β ◦α. Orthogonally, if we have 
F2F1 : A → C, G2G1 : A → C, α : F1 → G1 and β : F2 → G2, then we may compose α and β horizontally 
to form β ∗ α : F2F1 → G2G1. Vertical and horizontal composition are related by the so-called interchange 
law. For each object A there exists an identity 1-morphism idA and for each 1-morphism F there exists an 
identity 2-morphism idF .

Just as one can reverse the arrows of a category B to give Bop, one can reverse the 1-morphisms of a 
2-category C to give Cop. It is also possible to reverse the directions of the 2-morphisms yielding Cco and 
when both the 1-morphisms and 2-morphisms are reversed we obtain Cco op.
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In this paper we will make extensive use of string diagrams. For an introduction to string diagrams for 
2-categories see [14]. We will use the convention that vertical composition is read from bottom to top and 

horizontal composition runs diagrammatically from left to right.
We consider 2-functors between 2-categories defined as follows. (We follow the convention that 2-functors 

are not necessarily strict.)

Definition 2.1. A 2-functor F between 2-categories C and D consists of a function F sending objects C
in C to objects F(C) in D and for each pair of objects C1 and C2 in C a functor FC1,C2 : Hom(C1, C2) →
Hom(F(C1), F(C2)), for which we use the same name. Additionally, for each pair of composable 1-morphisms 
(F, G) we have an invertible 2-morphism ωG,F : F(G) ◦ F(F ) → F(G ◦ F ) called the compositor, and for 
each object C in C we have an invertible 2-morphism κA : IdF(A) → F(IdA) called the unitor. This data 

satisfies the following constraints.

(1) Let α : F1 → F2 and β : G1 → G2 be horizontally composable 2-morphisms. Then the compositors must 
satisfy the naturality condition ωG2,F2 (F(β) ∗ F(α)) = F(β ∗ α) ωG1,F1 .

(2) The compositors must be associative in the sense that if F : X → Y , G : Y → Z and H : Z → W are 

1-morphisms, then ωH,GF (idF(H) ∗ ωG,F ) = ωHG,F (ωH,G ∗ idF(F )).
(3) If F : X → Y is a 1-morphism, then we have the unit axiom ωF,IdX

(idF(F )∗κX) = idF(F ) = ωIdY ,F (κY ∗
idF(F )).

There is a notion of 2-natural transformation between 2-functors defined as follows.

Definition 2.2. Let (F1, ω1, κ1), (F2, ω2, κ2) : X → Y be two 2-functors. A 2-natural transformation ρ : F1 →
F2 is given by two families:

(1) A 1-morphism ρX : F1(X) → F2(X) for each object X in X .
(2) An invertible 2-morphism ρF : F2(F )ρX → ρY F1(F ) for each 1-morphism F : X → Y in X .

They must satisfy the following coherence conditions. First if F : X → Y and G : Y → Z are 1-morphisms 
in X , then ρ must respect composition, so that the following diagram commutes.

ρZ ◦ F1(G) ◦ F1(F )

ρZ ◦ F1(GF )

F2(G) ◦ ρY ◦ F1(F )F2(G) ◦ F2(F ) ◦ ρX

F2(GF ) ◦ ρX ρGF

ρZκ1

F2(G)ρF ρGF1(F )

κ2ρX

Next for each object X ∈ X , ρ must respect the identity IdX . For this we need the following diagram to 
commute.
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ρX ◦ IdF1(X)

ρX ◦ F1(IdX)

IdF2(X) ◦ ρX

F2(IdX) ◦ ρX

ρXω1

ρIdX

ω2ρX

Finally, they must satisfy the following ‘naturality’ condition for F, F ′ : X → Y and α : F → F ′.

ρY ◦ F1(F )

ρY ◦ F1(F ′)

F2(F ) ◦ ρX

F2(F ′) ◦ ρX

ρY F1(α)

ρF

ρF ′

F2(α)ρX

When each component ρX is an equivalence, we call ρ a 2-natural equivalence.

One 2-functor of note is the 2-functor Op: Catco → Cat which sends a category C to its opposite category 
Cop. We will use this 2-functor in Section 5 to help compare two 2-functors of different variances.

Limits and colimits have 2-categorical analogues, which will be used extensively throughout this paper. 
A more complete introduction to these concepts can be found in [13]. In particular, we will make use of 
2-pullbacks and 2-pushouts, as well as comma and cocomma objects, which we describe concretely below.

Definition 2.3. Given two 1-morphisms F : B → D and G : C → D their comma object is shown in the 
following diagram

P

B

C

D

PG

PF

F

G
ϕ

and satisfies the following two conditions.

(1) Let T : X → B and S : X → C be 1-morphisms and let ψ : FT → GS be a 2-morphism. Then there 
exists a 1-morphism H : X → P and invertible 2-morphisms ν : PGH → T and μ : PFH → S satisfying 
that Gμ ◦ ϕH ◦ Fν−1 = ψ.
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P

B

C

D

PG

PF

F

G
ϕ

X

T

S

H
μ

ν−1

(2) If H, K : X → P are 1-morphisms and α : PGH → PGK and β : PFH → PFK are 2-morphisms 
satisfying that ϕK ◦ Fα = Gβ ◦ ϕH, then there exists a unique 2-morphism γ : H → K such that 
PGγ = α and PF γ = β.

A 2-pullback is defined similarly, except both ϕ and ψ are required to be invertible, and is represented 
as follows.

P

B

C

D

PG

PF

F

G
ϕ

Cocomma objects and 2-pushouts may be defined dually.

We now recall the definition of a fibration of categories.

Definition 2.4. Let F : X → Y be a functor. A morphism f : A → B in X is cartesian with respect to F
if for any g : C → B in X and h : F (C) → F (A) in Y with F (g) = F (f)h, there exists a unique map 
h : C → A with F (h) = h and f h = g. We say F : X → Y is a (Street) fibration in Cat if for any morphism 
f : A → F (B) in Y there exists a cartesian lifting f : A → B and an isomorphism j : F (A) ∼= A with 
F (f) = fj.

In fact, we will also need the notion of a fibration in other 2-categories, such as the 2-category Catlex of 
finitely-complete categories and finite-limit-preserving functors. The general definitions of fibrations, mor-
phisms of fibrations and 2-morphisms of fibrations can be found, for example, in [7, Definitions 3.4.3–3.4.5]. 
However, it is not hard to see that the fibrations in Catlex are simply the finite-limit-preserving functors 
which are fibrations in Cat.
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2.2. Elementary toposes and Artin glueings

By a topos we mean an elementary topos — that is, a cartesian-closed category admitting finite limits 
and containing a subobject classifier. The usual 2-category of toposes has 1-morphisms given by geometric 
morphisms and 2-morphisms given by natural transformations.

For Grothendieck toposes, the subobjects of the terminal object may be imbued with the structure of a 
frame. Moreover, a geometric morphism between two Grothendieck toposes induces a locale homomorphism 
between their locales of subterminals. This induces a functor from the category of Grothendieck toposes 
into the category of locales, which is in fact a reflector.

A subtopos of a topos E is a fully faithful geometric morphism i : S ↪→ E . Subtoposes when acted upon by 
the localic reflection may sometimes be sent to open or closed sublocales. Those sent to open sublocales we 
call open subtoposes and those sent to closed sublocales we call closed subtoposes. Since open (or closed) 
sublocales correspond to elements of the frame, it follows that any open (or closed) subtopos corresponds 
to a particular subterminal U . This suggests a similar notion of open/closed subtopos corresponding to a 
particular subterminal U even in the elementary setting.

The open subtopos Eo(U) corresponding to a subterminal U has a reflector given by the exponential 
functor (−)U . It is not hard to see that this topos is equivalent to the slice topos E/U , which in turn can 
be thought as the full subcategory of the objects in E admitting a map into U . From this point of view, the 
reflector E : E → E/U maps an object X to the product X × U . We denote its right adjoint by E∗ = (−)U
and write θ and ε for the unit and counit respectively. Note that E∗E(G) = (G × U)U ∼= GU . In addition 
to a right adjoint, E also has a left adjoint E!, which is simply the inclusion of E/U into E .

The closed subtopos Ec(U) has reflector K∗ : E → Ec(U) given on objects by the following pushout.

G× U

U

G

K∗(G)

πU

πG

pG1

pG2

On morphisms f : G → G′ in E , K∗(f) is given by the universal property of the pushout in the following 
diagram. Here the left, front and top faces commute and so a diagram chase determines that pG′

1 f and 
pG

′
2 idU indeed form a cocone.

G′ × U U

G′ K∗(G′)

G× U U

G K∗(G)

πU

πG

πU

πG′

pG
′

2

pG
′

1

f × id

f
K∗(f)
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We denote the right adjoint of K∗ by K and write ζ and δ for the unit and counit respectively.
As expected, Eo(U) and Ec(U) are complemented subobjects. Given toposes H and N we can ask for which 

toposes G may H be embedded as an open subtopos and N its closed complement. This is solved completely 
by the Artin glueing construction. For any finite-limit-preserving functor F : H → N we may construct the 
category Gl(F ) whose objects are triples (N, H, �) in which N ∈ N , H ∈ H and � : N → F (H) and whose 
morphisms are pairs (f, g) making the following diagram commute.

N

N ′

F (H)

F (H ′)

f

�

�′

F (g)

The category Gl(F ) is a topos, and moreover, the obvious projections π1 : Gl(F ) → N and 
π2 : Gl(F ) → H are finite-limit preserving. The projection π2 has a right adjoint π2∗ sending objects 
H to (F (H), H, idF (H)) and morphisms f to (F (f), f). This map π2∗ is a geometric morphism and, in 
particular, an open subtopos inclusion. Similarly, π1 has a right adjoint sending objects N to (N, 1, !) and 
morphisms f to (f, !) where ! : N → 1 is the unique map to the terminal object. This is itself a geometric 
morphism, and indeed, a closed subtopos inclusion.

Remarkably, Artin glueings may be viewed as both comma and cocomma objects in the category of 
toposes with finite-limit-preserving functors. We provide a proof of the latter in Section 4.

