
Density separation of petrous bone powders
for optimized ancient DNA yields
Daniel M. Fernandes,1,2,3 Kendra A. Sirak,4,5 Olivia Cheronet,1,3 Mario Novak,6

Florian Brück,1 Evelyn Zelger,1 Alejandro Llanos-Lizcano,1 Anna Wagner,1 Anna Zettl,1

Kirsten Mandl,1 Kellie Sara Duffet Carlson,1,3 Victoria Oberreiter,1,3
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Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and
sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endoge-
nous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we
separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density inter-
vals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yield-
ed up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before
duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity.
Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density
above 2.40 g/cm3 yielded up to 2.57-foldmore endogenous DNAon average, which enables the simultaneous separation of
samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory
equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extrac-
tion can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies
are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA
substrates such as teeth, other bones, and sediments.

[Supplemental material is available for this article.]

Over the past decade, there has been a concerted effort to improve
the efficiency of DNA recovery from irreplaceable archaeological
specimens, such as human bones and teeth. The majority of an-
cient DNA research is now performed using skeletal elements
that have biologically higher endogenous DNA contents, such as
petrous bones, ear ossicles, and tooth cementum (Gamba et al.
2014; Damgaard et al. 2015; Pinhasi et al. 2015; 2019; Hansen
et al. 2017; Sirak et al. 2020; Harney et al. 2021). Ancient DNA–
specific wet laboratory protocols have increased the quantity of
DNA isolated and extracted (Dabney et al. 2013; Rohland et al.
2018), and improved the efficiencyofDNA library constructionus-

ing single-stranded molecules (Gansauge and Meyer 2013, 2019;
Gansauge et al. 2020; Kapp et al. 2021). “Pretreatment” steps,
such as cleaning samples with a weak sodium hypochlorite
(bleach) solution (Kemp and Smith 2005), implementing a chem-
ical or enzymatic “predigestion” step (Damgaard et al. 2015; Kor-
levic ́ et al. 2015; Schroeder et al. 2019), or using a combination
of the two (Boessenkool et al. 2017), aim to reduce contamination
and maximize endogenous DNA yields; however, these steps re-
duce the complexity of genomic sequencing libraries, negatively
influencing downstream analyses. Here, we present a different
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type of “pretreatment” step that improves endogenous DNA yields
while not decreasing the complexity of sequencing libraries.

After the deathof a vertebrate organism, the chemical compo-
sition of its skeletal remains immediately starts to be altered by dia-
genetic processes such as hydrolysis, enzymatic action, mineral
dissolution, and microbial colonization (Bell et al. 2001; Hedges
2002; Booth 2016; Kendall et al. 2018; Rasmussen et al. 2019).
These processes have substantial and irreversible effects on
the structure and composition of bone, inducing collagen loss
and alteration of the ratio of organic to inorganic fractions.
Microorganisms, in particular, have been shown to play an impor-
tant role in the mineralization of bone elements and can, there-
fore, cause deviations in localized density (Bell et al. 2001;
Daniel andChin 2010). As this process is one of themain pathways
for the introduction of exogenous contaminant DNA, avoiding or
eliminating these exogenous mineralized pockets before DNA ex-
traction may facilitate the recovery of greater amounts of endoge-
nous DNA.

In vivo bone naturally contains regions of differing densities.
As an individual ages, new bone formation is accompanied by the
progressivemineralization of existing bonematrix and osteocytes,
in parallel with bone remodeling generating newosteonal systems,
leading to regions of different densities within the same bone (Bell
et al. 2001, 2008; Kendall et al. 2018). In petrous bones and ear os-
sicles, however, there is a lack of bone remodeling after ∼24 wk in
utero (Hernandez et al. 2004), contributing to a high concentra-
tion of mineralized osteocytes in relation to other bones
(Hernandez et al. 2004; Bell et al. 2008; Ibrahim et al. 2022), and
this has been hypothesized to be one of the main determinants
of the success of petrous bones in the retrieval of ancient DNA
(Pinhasi et al. 2019; Ibrahim et al. 2022).

