
Citation: Correia, A.A.S.; Figueiredo,

D.; Rasteiro, M.G. An Experimental

Design Methodology to Evaluate the

Key Parameters on Dispersion of

Carbon Nanotubes Applied in Soil

Stabilization. Appl. Sci. 2023, 13, 4880.

https://doi.org/10.3390/

app13084880

Academic Editors: Mian C. Wang

and Mien Jao

Received: 3 March 2023

Revised: 28 March 2023

Accepted: 10 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Experimental Design Methodology to Evaluate the Key
Parameters on Dispersion of Carbon Nanotubes Applied in
Soil Stabilization
António Alberto S. Correia 1,* , Diogo Figueiredo 2 and Maria G. Rasteiro 2

1 University of Coimbra, Department of Civil Engineering, CIEPQPF-Chemical Process Engineering and Forest
Products Research Centre, Rua Luis Reis Santos, 3030-790 Coimbra, Portugal

2 University of Coimbra, Department of Chemical Engineering, CIEPQPF-Chemical Process Engineering and
Forest Products Research Centre, Rua Sílvio Lima, 3030-790 Coimbra, Portugal

* Correspondence: aalberto@dec.uc.pt; Tel.: +351-239-797-277

Featured Application: Based on an experimental design strategy, two models are proposed to pre-
dict the mechanical properties of soft soil stabilized with carbon nanotubes. These models can
be helpful for further developments toward the application of carbon nanotubes on soil stabi-
lization in real situations.

Abstract: The incorporation of carbon nanotubes (CNTs) in the process of chemical stabilization
of soft soil is only possible when they are dispersed adequately in the medium. The maximum
compressive strength (qu max) and the secant undrained Young’s modulus (Eu 50) are usually used
to characterize the behavior of soil stabilized with Portland cement. In the present study, soft soil
was additivated with a CNT dispersion prepared in a surfactant solution. This information was then
used to produce a model based on an experimental design strategy, which allowed us to relate qu max

and Eu 50 with the CNT concentration and the surfactant hydrodynamic diameter and concentration.
The Partial Least Squares (PLS) regression method was selected to perform the regression, given the
significant collinearity among the input variables. The results obtained lead us to conclude that the
CNT concentration is the most important factor and has a positive impact on the responses (qu max

and Eu 50). The surfactant concentration and hydrodynamic diameter have a negative impact on the
responses, but, curiously, when combined, the impact becomes positive. It means that these variables
depend on each other. The results obtained show that it is possible to produce a statistical model for
these parameters with good correlation coefficient (R2).

Keywords: carbon nanotubes; chemical soil stabilization; partial least squares; hydrodynamic diameter;
surfactant concentration

1. Introduction

The growing socio-economic development in modern societies has led to an increase
in soil requirements in terms of stability and safety. Thus, new technical solutions have
been proposed to improve soils characterized by poor mechanical properties (unsuitable
strength and deformability). One of the techniques to make construction possible on
such soils is chemical stabilization, which has been used with success during the last
decades [1–3]. However, in order to maximize feasibility, it is crucial for the development
of techniques to optimize the performance of cement-stabilized soil, namely to improve its
mechanical behavior.

The performance of chemically stabilized soil can be considerably improved by the
incorporation of nanometric particles in the modified soil–binder matrix since they have
the ability to fill the pores of the matrix at the nanometric scale, which can be reflected
in a more solid and strong matrix [3–5]. However, direct application of such materials is
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not possible due to the natural tendency for aggregation of these particles, which causes a
loss in the beneficial effects associated with their incorporation [6–9]. Carbon nanotubes
(CNTs) have unique properties, making them very attractive for application in composite
materials [3,9–12]. Currently, the most widespread use of CNT nanocomposites is in elec-
tronics. These nanocomposites could be used to shield electromagnetic interference and
as electrostatic-discharge components [13]. The removal of heavy metals from wastewa-
ters [14], catalyst supporters [15,16], and chemical sensors [17,18] are other areas where
CNTs are widely applied. However, as mentioned above, carbon nanotubes have a high
tendency to aggregate when used in suspension, which results in a loss of its properties [19].
This problem can be solved by the addition of surfactants that promote the dispersion of
the particles in the suspension or through the functionalization of CNT surface [9,12,20–24].

The mechanical behavior of soil can be improved by the mixture of chemical materials
(binders with cementitious properties) with the natural soil [25–28]. The cementitious
products resulting from the physico-chemical interactions originate a new composite
material with a better mechanical behavior than the original soil [19,29–32]. There is the
possibility to improve this behavior even more by the addition of carbon nanotubes due
to their unique properties, namely a high specific surface (high capacity to interact with
other particles in the surrounding environment), and extremely high yield strength and
moduli of elasticity (making them an excellent reinforcing material) [3,19,33,34]. If carbon
nanotubes are properly dispersed in a soil–cement matrix, they may act as a nanofiller and
a nano-reinforcement agent, thereby promoting a denser and stronger stabilized matrix [3].