One sees immediately that π1π2∗ = F . This suggests a way to view any open or closed subtopos as 
corresponding to one in glueing form. If K : Gc(U) → G and E∗ : G/U → G are respectively the inclusions of 
open and closed subtoposes, then there is a natural sense in which these maps correspond to π1∗ : Gc(U) →
Gl(K∗E∗) and π2∗ : G/U → Gl(K∗E∗) respectively. This fact is well known, though a new proof will be 
provided in Section 3.2.

We now note that the maps π1 : Gl(F ) → N and π2 : Gl(F ) → H are fibrations. By the above argument, 
these results apply equally to the inverse image maps of open and closed subtoposes. This is likely well 
known, though we were unable to find explicit mention of this in the literature.

Proposition 2.5. Let F : H → N be a finite-limit-preserving map between toposes. Then the projection 
π2 : Gl(F ) → H is a fibration.

Proof. This follows from [18, Theorem 14], but it also not hard to show this directly. �
The result of [18, Theorem 14] also implies that the other projection π1 is an opfibration, though we will 

now prove that it is also a fibration.

Proposition 2.6. Let F : H → N be a finite-limit-preserving map between toposes. Then the projection 
π1 : Gl(F ) → N is a fibration.

Proof. We must show that if f : N ′ → N is a morphism in N then for every object (N, H, �) in Gl(F ) there 
exists a cartesian lifting. This map is given by (f, idH) : (N ′, H, �f) → (N, H, �).

To see that this map satisfies the universal property, suppose that we have a morphism (g1, g2) : (A, B, k) →
(N, H, �) which is mapped by π1 to fh. We must show there is a unique map h such that (g1, g2) = (f, idH)h
and π1(h) = h. These constraints imply that h = (h, g2).
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To see that (h, g2) is a morphism in Gl(F ), we consider the following diagram. The left-hand square 
commutes as π1(g1, g2) = fh and the right-hand square commutes since (g1, g2) is a morphism.

A A F (B)

N N ′ F (H)

k

f �

g1h F (g2)

Finally, we immediately see that (f, idH)(h, g2) = (g1, g2), as required. �
3. Adjoint extensions

In generalising the frame results to the topos setting, it is clear that the appropriate 2-category to consider 
is Toplex, the 2-category of toposes, finite-limit-preserving functors and natural transformations. (This is the 
horizontal bicategory of the double category of toposes considered in [15].) For convenience, we will assume 
that 1 always refers to a distinguished terminal object in a topos, and 0 a distinguished initial object.

We will now introduce the necessary concepts in order to discuss extensions of toposes and show how 
Artin glueings can be viewed as adjoint extensions. In particular, the definition of extension will require 
notions of kernel and cokernel.

3.1. Zero morphisms, kernels and cokernels

The definition of extensions requires a notion of zero morphisms. Let us now define these in the 2-
categorical context.

Definition 3.1. A pointed 2-category is a 2-category equipped with a class Z of 1-morphisms (called zero 
morphisms) satisfying the following conditions:

• Z contains an object of each hom-category,
• Z is an ideal with respect to composition (as in [9]) — that is, g ∈ Z =⇒ fgh ∈ Z,
• Z is closed under 2-isomorphism in the sense that if f ∈ Z and f ′ ∼= f then f ′ ∈ Z,
• for any parallel pair f1, f2 of morphisms in Z, there is a unique 2-morphism ξ : f1 → f2.

Definition 3.2. A zero object in a 2-category is an object which is both 2-initial and 2-terminal.

Lemma 3.3. A 2-terminal or 2-initial object in a pointed 2-category is always a zero object. Furthermore, 
any 2-category with a zero object has a unique pointed 2-category structure where the zero morphisms are 
those 1-morphisms which factor through the zero object up to 2-isomorphism.

Remark 3.4. Definition 3.1 is a categorification of pointed-set-enriched categories. Pointed categories are 
often instead defined as those having a zero object. The previous lemma shows that our definition agrees 
with a definition in terms of zero objects when the category has a terminal or initial object.

Definition 3.5. The 2-cokernel of a morphism f : A → B in a pointed 2-category is an object C equipped 
with a morphism c : B → C such that cf is a zero morphism and which is the universal such in the following 
sense.
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(1) If t : B → X is such that tf is a zero morphism, then there exists a morphism h : C → X such that hc
is isomorphic to t.

(2) Given h, h′ : C → X and α : hc → h′c, there is a unique γ : h → h′ such that γc = α.

The 2-kernel of a morphism in a pointed 2-category C is simply the 2-cokernel in Cop.

A similar notion was defined for groupoid-enriched categories in [8].
Note that these may also be defined in terms of 2-pushouts or 2-coequalisers involving the zero morphism 

(in the same way kernels and cokernels can be defined in the 1-categorical setting). Although there would 
usually be coherence conditions that need to be satisfied, the uniqueness of natural isomorphisms between 
zero morphisms eliminates all of them in the case of 2-cokernels.

Remark 3.6. Note that the condition (2) for 2-kernels is simply the statement that the 2-kernel map is a 
fully faithful 1-morphism. Moreover, since an adjoint of a fully faithful morphism is fully faithful in the 
opposite 2-category, we have that when a putative 2-cokernel c : B → C has a (left or right) adjoint d, then 
condition (2) for 2-cokernels is equivalent to d being fully faithful.

We can now consider how these concepts behave in our case of interest. Note that Toplex has a zero object, 
the trivial topos. Then zero morphisms in Toplex are precisely those functors which send every object to a 
terminal object.

In Toplex, 2-cokernels of morphisms F : N → G always exist and are given by the open subtopos corre-
sponding to F (0).

Proposition 3.7. The 2-cokernel of F : N → G is given by E : G → G/F (0) sending objects G to G × F (0)
and morphisms f : G → G′ to (f, idF (0)) : G × F (0) → G′ × F (0).

Proof. We know that E lies in Toplex and so we begin by showing that EF is a zero morphism. The terminal 
object in G/F (0) is F (0) and so consider the following calculation.

EF (N) = F (N) × F (0)
∼= F (N × 0)
∼= F (0).

Next suppose that T : G → X is such that TF is a zero morphism. We claim that TE∗ : H → X when 
composed with E is naturally isomorphic to T .

Observe that

T (G) ∼= T (G) × 1
∼= T (G) × TF (0)
∼= T (G× F (0))
∼= T (E!E(G))

where each isomorphism is natural in G. Hence, T ∼= TE!E ∼= (TE!E)E∗E ∼= TE∗E where the central 
isomorphism comes from Eθ : E ∼−→ EE∗E.

The final condition for the 2-cokernel holds immediately because E has a full and faithful adjoint. �
Unfortunately, 2-kernels do not always exist in Toplex. However, they do exist in the larger 2-category 

Catlex of finitely-complete categories and finite-limit-preserving functors.
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Proposition 3.8. Let F : G → H be a morphism in Catlex. The 2-kernel of F , which we write as Ker(F ), is 
given by the inclusion into G of the full subcategory of objects sent by F to a terminal object.

Proof. Since F preserves finite limits and sends each object in Ker(F ) to a terminal object, it is clear that 
Ker(F ) is closed under finite limits. Naturally, the inclusion is a finite-limit-preserving functor.

It is clear that FK is a zero morphism. We must check that if T : X → G is such that FT is a zero mor-
phism, then it factors through Ker(F ). Note that since FT is a zero morphism, all objects (and morphisms) 
in its image lie in Ker(F ). Thus, it is easy to see that T factors through Ker(F ). The uniqueness condition 
of the universal property is immediate, as the inclusion of Ker(F ) is full and faithful. �

We will only be concerned with 2-kernels of 2-cokernels. The following proposition shows that these do 
always exist in Toplex.

Proposition 3.9. Let U be a subterminal of a topos G and consider E : G → G/U defined as in Proposition 3.7. 
Then the kernel of E is given by K : Gc(U) ↪→ G, the inclusion of the closed subtopos corresponding to U .

Proof. Since Toplex is a full sub-2-category of Catlex, it suffices to show that the closed subtopos Gc(U) is 
equivalent to Ker(E), the full subcategory of objects sent by E to a terminal object.

The reflector K∗ : G → Gc(U) sends an object G to the following pushout.

G× U

G

U

K∗(G)

πG

πU

First we show that K∗(G) lies in Ker(E). We know that E preserves colimits and so we obtain the following 
pushout in G/U .

G× U

G× U

U

EK∗(G)

idG×U

!

p

But note that p is an isomorphism, since it is the pushout of an identity morphism and thus EK∗(G) ∼= U

and K∗(G) lies in Ker(E).
Finally, we must show that K∗ fixes the objects of Ker(E). First observe that U is the initial ob-

ject in Ker(E), since if X is an object in Ker(E) then we have HomG(U, X) = HomG(E!(U), X) ∼=
HomG/U (U, E(X)) ∼= HomG/U (U, U). There is precisely one morphism in HomG/U (U, U), since U is the 
terminal object in G/U .

Now consider the following candidate pushout diagram where G lies in Ker(E).
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G× U

G

U

G

πG

πU

!G×U

idG

!G

Xf

g

h

To see that the square commutes, note that by assumption G lies in Ker(E) and so G ×U ∼= U . Therefore, 
G × U is initial in Ker(E) and there is a unique map into G.

Now suppose (f, g) is a cocone in G. It is clear that the candidate morphism h : G → X must equal f
and so we must just show that f ◦ !G = g. Since G ×U and U are both initial in Ker(E), πU has an inverse 
!G×U : U → G × U .

We now have

f ◦ !G = f !GπU !G×U

= fπG!G×U

= gπU !G×U

= g.

This gives that G is the pushout and hence fixed by K∗. �

3.2. Adjoint extensions and Artin glueings

We are now in a position to define our main object of study: adjoint split extensions.

Definition 3.10. A diagram in Toplex of the form

N G HK E

E∗

equipped with a natural isomorphism ε : EE∗ → IdH is called an adjoint split extension if K is the 2-kernel 
of E, E is the 2-cokernel of K, E∗ is the right adjoint of E and ε is the counit of the adjunction.

Remark 3.11. Propositions 3.7 and 3.9 suggest that every adjoint split extension is equivalent to an ex-
tension arising from a closed subtopos and its open complement (in a sense that will be made precise in 
Definition 4.1). Here U = K(0) is a subterminal in G.
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N G H

Gc(U) G G/U

K E

E∗

(−) × U

(−)U

∼ ∼
The above situation is precisely the setting in which Artin glueings are studied and it is well known that 

in this case G is equivalent to an Artin glueing Gl(K∗E∗). We will present an alternative proof of this result 
from the perspective of extensions.