Previous work has used density separation, also referred to as
fractionation, to isolate elements of different densities before ap-
plying isotopic analysis to successfully reconstruct the dietary hab-
its of archaeological individuals over the last 15 yr of their lives
(Bell et al. 2001). However, to the best of our knowledge, density
separationhas not yet been applied to the process of recovering an-
cient DNA from archaeological bone powders. In theory, it could
be used to not only separate endogenous bone elements of differ-
ent densities, specifically including mineralized osteocytes (like in
the isotopic study just mentioned) but also to separate nonendog-
enous clusters of mineralized microorganisms and environmental
sediments that sometimes cannot be removed entirely during sam-
ple processing in an ancient DNA laboratory.

Here we present a new method for isolating the most endog-
enous DNA-rich fractions of petrous bone powder without addi-
tional ancient DNA laboratory equipment and using a nontoxic
heavy liquid named sodium polytungstate (SPT). The main objec-
tive of this work was to identify density interval(s) that contained
more endogenous DNA compared with a standard extraction of
bone powder from the same individual, establishing the validity
of using density separation as a technique to improve DNA
recovery.

To reduce the number of external and differentiating variables
that could influence our results,we restricted our analyses to petrous
bones from two temperate locations in Europe (for more details on
the process of sample selection, see theMethods section). According
to the Allen Ancient DNA Resource, of the 8797 libraries with a
clearly stated skeletal source of DNA, the petrous was used for anal-
ysis 4839 times, representing more than half of all cases (teeth were
used 3161 times, representing approximately another one-third of
all cases, and all other elements were used in only ∼10% of cases)

and is, therefore, the most likely element to which such a new
methodology would be applied (https://reich.hms.harvard.edu/
allen-ancient-dna-resource-aadr-downloadable-genotypes-present-
day-and-ancient-dna-data; version 54.1.p1).

Results
As there are no published data or protocols for the recovery of an-
cient DNA from archaeological bone powder following a density
separation step, we began by following a protocol similar to that
presented by Bell et al. (2001), running a small preliminary exper-
iment (for more details, see the Methods section) to achieve the
protocol presented here (illustrated in Fig. 1). Any use of the terms
“density” and “density intervals” in what follows refers to a mea-
sure that approximates true densities, instead of bulk densities,
as the latter are calculated considering bone porosity as contribut-
ing to the units of space and have, therefore, substantially lower
values than the true densities (Lee Lyman 2021).

We selected 10 petrous bones from remains excavated from
two archaeological locations in temperate parts of Europe, namely,
the Bronze/Iron Age sites of Praha 5–Malà Ohrada/Jinonice, re-
spectively, in the Czech Republic (n=4) and the Late Antiquity/
Early Medieval necropolis of Castel Sozzio (Civitella D’Agliano,
Viterbo), in Italy (n=6) (Supplemental Note S1; Supplemental
Table S1). We separated, from macroscopically homogeneous
bone powder generated for each individual, 150 mg of powder
for sequential separation over eight density intervals that were
identified in our preliminary experiment as the most relevant
(<2.15, 2.15–2.20, 2.20–2.25, 2.25–2.30, 2.30–2.35, 2.35–2.40,
2.40–2.45, >2.45 g/cm3). For convenience, all intervals are from
here on referred to by their highest value (e.g., interval 2.20 refers
to the interval range 2.15–2.20; 2.40, to the range 2.35–2.40). We
separated a further 50 mg of powder from the same homogeneous
powder for standard ancient DNA extraction that followed a previ-
ously published protocol (Dabney et al. 2013) and did not include
any density separation step. After sequential separation and sus-
pension of the powder particles over the eight density intervals,
each tube’s liquid density was lowered and washed with Tris-
EDTA (TE) buffer to repellet the suspended bone powder and re-
move all traces of SPT (for details, see theMethods section) (Fig. 1).

