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ABSTRACT: In this paper, efficient algorithms for contact problems with Tresca and
Coulomb friction in three dimensions are presented and analyzed. The numerical
approximation is based on mortar methods for nonconforming meshes with dual La-
grange multipliers. Using a nonsmooth complementarity function for the 3D friction
conditions, a primal-dual active set algorithm is derived. The method determines
active contact and friction nodes and, at the same time, resolves the additional
nonlinearity originating from sliding nodes. No regularization and no penalization
is applied, and local superlinear convergence can be observed. In combination with
a multigrid method, it defines a robust and fast strategy for contact problems with
Tresca or Coulomb friction. The efficiency and flexibility of the method is illustrated
by several numerical examples.
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1. Introduction

Solving contact problems with friction in 3D is a challenging task in me-
chanics and of crucial importance in various applications. The main difficulty
lies in the conditions for contact and friction, which are inherently nonlinear
and complicate the theoretical analysis and the design of an efficient nu-
merical solution algorithm. For a general introduction on contact problems
with and without friction, we refer to [KO88, HHNL88, Wri02, Lau02, Wil03,
EJKO05].

Very often, laws named after Tresca and Coulomb are used to model fric-
tion. It is well known that contact with Tresca friction leads to a classical
variational inequality. For Coulomb friction, the friction bound depends on
the solution, and this more realistic law results in a quasi-variational inequal-
ity.
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A widely used approach for contact problems with Coulomb friction is to
apply a sequence of Tresca friction problems together with a fixed point itera-
tion (see, e.g., [HKD04,HDK02,LPR91,KS05,FK06,NJH80]). Thus, a crucial
component for the solver is a fast and robust algorithm for Tresca frictional
contact problems. While in two dimensions, Tresca friction corresponds to
linear pointwise inequality constraints for the boundary stresses, the situa-
tion in 3D is more involved due to the quadratic inequality constraint, one
has to deal with.

Contributions to theoretically sound numerical algorithms for friction in
3D are quite rare. We refer to the recent papers [HKD04, DHK*05], where
discrete 3D-Coulomb friction problems are approximated using FETI do-
main decomposition and algorithms for quadratic programming with sim-
ple inequality constraints. Since quadratic rather than linear constraints
arise in 3D, they are approximated as intersections of rotated squares in or-
der to make the application of optimization algorithms for simple bounds
possible. Improvements of this approximation technique are proposed in
[Kuc06a, Kuc06b]. A different idea is followed in [KKO01, FK06], where mono-
tone multigrid methods are used to construct a globally convergent solver
for discrete Tresca and Coulomb frictional contact problems. The imple-
mentation of these methods relies on a multilevel hierarchy of spaces and
requires the use of modified coarse grid basis functions and suitable coarse
grid constraints.

Already in an early paper [AC91], Newton-type methods for contact prob-
lems with friction are used. Similar methods are also studied in the more
recent contributions [CKPS98, CP99], where the performance of generalized
Newton-type methods for frictional contact problems is shown to be superior
to interior point methods. The methods presented in [AC91, CKPS98, CP99]
rely on reformulations of contact and friction conditions using nonsmooth
equations and on generalized differentiability concepts and, thus, are related
to the present paper. However, we use different reformulations of the com-
plementarity conditions, study and exploit the structures arising in Newton-
type steps and relate them to (inexact) primal-dual active set strategies. In
addition, we apply our algorithm to two-body contact problems which are
discretized in terms of mortar techniques and introduce stabilized inexact
Newton versions.

Recently, the application of mortar methods as a discretization for the
continuous problem has gained a considerable amount of interest (see, e.g.,
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[BB00,HL.O2, HW05,FW05,FW06,Lau02,PL04]). By using a dual basis func-
tion for the Lagrange multiplier, the weak form of the constraints can be
written as independent constraints for each node on the slave side resulting
in a quasi-variational inequality. Using a suitable local basis transformation,
only the coefficients on the slave side are affected by the non-penetration
condition and the friction constraints. Thus, the algebraic structure of a two-
body contact problem is exactly the same as for a one-body contact problem.
For details we refer to [WK03, HW05]. In the mixed formulation which is
motivated by the mortar approach, the Lagrange multipliers are treated as
independent variables. This motivates the application of algorithms, such as
the primal-dual active set strategy which use both types of variables. We re-
fer to [HIKO03] where the relation between this algorithm and a semismooth
Newton method applied to a complementarity function is studied. These
methods have been extended and applied successfully to contact problems
without friction [HW05,HKKO04] and in 2D to friction [HMWO06,Sta04,KS05].
However, the application to friction problems in 3D is not at all straightfor-
ward. In this paper, we derive a primal-dual active set method by applying
a semismooth Newton method to a nonlinear complementarity function that
expresses the 3D Tresca friction conditions. In each step of the algorithm, we
solve a linear problem with Robin boundary conditions on a suitable subset
of the friction boundary and with Dirichlet conditions on the complement.
This linear system can be solved using any efficient iterative or fast direct
solver. Here, we apply a multigrid method as iterative solver. By solving
these systems only approximately, we obtain an inexact primal-dual active
set strategy. The resulting algorithm can be regarded as a nonlinear multi-
grid method; it also applies to problems with Coulomb friction and yields a
reliable and fast convergence. Finally, we present and study a full Newton ap-
proach for the Coulomb friction problem that avoids fixed point ideas. Our
implementation is based on the finite element toolbox UG, see [BBJ*97],
and the direct solver PARDISO, see [SGF00], is used for the full Newton
approach.

The outline of this paper is as follows: The two-body Coulomb frictional
contact problem is stated in Section 2, and the discretization based on mor-
tar methods is briefly discussed. In Section 3, we develop and analyze our
algorithm for 3D friction problems. For simplicity of presentation, we restrict
ourselves to the case of a one-body contact problem with Tresca friction. In
Section 4, we study the performance of the algorithm for a test problem with
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Tresca friction. Using fixed point ideas, this approach is extended to contact
problems with Coulomb friction in Section 5. In Section 6, we apply our al-
gorithms to two-body contact problems with Coulomb friction in 3D using a
fixed point method. Finally in Section 7, we present a full Newton approach
for Coulomb friction in 3D and compare numerically its performance with
the discussed fixed point-based methods.

2. Contact problem with Coulomb friction in 3D

In this section, we formulate the contact problem with Coulomb friction
in linear elasticity. In addition, we briefly describe our nonconforming dis-
cretization based on mortar methods and the basis transformation which
transforms the system for two bodies into a system having exactly the same
structure as a one-body contact problem.