We begin by showing that Artin glueings can be viewed as adjoint split extensions in a natural way.

Proposition 3.12. Let F : H → N be a finite-limit-preserving functor. Then the diagram

N Gl(F ) H
π1∗ π2

π2∗

is an adjoint split extension in Toplex.

Proof. We first note that Gl(F ) is a topos. This is a fundamental result in the theory of Artin glueings of 
toposes and a proof can be found in [19].

By Proposition 3.8, it is immediate that π1∗ is the 2-kernel of π2. To see that π2 is the 2-cokernel of 
π1∗, we first observe that the slice category of Gl(F ) by the subterminal (0, 1, !) = π1∗(0) is equivalent to 
H. The objects of Gl(F )/(0, 1, !) are isomorphic to those the form (0, H, !) (since every morphism into an 
initial object in N is an isomorphism) and its morphisms of the form (!, f). If L : Gl(F )/(0, 1, !) → H is 
this isomorphism sending (0, H, !) to H and (!, f) to f and E : Gl(F ) → Gl(F )/(0, 1, !) is the cokernel map, 
then it is clear that LE ∼= π2. �

The following proposition is shown for Grothendieck toposes in [1], but deserves to be more well known. 
Here we prove it for general elementary toposes. (It also follows easily from the theory of Artin glueings, 
but here we will use it to develop that theory.)

Recall that we use θ for the unit of the open subtopos adjunction E � E∗ and ζ for the unit of the closed 
subtopos adjunction K∗ � K.

Proposition 3.13. Let G be a topos and consider an open subtopos E∗ : H ↪→ G with closed complement 
K : N ↪→ G. Then each object G in G can be expressed as the following pullback in G of objects from N and 
H.

G

KK∗(G)

E∗E(G)

KK∗E∗E(G)

ζG

θG

KK∗θG

ζE∗E(G)
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Proof. First note that the diagram commutes by the naturality of ζ. Recall that, setting U = KK∗(0) ∼=
K(0), we have E∗E(G) = (G ×U)U ∼= GU and that KK∗(G) is the pushout of G and U along the projections 
π1 : G × U → G and π2 : G × U → U . Now we can rewrite the relevant pullback diagram as follows.

P

G +G×U U

GU

GU +GU×U U(
ιGU ◦ c
ιU

)

ιGU

G

ιG

c

r

Here the ι maps are injections into the pushout and c is the unit of the exponential adjunction, which 
intuitively maps elements of G to their associated constant functions.

Let us express P in the internal logic. We have

P = {(f, [g]) | f ∼ c(g)} ∪ {(f, [∗]) | f ∼ ∗} ⊆ GU × (G + U)/ ∼

where ∼ denotes the equivalence relation generated by f ∼ ∗ for ∗ ∈ U . Explicitly, we find that f ∼ f ′ ⇐⇒
f = f ′ ∨ ∗ ∈ U . Thus, we find

P = {(f, [g]) | f = c(g) ∨ ∗ ∈ U} ∪ {(f, [∗]) | f ∈ GU , ∗ ∈ U}

= {(c(g), [g]) | g ∈ G} ∪ {(f, [g]) | ∗ ∈ U} ∪ {(f, [∗]) | ∗ ∈ U}.

Now observe that if ∗ ∈ U , then [g] = [∗] and hence {(f, [g]) | ∗ ∈ U} ⊆ {(f, [∗]) | ∗ ∈ U}. Finally, 
commuting the subobject and the quotient we arrive at

P = ({(c(g), g) | g ∈ G} � {(f, ∗) | ∗ ∈ U}) / ∼

where the equivalence relation is generated by (f, g) ∼ (f, ∗) for ∗ ∈ U . Note that the union is now disjoint.
The map r : G → P sends g ∈ G to [(c(g), g)]. We can define a candidate inverse by s : P → G by 

(f, g) �→ g and (f, ∗) �→ f(∗), which can seen to be well-defined, since if (f, g) and (f ′, ∗) are elements of 
the disjoint union with f = f ′ and ∗ ∈ U , then f ′(∗) = c(g)(∗) = g.

We clearly have sr = idG. Now if [(c(g), g)] ∈ P then rs([(c(g), g)]) = r(g) = [(c(g), g)]. On the other 
hand, if [(f, ∗)] ∈ P then ∗ ∈ U and rs([f, ∗]) = r(f(∗)) = [(c(f(∗)), ∗)], which equals [(f, ∗)] since f(∗) =
c(f(∗))(∗) so that f = c(f(∗)). Thus, r and s are inverses as required. �
Remark 3.14. The non-classical logic in the above proof can be hard to make sense of. It can help to consider 
the cases where U = 0 and U = 1. In the former case, GU contains no information and G +G×U U ∼= G, 
while in the latter case the opposite is true. The general case ‘interpolates’ between these.

The next result will play a central role in this paper.
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Proposition 3.15. Let G be a topos and consider an open subtopos E∗ : H ↪→ G with closed complement 
K : N ↪→ G. We have the following pullback in the category of (finite-limit-preserving) endofunctors on G.

IdG

KK∗

E∗E

KK∗E∗E

ζ

θ

KK∗θ

ζE∗E

Proof. We proved this on objects in Proposition 3.13. Now consider a morphism p : G → G′ in G. We obtain 
the following commutative cube.

G′ E∗E(G′)

KK∗(G′) KK∗E∗E(G′)

G E∗E(G)

KK∗(G) KK∗E∗E(G)

θG

ζG

ζE∗E(G)

θG′

ζG′

ζE∗E(G′)

KK∗θG′

p E∗E(p)

KK∗(p)
KK∗E∗E(p)

KK∗θG

An enjoyable diagram chase around the cube shows that p is the unique morphism making the cube commute 
by the pullback property of the front face. Since pullbacks in the functor category are computed pointwise, 
this yields the desired result. �
Remark 3.16. It is remarked in [11] that adjoint extensions of frames can be viewed as weakly Schreier split 
extensions of monoids as defined in [4]. Propositions 3.13 and 3.15 can be viewed as a categorified version 
of the weakly Schreier condition for the topos setting, though it is as yet unclear how the weakly Schreier 
condition might be categorified more generally. It would also be interesting to see how the general theory 
of (S-)protomodular categories [2,6] might be categorified. Another potential example of 2-dimensional 
protomodularity can be found in [12].

We can now prove the main result of this section. For now we will treat equivalences of adjoint extensions 
without worrying too much about coherence, which we will discuss in more detail when we define morphisms 
of extensions in Section 4.
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Theorem 3.17. Let N G HK E

E∗
be an adjoint split extension. Then it is equivalent to the split 

extension N Gl(K∗E∗) H
π1∗ π2

π2∗
.

Proof. We denote the unit of π2 � π2∗ by θ′ : IdGl(K∗E∗) → π2∗π2 and observe that its component at 
(N, H, �) can be given explicitly by (�, idH) : (N, H, �) → (K∗E∗(H), H, idH). We denote the unit of π1 � π1∗
by ζ ′ : IdGl(K∗E∗) → π1∗π1 and its components are given by (idN , !) : (N, H, �) → (N, 1, !).

Consider the functor Φ: G → Gl(K∗E∗) which sends objects G to the triple (K∗(G), E(G), K∗θG) and 
morphisms f : G → G′ to (K∗(f), E(f)). This is a morphism of extensions in the sense that we have 
natural isomorphisms α : π1∗ → ΦK, β : π2Φ → E and γ : π2∗ → ΦE∗ given by α = (id, !) ◦ π1∗δ

−1 (where 
δ : K∗K → IdN is the counit of K∗ � K and (id, !) : π1∗K∗K ∼= ΦK is simply to ensure the different choices 
of terminal object agree), β = id (using π2Φ = E) and γ = (idK∗E∗ , ε

−1) (where ε : EE∗ → IdH is the 
counit of E � E∗ and this is a morphism in Gl(K∗E∗) by the triangle identity). This can be seen to be a 
morphism of extensions as defined in Definition 4.1 (see Remark 4.2).

We must show that Φ is an equivalence. We claim that the following pullback in Hom(Gl(K∗E∗), G) is 
the inverse of Φ. (Here the bottom equality comes from K∗E∗ = π1π2∗.)

Φ′

Kπ1 Kπ1π2∗π2 KK∗E∗π2

E∗π2

Kπ1θ
′

ζE∗π2

We shall make extensive use of Proposition 3.15 in order to prove this.
To see that Φ′Φ ∼= idG note that composition with Φ on the right preserves limits and thus can be 

represented as the following pullback in Hom(G, G).

Φ′Φ

Kπ1Φ

E∗π2Φ

KK∗E∗π2Φ
Kπ1θ

′Φ

ζE∗π2Φ

Note that π1Φ = K∗, π2Φ = E and that θ′Φ(G) = (K∗θG, idE(G)) which of course gives that Kπ1θ
′Φ =

KK∗θ. After making these substitutions into the diagram above, we have the pullback square occurring in 
Proposition 3.15, which by the universal property gives that ΦΦ′ is naturally isomorphic to IdG .

The same idea works for ΦΦ′. We consider the following pullback square in the category of endofunctors 
on Gl(K∗E∗).
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ΦΦ′

ΦKπ1

ΦE∗π2

ΦKK∗E∗π2

π1∗π1

π2∗π2

π1∗π1π2∗π2

ΦKπ1θ
′

ΦζE∗π2

α−1π1

∼

γ−1π2
∼

α−1π1π2∗π2

∼

π1∗π1θ
′

ζ ′π2∗π2

The bottom trapezium commutes by naturality of α−1 (and using K∗E∗ = π1π2∗), whereas both paths 
around the right-hand trapezium can be seen to compose to (idK∗E∗(H), !). Thus this pullback diagram has 
the same form as that in Proposition 3.15 and so Proposition 3.12 allows us to deduce that ΦΦ′ is naturally 
isomorphic to the identity, completing the proof. �

Together with Proposition 3.12 this shows that adjoint split extensions and Artin glueings are essentially 
the same. The equivalence Φ so defined is natural in a sense that will become clear later in Section 4.2.