Subsequently, DNA extraction took place using the same pro-
tocol as for the standard extractions (Fig. 1). All 90 libraries (10 ×8
intervals plus 10 standard extractions) were screened using low-
coverage shotgun sequencing (“Sequencing Group 1”), and the re-
sulting sequencing data and qualitymetrics were assessed (Supple-
mental Table S1). After identifying the two best density intervals
from “SequencingGroup 1” by their percentages of unique endog-
enous reads, we performed additional shotgun sequencing of the
same libraries (also further sequencing the standard extraction li-
braries) in order to obtain greater amounts of data to allow for
more robust comparisons (“Sequencing Group 2”). The data
from the different sequencing runswere thenmerged (Supplemen-
tal Table S1) and, to ensure comparability and absence of bias ow-
ing to unequal sequencing yields, were randomly subsampled to
equal numbers of reads within each individual, using seqtk (https
://github.com/lh3/seqtk) (Supplemental Table S2). To statistically
compare the data from the standard extractions and the best den-
sity intervals, we computed paired Wilcoxon signed-rank tests
with a P-value threshold of significance of 0.05, a minimum of
six paired observations, and the normalized, subsampled, and
merged data for all metrics except for contamination estimates,
as the latter should not be affected by random subsampling and
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benefits frommore data for increased accuracy (for contamination,
see Supplemental Table S1; for all other metrics, see Supplemental
Table S3).

Overall, the application of the density separation protocol
was successful for all individuals and densities, confirming that us-
ing SPT does not exert a negative influence on the DNAmolecules
or the process of DNA extraction itself. We did not weigh the exact
powder amounts separated in each interval to avoid the potential
introduction of contamination during the drying steps (theweight
would have also been inaccurate because the powder was wet).
However, a generalized sequential increase in separated repelleted
powder quantities was observed alongwith the density, fromnear-
ly negligible amounts at <2.15 to substantial amounts at 2.40 and
2.45, with the largest pellet always present in the heaviest density
interval, >2.45 g/cm3 (Supplemental Figs. S1, S2). The assessment
of the screening data across the eight density intervals indicates

that the relative amounts of unique endogenous DNA (measured
by the ratio of nonduplicated reads aligned to the human genome
by the total number of reads) increased from 2.15 to 2.40 g/cm3,
with the highest endogenous DNA contents always present in
the higher intervals: either at 2.35 or at 2.40 (Fig. 2; Supplemental
Table S1). We note a single exception for individual P9884, for
whom the optimal interval was 2.45 g/cm3 (Supplemental Table
S1). After resequencing and normalizing the data, these best inter-
vals and standard extractions were compared further (Supplemen-
tal Table S2). Here, the average fraction of endogenous unique
DNA reads for the standard extractions was 13.25% (range,
4.79%–26.55%), whereas for the best SPT intervals it was 32.86%
(range, 20.76%–45.01%), represented by an average improvement
of 3.04-fold (range, 1.53–5.28) per individual (Fig. 3A; Supplemen-
tal Table S2). The smallest change was for individual P9898, from
26.55% endogenous DNA in the standard extraction powder to
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Figure 1. Diagram summarizing the threemain phases of the density separation protocol for ancient DNA: sequential density separation and acquisition
of the different interval solutions, washes and repelleting of the bone powders, and DNA extraction following standard methods.
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40.62% in the 2.40 g/cm3 interval, whereas the largest was for
individual 2338, from 5.41% in the standard extraction to
28.54% in the 2.35 g/cm3 interval (Fig. 3A; Supplemental Table
S2). Consequently, the endogenous contents of the standard ex-
tractions were found to be inversely correlated to the fold-increase
obtained in the best SPT intervals (Fig. 4).

These paired differences in endogenous DNA yields were stat-
istically significant (P-value =0.001953) and were the result of an
average increase of 3.04-fold in the number of unique aligned
reads (P-value=0.001953) (Fig. 3A; Supplemental Tables S2, S3).
However, these changes can potentially be higher in samples
with lower library saturation and fraction of duplicated reads after
alignment, as we were able to achieve an 8.53-fold increase in en-
dogenous contents for individual 2338 before the removal of du-
plicated reads, from 6.24% to 53.20% (Supplemental Table S2).