In order to disperse CNTs (applied in different concentrations), ultra-sounds were
applied to aqueous solutions enriched with surfactants (varying in type and concentration).
The quality of the CNTs’ dispersion was evaluated through dynamic light scattering (DLS).
Afterward, the suspensions were mixed with the binder and soil, and laboratory samples
were prepared. At the end, the samples were submitted to unconfined compression
strength (UCS) tests [26,35,36] in order to characterize the mechanical behavior of the new
soil–binder–CNT material. The samples were compressed until failure while automatically
recording the load and the vertical displacement. The unconfined compression strength
(qu max) was characterized by the maximum load recorded during the UCS test, while the
stiffness (Eu 50) was described by the secant undrained Young’s modulus evaluated at 50%
of the compression strength [26,37].

The parameters studied in this work are the type and concentration of surfactant, and
the concentration of CNTs. The major goal of this work is to produce a predictive model
based on experimental data, which allows the correlation of two mechanical properties
(qu max and Eu 50) with the parameters under study, thus supplying an easier way of
selecting the best conditions to stabilize a specific soil. The Partial Least Squares (PLS)
regression was chosen as the statistical methodology to reach an adequate relationship.

This paper starts with a brief description of the materials and experimental procedures
used. Afterward, the statistical methodology is presented (PLS and cross-validation descrip-
tion). Then, two predictive models are developed to establish the relationship between the
response variables (qu max and Eu 50) and the three predictor variables (i.e., the parameters
studied here). In the last section, the main results of this work are concisely presented and
discussed.

2. Experimental Work
2.1. Materials

In this work, two surfactants were used, which differed in molecular weight and
charge: Glycerox (glyceryl cocoate) and Amber 4001 (polyamide), supplied by AquaTech,
La Plaine, Switzerland. Their features are described in Table 1. The surfactants were selected
based on the charge of both the CNTs and cement particles in order to favor the interaction
between the surfactant and particles, aiming to ensure their good dispersion, as described
in [19]. Thus, since both CNTs and cement particles possess negative charge, a quasi-neutral
surfactant and a cationic one were selected (see Table 1). Glycerox acts essentially through
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the steric mechanism, while for Amber 4001, the predominant stabilization mechanism
is based on electrostatic interactions. Additionally, these surfactants with quite different
molecular weight, which affects the hydrodynamic diameter of the surfactant molecules,
were selected in order to study the effect of this parameter on the stabilization process since
it affects the CNT dispersion, which can have a potential influence on the spacing between
particles (namely CNTs and cement), with repercussions on the mechanical behavior of the
stabilized soil enriched with CNTs [34].

Table 1. Surfactant characteristics.

Surfactant
(−)

Charge
(−)

Molecular Weight
(kDa)

Hydrodynamic Diameter
(nm)

Glycerox Nonionic 4265 41.95
Amber 4001 Cationic 54 5.65

While the charge was provided by the supplier, molecular weight and hydrodynamic
diameter were experimentally determined using light scattering methods. Molecular
weight was determined by static light scattering and hydrodynamic diameter was deter-
mined by dynamic light scattering (DLS), both in the Nanosizer ZSN from Malvern, UK.

Multiwall carbon nanotubes (MWCNTs) supplied by Nanocyl, Sambreville, Belgium,
product NC7000, were used. The choice for MWCNTs was mainly due to economic factors;
MWCNTs are significantly less expensive than single-wall carbon nanotubes and, so far,
only MWCNTs are produced at an industrial level [34,38]. According to the supplier
information, the MWCNTs have an average diameter of 9.5 nm, an average length of
1500 nm, an average specific surface of 275,000 m2/kg, and their chemical composition is
pure carbon (90%) with some metal oxides (10%), as described in Table 2. MWCNTs have a
negative electrical charge (−25.2 mV) as measured by electrophoretic light scattering in
the Nanosizer ZSN from Malvern, UK [33]. According to Kobashi et al. [38], the MWCNTs
selected for this study are classified as CNTs with low crystallinity, i.e., they exhibit a
greater potential capacity to interact with the surrounding particles.

Table 2. MWCNT characteristics.

Average Diameter
(nm)

Average Length
(nm)

Carbon Purity
(%)

Metal Oxides
(%)

Average Specific Area
(m2/kg)

Average Charge
(mV)

9.5 1500 90 10 275,000 −25.2

The grain size composition of the natural soil is made of 66% of silt, 22% of sand,
and 12% of clay particles. In general, it is a soft soil with low strength, low permeability,
and high compressibility, and it presents a high value of water content (80.87%) and
organic matter content (9.3%), which are reflected in its weak geotechnical characteristics.
Table 3 summarizes the main geotechnical properties and the mineralogical and chemical
compositions of the natural soft soil. More details can be seen in Figueiredo et al. [19] and
in Figueiredo [33].