2.1. Problem statement. Let Q' C IR®, I € {m,s}, denote two elastic
bodies. The superscript “I” will refer to s, for the slave, or to m, for the
master body, as is common in the mortar setting. We assume that the
boundaries 9 are divided into three disjoint measurable parts FZD, Fﬂv and
I',, with meas(I',) # 0. We impose homogeneous Dirichlet conditions on T'%,
and Neumann data, i.e., a surface traction p' € (L*(I'};))? on T'}y,. Moreover,
we denote by f' € (L*(Q"))? the volume forces acting on Q. We use the
constitutive law for linear elasticity, namely

ol = Mtr(e)Ild +2p'e!  in Q)

where o' denotes the stress field and €' := 1/2(Vu! + VulT) the linearized
strain tensor that both depend on the displacement u!. The Lamé constants
Mgl > 0 are given by p! := E'/(2(1 + ")) and N = (EW)/(1 — (V)?)
with Young’s modulus E' > 0 and Poisson ratio v! € (0,0.5). Moreover, “tr”
denotes the matrix trace operator and “Id” the identity matrix. Then, the
displacement u' satisfies the following equations

Dive' + f' = 0 in ', (2.1a)
u' = 0 onT, (2.1b)
on' —p' = 0 on T, (2.1c)

where n! denotes the unit normal outward vector on the boundary 9Q'. To
state the contact and friction conditions, we introduce for each point of I';,
the vectors 7,7 that span the tangential plane and use n := n’. We
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assume that {n, Ty, 7} is an orthonormal basis in IR* for each point of T'%..
In order to formulate the non-penetration condition of the two bodies, we
use a predefined relation between the points of the possible contact zones
FZO. This relation is realized by a smooth mapping R : I';, — I'/% satisfying
R(I'%) Cc I'h. We assume that the mapping R is well defined and maps any
x € I'}, to the intersection of the normal on I';, at x with I'/f. Then the
contact conditions on I'j. are given by

lul, —d <0, 0,<0, ([u],—d)o,=0 onl}{, (2.2)

where d > 0 denotes the gap between the two elastic bodies, o, := n'o*n

the normal component of the boundary stress, [u] := (u®(x) — u"(R(x)))
the jump and [u],, := [u|n the jump in normal direction. For the boundary
stress in normal direction on the possible contact part, we have to satisfy the
condition

on=n'c’(x)n=n'0"(R(z))n on T%. (2.3)
Additionally, we have to ensure 7] o*(z)Ty = 7)™ (R(x))Ty, k = 1,2.
Finally, the Coulomb friction law states that

o7 ]| < Flowl,

ol < 3lol = [ul, = 0. onTs  (24)

o || = Flon| = 36 >0: 0, = —pBul,,
Above, || - || denotes the Euclidean norm in IR?, o, := 6°n — o,n the tan-
gential component of the boundary stress and [u], the relative tangential
displacement given by [u]; := [u] — [u],n. Furthermore, §:I't, — IR, § > 0,

is the friction coefficient.

2.2. Mortar discretization. By using dual Lagrange multipliers, we can
apply locally a suitable basis transformation for the finite element basis.
The shape functions on the master side are modified by adding a linear
combination of nodal shape functions on the slave side. In the new basis the
shape functions on the master side satisfy a weak continuity condition, i.e.,
the jump of these basis functions tested with a Lagrange multiplier being
defined on the slave side is zero. Thus, the coefficients in this new basis on
the slave side of the contact zone describe the relative displacement between
the contact interfaces. In this basis, the two-body contact problem has the
same structure as in the one body case, since all constraints at the contact
zone are restricted to the degrees of freedom on the slave side. For details,
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see [WKO03, HW05]. Motivated by these considerations, in the sequel we will
write uy, for the coefficient vector with respect to the new constrained basis.
Therefore, the following discussion holds for both, the one-body and the two-
body case. We denote the multiplier corresponding to the discretization of
—o°n on the slave side by A,. In the new basis, (2.1) is satisfied in the
discrete form

Ahuh -+ BhAh = fh? (25)

with By, of the form (0, D) " where due to the use of dual Lagrange multipliers
the matrix D is diagonal. Let us denote by S the set of all nodes of the finite
element mesh belonging to I', and by A the set containing all other nodes.
Then for each p € §, the entry of the diagonal matrix D is given by

Dlp,p] = Ids Gptp ds = Id3 ¢pds =: Dylds,
ING, NG

where Ids denotes the identity matrix in IR**3, and ¢, and 1, the primal and

dual basis function associated with the node p, respectively. If the displace-
ments w;, are known, the Lagrange multiplier can be computed directly by
using (2.5)

Ah = D_l(fh — Ah’u,h>3, (26)

where the subscript S on the right hand side indicates that we use only the
entries of the vector corresponding to the nodes p € S.

We next introduce the scaled normal and tangential components of the
multiplier A;, and the normal and tangential components of the relative de-
formation u;. For a node p € S, let

)\TD T1
Arps 1= ( Aﬁ D;;) €R® and A\, =X, Dyn, € R,

— (%) e R and wn, = uln, € R
Urp = u];rsz and Uy = u, "N, .
The discretized (and scaled) gap at the node p € S is defined as
1
d, = o d,ds.
p JT,
Then, the discrete conditions for normal contact are given by

Unp < dp,  Anps >0, Npps(tuny—dy) =0 (2.7)
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for each p € S, see also (2.2). We note that we use different scaling fac-
tors for the primal and dual variables and that D, is proportional to the
local meshsize. This is motivated by the fact that the H~/2-norm for the
Lagrange multiplier and the H/?-norm for the displacements have the same
error reduction. We remark that the proposed scaling factors yield better
numerical convergence rates for the inexact version of the algorithms. The
discrete Coulomb friction conditions are given by

[Azp.sll < 8 Anp.s
[Arpsll < FlAnps
H>\T,p,s| = S‘An,p,s
Here for simplicity, § is assumed to be constant and independent of the solu-
tion. Differently from the Coulomb friction conditions (2.4), where the fric-

tion bound is §|oy,|, for Tresca friction this bound is a function g € H~1/2(T'%,),
g > 0, given a priori. The corresponding discrete variable is

gp = / g ¢pds.
r

s
C

= u,, =0, forallpe S.  (2.8)
=30>0: A5 = Bury,

Now, for Tresca friction conditions we have to replace the friction bound
§|Anps| in (2.8) by gp.

3. Treatment of Tresca friction in 3D

In this section, we derive our algorithm for the treatment of friction in the
three-dimensional case. To simplify the presentation, we restrict ourselves to
the case u,, = 0 for all nodes p € S, with Tresca friction. In the following
sections, we will return to the more general Signorini contact condition (2.3)
combined with Coulomb friction. We remark that due to the discussion
in Subsection 2.2, the following part holds as well for a one-body contact
problem as for a two-body contact problem.

In our iterative algorithm, we have to solve in each iteration step a linear
problem with boundary conditions of Dirichlet-, Neumann- or Robin-type
on the contact zone I'c. The detection of the zones for the different types
of boundary conditions is based on a primal-dual approach. The Lagrange
multiplier playing the role of the dual variable can be locally computed in
a postprocess from the primal variable wy, see (2.6). This algorithm for 3D
friction is closely related to the primal-dual active set method for 2D friction.
Consequently, it perfectly fits into the abstract framework used in [HWO05,
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HMWO06] and inherits the advantages of these methods, i.e., their simple
implementation and their numerical efficiency. The method can be regarded
as an active set strategy or alternatively as a semismooth Newton method.
Our derivation below is based on the latter aspect that also guarantees fast
local convergence of the iterates, see Theorem 4.1.