We estimated individual library contamination using a re-
cently developed method that requires only 0.02× whole-genome
coverage per sample (Huang and Ringbauer 2021). This method
models and quantifies mismatches in haploid X Chromosomes
as contamination and is therefore restricted to individuals who
are molecularly sexed as male, which in our case corresponded
to eight out of 10 individuals. The average contamination for all
but one library above the 0.02× threshold in “Sequencing Group
1” (n =32) was estimated to be 2.87% (range 1.37%–4.48%), which
stands below the typical threshold of 5% for ancient DNA
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(Supplemental Table S1; Fu et al. 2013; Nakatsuka et al. 2020). One
outlier had an estimated 9.9% contamination on the lower density
interval (<2.15 g/cm3 for individual P9898), which is likely an iso-
lated observation, as the average contamination for the same indi-
vidual’s other six intervals and standard extraction was 2.57%
(Supplemental Table S1). By then looking at the merged higher
coverage data for the best intervals and the standard extraction
(“Sequencing Group 2”; nonsubsampled in order to have in-
creased analytical power), the average contamination among all
was estimated to be 2.65% (range 1.30%–4.80%), with a nonsignif-
icant difference between the best SPT intervals (average, 2.76%)
and the standard extractions (average, 2.55%; P-value=0.5469)
(Fig. 3B; Supplemental Tables S1, S3). The negative controls includ-
ed in all stages of the laboratorywork support zero to negligible an-
cient cross-contamination, as 12/13 libraries had no terminal
deamination, and the average duplication rate after polymerase
chain reaction (PCR) amplification to plateau was high, at 64%
(Supplemental Table S1). One control did have 0.02 terminal
deamination, but only 302 sequences remained after filtering
with PMDtools (threshold 3) to isolate those with the highest like-
lihood of being ancient (Skoglund et al. 2014).

We then investigated if separation using awider density inter-
val would still give better results than a standard extraction with-
out a density separation step. A wider range that still improves
DNA recovery with no introduction of contamination would en-
able thismethod to be applied simultaneously tomultiple and var-
ied samples with different preservation, taphonomic histories, and
maybe even to different skeletal or other bioarchaeological DNA
substrates, increasing the overall applicability of this technique.
Using the screening data from “Sequencing Group 1,” we found
that the average endogenous DNA yields for the combined inter-
vals 2.25, 2.30, 2.35, and 2.40 were still statistically higher than
the yields of the standard extraction (P-value=0.003906), with
an average increase of 2.35-fold (range, 0.81–5.24) (Supplemental
Tables S1, S3). To investigate this further, we used the remaining
powder (between 55 and 124 mg) from the exact same batches
of seven individuals after having measured the initial 150+50
mg, and separated themat a single density of 2.40 g/cm3 to formal-

ly test the possibility of obtaining improved yields with a single
practical separation. The average endogenous contents for the
<2.40 intervals were 35.05% (range, 25.75%–47.61%), correspond-
ing to an increase of 2.83-fold compared with the standard
extractions (P-value =0.01563) (Supplemental Tables S3, S4). Fur-
thermore, for every individual, the single <2.40 interval yield
was higher than the corresponding standard extraction, indepen-
dently of the initial powder amount. This suggests that, although
this wider density interval performed slightly worse than the nar-
rower ones, a single separation at 2.40 g/cm3 still provides an im-
provement in endogenous yields relative to a standard extraction
without a preceding density separation step and that smaller initial
powder amounts down to at least 50mg can likely be used (Supple-
mental Tables S3, S4).

In regards to the effects of the overall increase in endogenous
contents of the main set of 10 samples in other quantitative met-
rics, such as nuclear genomic andmitochondrial coverages, we ob-
served an increase in both of these metrics for the best SPT
intervals that was statistically significant (P-value=0.001953, for
both), with the average nuclear coverage increasing, on average,
2.94-fold (range, 1.58–5.04) and with the mitochondrial coverage
increasing, on average, 3.12-fold (range, 1.87–5.01) (Supplemental
Tables S2, S3). Similarly, whenwe looked at the curves produced by
preseq’s (Daley and Smith 2013) lc_extrap command as ameasure of
library complexity, which extrapolates the expected number of
distinct reads after extensive sequencing from duplication rates,
we found a statistically significant average increase of 1.77-fold
in the number of distinct reads at a sequencing effort of 100 mil-
lion reads for the best SPT intervals (P-value =0.001953) (Figs.
3C, 5; Supplemental Tables S3, S5). Although these results can be
interpreted as suggesting an increase in observed library complex-
ity, we were not able to investigate changes in complexity per
milligram of input powder owing to the lack of the latter’s
measurements.