4. The category of extensions

It follows from Theorem 3.17 that equivalence classes of adjoint extensions between H and N are in 
bijection with those of Hom(H, N ). However, the extensions have a natural 2-categorical structure and so 
we would like to know how this relates to the categorical structure of Hom(H, N ).

4.1. Morphisms of extensions

Definition 4.1. Suppose we have two adjoint extensions,

N G1 H
K1 E1

E1∗
and N G2 H

K2 E2

E2∗
,

with the same kernel and cokernel objects and associated isomorphisms ε1 and ε2 respectively. Consider the 
following diagram where α, β and γ are natural isomorphisms and Ψ is a finite-limit-preserving functor.

N G1 H G1 H

N G2 H G2 H

K1 E1 E1∗ E1

K2 E2 E2∗ E2

Ψ Ψ
α β γ β
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We say the functor Ψ: G1 → G2 together with α, β and γ is a morphism of adjoint extensions (of H by N )
if ε2 = ε1(βE1∗)(E2γ).

Given two such morphisms (Ψ, α, β, γ) and (Ψ′, α′, β′, γ′), a 2-morphism of adjoint extensions is a natural 
transformation τ : Ψ → Ψ′ such that α′ = (τK1)α, β = β′(E2τ) and γ′ = (τE1∗)γ.

The morphisms compose in the obvious way: by composing the functors and pasting the natural transfor-
mations together by juxtaposing the squares from the diagram above. Horizontal and vertical composition 
of 2-morphisms is given by the corresponding operations of the natural transformations τ . It is not hard to 
see that this gives a strict 2-category Ext(H, N ).

Remark 4.2. Note that the ‘equivalence of extensions’ (Φ, α, β, γ) defined in Theorem 3.17 is indeed a 
morphism of extensions in the above sense, since there ε2 and β are identities and ε(π2γ) = εε−1 = id, as 
required.

Lemma 4.3. Given two adjoint extensions as above, a functor Ψ: G1 → G2 and natural transformations 
α : K2 → ΨK1 and γ : E2∗ → ΨE1∗, there is a unique natural isomorphism β : E2Ψ → E1 making (Ψ, α, β, γ)
a morphism of adjoint extensions.

Furthermore, given two morphisms of adjoint extensions as above, a natural transformation τ : Ψ → Ψ′

is a 2-morphism of adjoint extensions if and only if α′ = (τK1)α and γ′ = (τE1∗)γ.

Proof. Any such β must satisfy ε2 = ε1(βE1∗)(E2γ). But this can be rewritten as ε2(E2γ
−1) = ε1(βE1∗), 

which shows that β and γ−1 are mates with respect to the adjunctions E1 � E1∗ and E2 � E2∗ and hence 
determine each other.

We now show that β so defined is an isomorphism. As the mate of γ−1, we can express β as 
(ε2E1)(E2γ

−1E1)(E2Ψθ1). Now since ε2 and γ−1 are isomorphisms, we need only show E2Ψθ1 is an isomor-
phism. This map occurs in the pullback obtained by applying E2Ψ to the pullback square of Proposition 3.15.

E2Ψ

E2ΨK1K
∗
1

E2ΨE1∗E1

E2ΨK1K
∗
1E1∗E1

E2Ψζ1

E2Ψθ1

E2ΨK1K
∗
1θ1

E2Ψζ1E1∗E1

Now observe that E2ΨK1 ∼= E2K2 ∼= 1 is a zero morphism and hence so are E2ΨK1K
∗
1 and E2ΨK1K

∗
1E1∗E1. 

Therefore, the bottom arrow of the above diagram is an isomorphism, and as the pullback of an isomorphism, 
E2Ψθ1 is an isomorphism too.

Finally, we show that the condition on β for 2-morphisms of extensions is automatic. Simply observe the 
following string diagrams.
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γ′ −1

ε2

E2

θ1

E1

τ

Ψ

H

G1

G2

= γ′ −1

ε2

E2

θ1

E1

τ

Ψ

= γ−1

ε2

E2

θ1

E1

Ψ

Here the first diagram represents β′(E2τ) and the last diagram represents β. In moving from the first 
diagram to the second we shift τ above θ1 and to move from the second diagram to the third we use 
γ′ = (τE1∗)γ. �
Lemma 4.4. Suppose (Ψ, α, β, γ) and (Ψ′, α′, β′, γ′) are parallel morphisms of extensions. Then any 2-
morphism τ between them is unique and invertible.

Moreover, such a 2-morphism exists if and only if α′α−1K∗
1E1∗ ◦ Ψζ1E1∗ = Ψ′ζ1E1∗ ◦ γ′γ−1.

Proof. Suppose τ : Ψ → Ψ′ is a 2-morphism of extensions. Then we have τK1 = α′α−1 and τE1∗ = γ′γ−1. 
Now by composing the pullback square of Proposition 3.15 with Ψ and Ψ′ and using the naturality of τ we 
have the following commutative cube in HomToplex(G1, G2).

Ψ′ Ψ′E1∗E1

Ψ′K1K
∗
1 Ψ′K1K

∗
1E1∗E1

Ψ ΨE1∗E1

ΨK1K
∗
1 ΨK1K

∗
1E1∗E1

Ψθ1

Ψζ1

Ψζ1E1∗E1

Ψ′θ1

Ψ′ζ1

Ψ′ζ1E1∗E1

Ψ′K1K∗
1 θ1

τ τE1∗E1

τK1K∗
1

τK1K∗
1E1∗E1

ΨK1K∗
1 θ1

The universal property of the pullback on the front face then gives that τ is uniquely determined by τK1K
∗
1

and τE1∗E1, and hence by τK1 = α′α−1 and τE1∗ = γ′γ−1. Thus, the morphism τ is unique if it exists.
We can also attempt to use a similar cube to construct τ without assuming it exists a priori by replacing 

τK1 with α′α−1 and τE1∗ = γ′γ−1 in the above diagram. However, in order to obtain a map τ from the 
universal property of the pullback, we require that the right-hand face commutes.
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ΨE1∗E1

ΨK1K
∗
1E1∗E1

Ψ′E1∗E1

Ψ′K1K
∗
1E1∗E1

Ψζ1E1∗E1

γ′γ−1E1

α′α−1K∗
1E1∗E1

Ψ′ζ1E1∗E1

Note that this square commutes if and only if the similar square obtained by inverting the horizontal 
morphisms commutes. But this latter square is precisely the square we need to commute to obtain a 2-
morphism in the opposite direction. Uniqueness then shows that these two 2-morphisms compose to give 
identities.

Finally, observe that commutativity of this square is the required equality stated above whiskered with 
E1. This is equivalent to the desired condition, since E1 is essentially surjective. �
Corollary 4.5. The 2-category of adjoint extensions Ext(H, N ) is equivalent to the locally trivial 2-category 
Ext(H, N ) of adjoint extensions and isomorphism classes of morphisms.

This will justify working with Ext(H, N ) (viewed as a 1-category) going forward.

Lemma 4.6. From a morphism of extensions (Ψ, α, β, γ) we can form an associated natural transformation 
from K∗

2E2∗ to K∗
1E1∗ given by (δ2K∗

1E1∗)(K∗
2α

−1K∗
1E1∗)(K∗

2Ψζ1E1∗)(K∗
2γ) where δ2 is the counit of the 

K∗
2 � K2 adjunction and which is depicted below. Two parallel morphisms of extensions are isomorphic if 

and only if their corresponding natural transformations are equal.

E2∗

γ

E1∗

ζ1

K∗
1

α−1

δ2

K∗
2

N

Proof. There is a (necessarily invertible) 2-morphism from (Ψ, α, β, γ) to (Ψ′, α′, β′, γ′) if and only if 
(α′α−1K∗

1E1∗)(Ψζ1E1∗) = (Ψ′ζ1E1∗)γ′γ−1. We can now move all the unprimed variables to the left and 
primed variables to the right by multiplying both sides of this equation on the left by α′ −1K∗

1E1∗ and on 
the right by γ to obtain (α−1K∗

1E1∗)(Ψζ1E1∗)γ = (α′ −1K∗
1E1∗)(Ψ′ζ1E1∗)γ′. These are the mates of the 

desired natural transformations with respect to the adjunction K∗
2 � K2. �

4.2. The equivalence of categories

In this section we show that the categories Ext(H, N ) and Hom(H, N )op are equivalent. This requires 
showing that isomorphism classes of morphisms of extensions correspond to natural transformations. We 
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have already seen that each isomorphism class has an associated natural transformation. We will now further 
explore this relationship, making use of the following folklore result.

Proposition 4.7. Let N G HK E

E∗
be an adjoint extension. Then the following diagram is a cocomma 

square.

H

N

H

G

K∗E∗

K

E∗
ζE∗

Proof. We first check the 2-categorical condition. Consider two finite-limit-preserving functors U, V : G → X
and natural transformations μ : UE∗ → V E∗ and ν : UK → V K such that (V ζE∗)μ = (νK∗E∗)(UζE∗). 
We must find a unique ω : U → V such that ωE∗ = μ and ωK = ν.

We use Proposition 3.15 to express U and V as pullbacks and then as in Lemma 4.4 we find that there 
is a unique map ω : U → V with ωE∗ = μ and ωK = ν as long as the following diagram commutes.

UE∗E

UKK∗E∗E

V E∗E

VKK∗E∗E

UζE∗E

μE

νK∗E∗E

V ζE∗E

But commutativity of this diagram is simply the assumed condition whiskered with E on the right.
Now we show the 1-categorical condition. Suppose we have finite-limit-preserving functors T1 : H → X

and T2 : N → X and a natural transformation ϕ : T1 → T2K
∗E∗. We must construct a finite-limit-preserving 

functor L : G → X and natural isomorphisms τ1 : LE∗ → T1 and τ2 : LK → T2 depicted below such that 
ϕ = τ2K

∗E∗ ◦ LζE∗ ◦ τ−1
1 .

H

N

H

G

K∗E∗

K

E∗
ζE∗

X
T2

T1

L

τ−1
1

τ2
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Suppose we are given such a functor L and natural isomorphisms τ1, τ2 and consider the following pullback 
diagram.