3.1. Derivation of the iteration scheme. To start with, we review the
conditions for 3D Tresca friction as given by (2.8) using g, instead of §| A, s|-
Since for g, = 0 these conditions simplify to homogeneous Neumann bound-
ary conditions in tangential direction, we first assume that g, > 0 and,
on page 13 comment on the case g, = 0. By a straightforward calcula-
tion, it can be verified that (2.8) with g, instead of §|\, ;| is equivalent to
C(Urp, Arps) =0forall pe S, ¢ > 0, where the nonlinear complementarity
function C(-, -) is defined by

C(Urp, Arps) = max(gp, [[Arps + crtbrpl ) Arps — 9p (Arps + crtury) . (3.1)

We remark that the equivalence between (2.8) with g, instead of §|\, 5| and
(3.1) and the results to be presented below hold for each ¢, > 0.
In the sequel, we take (3.1) as the starting point for our algorithm. Our

main idea is, to apply a Newton-type algorithm for the solution of C(wu, p, A;ps) =

0. Unfortunately, both the Euclidean norm and the max-function are not
smooth. However, they are semismooth in the sense of [QS93, HIK03] which
justifies the application of a semismooth Newton method. As generalized de-
rivative for f(b) := max(a,b), we use G¢(b) = 0ifa > band G¢(b) = lifa < b.
We remark that the arbitrary choice for the case a = b does not influence the
convergence rate of the proposed algorithm. Note that, in the first term of
(3.1) the Euclidean norm appears for nonzero arguments only. This is due to
the fact that if | A;, s +c;urp|| = 0, we obtain max(gy, || Arps + crur,l|) = gp
and the Euclidean norm vanishes. Therefore, the only non-differentiability
that matters in (3.1) is the max-function. In the semismooth Newton step the
derivative of the Euclidean norm only occurs for points that are differentiable
in the classical sense.
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We now compute, for p € S, the generalized derivative Go of C(-,-). For
the variation (0w, ,, 0A;,s) € IR? x IR?, we obtain

Go(Urp, Arps)(0Urp, A7) = max(gy, || Arp.s + CrUrpl| )N p s

Aops (Arps + crttry) '

[Arps + Crtary

(0Arps +Ccroury) — gy (O ps + cr0U- ).
(3.2)

+ X4

Here, x4 denotes the characteristic function of the set A, = {p € S: || A s+
CrUrpll > gpt, 1e, xa = 1if || Arps + cruryl > gp, and xu = 0 if [ Arps +
crur || < gp. We note that A-p s (Arps + CT'u,T,p)T is a 2 x 2-matrix, either
zero or of rank one. Performing a semismooth Newton step at a current

- k=1 yk—1 : : N
iterate (u;,", A7), one derives the new iterates (u; ,, A7 () from
k=1 yh—1 k N k=1 yk—1
Solve Go(ur, s Ay, ) (0, 0A7, ) = —Cluz, ' Az
Eooyk k=1 yk— k k
and update (Urps Arps) = (uﬂpl’ )‘T,p,ls) +(0uz, 5)\7’]9’8)(3 3)

The characteristic function x4 in (3.2) separates the nodes of S into 7%, the
inactive set, and A", the active set, according to

= {pe S : N, +cull - g, <0}, (3.4a)
A ={peS: H)\%}S +cul | — g, > 0. (3.4b)

Using this notation and (3.2) in (3.3), a straightforward computation shows
that the new iterate (u® ¥ ) satisfies

T7p ) T7p78

uf =0 for p € 1%, (3.5a)
(Id2 — M;f_l) AP~ cT]\@]f_l’ulip:h’;_1 for p € A", (3.5b)

T.p,S8 T

where My~! := ei~!(Idy — F; '), with the scalar value e~ and the 2 x 2-

matrix F]f_l given by

- Akl ()\k:—l +CTuk—1)T

k—1 9p k-1 70,5 \“ 7,p,s TP
e, = - = k_ - (3.6)
g NS5+ cuk T Gl NTL s + eruk

and the vector h];_l c IR?

hy = TRV 4 el (3.7)
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Note that, while on the inactive set Z¥ Dirichlet conditions are imposed, the
condition on the active set A" is of Robin-type since it involves the displace-
ment u’j’p and the surface traction )‘];,p,s- The sets A* and 7F approximate
the sets of slippy and of sticky nodes at the solution, respectively. In the
more general setting of Signorini conditions, we have also to set the bound-
ary condition in normal direction. The Robin condition (3.5b) can be easily
handled if we rewrite (3.5b) as

U S VA S (3.8)

T,p,S ™p D

We note that 'r’;_l enters in the right hand side of the linear system and L’;_l
gives a contribution to the system matrix. Comparing (3.8) with (3.5b) and
(3.7), we get under the assumption that Idy — M]f_l is regular

LiVi=c (Idy — My =) 7'My~ = o ((Idy — My~ ™ = Idy), (3.9a)
rili= —(Idy — M) "Ry (3.9b)

We mention that this Robin condition only guarantees positive definiteness of
the system matrix if L’;_l is positive definite. Note that for L’;_l = 0, we find
a pure Neumann condition. The degeneration of Robin type to Dirichlet type
boundary conditions is not included in the form (3.9). However, this is not
necessary for our problem, since nodes p with a Dirichlet condition belong to
the set A* and therefore are not handled by (3.8). Obviously one can see that
the matrix Idy — Mllf_l is not necessary regular and therefore not invertible.
In the next subsection, we are going to present three possible modifications of
the Robin system (3.5b) such that a regular matrix Idy — M}~ is obtained.
Two of these modifications give a positive definite and symmetric matrix
L’;_l. We remark that all modifications converge in the limit case to the
original system (3.5b) and thus preserves the local convergence properties of
the numerical algorithm.

3.2. Modifications of the Robin system. To obtain a robust and con-
vergent scheme, we have to replace the matrix F]f_l by a scaled matrix Fﬁ;l,
[ =1,2,3. The index [ stands for one of the three possibilities considered in
this paper. The scaling can be seen as a projection of the Lagrange multiplier
onto its feasible set given in (2.8). We remark that our numerical experience
shows that this scaling is essential for the robustness of the iteration scheme.
According to the definition of M]f_l and (3.7), we replace in (3.5b) M]f_l by



PDAS ALGORITHM FOR 3D COULOMB FRICTIONAL CONTACT 11

M) and byt by hpl given by

~k—1

My = Iy — FNTY), k= BT ek, 1=1,2,3.

T,p,8

In a second step, we replace the matrix Idy — M, k=1 by Idy — ﬁk 1M F-1 with

a scaling factor B]];l_l > (), such that the resultlng matrix is regular. Then the

form (3.8) of the Robin boundary conditions is written as —A¥ —|—L]; ; 1'u,’“

TpS
k I with

E’;f = e ((Idy — B N = ), 7= (T — B M) Ry,

(3.10)
for [ = 1,2,3. We mention that similar modifications as done for the matrix
Flfﬁ_l are used in primal-dual algorithms for the minimization of functionals
involving Euclidean norms, see, e.g., [ACCO00, CGM99,HS06]). These type
of problems have a similar structure as (3.5). Clearly, this relation is due to
the fact that the Tresca friction problem also corresponds to the minimization

of a nonsmooth energy functional.

Since for all modifications F; " — FF'and ﬁk "= 1as (ul), )\]ﬁps) con-
verges to the solution the modlﬁcatlons do not degrade the local superlinear

convergence. Next we present the three possible modifications used in this
paper.

First modification. We use a parameter k_l # 1in Idy — ﬁk_lM in
(3.10) only if ()\k 07 ()\k Lt el <o ThlS condition is equivalent to

the fact that the pangle be)tween the two vectors is greater than 90 degree.
Since in the limit case both vectors are parallel, the modification only applies
when the iterates are far away from the solution. In this modification, the
unsymmetric matrix Lk is replaced by Lp1 , which is unsymmetric as well.

We project the Lagrange multiplier onto its feasible set and define

Akl(Ak1+CT kl)

k—1 T,D,S TpS
1 = e i (311)
g max(g,, | AL AT, + crub t

Using
k—1 k—1
Oék_l . (A .0, s) (ATps + CT,U’T,I?) 5k—1 ‘— 1in H 7PSH
) k— k ) : )
! HA ,p, HA ,p,1 + CT,U’T,]?H ! gp
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it is easy to see that 7}5 = o/;_15]’§_1 is an eigenvalue of the matrix F]fl_l with
p,1 )
the eigenvector A*~L. The second eigenvalue is given by 7125 = 0 where the
D1

T’p7s.
corresponding eigenvector is the vector which is orthogonal to )\f’;’ls + cTuf_;l.
: rk—1 1 k=1 k—15k—1 2 _
Therefore, the eigenvalues of M7 are M, = € (1—a; 0,7 ") and T, =
e’;_l. Since —1 < o/;_l <land 0 < 55_1 < 1, we get due to 0 < e’;_l <1

the relation 0 < 7]1\2 < 2 and 0 < 7}4 < 1. Using (3.10) with

1 - k-1

1 ) Tt if oy <0,
d1

b 1 else.

yields a unsymmetric matrix Lg;l with positive eigenvalues.