Lastly, the average read length of 57 bp in the standard ex-
tracts (range, 50–67 bp) was not statistically different from the av-
erage of 55 bp in the best SPT intervals (range, 51–63 bp; P-value=
0.1641) (Supplemental Tables S2, S3). However, we observed sig-
nificant differences in deamination frequencies in the terminal
bases of the DNA. These chemical alterations to the DNA in the
form of C>T and G>A changes have been shown to be character-
istic of ancient DNA and are one of themost important metrics for
assessing authenticity (Green et al. 2009; Ginolhac et al. 2011;
Sawyer et al. 2012). We observed an increase in the average deam-
ination frequencies of the terminal bases of the 5′ end of the DNA
sequences from 0.32 in the standard extracts (range, 0.27–0.40) to
0.34 in the best SPT intervals (range, 0.31–0.44), with a P-value of
0.003906 (Supplemental Tables S2, S3). A similar pattern was ob-
served for the 3′ end (Supplemental Tables S2, S3). Our data do
not suggest that these were caused by chemical exposure to the
SPT and/or its low pH, as there was no consistent pattern between
exposure to higher SPT concentrations and higher deamination.
Furthermore, an expected pattern in which higher contamination
would lead to lower deamination was also not observed.
Nevertheless, future investigations will be able to shed more light
onto this situation.

Discussion
We performed density separation of bone powder across eight
sequential density intervals as an alternative type of “pretreat-
ment” step to increase unique endogenous ancient DNA yields
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without decreasing library complexity or negatively impacting
DNA authenticity. When a density separation step was imple-
mented, we observed an up to 5.28-fold increase in unique endog-
enous DNA recovery, reflecting a more efficient exclusion of
contaminant-rich bone elements and leading to higher ratios of
endogenous DNA on normalized total read numbers. All authen-
ticity metrics examined were similar to those for the standard

extractions, and library complexity based on expected distinct
reads extrapolations was never reduced for the best SPT intervals,
contrary to the results observed following other pretreatment tech-
niques such as the use of bleach to reduce surface contamination.
As such, a density separation step can provide an efficient way to
improve the cost efficiency of ancientDNA sequencingwithout re-
quiring additional laboratory equipment.
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Notably, the largest improvements in endogenous unique
DNA yield were observed for the samples with the lowest yields ob-
tained for the standard extraction. On average, we saw an increase
of 4.31-fold on samples with <10% endogenous DNA yield on the
standard extraction, whereas for samples with >10%, that increase
was 2.19-fold, suggesting that density separation may enable the
re-evaluation and analysis of previously processed samples that
failed to pass the quality and quantity thresholds that rendered
them inappropriate for further sequencing or population geno-
mics analysis.

The consistency in the best density intervals identified across
all samples confirms that the theoretical background of this meth-
od is valid and that, in samples with similar preservation, particles
rich in endogenous DNA will be concentrated at a specific shared
density range. It also confirms the validity of our selection of inter-
vals for this experiment, as the best intervals included the higher
density intervals (2.35 and 2.40) but not, except for a single sam-
ple, the interval of highest density (2.45). These results also
match what is described by Bell et al. (2001) regarding the 2.30 to
2.40 g/cm3 interval comprising interstitial bone and representing
the most highly mineralized, and older, human bone elements,
which is what is to be expected to be found in the cochlea owing
to its lack of bone remodeling and high concentration of mineral-
ized osteocytes containing endogenous DNA (Bell et al. 2008;
Busse et al. 2010). However, and considering that different bone
densities can be associated with different mineralization levels
(Bell et al. 2008), variations between the various elements of the
skeleton are expected, and further work should focus on the identi-
fication of each element’s most optimal density intervals.