L

LKK∗

LE∗E

LKK∗E∗E

Lζ

Lθ

LKK∗θ

LζE∗E

T2K
∗

T1E

T2K
∗E∗E

τ2K
∗ ∼

τ1E
∼

T2K
∗θ

ϕE

τ2K∗E∗E
∼

Here the bottom trapezium commutes by the naturality of τ2K∗ and the right trapezium commutes since 
(ϕτ1)E = (τ2K∗E∗ ◦ LζE∗)E by assumption. Note that the left edge of the large square is the mate of τ2
with respect to K∗ � K and the top edge is the mate of τ1 with respect to E � E∗.

Now without assuming L exists to start with, we can use the outer pullback diagram to define it and we 
may recover τ1 and τ2 as the mates of the resulting pullback projections.

Observe that precomposing the pullback with K turns the right-hand edge into an isomorphism between 
zero morphisms. Hence the left-hand morphism (τ2K∗)(Lζ)K is an isomorphism as well. Since τ2 is given 
by composing this with the isomorphism T2δ, we find that τ2 is an isomorphism. On the other hand, 
precomposing the pullback with E∗ turns the bottom edge into an isomorphism (as N E∗

↪−→ G is a reflective 
subcategory). It follows that τ1 is also an isomorphism.

Finally, we show that ϕ be can recovered in the appropriate way. The commutativity of the pullback 
square gives ϕE ◦ τ1E ◦ Lθ = T2K

∗θ ◦ τ2K∗ ◦ Lζ. The result of whiskering this with E∗ on the right and 
composing with T2K

∗E∗ε is depicted in the string diagram below.

τ1

ϕ

θ

L

E∗ T2K∗

ε

E∗

X

= τ2

T2

ζ

K∗

L

E∗

θ

ε

E∗

X

The desired equality follows after using the triangle identities to ‘pull the wires straight’. �
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Proposition 4.8. Let A and B denote the adjoint extensions N G1 H
K1 E1

E1∗
and

N G2 H
K2 E2

E2∗
respectively. There is a bijection between the equivalence classes of morphisms 

of extensions Hom(A, B) and the natural transformations Hom(K∗
2E2∗, K∗

1E1∗).

Proof. Let ψ : K∗
2E2∗ → K∗

1E1∗ be a natural transformation and consider its mate natural transformation 
ψ : E2∗ → K2K

∗
1E1∗ with respect to the adjunction K∗

2 � K2. Notice that ψ determines a 2-cocone in the 
following cocomma object diagram.

H

N

H

G1

K∗
1E1∗

K1

E1∗
ζE1∗

G2
K2

E2∗

Ψ

γ

α−1

By the universal property of the cocomma, we get a map Ψ: G1 → G2 and natural isomorphisms α : K2 →
ΨK1 and γ : E2∗ → ΨE1∗. By Lemma 4.3 we can derive a unique natural isomorphism β : E2Ψ → E1 such 
that (Ψ, α, β, γ) is a morphism of extensions.

For the other direction we begin with a morphism of extensions (Ψ, α, β, γ) and form the pasting diagram 
above. We may consider the composite natural transformation

ψ = α−1K∗
1E1∗ ◦ ΨζE1∗ ◦ γ : E2∗ → K2K

∗
1E1∗.

Again we may use the adjunction K∗
2 � K2 to arrive at the natural transformation

δ2K
∗
1E1∗ ◦K∗

2α
−1K∗

1E1∗ ◦K∗
2ΨζE1∗ ◦K∗

2γ : K∗
2E2∗ → K∗

1E1∗,

where δ2 : K∗
2K2 → IdN is the counit of the adjunction.

It is clear that these processes are inverses by the uniqueness of the universal property (bearing in mind 
that the morphisms in Ext(H, N ) are isomorphism classes). �
Remark 4.9. Notice that the natural transformation associated to a morphism of extensions (Ψ, α, β, γ) in 
the above proof is precisely the one described in Lemma 4.6.

Corollary 4.10. Let F1, F2 : H → N be finite-limit-preserving functors and let

Γ1 = N Gl(F1) H
πF1

1∗ πF1
2

πF1
2∗

and Γ2 = N Gl(F2) H
πF2

1∗ πF2
2

πF2
2∗

be the corresponding glueing extensions. Then Hom(F2, F1) ∼= Hom(Γ1, Γ2).
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Proof. Since πF1
1 πF1

2∗ = F1 and πF2
1 πF2

2∗ = F2, the above proposition implies that Hom(Γ1, Γ2) ∼=
Hom(F2, F1), as required. �

We are now ready to show that the categories Ext(H, N ) and Hom(H, N )op are equivalent. (A similar 
result can also be obtained from the results of [17].)

Definition 4.11. Let ΓH,N : Hom(H, N )op → Ext(H, N ) be the functor sending F : H → N to the extension 

N Gl(F ) H
π1∗ π2

π2∗
and sending natural transformations to the associated morphism of extensions 

described in Corollary 4.10.

Theorem 4.12. The functor ΓH,N : Hom(H, N )op → Ext(H, N ) is a part of an equivalence.

An inverse Γ−1
H,N sends an extension N G HK E

E∗
to K∗E∗ and a morphism of extensions to the 

natural transformation described in Lemma 4.6 and Proposition 4.8. For the adjunction Γ−1
H,N � ΓH,N we 

take the counit to be the identity and the unit to be given by the isomorphisms described in Theorem 3.17.

Proof. Note that Γ−1
H,NΓH,N = IdHom(H,N )op . We see that Γ−1

H,N � ΓH,N with the identity as the counit, 
since for each natural transformation ψ : F → Γ−1(A), there is a unique map Ψ: A → ΓH,N (F ) such that 
Γ−1
H,N (Ψ) = ψ, namely the image of ψ under the inverse of the bijection

Hom(A,ΓH,N (F )) ∼= Hom(Γ−1
H,NΓH,N (F ),Γ−1

H,N (A)) = Hom(F,Γ−1
H,N (A))

from Proposition 4.8.

Let A denote the extension N G HK E

E∗
. It remains to show that the isomorphism of extensions 

Φ = (Φ, α, β, γ) : A → ΓH,N (K∗E∗) described in Theorem 3.17 is the component of the unit at A.
It suffices to show that the isomorphism Hom(A, ΓH,NΓ−1

H,N (A)) ∼= Hom(Γ−1
H,N (A), Γ−1

H,N (A)) maps Φ to 
the identity — that is, that Γ−1

H,N (Φ) = idK∗E∗ . As in Lemma 4.6 we have Γ−1
H,N (Φ) = δ′K∗E∗◦π1α

−1K∗E∗◦
π1ΦζE∗ ◦ π1γ. Now recall that δ′ : π1π1∗ → IdN is the identity, α = (id, !) ◦ π1∗δ

−1 and γ = (idK∗E∗ , ε
−1). 

Thus the expression can be seen to simplify to δK∗E∗ ◦ K∗ζE∗, which in turn is idK∗E∗ by the triangle 
identity for K∗ � K.

Finally, ΓH,N and Γ−1
H,N form an equivalence since the unit and counit are isomorphisms. �

With this in mind we may now consider the full subcategory of Ext(H, N ) whose objects are only 

those extensions of the form N Gl(F ) H
π1∗ π2

π2∗
for some F : H → N . It is evident that this full 

subcategory is equivalent to Ext(H, N ) and for the remainder of the paper we will choose to perform 
calculations in this subcategory for simplicity. We will discuss how this can be done coherently when we 
investigate the Ext 2-functor in Section 5.

We can now give a concrete description of the behaviour of morphisms of extensions. Suppose that 
(Ψ, α, β, γ) : ΓH,N (F1) → ΓH,N (F2) is a morphism of adjoint extensions as in the following diagram.
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N Gl(F1) H

N Gl(F2) H

πF1
1∗ πF1

2

πF1
2∗

πF2
1∗

πF2
2

πF2
2∗

Ψ

Since αN : (N, 1, !) → Ψ(N, 1, !) is an isomorphism, we have Ψ(N, 1, !) = (N, 1, !) for some N ∼= N

and some terminal object 1. For simplicity, we will assume 1 = 1 without any loss of generality. Simi-
larly γH : (F2(H), H, id) → Ψ(F1(H), H, id) is an isomorphism. So if Ψ(F1(H), H, id) = (NH , H, tH) then 
tH : NH → F2(H) is an isomorphism.

Since Ψ preserves finite limits, we can use Proposition 3.13 to completely determine its behaviour. Every 
object in Gl(F1) can be written as the following pullback diagram, where objects in the category are 
represented by the green arrows pointing out of the page and the pullback symbol has elongated into a 
wedge.

F1(H) F1(H)

1 1

N F1(H)

N F1(H)

�

�

!
!

�

! !

Note that the front and back faces are pullback squares in N and the other faces correspond to morphisms 
in Gl(F1).

We may now study how Ψ acts on this pullback diagram. Observe that the bottom face corresponds to 
the morphism πF1

1∗ (�) where � : N → F1(H). It is then sent by Ψ to the morphism represented in the diagram 
below.

N

1

F1(H)

1

!

π1ΨπF1
1∗ (�)

!
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The right face is the unit ζ
π
F1
2∗ (H) : π

F1
2∗ (H) → πF1

1∗F1(H). Thus we have that Ψ sends this face to the 
following commutative square.

NH

F1(H)

F2(H)

1

π1Ψ(ζ
π
F1
2∗ (H))

tH

!

!

The pullback of these two faces will then give the image of (N, H, �) under Ψ. The pullback diagram 
is given by the large cuboid in the diagram below. Here we have factored this pullback as in the similar 
pullback diagram in the proof of Proposition 4.7.

F2(H) F2(H)

1 1

N ×F1(H) F2(H) F2(H)

N F1(H)

N

1

F1(H)

1

NH

F2(H)

F1(H)

1

F1(H)

1

! ! !

!

tH

π1(αN ) ∼

π1(αF1(H))

∼

π1(αF1(H))
∼

π1(γH)
∼

π1ΨπF1
1∗ (�)

π1Ψ(ζπ2∗(H))

!

F2π2(γH)
∼

pψH
(�)

p�(ψH)
ψH

�

! !

pψH
(�)

! !

The bottom face of the bottom left cube and the right face of the top right cube are the commutative 
squares considered above. These have also been extended by the identity maps in the bottom right cube, so 
that the bottom and right-hand faces of the full cuboid are as required for the pullback in question.