Second modification. In contrast to the first modification, we use a sym-

metric matrix Fﬁgl. Here we need a parameter ]’;’51 # 1in (3.10) for all cases
with (A0 T(AEL 4 coub 1) # 0. We replace F¥~! by the symmetrization

of (3.11), namely
ML+ el )+ (L el ) (A1)

~]€2—1 - T,p,8 7,D,S P,s P53 (312)
2 2max(gp, [ AL LN IAL L + crulst|

One can proof that the eigenvalues of F]ﬁ;l are v}i = %(o/;_l + 1)5]’;:_1 €

[—1, 1] and therefore the eigenvalues of the matrix Mﬁgl are fy;wi = e 1(2—
(o/]j_1 + 1)5]’;_1)/2. Using the same arguments as before we get 0 < 7]1\22 < 2.
p,2

Setting
k=1 ._ 2
P22 — (akT— 1)ok-1

results in a symmetric and positive definite matrix Ll;gl.

Third modification. In the third modification, we use the matrix

i AR=L(Z\F-1 T
Phol . 77]9,8( Tap7s) (3.13)

p3 )2

instead of F]f_l. Obviously this matrix is symmetric and positive semidefinite
with eigenvalues v; = 0 and 73 = (0;7")*. Therefore we get for the
p,3 ,3

fo—
max (gp7 H AT,p,ls|

eigenvalues of the matrix Mﬁgl due to 0 < e’;_l < Itherelation 0 <~y <1
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and the matrix 17531 defined by (3.10) with 5’51 = 1 is symmetric and
positive definite. We remark that the matrix Flﬁgl converges in the limit
case to the matrix F]f_l since in the solution for a node p € A., we have

>\7'ap75 + CrlUrp _ ATP

3. 75

IArps +crurpll gy

3.3. Extension to the case g, = 0. In the above discussion, we assumed
gp > 0 for all p € §. The reason for this assumption is that for g, = 0 one
cannot stringently deduce A;, s = 0 (which follows directly from (2.8)) from
C(®rp, Arps) = 0. However, if Tresca friction combined with fixed point
ideas is used to solve Coulomb friction problems, g, = 0 naturally occurs
for all non-contact points, which makes the case g, = 0 rather important.
Fortunately, after some minor changes, nodes p with g, = 0 can also be
handled using (3.5) with (3.11)-(3.13).

In the following, we consider p € S with g, = 0. First, we assume H)\T »s T
I > 0. Then, p € A since g, = 0. In the case H}\Tps +cui )t =0
we have to set p € A*. In both cases, we set Mk '=0and (3.5b) leads to

the desired homogeneous Neumann condition )\ = 0. We mention that

T,p,S
in the case HATpS + c;ul M| > 0 and H)\TPSH > 0, we get due to (3.4b)

and (3.6) automatlcally p E A% and ef~! = 0 and therefore M =0, In
particular, these matrices are well deﬁned for this case. So only for the cases
H)\ﬁpls + c;ul | =0 or | A7, ]l = 0, we have to enforce the node p to be in

Ak

Tps‘

3.4. General Remarks. Computing generalized derivatives of nonsmooth
functionals is a delicate issue. While in [AC91] mainly intuitive arguments
are used, the related papers [CP99, CKPS98] use the concept of Bouligand-
differentiability. This concept allows for the use of globalization (e.g., line-
search) strategies, but calculating the search direction requires to solve a
nonlinear system in each Newton step. In these papers, this problem is cir-
cumvented by substituting this nonlinear system by a linear one. Despite this
heuristic step, the authors report on good numerical results. The concept of
semismoothness [QS93, HIK03] used in the present paper has the advantage
that the search direction can be found by solving a linear system. Never-

theless, one can also proof local superlinear convergence of the iterates, see
Theorem 4.1.
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Furthermore, we remark that there is some freedom in choosing the non-
linear complementarity function to express the complementarity conditions
for the Tresca friction law. For g, > 0, we can also work with (3.1) by

_ (Arps + Crery)
C Ur 7A7— = Ar - o - ’
( P ,p,s) ps Ip max(gp, HAT,p,s + CT'U/T,pH)

(3.14)

Complementarity functions closely related to (3.14) for dealing with friction
conditions have been used in [AC91,CP99, CKPS98]. A semismooth Newton
iteration for the solution of C(w,,, A, ) = 0 results in an iteration rule that
also uses the active and inactive sets defined in (3.4), but results in a modified
iteration step on A*. Our numerical experience yields that algorithms based
on (3.1) perform more robust compared to those based on (3.14).

3.5. Algebraic representation. In this subsection, we give the matrix
representation of the algebraic system, we have to solve in each iteration
step. As mentioned above, we restrict ourselves to the case wu,, = 0. The
tangential conditions are either Dirichlet conditions for the inactive nodes
p € IF or Robin conditions for the active nodes p € A*. To rotate the
stiffness matrix A arising form standard linear elasticity and introduced in
(2.5), we define the matrix with the normal vectors by

0 0 0
N:=|[0 - 0 mn 0 - 0|ecRSS
0 0 0
and the matrix with tangential vectors by
0 0 O
T := 8 8 :;% 8 e IR2ISIx3IS|
0O 0 O

where as above, for each p € §, n,, 7, and T, denote the unit outward
normal and the tangential vectors, respectively. Moreover, for p € A* the
matrices L];f are assembled into

L= diag{f,’;f c |R2ATIx214T]

peAL
Similarly, we define the vector 74 by the entries 'F];jl for p € A¥. We now
use the decomposition of S into A* and 7¥. The vector u; can then be
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partitioned into (uj;, u),,u',)", the multiplier Aj into (Aj, Aj:)" and the
right hand side f;, into ( fX/, f;, flk)T. Correspondingly, we can decompose
the matrices Ay, N and T, and the arising linear system has the form

Aw A Apar ul; Y

0 Idy 0 N 0

0 0 N i 0
TuAuy TuAus TuAwe + LaTy) "4 Toefas + 70

(3.15)
We remark that the Dirichlet boundary condition (3.5a) on ZF is reflected
in the second row and the Robin-type conditions for p € A%, see (3.5b)
or (3.8), are included in the fourth row. In the case of the more general
Signorini condition, we have to replace the third row by a more complex one,

see [HWO05].

4. Algorithm and numerical examples for Tresca friction

In this section, we give the inexact primal-dual algorithm based on an effi-
cient multigrid method to solve the resulting linear problems. Furthermore,
we present a numerical example to study the performance of our algorithm
and compare the three modifications of Section 3.2. While in the previous
section, we have derived the iteration rule for Tresca friction without taking
into account Signorini contact, the algorithm presented can handle Tresca
friction and Signorini contact (2.2). The discrete Signorini conditions (2.7)
are realized by applying the primal-dual active set strategy on the nonlinear
complementarity function

Anp.s — max(0, A p s + cp(un, —dp)) =0, (4.1)
with ¢, > 0. The strategy uses, in each iteration the active and inactive sets

AP = fpe S AL 4 cn(uﬁg)l —d,) > 0},

n n,p,s

= {peS: Nl ¢ cn(uﬁg)l —d,) < 0}.

n7p7s

We next state the inexact primal-dual active set (Ipdas) strategy for contact
with Tresca friction.