For example, as most bones are expected to have an overall
lower density than the cochlea owing to constant bone remodel-
ing, which results in a higher proportion of recently formed, lower
density bone, those intervals might be slightly lower but, never-
theless, >1.7 g/cm3 (Currey 1984; Simmons et al. 1991; Cameron
et al. 1993; Bell et al. 2001; Lee Lyman 2021). In the case of (fresh)
teeth, specifically, it has been shown that cementum and dentin
can be separated both from enamel and each other, using individ-
ual density fractionation intervals (2.04, 2.20–2.40, and 2.70–2.80
g/cm3, respectively) (Brekhus and Armstrong 1935). On the other
hand, poorly preserved teeth and/or bones that have undergone
substantial mineralization and fossilization over long time peri-
ods, may present an overall shift toward higher density intervals
(Sillen 1981; Bell et al. 2001; Daniel and Chin 2010). Although
no studies exist for human bones, this was shown in a gazelle
bone from the Natufian period, for which the general density
range moved from 1.9–2.3 g/cm3 to 2.4–2.6 g/cm3 (Sillen 1981;
Bell et al. 2001). Thus, further studies may help us to understand
if such shifts happendifferentially across humanbones, determine
the rates at which they occur, and provide additional insight into
where within the bone tissue structure the DNA is preserved (if it is
still present).

Moreover, in a similar manner as to how oxygen isotopes
from tooth enamel can be used to investigate individual mobility
between childhood and adulthood (Budd et al. 2004; Pellegrini
et al. 2016), the fact that different mineralization and density lev-
els within the same bone are associated with differential bone for-
mation over the last 15 yr of life of an individual (Bell et al. 2001,
2008) may prove extremely useful for future studies involving
changes in ancient epigenetics and methylation patterns over a
substantial period of the individual’s life. Furthermore, because
our proposed protocol includes several SPT wash steps, we argue
that the fractions not used for ancient DNA isolation could be

used in parallel for isotopic analysis. However, experimental con-
firmation of lack of SPT reactivity is required.

Sedimentary samples may also be a good candidate substrate
for the application of density separation for ancient DNA extrac-
tion, as it may provide a way to segregate bone elements from sub-
stantially heavier and lighter soil minerals that should be richer in
environmental DNA. Similarly, the same is likely also true for pe-
trous bone powder samples obtained through cranial base drilling
of complete skulls, as these often include soil particles that become
loose owing to drilling vibrations and are veryhard to be complete-
ly excluded from the final powder (Sirak et al. 2017).

All these possibilities create an almost endless array of follow-
up investigations to the application of density separation in the
field of ancient DNA and may even open up new possibilities for
re-evaluating old stored powders or bones that previously did
not yield workable amounts of endogenous DNA. By using a non-
toxic, inexpensive, and easily accessible chemical reagent and re-
quiring only a microcentrifuge (which is a staple equipment in
any molecular DNA laboratory), density separation using SPT
can be integrated into any existing ancient DNA laboratorial pipe-
line as a pretreatment step before DNA extraction that optimizes
DNA recovery.

Methods

Selection of density intervals through preliminary
experimentation

By following existing research (Simmons et al. 1991; Bell et al.
2001) and to have a more general view of the distribution of an-
cient DNA during the first application of SPT density separation
to archaeological bone powder, we initially separated 300 mg
from three ancient individuals in 0.2 g/cm3 intervals for the range
of 1.6 to 2.8 g/cm3. Because of an imperfect first adaptation of the
method to ancient bone powders, most of the tested intervals were
lost during processing and were not sequenced; however, we did
obtain data that showed that the intervals below 2.00 and above
2.40 g/cm3 yielded no endogenous DNA or extremely small
amounts. Instead, we found that most of the DNAwas present be-
tween 2.20 and 2.40 g/cm3. This preliminary data were in agree-
ment with the results of the existing literature, indicating that
the best density intervals for ancient human bones was between
2.00 and 2.40 g/cm3 and, more specifically, between 2.30 and
2.40 g/cm3 for the more mineralized bone elements (Bell et al.
2001), and formed the basis for our future work. We therefore de-
cided to analyze the 2.20–2.40 range, and to increase specificity
and accuracy, we used smaller 0.05 intervals. Given the observa-
tion that even minute amounts of bone powder were being sepa-
rated, instead of the large initial amount of 300 mg of powder,
we subsequently used only 150 mg. Lastly, we also included one
extra interval on each side, ending up with 2.15 and 2.45 g/cm3,
plus the analysis of the elements below 2.15 and above 2.45, result-
ing in eight density intervals per sample plus the standard extrac-
tion in a total of 90 independent powder aliquots for DNA
extraction and sequencing (<2.15, 2.20, 2.25, 2.30, 2.35, 2.40,
2,45, >2.45, standard extraction).