The bottom left cube commutes by the naturality of α, while the top right cube commutes by the 
definition of ψ = Γ−1

H,N (Ψ) as in Proposition 4.8. Since α and γ are isomorphisms, the top left cube is also a 
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pullback. Recall that the front and back faces are then also pullbacks. Since the top face of the top left cube 
must commute, we find that the green arrow we seek is given by pψH(�). Hence, Ψ(N, H, �) is isomorphic to 
(N ×F1(H) F2(H), H, pψH

(�)).
Of course, every natural transformation ψ : F2 → F1 yields a morphism of extensions defined by such 

a pullback. For the associated natural isomorphisms we may take β to be the identity and α to be (α̂, id)
where α̂ is defined by the diagram below.

N

N

F2(1)

F1(1)

α̂−1
N

!

!

ψ1

Finally, we take γ = (γ̂, id) where γ̂ is specified by the diagram below.

F1(H)

F1(H)

F2(H)

F1(H)

γ̂−1
H

ψH

It is easy to see that ε2 = ε1(βπF1
2∗ )(πF2

2 γ) as each factor is just the identity.
We now end this section with what is perhaps a surprising result about morphisms of extensions.

Proposition 4.13. If (Ψ, α, β, γ) : ΓH,N (F1) → ΓH,N (F2) is a morphism of adjoint extensions, then 
Ψ: Gl(F1) → Gl(F2) is a geometric morphism of toposes.

Proof. Let ψ : F2 → F1 be the natural transformation associated to Ψ. We can construct a functor 
Ψ∗ : Gl(F2) → Gl(F1) which sends (N, H, �) to (N, H, ψH�) and leaves morphisms ‘fixed’ in the sense 
that (f, g) : (N1, H1, �1) → (N2, H2, �2) is sent to (f, g) : (N1, H1, ψH1�1) → (N2, H2, ψH2�2), which may be 
seen to be a morphism in Gl(F1) using the naturality of ψ.

We claim that Ψ∗ is left adjoint to Ψ. To see this we consider the candidate counit εN,H,� = (ε�, idH), 
where ε� is defined as in the following pullback diagram.

N

N

F2(H)

F1(H)

ε�

�

�

ψH
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We must show that given a morphism (f, g) : (N1, H1, ψH1�1) = Ψ∗(N1, H1, �1) → (N2, H2, �2) there exists 
a unique morphism (f̂ , ̂g) : (N1, H1, �1) → Ψ(N2, H2, �2) = (N2, H2, �2) such that (ε�2 , idH2) ◦ Ψ∗(f̂ , ̂g) =
(f, g). We will construct this map using the following diagram.

N2

N2

F2(H2)

F1(H2)

ε�2

�2

�2

ψH2

N1

f

F2(g)�1
f̂

Here the maps out of N1 form a cone as we have ψH2F2(g)�1 = F1(g)ψH1�1 = �2f , where the first equality 
follows from naturality of ψ and the second from the fact that (f, g) is a morphism in Gl(F1).

By the universal property we have that l2f̂ = F2(g)�1, which means that (f̂ , g) is a morphism from 
(N1, H1, �1) to (N2, H2, �2) in Gl(F2). It is immediate from the diagram that (ε�2 , idH2) ◦ (f̂ , g) = (f, g) and 
it is also not hard to see that this is the unique such morphism. Thus, Ψ∗ is indeed left adjoint to Ψ.

Finally, we must show that Ψ∗ preserves finite limits. This follows immediately from the fact that finite 
limits in the glueing may be computed componentwise. �

Remark 4.14. Notice that Ψ∗ is in fact a morphism of non-split extensions in the sense that it commutes 
with the kernel and cokernel maps up to isomorphism. However, it does not commute with the splittings 
unless Ψ is the identity.

4.3. Colimits in Ext(H, N )

In [11] it was shown for frames H and N that there was something akin to a Baer sum of extensions 
in Ext(H, N). It is natural to ask if something analogous occurs in the category Ext(H, N ). Indeed, it is 
not hard to see via the equivalence with Hom(H, N )op that Ext(H, N ) has all finite colimits. The following 
functor will help us compute these colimits.

Let M : Ext(H, N )op → Cat/(N × H) be the functor sending extensions N G HK E

E∗
to 

!∗K∗E∗
: Gl(K∗E∗) → N × H where !∗K∗E∗

is left adjoint to the universal map !K∗E∗ in Ext(H, N ) out 

of the 2-initial object N N ×H H
π1∗ π2

π2∗
. Explicitly, this adjoint sends (N, H, �) to (N, H) and 

(f, g) to (f, g).
For the action on morphisms, let (Ψ, α, β, γ) be a morphism of extensions and let ψ : K∗

2E2∗ → K∗
1E1∗

be the corresponding natural transformation.
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N G1 H

N G2 H

K1 E1

E1∗

K2

E2

E2∗

Ψ

Then M maps Ψ to the morphism Ψ∗ : Gl(K∗
2E2∗) → Gl(K∗

1E1∗), which sends (N, H, �) to (N, H, ψH�)
and (f, g) to (f, g). It is immediate that the necessary diagram for this to be a morphism in the slice category 
commutes.

Proposition 4.15. The functor M above creates (and preserves) finite limits. Thus, finite colimits in 
Ext(H, N ) can be computed from limits in Cat/(N ×H).

Proof. Let D : J → Ext(H, N ) be a diagram functor with finite domain J . To compute the colimit 
of D we may compose D with Γ−1

H,N and compute the limit in Hom(H, N ). Let R : H → N be the 
resulting limit in Hom(H, N ) and (ϕi : R → Γ−1

H,ND(i))i∈J be the corresponding projections. Then 

N Gl(R) H
π1∗ π2

π2∗
is the colimit of D, where the morphisms of the colimiting cone are given in the 

obvious way.
If we consider the diagram functor MD : J → Cat/(N ×H), then we may again compute the limit with 

the assistance of the calculation in Hom(H, N ). We claim that !∗R : Gl(R) → N × H is the required limit 
with the morphisms of the limiting cone given in the expected way — that is, if ϕ is a morphism of the 
limiting cone in Hom(H, N ) then ΓH,N (ϕ)∗ = Φ∗ is the associated morphism in Cat/(N ×H).

We must demonstrate that this cone satisfies the universal property. Suppose we have some other cone 
(Ξi : C → Gl(K∗

i Ei∗))i∈J and consider the following diagram in Cat where Ψ = D(f) for some morphism 
f : i → j in J .

N ×H Gl(K∗
jEj∗)

Gl(K∗
i Ei∗) C

!∗K∗
j Ej∗

!∗K∗
i Ei∗

Ψ∗ Ξj

Ξi

Since each Ξi is a morphism in Cat/(N ×H) we have that it commutes with the ! maps. This means that 
the Ξ maps all agree on the first two components. If we assume that Ξk(C) = (NC , HC , �kC), then Ξi = Ψ∗Ξj

gives �iC = ψHC
�jC . Now consider the following diagram in N where we make use of the aforementioned 

limiting cone in Hom(H, N ).
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R(HC)

K∗
i Ei∗(HC)

K∗
jEj∗(HC)

ϕi
HC

ϕj
HC

ψHC

NC

�iC

�jC

�C

Here we use the universal property of R componentwise at HC to produce the map �C . This allows us 
to construct a map S : C → Gl(R) with S(C) = (NC , HC , �C). As for morphisms, now note that each Ξk

sends f : C → C ′ to the ‘same’ pair (f1, f2) and we define S to act on morphisms in the same way. The pair 
(f1, f2) can be seen to be a morphism in Gl(R) from S(C) to S(C ′) by considering the above diagram in 
the functor category and then using the naturality of � : π1Ξk → Rπ2Ξk. This morphism S is the desired 
map and is easily seen to be unique.

From the above it is clear that M preserves limits and that every limiting cone of MD is isomorphic to 
one of the form (MΓH,N (ϕi) : MΓH,N (R) → MD(i))i∈J , where ϕi : R → Γ−1

H,ND(i) is the limiting cone in 
Hom(H, N ). For M to create limits, it remains to show that every cone of D which maps to a limiting cone 
of MD is isomorphic to one of the above form. This follows since M is conservative. �

Notice that the limit diagram was embedded into the slice category so that each Ξ in the proof would 
agree on the first two components. If the limit diagram is connected, this will happen automatically and so 
we obtain the following corollary.

Corollary 4.16. The functor M : Ext(H, N ) → Cat sending extensions N G HK E

E∗
to Gl(K∗E∗)

and acting on morphisms as in Proposition 4.15 creates finite connected limits.

A disconnected (co)limit is the subject of the following example.

Example 4.17. Let us consider the coproduct of the extensions N G1 H
K1 E1

E1∗
and

N G2 H
K2 E2

E2∗
. Since products in a slice category correspond to pullbacks, we may construct 

this coproduct using the following pullback in Cat.

P

Gl(K∗
1E1∗)

Gl(K∗
2E2∗)

N ×H
!∗K∗

1E1∗

!∗K∗
2E2∗
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If !P is the composite morphism from P to N × H, then the coproduct extension may be recovered as 

N P H
(π1!P)∗ π2!P

(π2!P)∗
. �

5. The Ext functor

Given that we have established that Ext(H, N ) is equivalent to Hom(H, N )op, it is natural to ask if 
Ext can be extended to a 2-bifunctor and if Ext and the Homop will then be 2-naturally equivalent (where 
Homop = Op ◦ Homco and Op is the opposite category 2-functor).

The answer is of course “yes”, for if T : H′ → H and S : N → N ′, all we need do is define Ext(T, S) =
ΓH′,N ′ ◦Homop(T, S) ◦ Γ−1

H,N (and similarly for natural transformations). However this is unsatisfactory, as 
there is already established behaviour for how an Ext functor ought to act on objects and morphisms. In 
this section, we show that the above definition conforms with the usual expectations of an Ext functor.

We consider each component of our Ext functor separately and begin by describing Ext(−, N ). In other 
contexts (for instance, see [3]) the extension functor can be obtained from a fibration. In the protomodular 
setting, we start from the ‘fibration of points’ sending split epimorphisms to their codomain. In the more 
general setting of S-protomodularity (see [6]) we consider only a certain subclass of split epimorphisms. 
This suggests we consider a 2-fibration sending open subtopos adjunctions to the codomain of their inverse 
image functors.