Algorithm 1: Ipdas for contact with 3D Tresca friction
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(0) Set k =1, choose ¢, > 0, ¢, >0 and m € IN.

EURT 0,0 o« ay-. .
Initialize u,~ and AY as an initial solution.

(1) Define the active and inactive sets by

AF = {pesS: )\ffbpls + ¢y (u k?’m —d,) > 0},

Iy ={pes : N +en(uy, " —d,) <0},
k._ k lm
AT T {pES HATps—l_CT H gp>0}>
:Z’—f = {pES ‘|>‘7p3+67’ f’plmH_ngO}‘
(2) For i =1,...,m, compute

u)’ —MG( P AR TR AR TR g AR,
(3) If fluy™ — wy”

2| < ey stop.

(4) Compute the Lagrange multiplier as
No=D'(fs— Ascuy™).
(5) Set uy ™ = uy™ k =k + 1 and go to step (1).

Above, we denote by u,” = MG(u," ™" A¥ TF AF TF 4y~ AE1) the
iterate after one multigrid step for the hnear system (3. 15) By As,, we
denote the rows of the stiffness matrix A corresponding to the nodes in the
set §. In the case m € IN, we solve the linear system inexactly, i.e., we
update the active and inactive sets after m multigrid steps. For m = 700",
we get the exact version of our algorithm. Recalling the derivation of our
iteration rule as a semismooth Newton method, we obtain the following local

convergence result, see [HIK03, QS93].
Theorem 4.1. For m = "00”, Algorithm 1 converges locally superlinear.

We mention that in the multigrid approach, we call the coarsest grid, on
which we solve exactly, the grid on level 0. We get the next finer grid on
level [+ 1 by decomposing each element on level [ into 8 subelements. For all
examples presented in this paper, we use a VV-cycle with three pre- and post-
smoothing steps for the multigrid. As smoother, a symmetric Gaufi—Seidel
iteration is applied.
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4.1. Example. As a first example for a three-dimensional contact problem
with Tresca friction, we consider a one-body contact problem.

The problem setting. We consider a linearly elastic cube Q = [0, 1]® with
material parameters £ = 200 and v = 0.3 and take the xy-plane as the rigid
obstacle which implies that the initial gap is d = 0. The cube is subject
to the Dirichlet distortion w' = (0, 0.2, 0.06 — 0.152) on its upper surface
0,1]2 x {1}, see the left part of Figure 1. For Tresca friction, the friction
bound g is given a priori and does not depend on the distortion as in the case
of Coulomb friction. For this problem, we choose g = 800zy(1 — z)(1 — y).
In the right of Figure 1, we show the distorted body with the effective von
Mises stress oo given by 0% := Zf’ i1 loij — 0:ip|?, where the pressure p is
given by p := str(o).

The Tresca friction law. To get a better understanding of the different
types of nodes that occur for contact problems with Tresca friction, we show
in Figure 2 the nodes of the contact surface on Level 5. Different types of
nodes are marked differently, see the legend in Figure 2. Note that, for each
node the displacement is parallel to the multiplier A, as required. We remark
that, using the Tresca friction law, nodes can stick in tangential direction
without being in contact with the obstacle.

0.9
0.8

0.7

0.6
0.5
0.4
0.3

0.2
0.1

0
0.2 0
0.4
0.6
0.8 0.5
1

1

FIGURE 1. Problem definition with prescribed Dirichlet distor-
tion (left) and distorted body with effective von Mises stress oug;
the lower surface in the plot is subject to unilateral contact and
Tresca friction.

Performance of Algorithm 1. To investigate the performance of the algo-
rithm, we first solve the linear system arising in each iteration step exactly.
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no contact and slip
L 00000
1 :\{:\\3333...... ® B no contact and stick
eececndvpoe
oo e e )
R v e contact and slip
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i QQi'b\o\o»\\\\\\\\\-‘%\\ e contact and stick
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. -k \\\\\\\\\\\\\\.\.‘.\\\E 4
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- t\\\\\\\\\\\\\\\\\\\\\.tLL ']
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O, ---------------------------------
0 02 04 06 0.8 1

FIGURE 2. Visualization of the solution at the nodes p € S for

Tresca friction on Level 5 (left), legend (upper right) and cutout
(lower right).

We note that in each step, our algorithm updates the contact/non-contact
sets AF and ZF as well as the slip/stick sets A* and ZF and at the same time

perform a Newton step to adopt the distortion’s direction w, to the direction
of A, for sliding nodes.

TABLE 1. Performance of Algorithm 1 for the exact strategy

(m = "00”). Initialization: )" = 0, A = 0 for all levels.
Tolerance £, = 10~ with the modification (3.11).

L] |AF] /A% for k = 2,3,4,5,6,7,8,9

ol 2/0 2/0

1| 6/4 5/8 5/8 5/8 5/3 5/8

2 15/16 | 12/16 | 12/16 | 12/16 | 12/16

3 49/32 | 38/37 | 33/39 | 33/39 | 33/30 | 33/39

1171766 | 132/102 | 116/118 | 112/122 | 112/123 | 112/123 | 112/123

51| 651/252 | 506/357 | 443/411 | 412/435 | 406/444 | 406/446 | 406/446 | 406/446

For our tests, we initialize the algorithm on each level with ug’o = 0 and
A) = 0. This leads to A} = A! = (). We terminate the Ipdas-iteration if
the relative change in the solution is less than 107", In the complementarity
function, we use ¢, = ¢, = 100; Algorithm 1 yields a fast and stable converge
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Convergence rate Factora, Scaling Factor B

2
10 1
+ o
10° + o ',
10
S10°

© o &~ N

5
10 P pp—
108 ||~ 1. modification ® H -0.5t 5 —=1. madification -
_10/|-®-2. modification| \* L -e-2. modification -=-1. modification
10_12 -+ 3. modification| | * f -1 -+ 3. modification 04 -e-2. modification
10 5 10 15 2 4 6 8 10 12 2 4 6 8 10 12
iteration steps iteration steps iteration steps

FiGUrRE 3. Convergence of }\ﬁ on Level 5, ¢, = ¢, = 100 and
g, = 107 (left); Behavior of o/;jl (middle) and ;]f,z_l (right) at
the node (0.0625,1,0)T € S; w)’ = (1,1,0)7, A} =
(-1, —1,0)".

on all levels. Table 1 shows the number of iterations needed on different re-
finement levels, and the number of nodes belonging to the active sets A and
A for the first modification (3.11). We remark that for the second (3.12) and
the third modification (3.13) only minor differences occur. Note that in each
iteration step one linear system has to be solved. The number of iterations
increases only weakly on finer levels; it seems to depend linearly on the level.
Usually, after the exact active sets for both friction and contact condition
are found, the method requires about 3—4 more iterations to converge. In
these steps, the algorithm adjusts, for p € S, the direction of the tangential
traction A;, to the tangential displacement w, .

Comparison between the modifications. Now we compare the convergence

and the behavior of the factors o/;_l and ﬁ;fl_l for the three modifications.

In the left of Figure 3, we show the errors |[A¥ — A¥|| on Level 5 in a loga-
rithmic plot for the initialization uz’o = (1,1,0)" and A) = (=1, =1, 0)".
Here, A} denotes the Lagrange multiplier of the solution. We remark that
additional iteration steps, compared to Table 1, are needed due to the dif-
ferent initialization and the smaller tolerance €, = 10~*. In the middle of

Figure 3, we present the cosinus o/]j_l of the angle between the vectors )\f’;’ls

and A*~1 1 ¢ a., and on the right the behavior of the scaling factor ﬁ;fl_l,

T,p,S
| = 1,2, for the node p = (0.0625,1,0)" € A* for all k. We observe for all
modifications a superlinear convergence. Comparing the behavior of the fac-

tor o/;f the first and the second modification show almost the same behavior.