Sample selection and processing

Because of the varied chemical and physical composition of differ-
ent skeletal elements and how they are affected by many different
variables such as overall preservation, taphonomic pathways,
chronological age, exposure to sudden environmental changes,
and others, measured densities will vary on an individual and
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elemental basis. A global and optimal density separation method
for every single individual or sample type is therefore very unlikely.
For this study, to reduce the number of external variables that
could affect ancient DNA yields and quality and therefore inhibit
our ability to detect statistically significant patterns and trends, we
decided to use two sets of skeletal elements from individuals with
similar preservation. The petrous bones were processed according
to published protocols (Pinhasi et al. 2019) in dedicated ancient
DNA facilities at the Department of Evolutionary Anthropology
of the University of Vienna, where the cochleae were isolated
and milled to homogeneous powder in a Retsch ball mixer mill
MM 400 at maximum frequency (30 Hz) for two 30-sec sessions
with a 10-sec pause between to allow for the dissipation of any
heat built up. Two powder aliquots were prepared for each individ-
ual: one of 150mg for density separation, and another of 50mg for
ancient DNA extraction using traditional protocols.

Density separation and DNA extractions

SPT (TC-Tungsten Compounds) was chosen to create heavy liquid
solutions owing to its ease and safety of use for the researcher, be-
ing inorganic, nontoxic, and highly soluble inwater. Furthermore,
it has a large density range (∼1.10 to 3.1 g/cm3) and is thought to
be inert against DNA. On the other hand, changes in its pH (2–3)
affect its stability and may lead to chemical modifications and the
transformation into sodium paratungstate, which is insoluble in
water, and when in contact with ethanol, SPT creates a white pre-
cipitate that may have an unknown effect on, or may inhibit, PCR
reactions (R. Kamps, pers. comm.). DNA library inhibition was not
assessed during our experiments as thiswhite precipitatewas never
observed. To ensure precision down to the 0.05 g/cm3 intervals, we
started by preparing SPT solutions for the eight specified densities
by creating a calibration curve based on the 3° polynomial trend
line of 15 measured densities (Supplemental Table S6). Before
use, these SPT solutions were then UV irradiated for 10 min.
Starting with the lowest density solution (2.15), 1 mL of it was
transferred to a 2-mL Eppendorf tube containing 150 mg of bone
powder, and the contents were thoroughly mixed by vortexing.
After 4 min of centrifugation at maximum speed (20,238g),
all powder elements heavier than the density used (here,
2.15 g/cm3) sank into a pellet, whereas the supernatant contained
a suspension of elements ≤2.15 g/cm3. The supernatant was trans-
ferred into a new 2-mL tube and labeled according to its density in-
terval: here, <2.15 (Fig. 1). Although not specifically required, wide-
bore tips can be useful for this step. Then, 1 mL of the next density,
2.20, was transferred into the tube with the pellet, and the process
was repeated. In this case, elements lighter than 2.20 (and heavier
than the previous density, 2.15) remained in suspension, whereas
the heavier elements, again, formed the pellet that was used for the
next density separation. This process was then repeated for all den-
sities. The last tube obtained using the SPT solution of 2.45 g/cm3

contained a pellet with elements heavier than 2.45 and a superna-
tant with elements between 2.40 and 2.45. As mentioned above,
both were further processed, extracted, and sequenced.