A categorification of the Grothendieck construction (see [7]) gives that 2-fibrations correspond to 3-
functors into 2Cat. Fortunately, aside from motivation, we will largely be able to avoid 3-functors for the 
same reasons that Ext(H, N ) is essentially a 1-category (Corollary 4.5).

While the paradigmatic example of a fibration is the codomain fibration, which maps from the whole 
arrow category to the base category, the domain of the analogous 2-fibration is restricted to the category 
of fibrations. See [7] for more details on 2-fibrations.

The fibre 3-functor Topco op
lex → 2Cat corresponding to the 2-fibration Cod: FibToplex → Toplex can be 

described as follows (omitting the description of the coherence data for simplicity):

• On objects it sends a topos E to the slice 2-category of finite-limit-preserving fibrations from toposes to 
E .

• On 1-morphisms it sends a finite-limit-preserving functor T : E ′ → E to the 2-functor T � corresponding 
to pulling back along T .

• On 2-morphisms it sends a natural transformation τ : T → S to a 2-natural transformation τ� from S�

to T �. The component τ�E : S�(E) → T �(E) indexed by the finite-limit-preserving fibration E : D → E
can be constructed in three steps.
– First define the morphism of fibrations (PS, S) : S�(E) → E given by the pullback projection.

DS

E ′

D

E

S�(E)

PS

S

E∼=

– Then we may use the fibration property of E to lift the natural transformation τS�(E) to a natural 
transformation into PS. Explicitly, for an object X ∈ DS , the morphism τS�(E)(X) : T (S�(E)(X)) →
S(S�(E)(X)) can be lifted to a morphism in D with codomain PS(X). These lifted morphisms as-
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semble into a natural transformation τ from a new functor L : DS → D to PS . This functor sends a 

morphism f : X → Y to the morphism obtained by factoring PS(f)τX through τY as shown in the 

diagram below.

L(X)

L(Y )

PS(X)

PS(Y )

L(f)

τX

τY

PS(f)

T (S�(E)(X))

T (S�(E)(Y ))

S(S�(E)(X))

S(S�(E)(Y ))

T (S�(E)(f))

τS�(E)(X)

τS�(E)(Y )

S(S�(E)(f))

E

– Finally, consider the 2-pullback of E and T and note that the maps L : DS → D and S�(E) : DS → E ′

form a cone as shown below.

DT

E ′

D

E

T �(E)

PT

T

E∼=

DS

S�(E)

L

τ�E ∼=

∼=

Thus, we may factor these through PT and T �(E) respectively to obtain a functor from DS to DT . 
This is the desired functor τ�E : S�(E) → T �(E).

The coherent set of 2-isomorphisms for the 2-natural transformation can also be obtained by the cartesian 

property of the lifted maps and universal property of the 2-pullback.
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We can then easily modify this to describe the fibre 3-functor for the 2-fibration of (open) points. Moreover, 
to obtain Ext(−, N ) : Topco op

lex → 2Cat we restrict to inverse image functors of open subtoposes (equipped 

with right adjoint splittings) with fixed kernel object N . The above discussion restricts easily to this case, 
since these functors are stable under pullback along finite-limit-preserving functors and the relevant mor-
phisms can be shown to be morphisms of extensions. To see this we will use the following well-known 

result.

Proposition 5.1. Let C be a 2-category, F : H → N and T : H′ → H 1-morphisms. Then the comma ob-
ject Gl(FT ) can be represented as a (strict) 2-pullback (where we draw the 2-cokernels of the extension 

horizontally).

Gl(FT )

Gl(F )

H′

H

Q

πFT
2

πF
2

T

Proof. Since Artin glueings are comma objects, this follows from the fact that a composition of comma 

square and a pullback square is a comma square. �

We will now describe the Ext ‘functor’ explicitly and at the same time demonstrate its relationship to 

Hom.
The 3-functor Ext(−, N ) sends a topos H to the 2-category of extensions Ext(H, N ) as defined above. In 

fact, since Ext(H, N ) is equivalent to a 1-category, it turns out that Ext(−, N ) factors through Cat ↪→ 2Cat
and so can be treated as a 2-functor Ext(−, N ) : Topco op

lex → Cat.
The following computations will all be performed in the equivalent full subcategory of Ext(H, N ) whose 

objects are of the form N Gl(F ) H
π1∗ π2

π2∗
. The fact that this may be done coherently is due to the 

2-categorical analogue of the result which says that if F : B → C is a functor and for each B we have an 

isomorphism F (B) ∼= CB , then there is a functor F ′ such that F ′(B) = CB (and which acts on morphisms 
by conjugating the result of F by the appropriate isomorphisms).

We can use Proposition 5.1 to show how Ext(−, N ) acts on 1-morphisms. If T : H′ → H is a finite-
limit-preserving functor, then it is enough to describe how Ext(T, N ) : Ext(H, N ) → Ext(H′, N ) acts on 

extensions in Artin-glueing form. It should ‘take the 2-pullback along T ’ and hence it sends the object 

N Gl(F ) H
πF

1∗ πF
2

F
to N Gl(FT ) H′

πFT
1∗ πFT

2

FT
as in the following diagram
π2∗ π2∗
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Gl(FT )

Gl(F )

H′

H

N

N

πFT
2

πF
2

T

πFT
1∗

πF
1∗ πF

2∗

πFT
2∗

The functor Ext(T, N ) acts on morphisms via the universal property of the 2-pullback. Let Ψ be a 
morphism of extensions corresponding to the natural transformation ψ : F2 → F1 and consider the following 
diagram, noting that TπF1T

2 = πF2
2 ΨQ and hence we have a 2-cone. Also recall that Ψ can always be to 

chosen to correspond to pulling back along ψ.

Gl(F2T ) H′

Gl(F2) H

Gl(F1T ) H′

Gl(F1) H

πF1T
2

Q

T

πF2T
2

Q′

T

πF2
2

Ext(T,N )(Ψ)

Ψ

πF1
2

We shall now show that we may take Ext(T, N )(Ψ) to be (ΓH′,N ◦ Hom(T, N ) ◦ Γ−1
H,N )(Ψ) = ΓH′,N (ψT )

— that is, the latter functor is given by the universal property of the 2-pullback. We must also supply 
two 2-morphisms corresponding to the left and top faces of the above cube. Both may be taken to be the 
identity. Note in fact that now each face of the cube commutes strictly.

We only need to check that πF2T
2 ΓH′,N (ψT ) = πF1T

2 and that Q′ΓH′,N (ψT ) = ΨQ. The former is 
immediate and the latter follows because ΨQ(N, H, �) = Ψ(N, T (H), �) is given by the following pullback.

N ′

N

F2T (H)

F1T (H)

�′

�

ψT (H)

This is readily seen to be the same pullback which determines ΓH′,N (ψT )(N, H, �).
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Finally, we discuss how Ext(−, N ) acts on 2-morphisms. We follow the construction outlined above 
for the codomain 2-fibration. Let τ : T → T ′ be a natural transformation. Then we describe the natural 
transformation Ext(τ, N ) : Ext(T ′, N ) → Ext(T, N ) componentwise.

Without loss of generality we may describe each component at extensions of the form ΓH,N (F ). Consider 
the following diagram.

H′

H

Gl(FT ′)

Gl(F ) Gl(F )

Gl(FT ) H′

H

T ′

πFT
2

πF
2

PT ′ PT

πFT ′
2

πF
2

T

Ext(τ,N )ΓH,N (F )

Lτ

τ

As discussed in the case of the codomain fibration, we may define a functor Lτ as follows. We have that 
PT ′(N, H, �) = (N, T ′(H), �) lies above the codomain of τH : T (H) → T ′(H) with respect to the fibration πF

2
(see Proposition 2.5) and so by the universal property of the fibration we get a map τ(N,H,�) : (N, T (H), �) →
(N, T ′(H), �) as given by the pair of vertical morphisms in the following pullback diagram.

N

N

FT (H)

FT ′(H)

πF
1 τ (N,H,�)

�

�

τF (H)

These morphisms form a natural transformation τ : Lτ → PT ′ , where Lτ is the functor which sends 
(N, H, �) to (N, T (H), �). As above, this functor factors through PT to give a functor Ext(τ, N )ΓH,N (F ) :
Gl(FT ′) → Gl(FT ), which sends (N, H, �) to (N, H, �). It remains to show that this gives a morphism of 
split extensions, but it is clear from the above pullback diagram that this functor is the morphism of split 
extensions corresponding to τF (which itself is equal to Hom(τ, N )F ).

The morphisms Ext(τ, N )ΓH,N (F ) define the desired natural transformation Ext(τ, N ). (Naturality follows 
from the interchange law or from the general theory of the codomain 2-fibration.)

The 2-functor Ext(−, N ) composes strictly, and for the unitors observe that Ext(IdH, N ) is equal to 
ΓH,NΓ−1

H,N : Ext(H, N ) → Ext(H, N ) so that we make take as our unitors the unit of the adjunction ΓH,N . 
The necessary 2-functor axioms can then easily be seen to hold.

Remark 5.2. The above argument also proves that the 2-functor sending adjoint extensions with fixed kernel 
N to their cokernels is a 2-fibration.

Theorem 5.3. The 2-functors Ext(−, N ) and Homop(−, N ) are 2-naturally equivalent via ΓN :
Homop(−, N ) → Ext(−, N ) defined as follows:
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(1) for each H ∈ Toplex we have the equivalence ΓN
H = ΓH,N : Hom(H, N )op → Ext(H, N ),

(2) for each T : H′ → H we have the identity ΓH′,NHom(T, N )op = Ext(T, N )ΓH,N .

Proof. The equality in point (2) is clear by inspection of the definition of Ext(T, N ). The proof of the 
coherence conditions is easy. In particular, the first coherence condition is satisfied because each morphism 
of the diagram is the identity. Similarly, for the second condition again all morphisms are the identity 
(though marginally more work is required to show that the unitor at H whiskered with ΓH,N is in fact the 
identity). �

We turn our attention to the functor Ext(H, −) : Topco
lex → Cat. We could not find an elegant description 

of this in terms of a 2-fibration. However, we believe a reasonable definition can be given by dualising our 
arguments for Ext(−, N ).

