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Fruiting phenology matters
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In the face of the unprecedented rate of climate change, understanding whether

plant species can track favourable climatic conditions is an urgent challenge. Recent

independent studies suggest that the timing of fruiting (fruiting phenology) can

strongly affect future vegetation dynamics and composition via direct seed dispersal.

With comprehensive datasets on fruiting phenology, researchers may predict the

impact of climate on the future of forests. Nevertheless, long-term, broad-scale, and

taxonomically comprehensive datasets of fruiting phenology are still lacking, leaving

us unprepared to understand the consequences of climate change on entire floras.

We urge stronger collaboration networks to assemble broader, longer, and more

comprehensive fruiting phenology datasets.

Summary

Climate change is altering species phenology but still with underrated consequences

to their ecology and conservation. For example, the production of ripe fruits and the

dispersal of their seeds by frugivores are likely critical for their ability to track suitable

growing conditions under global warming. Specifically, recent independent studies

suggested that migrant birds and mammals are important to facilitate plant spread

towards higher (i.e., cooler) latitudes and higher elevations. Interestingly, these stud-

ies coincide that spring-fruiting species will likely be particularly favoured, whereas

autumn-fruiting species might be largely dispersed to undesirable (i.e., even hotter)

areas. These studies show that the timing of fruit production can have a critical

impact on future forest composition as plant communities adapt to warmer, more

extreme, and unpredictable climates. Unfortunately, comprehensive datasets on fruit-

ing times are very scarce and often temporary, spatially, and taxonomically restricted

(particularly when compared with flowering datasets), strongly hampering our capac-

ity to predict the real impact of climate change on long-term vegetation dynamics.

Thus, we advocate for an urgent need for long-term, broad-scale, and taxonomically

comprehensive datasets of fruiting phenology, and we point out some potential con-

crete steps towards this goal.
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1 | INTRODUCTION

Timing of the cyclic events that occur along the organisms' life

cycles—that is, their phenology (Lieth, 1974)—has strong implications

on fitness and consequently on their ecology and evolution (Bêty

et al., 2004; Koenig et al., 2012). Unsurprisingly, the environmental

triggers of massive biological events, such as animal migrations or

plant blooming, have fascinated early naturalists (Primack & Miller-

Rushing, 2012; Whitfield, 2001). However, the growing recognition

that phenology is finely tuned to climate and that climate is rapidly

changing has cascaded a renewed interest in the causes and conse-

quences of changing phenologies (e.g., Cleland et al., 2007; Gallinat

et al., 2021; Morellato et al., 2016; Peñuelas & Filella, 2001; United

Nations Environment Programme, 2022). Species phenologies are the

result of strong selective pressures as the timing of most of these

events directly affects the way that organisms interact with their envi-

ronment (e.g., will late cubs be able to survive the winter?; Stirling &

Derocher, 2012) and also the way they interact with other organisms

(e.g., will an early flowering plant find suitable pollinators?; Memmott

et al., 2007). Accordingly, the escalating pace of anthropogenic cli-

mate change has raised concerns about whether many species will be

able to survive and reproduce under the new climatic conditions that

they are beginning to experience (Pecl et al., 2017; Peñuelas &

Filella, 2001). These concerns are particularly serious for plants that

not only form the basis of terrestrial food webs but also, as sessile

organisms, might not be able to track favourable conditions as most

animals can (Corlett & Westcott, 2013). Thus, it is not surprising that

dispersal of seeds either by abiotic (e.g., wind) or biotic

(e.g., frugivores) vectors will be critical for plants' ability to track more

favourable climatic conditions, typically shifting towards higher lati-

tudes (i.e., towards the poles) or higher elevations (i.e., towards moun-

tain tops) (González-Varo et al., 2017; Kling & Ackerly, 2020; Walther

et al., 2002).

2 | THE INTERPLAY BETWEEN FRUITING
TIME AND SEED DISPERSAL IN A CHANGING
CLIMATE

Although this issue has still received relatively little attention, a few

recent studies in northern temperate regions have provided new and

independent insights into which plants are most likely to obtain a safe

ride with frugivorous animals towards cooler grounds. By collating

plant–frugivore interaction data from 13 European forests, González-

Varo et al. (2021) showed that common migratory birds will likely be

pivotal in facilitating plants' colonization of northern latitudes fast

enough to keep up with the pace of warming temperatures in Europe.

On another front, the studies by Naoe et al. (2016, 2019) and Tsuna-

moto et al. (2020) showed how large terrestrial frugivores can help

plants to escape warmer temperatures in Japanese mountains by dis-

persing them to uphill grounds. These movements exist because, in

spring and summer, many European birds take advantage of milder

temperatures in northern latitudes to reproduce (dispersing seeds

along the way) and Japanese mammals explore trophic resources on

the mountain tops (González-Varo et al., 2021; Naoe et al., 2016,

2019; Tsunamoto et al., 2020). Before the arrival of winter, European

birds and Japanese mammals do the inverse movement to escape the

cold. Importantly, these studies revealed the same intriguing pattern:

That spring-fruiting species and species with long fruiting periods

seem to be better equipped to disperse to desirable grounds in the

north and on mountaintops (González-Varo et al., 2021; Naoe

et al., 2016); whereas autumn-fruiting plant species with short fruiting

periods tend to be dispersed in the opposite direction and thus will

have to face ramping temperatures (González-Varo et al., 2021; Naoe

et al., 2019).