Although the factor o/;?l tends faster towards one for the third modification,
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TABLE 2. Comparison between the exact (m = "o0”) and the
inexact (m = 1) strategy with ¢, = ¢, = 100 using (3.11). Toler-
ance for Ipdas strategy: ¢, = 10719,

strategy exact inexact nested
level [ | DOF | K; | MG-steps || M; | MG-steps || M; | MG-steps

1 27 3 41 3 11 2 10

2 125 3 44 3 13 2 12

3 729 | 4 29 4 14 5) 13

4 4913 || 6 65 6 14 7 12

5) 35937 || 7 85 8 17 7 14

we observe a slower convergence. For the factor ﬁllf’l_l we observe a better
behavior for the first modification than for the second one. From now on, we
use modification one for all computations.

Ezact versus inexact method. We next compare the exact version, i.e., m =
oo”, of Algorithm 1 with the inexact version. In the inexact version, we use
m = 1, i.e., we update the active and inactive sets after each multigrid step.
We denote by K; the iteration step in which the correct active and inactive
sets are found for the first time and never change later in the iteration. For
the inexact approach, we denote this step by M;. Table 2 shows the numbers
K; and M; on each level and the necessary numbers of multigrid iterations
to solve the full nonlinear problem on level [. We observe that the numbers
K; and M; are almost the same. They seem to depend linearly on the level [.
Therefore, there is no need to solve the linear system exactly. Furthermore,
we compare the inexact approach, where we start with ug’o =0 and )\2 =0
on each level, with the nested approach in which we inherit ug’o and )\2 on
level [+ 1 from level [. The values K; and the necessary numbers of multigrid
iteration steps are shown in the last column of Table 2. We note that the
inexact primal-dual active set strategy can be interpreted as a non-linear
multigrid method.

Influence of the parameter c,. In a last test, we investigate the influence of
the parameter ¢, on our algorithm. Recall that ¢, can be seen as weight for
the tangential distortion u,,, in the sum with the tangential component A-
of the Lagrange multiplier. Thus, it plays a similar role for the tangential
component as ¢, for the normal component. In Table 3, we compare the
numbers K; and the numbers MG of necessary multigrid steps for different
values of ¢, where we fix ¢, = 100 and use the inexact approach m = 1. As

2
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TABLE 3. Comparison between different values for c. for the
inexact strategy (m = 1) using ¢, = 100 and ¢, = 1071%. Initial-
ization: u?’o =0, A\ = 0 for all levels [.

Cr 1 10 100 1000 10000
level [ || K; ‘ MG K ‘ MG K ‘ MG M; ‘ MG M; ‘ MG
1 312311 311 3|11 | 3 | 11
2 3|12 (312 3|13 |3 |13 | 4|13
3 4 114 | 414 | 414 | 4|14 | 4| 14
4 6|15 (6|14 )6 |14 6|14 | 6 | 14
5 — | = 817|817 ) 9 | 17 | 9 | 17

can be seen, the algorithm behaves quite stable and independent of c,, if ¢,
is large enough. For this example, we find ¢, > 10. For ¢, = 1 the algorithm
does not converge on Level 5. A very similar behavior is observed in [HWO05]
with respect to the parameter ¢,,. Thus, in general it appears advantageous to
choose both ¢, and ¢,, in order to balance the different scales of the distortion
uy, and the Lagrange multiplier Ay,.

5. Fixpoint algorithm and numerical examples for Coulomb
friction

In this section, we extend Algorithm 1 to contact problems with Coulomb
friction and give a numerical example showing the performance of the method.
For Coulomb friction, the friction bound g, = §|\,,.s| needs to be iteratively
adjusted using the normal component of the Lagrange multiplier. Therefore,
we get a further outer loop for the update of the friction bound.

Algorithm 2: Ipdas fixed point strategy for contact with 3D Coulomb
friction

(0) Set k =1 and choose ¢, > 0, ¢; >0, m € IN and k¢ € IN.
Initialize ug,o and ).
(1) If mody,(k—1) =0, set k. = k — 1 and update the friction bound by

g =Fmax {0, \« 1, peS.

n7p78
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(2) Define the active and inactive sets by

Af = {pes: )x,]fbpls + cn(uk_l’m —d,) >0},

n,p

I,’f = {pES )\k 1 +cn( k_l’m—dp) SO},

n,p,8 n,p
Af’ = {pES H>‘Tps+c7' ﬁplmH gp >0}7

T {pe S+ M, + e, - g <0}
(3) For i =1,...,m, compute
ub = MG(ul™, AR, T8 AR TE b A,
(4) Compute the Lagrange multiplier as
Xo=D'(fs— Ascu™).
(5) If k > ky and [Juy™ — wf™|| / |Jul™|| < e, stop.
(6) Set uy ™ = u;™ and k = k + 1 and go to step (1).

In this algorithm, we denote by mod ,* the modula-operator. Comparing
this algorithm with Algorithm 1 for Tresca friction, we remark that here we
update the friction bound after ky steps of the (inexact) active set strategy.
This update is done in step (1). Since we do not solve the resulting linear
problems exactly, it is not guaranteed that \* ps = 0forallp € §. Therefore,
we set g, = Fmax {0, )\nps} For the choice m = k; = 1, the friction
bound and the active and inactive sets are updated after each multigrid
step. As stopping criterion, we use the relative error between the actual
solution ulfl’m and the solution for the last friction bound uzm For the
choice m = 700” and ky = "00”, we get the exact version of the algorithm.
In this case, we solve the resulting Tresca friction problem exactly for each
friction bound. Obviously, this approach is rather costly. However, for a
small friction coefficient § it can be shown that this discrete fixed point
mapping is contractive and thus converges; see [NJH80].

5.1. Example. In this section, we study the performance of Algorithm 2
for Coulomb friction. This friction model is physically more realistic than
the Tresca model, since only points that are in contact with the obstacle
are points for which friction occurs. Points on the contact boundary with a
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positive distance to the obstacle are traction-free, i.e., we apply homogeneous
Neumann conditions.

200
150
100

50

RO

FIGURE 4. Distorted body with effective von Mises stress oug
(left); the lower surface in the plot is subject to contact and
Coulomb friction. Visualization of the friction bound 3|\, |
(small balls) and of || A;,|| (right).

u no contact

contact and slip

contact and stick
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FIGURE 5. Visualization of the solution at the nodes p € S for
Coulomb friction on level 5 (left), explaining legend (upper right)
and cutout (lower right).

Recall that in the Coulomb law, the friction bound becomes g, = §| A\ p.s|
and thus depends on the actual distortion. In the following tests, we consider
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the same geometry and data as for the example of Section 4.1 and choose
the friction coefficient § = 1. The distorted cube can be seen in the left
plot of Figure 4. Note that its distortion is significantly different from the
one obtained with the Tresca law; (Figure 1). In the right of Figure 4, we
visualize the constraint ||A;, || < §|A\n,p.s| that holds for all p € S. The few
nodes where this inequality holds in a strict sense are nodes in contact with
the obstacle that, at the same time, stick to this obstacle, i.e., u,, = d, =0
and u,, = 0. We remark that the solution has a singularity at the node
(1,1,0)".

The Coulomb friction law. As for Tresca friction, (Figure 2), we also vi-
sualize the different types of contact nodes for the Coulomb law. Note that,
in contrast to the Tresca model, the Coulomb law only allows three types of
nodes, since nodes that are not in contact with the obstacle are not subject
to any (friction) constraints. The size of the nodes in Figure 5 is proportional
to the normal contact force |\, ,|.