Naturally, for an object N we have that Ext(H, N ) is just the category of adjoint split extensions.
For 1-morphisms, consider S : N → N ′. We would have Ext(H, S) act on objects by sending 

N G HK E

E∗
to the extension resulting from a pushout of K along S and on morphisms via the 

universal property of the pushout.

G

P

H

H

N

N ′

E

coker(P )

K

P coker(P )

E∗

S

To see that this is well-defined we prove the following result dual to Proposition 5.1.

Proposition 5.4. Let F : H → N and S : N → N ′ be finite-limit-preserving functors. Then Gl(SF ) is given 
by the following 2-pushout.

N

N ′

Gl(F )

Gl(SF )

S

π1∗

P

Proof. By Proposition 4.7, we know that Gl(F ) is a cocomma object in the 2-category Catlex. Thus it is a 
comma object in Catoplex. Applying Proposition 5.1 and then reversing the arrows gives the desired result. It 
is not hard to see that P (N, H, �) = (S(N), H, S(�)) and P (f, g) = (S(f), g). �

Thus, fixing particular pushouts we can describe Ext(H, S) concretely as sending an extension 

N G HK E
to N Gl(SK∗E∗) H

π1∗ π2

π
.

E∗ 2∗
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As mentioned above, Ext(H, S) should act on morphisms by the universal property of the pushout. 

Let Ψ = (Ψ, α1, β1, γ1) be a morphism of extensions and consider the 2-cocone given by P2ΨπF1
1∗

P2α
−1
1−−−−→

P2π
F2
1∗ IdN = πSF2

1∗ IdN ′S as in the following pasting diagram (where we omit the 2-morphisms do avoid 

clutter).

N Gl(F2)

N ′ Gl(SF2)

N Gl(F1)

N ′ Gl(SF1)

πF1
1∗

S

P1

πF2
1∗

S

P2

πSF2
1∗

Ψ

Ext(H, S)(Ψ)

πSF1
1∗

Here the front, back and left faces commute strictly and the top face has associated invertible 2-morphism 

α−1
1 .
Let ψ be the natural transformation associated to Ψ. We will show that the map given by the universal 

property is ΓH,N ′(Sψ) = (ΓH,N ′(Sψ), α2, β2, γ2). We define the associated 2-morphisms for the universal 
property of the 2-pushout as follows. For the bottom face we use α−1

2 : ΓH,N ′(Sψ)πSF1
1∗ → πSF2

1∗ .
As for the right-hand face, we note that P2Ψ(N, H, �) is given by the following diagram.

S(N)

S(N)

SF2(H)

SF1(H)

S(ψH)

S(�)

S(�)

SψH

On the other hand, we have that ΓH,N ′(Sψ)P1(N, H, �) is given by a similar diagram as follows.
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S(N)

S(N)

SF2(H)

SF1(H)

S(ψH)

S(�)

S(�)

SψH

Since S preserves pullbacks, there is a natural family of isomorphisms μ(N,H,�) = (μ̂(N,H,�), idH) from 
(S(N), H, S(�)) to (S(N), H, S(�)), which in particular satisfies that S(ψH)μ̂(N,H,�) = S(ψH). We take μ to 
be the 2-morphism associated to the right-hand face.

Now let us discuss the 2-cocone 2-morphism P2α
−1
1 in more detail. The component at N is given by 

(Sα̂−1
1,N , id) for α̂ as defined Section 4.2. Notice that S(α̂−1

1,N ) is given by the following diagram.

S(N)

S(N)

SF2(1)

SF1(1)

S(α̂−1
1,N )

S(!)

S(!)

Sψ1

We see that S(α̂−1
1 ) = S(ψ1). Similarly, we have S(ψ1) = α̂−1

2 S. Thus, the equation S(ψH)μN = S(ψH)
from above reduces in this case to α̂−1

2,NS ◦ μ̂(N,1,!) = Sα̂−1
1,N . Consequently, we have α−1

2 S ◦ μπF1
1∗ = P2α

−1
1 , 

and hence ΓH,N (Sψ) equipped with α−1
2 and (μ, id) is indeed the desired map from the universal property 

of the pushout.
In summary, we have Ext(H, S)(Ψ) = ΓH,N ′(Sψ), which completes the description of Ext(H, S).
Finally, let σ : S → S′ be a natural transformation. We shall describe the natural transformation 

Ext(H, σ) : Ext(H, S′) → Ext(H, S) componentwise. We define Ext(H, σ)ΓH,N (F ) through its left adjoint 
as follows.

N

N ′

Gl(F )

Gl(S′F ) Gl(SF )

Gl(F ) N

N ′

S′

πF
1∗

πS′F
1∗

PS′ PS

πF
1∗

πSF
1∗

S

Ext(H, σ)∗Γ(F )

Lσ

σ

Notice the resemblance of the above diagram to the one that arose when defining Ext(τ, N )ΓH,N (F ). It 
has the same basic structure, but all 1-morphisms are pointing in the opposite direction.

First we define Lσ and σ. Note that PS′(N, H, �) = (S′(N), H, S′(�)) lies above the codomain of σN , 
with respect to the fibration πS′F

1 (see Proposition 2.6). Thus by the universal property, we may lift σN to 
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a map σN : (S(N), H, S′(�)σN ) → (S′(N), H, S′(�)). We may define a functor Lσ : Gl(F ) → Gl(S′F ) which 
sends objects (N, H, �) to (S(N), H, S′(�)σN ) and which sends morphisms (f, g) : (N, H, �) → (N ′, H ′, �′) to 
(S(f), g). The pair (S(f), g) can be seen to be a morphism in Gl(S′F ) by considering the following diagram.

S(N) S′(N) S′F (H)

S(N ′) S′(N ′) S′F (H ′)

σN
S′(�)

σN ′ S′(�′)

S′(f)S(f) S′F (g)

The left-hand square commutes by naturality of σ and the right-hand square commutes since (f, g) is 
morphism in Gl(F ). Now the σN arrange into a natural transformation σ : Lσ → PS′ .

If things are to behave dually, we should have Lσ factor through PS. By the naturality of σ we have that 
the following diagram commutes.

S(N)

S(F (H))

S′(N)

S′(F (H))

S(�)

σN

σF (H)

S′(�)

Thus, observe that Lσ(N, H, �) = (S(N), H, S′(�)σN ) = (S(N), H, σF (H)S(�)). This perspective allows 
us to factor Lσ as Lσ = ΓH,N ′(σF )∗ ◦ PS . (Recall that the left adjoint to the functor ΓH,N ′(σF ) sends an 
object (N, H, �) to (N, H, σF (H)�).)

We might now hope to take Ext(H, σ)F (H) to be this resulting factor ΓH,N ′(σF )∗. However, this map 
goes in the ‘wrong’ direction. We can remedy this by taking the right adjoint and setting Ext(H, σ)F (H) =
ΓH,N ′(σF ).

In order to specify Ext(H, −) completely, it only remains to discuss the compositors and unitors. As 
before we have that Ext(H, −) composes strictly and we take the unitors to be the unit of the adjunction 
Γ∗
H,N � ΓH,N in Theorem 4.12.
We can express the relationship between Ext(H, −) and Hom(H, −) as follows.

Theorem 5.5. Ext(H, −) and Homop(H, −) are 2-naturally equivalent via ΓH : Homop(H, −) → Ext(H, −)
defined as follows

(1) for each N ∈ Toplex we have the equivalence ΓH
N = ΓH,N : Hom(H, N )op → Ext(H, N ),

(2) for each S : N → N ′ we have the identity ΓH,NHom(H, S)op = Ext(H, S)ΓH,N ′ .

Proof. Just as before, the equality in point (2) is clear by inspection of the definition of Ext(H, S) and the 
necessary coherence conditions hold, because each involved morphism is an identity. �
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A bifunctor theorem for 2-functors was discussed in [10] and gives the precise conditions that allow 
two families of 2-functors MB : C → D and LC : B → D to be collated into a bifunctor P : B × C →
D for which P (B, −) is isomorphic to MB and P (−, C) is isomorphic to LC . These conditions are that 
LC(B) = MB(C) and that for each f : B1 → B2 in B and g : C1 → C2 in C there exists an invertible 
2-morphism χf,g : LC2(g)MB1(f) → MB2(f)LC1(g) satisfying certain coherence conditions reminiscent of 
those for distributive laws for monads. Such families together with χ are called a distributive law of 2-
functors.

For the families Ext(−, N ) and Ext(H, −) the first condition is immediate. Moreover, it is not hard to 
see that if T : H′ → H and S : N → N ′ that Ext(H, S)Ext(T, N ) = Ext(T, N ′)Ext(H′, S) so that we might 
choose χT,S to be the identity. The coherence conditions are then immediate.

Thus, we may apply the results of [10] to arrive at the 2-functor (Ext, ω, κ) : Topop
lex × Toplex → Cat

defined below.

Definition 5.6. Let (Ext, ω, κ) : Topco op
lex × Topco

lex → Cat be the 2-functor defined as follows.

(1) Ext(H, N ) is the category of extensions of H by N ,
(2) Ext(T, S) = Ext(T, N ′)Ext(H′, S) for functors S : N → N ′ and T : H′ → H,
(3) Ext(τ, σ) = Ext(τ, N ′) ∗ Ext(H′, σ) for 2-morphisms σ : S → S′ and τ : T → T ′,
(4) ω is the identity,
(5) κH,N is given by the unit Φ of the adjunction Γ∗

H,N � ΓH,N as defined in Theorems 3.17 and 4.12.

The 2-bifunctor Homop can be recovered as the collation of the functors obtained by fixing one of its 
components, Homop(H, −) and Homop(−, N ). It is shown in [10] that ‘morphisms between distributive laws’ 
can also be collated to give 2-natural transformations between the corresponding bifunctors. The 2-natural 
equivalences in Theorems 5.3 and 5.5 can be collected into a 2-natural equivalence Γ: Ext → Homop provided 
that ΓN

H = ΓH
N and the Yang–Baxter equation holds. These conditions are immediate in our setting and so 

we obtain the following theorem.

Theorem 5.7. The 2-functors Ext and Homop are 2-naturally equivalent via Γ: Ext → Homop in which 
ΓH,N = ΓH

N and ΓT,S is the identity for all functors S : N → N ′ and T : H′ → H.
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