Summarizing, these studies suggest that future forests might be

dominated by spring-fruiting species, as these will tend to be favoured

while trying to escape drier and hotter climates. Although these find-

ings still need to be corroborated on other systems (particularly in the

southern hemisphere and in the tropics) before they can be regarded

as a global pattern, the migrations patterns are very similar on both

hemispheres (Dingle, 2008; Terry Chesser & Levey, 1998), and altitu-

dinal migration is also a fairly consistent behaviour across the globe

(Barçante et al., 2017; Luccarini et al., 2006). However, more impor-

tantly than confirming any specific pattern, these studies highlight a

more general, key message: Understanding fruiting phenology pat-

terns (i.e., the timing of fruit production) seems critical to predict the

future of forests and consequently our own future.

3 | AN URGENT NEED FOR
COMPREHENSIVE FRUITING PHENOLOGY
RESEARCH

Relevant efforts have already been made to document and explore

the functional implications of fruiting phenology, particularly in the

tropics (e.g., Chapman et al., 2005; Mendoza et al., 2017, 2018;

Morellato et al., 2013; Polansky & Boesch, 2013). Recently, Mendoza

et al. (2017) reviewed fruiting phenology datasets in the neotropics

and found that 70% of the studies lasted less than 2 years and only a

small minority lasted for more than 10 years, a shortcoming shared by

most temperate studies (mostly restricted to 5 years or less;

e.g., Herrera, 1986; Noma & Yumoto, 1997; Tébar et al., 2004). Fur-

thermore, most of these studies do not follow the phenology of a size-

able fraction of the local flora, usually including only a few species and

very rarely more than 100 species (e.g., Chuine et al., 2004; Gordo &

Sanz, 2010; Lechowicz, 1995; Mendoza et al., 2017, 2018; Miller

et al., 2021; Rosbakh et al., 2021). The conclusion is that despite rele-

vant seminal work, current knowledge of fruiting phenology is still

embarrassingly poor, if compared, for example, with that of flowering

phenology (to which it might or might not be directly correlated;

Sandor et al., 2021). A clear sign of the historical primacy given to

flowering phenology is that most published Floras contain information

on the main flowering months for the plant species in a particular area

(e.g., Tutin et al., 1964). Similarly, long-term datasets of detailed flow-

ering dates for particular species allowed ecologists to detect the
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anticipation of flowering as a result of climate change (e.g., Cleland

et al., 2007; Menzel et al., 2006), which has in turn catalysed further

research on the interlinks between climate change, flowering phenol-

ogy, and pollination phenology (e.g., Bartomeus et al., 2013; Hegland

et al., 2009). Unfortunately, neither taxonomically comprehensive nor

long-term datasets of plants' fruiting times of entire floras are yet

available for any region of the world, leaving us largely ignorant about

the effects of climate change on fruiting phenology and about the

impacts of fruiting phenology on the future of vegetation under

warming climates. This information is critical due to at least four

important reasons: First, the timing of seed production will largely

affect multiple biotic and abiotic factors of a plant's life cycle, such as

seed viability, its disperser assemblage, pre- and post-dispersal seed

predation, and seedling emergence and survival (Espelta et al., 2009;

González-Varo et al., 2019; Solbreck & Knape, 2017); second, it is

important to identify potential mismatches between the availability of

ripe fruit and the presence of frugivores (including migratory ones)

(Gallinat et al., 2021; González-Varo et al., 2019; Rafferty et al., 2015);

third, it is important to understand how the increase of extreme and

unpredictable climatic events, such as droughts or wildfires, will affect

plant recruitment as this will be largely determined by the capacity to

produce and release viable diaspores in increasingly shorter temporal

windows (Walck et al., 2011); and, finally, because there is increasing

evidence that fruiting (a)synchrony between native and introduced

plants is critical to determine the seed dispersal services available to

facilitate the spread of invasive plants (Heleno et al., 2020).

4 | CONCLUSION

Given the importance of fruiting phenology for the future of forests in

a rapidly changing climate, we advocate an urgent need for a strength-

ening of the existing collaboration networks to construct long-term,

broad-scale, and taxonomically comprehensive datasets of fruiting

phenology. These efforts might be particularly fruitful if they are

openly embraced by well-established international networks such as

networks of Botanic Gardens (e.g., BGCI, 2022) and Biological Field

Stations (e.g., OBFS, 2022) or by broader sampling schemes such as

the International Long term Ecological Research Network

(e.g., ILTER, 2022) or specific phenological projects (e.g., IPG, 2022;

PEP, 2022; USANPN, 2022).
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