Level O (kmax =32, KI =10) Level 1 (kmax =38, KI =9) Level 2 (kmax =45, KI =10)
45 T 10 7 T
| A | 25p=--- .
S _: nI| _______ 25 §
H A \ [ T
3.5 ‘ 8 frommrmnoenes A 20 — 1A
3 — : Al
| | A | :
25 ! 6 - 15 !
2 | [\/ | f\/v |
; ; 10 ;
15 10 20 30 4 10 20 30 10 20 30 40
Level 3 (kmax =47, KI =21) Level 4 (kmax =46, KI =12) Level 5 (kmax =45, KI =14)
_____ ‘ T R
8O e mrnnnnnnsnzsscass : A 1000 : —IA]
‘ —IAl ‘ n |
70 | n 250 ! . 1A |
3 Al 3 A : T
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40 [u - 10 [\\ | k
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FIGURE 6. Behavior of Algorithm 2: Numbers |A*| and |A*| of
active nodes in each iteration step k£ on each level [. We used
the parameters ¢, = ¢, = 100, m = k; = 1 and ¢, = 10710,
Initialization: u,” = 0 and Aj = 0.

Performance of the algorithm. We apply the inexact version of Algorithm
2 with m = k; = 1 to solve the contact problem with Coulomb friction. We

use ¢, = ¢, = 100, £, = 107!V and initialize the iteration with u%o = 0 and
)\2 = 0 on each level. Figure 6 shows the behavior of our algorithm on various
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TABLE 4. Behavior of Algorithm 2: Necessary numbers k., and
K on each level [ for ¢, = ¢, =100, m =k =1and g, = 10710.

0,0 0 _
level|l DOF ’“’hKl— 0" )\ézm;{ 0 ne??;d Tppéiffh
2 [ 125 | 10 15 : 5
3 | 720 | 21 17 5 =
1 4913 | 12 16 1 o
5 35037 14 15 F 2

levels. The number of nodes contained in the active sets are plotted over the
iteration steps k. We denote by k..« the necessary number of iteration steps
and by K, the iteration step in which the correct active sets are found for
the first time and do not change afterwards. The number K; is marked by a
dashed vertical line in Figure 6. We observe that both k..« and K; appear
to be quite independent of the level [. Looking at Figure 6 more closely,
we note that on each level there are only minor changes of the active nodes
after k = 10. Table 4 shows a comparison between the initialization u%’o =0
and }\2 = 0 on each level and the nested approach. As expected, the correct
active sets are found earlier, and as a result fewer iterations are required for
the nested approach.

6. Numerical examples for two-body contact with Coulomb
friction

Now, we consider a curved contact interface subjected to Coulomb friction.
A two-dimensional cross section of our geometry is shown in Figure 7. The
lower domain €)™, assumed to be the master side, models a spherical shell
that is fixed at the outer boundary. Against this shell, we press the body
modeled by the domain €2°, which is assumed to be the slave side. At the
top surface of Qf, we apply the surface traction (0, 0, —150 exp(—100r?)) T,
where r denotes the distance to the midpoint of the top surface of Q2°. The
geometry is given by r;, = 0.7, r, = 1.0, r = 0.6, h = 0.5 and d = 0.3. In 27,
we use a Young modulus £% = 300 and a Poisson ratio v* = 0.3, while in Q™
we have £ = 400 and v = 0.3.

Discussion of the results & comparison for various friction coefficients.
The results for the friction coefficient § = 0.7 are shown in Figures 7-9.



26 S. HUEBER, G. STADLER AND B.I. WOHLMUTH

FIGURE 7. Problem definition (left), deformed mesh with effec-
tive von Mises stress oo on Level 3 (middle), two-dimensional
cross section of the deformed mesh on Level 2 (right) for 3 = 0.7.
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F1GURE 8. Visualization of the nodes being in contact together
with the deformation and stress vectors on Level 3 for 5 = 0.7
(left), and a cutout (right); for the legend we refer to Figure 5.
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FIGURE 9. Visualization of A, (left) and ||A;|| (middle) with the
friction bound 0.7|\,| (dotted), and two-dimensional visualiza-
tion of the Lagrange multipliers (right) on Level 3.

Figure 7 shows the deformed body with the effective von Mises stress oeg
on Level 3 and a two-dimensional cross section on Level 2. In Figure 8, we
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Friction coefficient F=0.5

AR

_048.870.670.470.2 0 02 04 06 08

FIGURE 10. Visualization of the nodes being in contact, together
with the deformation and the stress vectors (left), visualization
of ||A;|| (middle) with the friction bound 0.5|)\,| (dotted) and a
two-dimensional visualization of the Lagrange multipliers (right).

show the nodes being in contact, their relative tangential slip [u,,] (lines)
and the tangential contact pressure A, (arrows). We remark that the nodes
in the middle with only an arrow are the sticky nodes, the others are slippy.
Figure 9 shows on the left the normal part of the contact pressure A, and
in the middle the norm of the tangential part ||A;||. The dots represent
the friction bound 0.7|\,|. The two-dimensional plot on the right shows the
normal and tangential part of the Lagrange multiplier and the friction bound
for all nodes p € S over their distance to the midpoint of the contact zone
on the surface of 2°. The small oscillations in the plot occur due to the fact
that all nodes p € S over the whole contact zone are presented and that we
work with an unstructured mesh. The results for the same problem but with
the smaller friction coefficient § = 0.5 are shown in Figure 10. The number
of sticky nodes decreases for smaller 3.

Level 1 (kmaX =31, KI =9) Level 2 (kmax =24, KI =8) Level 3 (kmaX =26, KI =9)
L ! e edesnssccnnncsnnasnnnas
e et e ettt ey 2000t *
' ! —A] 5007+ | —IAl H —IA
' | n ' | h |
100y 1 A 400y} : N 15001} ; Y
H I T ' I ' I
H | 300t | H |
q | H | 1000} |
50 | 200 | |
; : 100} ! 500 3
0 : ' !
10 20 30 5 10 15 20 5 10 15 20 25

FIGURE 11. Behavior of Algorithm 2: Numbers |A*| and |A%|
in each iteration step k on Levels 1, 2,3 for 3 = 0.7. We use the
parameters ¢, = ¢; = 100, m = ky =1 and ¢, = 1077.
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TABLE 5. Behavior of Algorithm 2: Necessary numbers k., and
K; on each level for ¢, = ¢, =100, m = kf = 1, &, = 107 and

s =0.7.
0,0 _ 0 _
level DOF |22 - ?-1%‘ Ay = 12;12301% neitsd Tppgzj:h
0 | 104 5 26 5 26
1 | 541 9 31 5 23
2 | 3384 8 24 6 21
3 23694 9 26 5 20

Performance of the algorithm. We consider the performance of Algorithm 2
for the friction coeflicient § = 0.7. For the initialization we set ug,o =0.1n,
for p € S, ugvo =0 forp ¢ S and )\2 = 0.0001n, on each level. Using
the parameters ¢, = ¢, = 100, m = k; = 1 ande, = 1077, we get the
performance of Algorithm 2 shown in Figure 11. Here, the number of nodes
in |A*| and |A*| are shown for Level 1-3. Again, the dashed vertical line
marks the step K in which the correct active sets are found for the first time
and remain unchanged. A comparison between this approach and the nested
approach is shown in Table 5. The results obtained show qualitatively the
same behavior as for the cube; see Section 5.1.

Friction coefficient F=0.7
0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8
-06-04-02 0 02 04 06 08

FIGURE 12. Nonsymmetric boundary data: Deformed mesh
with effective von Mises stress o on Level 3 (left), visualization
of the nodes being in contact together with the deformation and
the stress vectors (middle) and of ||A;|| (right) with the friction
bound 0.7|A,| (dotted).