After all separations were achieved, each tube with the newly
separated elements suspended in 1mL of SPTwent through awash
and repelleting phase by adding 1 mL of TE buffer to each tube in
order to lower the liquid solution’s density and force the pelleting
of the now-heavier bone elements. The addition of 1 mL of TE
buffer lowers the density of the SPT solutions to between 1.67
and 1.73 g/cm3, for the 2.15 and the 2.40 tubes, respectively,
which should be lower than any existing bone elements and,
therefore, should force them to repellet. After vortexing, each
tube was centrifuged at maximum speed for 4 min, and the super-
natant containing low-density SPT+TE was discarded. To ensure a

thorough removal of the SPT, this wash/repelleting step was re-
peated two times. Although not requiring repelleting, the >2.45
tube with the final pellet was also washed three times to remove
all SPT traces. If this, or any other pellet, is somewhat large (e.g.,
>50–100 mg), using 2 mL of TE buffer per wash is suggested.

After the washes, all pellets were ready for standard DNA
extraction, which was performed using the Dabney protocol
(Dabney et al. 2013), as modified by Korlevic ́ and colleagues
(2015), using preassembled high pure viral nucleic acid large-vol-
ume kit spin columns from Roche instead of a custom MinElute
column apparatus.

Library preparation, quality control, and sequencing

Double-stranded DNA libraries were prepared according to a mod-
ified Meyer and Kircher (2010) protocol. Individual libraries were
prepared from 12.5 µL extract each, and intermediate clean-up
steps were performed using Qiagen MinElute PCR purification
kits to retain very short fragments (∼30–80 bp). Before amplifica-
tion, real-time qPCR of a small quantity of library (1 µL) was per-
formed to assess the number of molecules present and choose
the required number of cycles for amplification. All libraries were
then double-indexed and amplified using Agilent PfuTurbo Cx

Hotstart DNA polymerase. Before sequencing, libraries were quan-
tified using Qubit and TapeStation or Bioanalyzer. The libraries,
plus negative controls for each laboratorial step, were then se-
quenced on an Illumina NovaSeq SP SR100 XP at the Vienna
BioCenter Core Facilities.

Data processing

Raw sequencing data were processed with cutadapt (v2.3) (Martin
2011) to remove library adapters and barcodes from the DNA
sequences, allowing for 1-bp overlap and excluding sequences
<18 bp. These sequences were then aligned to the human reference
genome hg19, with the mitochondrial genome replaced by the
RCRS sequence, using BWA’s (v0.7.17-r1188) (Li and Durbin
2009) aln command with seeding disabled using -l 1000. We
note that the great majority of published ancient DNA data has
been aligned to the human genome reference hg19, and therefore,
we did the same for consistency. Moreover, an alignment to
GRCh38would not be expected to alter our findings, as our results
are based on quantitative comparisons of sample metrics, rather
than on population genomic analyses. The alignments were
then converted to the SAM format using BWA’s samse command
and, subsequently, again converted to BAM format with
SAMtools view (v1.1) (Li et al. 2009) using the quality filter -q 30
and discarding unmapped sequences with -F 4. Duplicated se-
quences were removed using SAMtools’ rmdup command.
Terminal deamination was assessed using mapDamage (v2.0)
(Jónsson et al. 2013); contamination was assessed on the haploid
X Chromosome of males using hapCon with a threshold of
0.02× or 2000 SNPs (Huang and Ringbauer 2021); and molecular
sex was determined by looking at the fraction of sequences align-
ing to the Y Chromosome compared with the total fraction align-
ing to both sex chromosomes (Skoglund et al. 2013). To randomly
subsample FASTQ files for reanalysis of merged libraries, seqtk
(https://github.com/lh3/seqtk)wasused. Library complexity curves
were estimated using the lc_extrap command from preseq (v2.0.2)
on the merged down-sampled BAM files before duplicate removal,
with default settings (Daley and Smith 2013). Statistical signifi-
cance tests were performed in R (v4.2.1) using the function
wilcox.test(), as well as wilcox.exact() when ties were present,
and the argument paired=TRUE (R Core Team 2022).
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