Problem with nonsymmetric boundary traction. For the next example,
we use the same data and geometry as above (see Figure 7), but use a
nonsymmetric boundary traction, namely, we apply the surface traction
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(15, 0, —150 exp(—100r?)) " at the top surface. The results for § = 0.7 are
presented in Figure 12.

7. Full Newton approach for multibody contact with
Coulomb friction

While our algorithm in Section 5 for the solution of the Coulomb friction
problem is based on fixed point ideas, we now present a full Newton approach
for the Coulomb frictional contact problem. The main advantage of this
approach is its fast convergence which is due to the fact that the friction
bound is updated in the Newton iteration and not via a fixed point loop. In
this section, we apply a fast direct solver [SGF00] to solve the linear system
in each Newton step. To derive the full Newton iteration, one replaces g, in
(3.1) either by g,(tnp, Anps) = Fmax(0, A, ,.s) (see also [CKPS98,CP99]) or
by Gp(Un.p, Anps) = Fmax(0, A, p s+cn(unp—dy)) before deriving the Newton
iteration step. The equivalence of these two choices follows from (4.1). In the
sequel, we use the latter replacement since then the Newton-type iteration
automatically takes the form of an active set method that, in each iteration
estimates the three relevant sets for Coulomb friction (no contact, contact and
stick, contact and slip). The resulting nonlinear complementarity function is

D(Uh, >\h) ‘= max (S(An,p,s + Cn(ump - dp))v H>‘T,p,s + CTuT,pH)AT,p,S

— Fmax (0, Mps + cn(Unp — dp)) (Arps + crery) .
Similarly as in Section 3, we derive a semismooth Newton step for the so-
lution of D(up, Ap) = 0 and (4.1). Using the notation gh~! := (A5 L +

cn(uﬁ;l —dy)), we obtain the following settings.

(7.1)

eOnzt ={pesS: g]’;_l < 0} (estimation for set of nodes not in
contact):

Neo =0 and A _=0.

n,p,s T,p,8
Note that 78 C A%, where A¥ := {p € S : H)\]ﬁ’;)}s—l—cTu’ﬁ;)lH—g;f_l > 0}.

We remark that the setting for )\ﬁ’pﬁ is derived directly from (7.1) for
that case, namely from |[A;, s + ¢ ;|| Arps = 0.

eOnz:={pecs: H)\]ﬁ;ls + c;ul | — gi~! < 0}: (estimation for set
of sticky nodes):

uﬁjp =d, and uﬁ,p + (Suﬁ’;l/gg_l) )\ﬁ,p,s = uf_fpl. (7.2)



30 S. HUEBER, G. STADLER AND B.I. WOHLMUTH

Note that 78 C A* where A% := {pe S : g]’;_l > 0}.

eOn A =AnA={peS: HAf.;S + coul | > gh~! > 0} (estima-
tion for set of slippy nodes):

ko _
Uy, = dp and

7.3)
k k=1, k k—1yk k=1 | k-1, k-1 (
“Arps T Ly Uny F VLN =T TG, v

_ C1y—1(y k-1 _ k-1 - 2
where vi ™! = (Idy — My ~1) "N AT S+ crul D) /I AL+ cul )l € R
and gf~! is used for the friction bound g, in the matrices M)~! and
LFT

P

Note that 7, 7¢, and A" represent a disjoint splitting of S. Comparing (7.2)
and (7.3) with (3.5a) and (3.5b), respectively, we observe that the main differ-
ence is the term involving \¥  on the left hand side of (7.2) and (7.3). Again

n7p7s

we apply the modifications stated in Subsection 3.2 and replace the matrices
Mg_l and L’;_l by Mfl_l and L];f, respectively. Therefore, we use instead of

v}~ the vector 13;‘;31 = (Idg—B;f’]lM]i;l)_l(Af_;}s—l—cTu]T“’;l)/H}\f;}S—I—chu,]T“’;lH.

Now, we briefly state the algebraic representation of the above system, where
we use in addition to the notation introduced in Section 3
R 1 k—1 2|8 2|s]
G .= diag {gp ]dg}pes € R .
and

U .= dlag {’U,ﬁ’;l V= dlag{f)];’?l c |R2|3|><|5|.

peS”’ peES

We use a subblock notation for the matrices, e.g., Gz .... Defining N =
N UZF, we obtain after eliminating the Lagrange multiplier, the following
linear system to be solved in each full Newton step for the Coulomb problem

as

A Ay Aar, fi

0 0 Ny uly | = "
KpApyy  KpApep—Gp I KpApi g Wy f/(zf; fre—3 7
ToAvy  Tyfer  TypAw Lo T, T fast o,

with the notation

/
AL,

=T, — FVar Ny, Ko := Uz Npi
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and

e =T + G Ve, jpoi= GpUn.
We observe, comparing this system with (3.15), that here the normal and
tangential components are pointwise coupled by the lines four and five.

FIGURE 13. Problem definition (left), deformed mesh with effec-
tive von Mises stress o.g (middle), two-dimensional cross section
of the deformed mesh (right) for 3 = 0.7.

Numerical Example. As example, we consider the situation presented in
the left of Figure 13, where a two-dimensional cross section of the problem
definition is shown. The ring is fixed on its upper outer edge and the tool on
its bottom. Note that the bodies penetrate in their reference configuration.
We use Young modulus E™ = 8.13 x 10® and a Poisson ratio v™ = 0.3 for
the inner tool modeled by 2™, and E* =9 x 107, v* = 0.3 for the outer ring
being the slave domain 2°. The friction coefficient is § = 0.7. The deformed
mesh with effective von Mises stress o.¢ is shown in the middle and the right
of Figure 13. Figure 14 shows the possible contact nodes on the ring being
the slave side. The nodes without a line are nodes not being in contact with
the inner tool.

Comparison between fixpoint Newton and full Newton approach. To show
the behavior of the full Newton approach, we compare the convergence rates
of the Lagrange multiplier with those obtained from the fixpoint Newton
approach given by Algorithm 2 with m = "o0” and ky = 1. Our algorithm
is initialized with u;" = 0 and A} = 0, and the parameters ¢, = ¢, = 10°
and the tolerance £, = 107 are used. The finite element mesh consists
of 66.600 degrees of freedom. In the left of Figure 15, the relative error
A — X[ /]IA;]| is shown for the fixed point and the full Newton approach
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Friction coefficient F=0.7 Friction coefficient F=0.7

4 41 42 43 44
angle

FIGURE 14. Visualization of the nodes being in contact, together
with the deformation and stress vectors for 3 = 0.7 (left), and a
cutout (right); for the legend we refer to Figure 5.

Convergence rate

Convergence rate

10° -e-fixed point || -e-fixed point ||
" =e=full Newton =e=full Newton
10 ] ]
e - LY
510" . ..
o - ‘e ‘e
10° "o‘ %‘0.
4 °
-8 e e
10 g ] Ay
-10 A ] °
10 ] .

5 10 15 20
iteration steps

10 15 20
iteration steps
FiGure 15. Convergence rates for the examples of Figure 13
(left) and Figure 7 (right) for the fixpoint Newton and the full
Newton approach.

in a logarithmic scale. We observe superlinear convergence of the full New-
ton approach, and only half of the iteration steps compared with the fixed
point approach are required. For the fixed point approach the convergence
rate [[AFTH — X ||/IIAF — A%l tends to approximately 0.32. In the right of
Figure 15, we show the comparison between the two approaches for the ex-
ample presented in Figure 7. Again we observe the same behavior as for the
example before.
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