The binder chosen for this study was Portland cement because it is the binder material
used in practice in the majority of soil stabilization cases [3]. A Portland cement type I was
selected, which is a mechanical strength class of 42.5 R (CEM I 42.5 R), and its mixture with
water spontaneously initiates a physico-chemical process known as hydration reaction. The
binder is mostly composed of CaO (62.84%) and SiO2 (19.24%) as stated in the technical
data supplied by the producer (Cimpor, Coimbra, Portugal) and shown in Table 4. The
cement particles are slightly negatively charged on average (zeta potential measured using
electrophoretic light scattering, in the Nanosizer ZSN from Malvern, is −2.14 mV), which
is in accordance with Srinivasan et al. [39].
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Table 3. Natural soil characteristics (average values).

Geotechnical Characterization

Sand
(%)

Silt
(%)

Clay
(%)

Water
Content

(%)

Organic Matter
Content

(%)

Unit
Weight
(kN/m3)

Specific
Gravity

(-)

Porosity
(%)

22 66 12 80.87 9.3 14.6 2.555 67.8

Mineralogical Composition

Quartz
(%)

Feldspar K +
Muscovite

(%)

Vermiculite
(%)

Ilite
(%)

Kaolinite
(%)

Chlorite Fe
(%)

>60–65 <25–30 4.6 2.4 1.5 1.5

Chemical Composition

CaO
(%)

SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

MgO
(%)

K2O
(%)

pH
(-)

0.74 62.00 16.00 4.80 1.10 3.00 3.50

Table 4. Portland cement characteristics (average values).

CaO
(%)

SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

MgO
(%)

SO3
(%)

Cl−
(%)

Charge
(mV)

62.84 19.24 4.93 3.17 2.50 3.35 0.01 −2.14

2.2. Experimental Methodology

The laboratory procedure is schematically represented in Figure 1. It starts with the
dispersion of the MWCNTs in the surfactant solution, following the procedure described
in [19] (add the required amount of surfactant (Glycerox or Amber 4001) and apply ultra-
sounds (20 kHz) for 5 min to the suspension). The quality of the dispersion was indirectly
evaluated by statistical models that relate the mechanical properties (qu max and Eu 50) of
the stabilized soil with the parameters of the CNT suspension. Afterward, all materials
were mixed in a mechanical mixer Hobart N50 at a rotational speed of 136 rpm. Next,
laboratory samples were produced and cured for 7 days. Finally, UCS performance tests
were conducted in a universal testing machine (Wykeham Farrance—Tristar 5000, UK) to
demonstrate the added value of using the MWCNT dispersion in soil stabilization.

The performance tests were planned by changing the concentration of the surfactant
(0, 0.5, 1, 2, and 3%), the type of surfactant (varying the hydrodynamic diameter one order
of magnitude) and the MWCNT concentration (0, 0.001, and 0.01%, defined as the ratio of
the weight of MWCNTs to the dry weight of Portland cement).

For each different test condition, at least two specimens were tested. A conformity
criterion was adopted based on compressive strength (qu max): a specimen test is only
accepted when the deviation from the average value is less than 15% (in the absence of
standards for this type of materials, the recommendations for concrete were adopted [40]).
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3. Statistical Methods—Partial Least Squares

Statistical methods can help in identifying which variables in a system can be con-
trolled (factors) to explain and predict the behavior of the output variables (responses).

Different strategies can be used to establish these relationships, namely Multilinear
Regression (MLR) [41] and Partial Least Squares (PLS) [42]. MLR is used when the number
of factors is small; the factors are not collinear; and the relationship between the factors and
responses can be in some way understood a priori [43]. When any of these three conditions
is not present, MLR is not an adequate strategy to establish a model relating the factors
to the responses. On the other hand, PLS can be an appropriate strategy to predict the
dependent variables from a large set of independent variables, which are called, in this
case, predictors, even if there is a high degree of collinearity between the independent
variables. PLS relates two data matrices: the predictor (input variable) matrix (X variables)
and the response matrix (Y variables), making use of a linear multivariate model for that
purpose [42,44].

PLS is a bilinear calibration method that calculates linear combinations of input
variables that have a maximum covariance with the response. These linear combinations
(latent variables) are found sequentially. Each combination results from the progressive
analysis of a different part of the space until prediction ability stops improving, based on
the analysis of the value of the predicted determination coefficient (R2 (pred)).

Minitab (version 17.1.0) was the software used to apply the PLS method to the data set
in the present study. Minitab uses the Nonlinear Iterative Partial Least Squares (NIPALS)
algorithm developed by Herman Wold [45–48]. This algorithm reduces the number of
predictors using a technique similar to principal components analysis by extracting a set
of components that describes the maximum correlation between the predictors and the
response variables. If the predictors are highly correlated, then the number of components
in the model might be much less than the number of predictors. Minitab then performs
least squares regression on the uncorrelated components. Additionally, cross-validation is
often used to select the components that maximize the model’s predictive ability [47,48].

To validate the model, the best approach is to use an independent data set or “test
set” and to check the predictive ability of the model based on the results obtained for
the independent data set (external validation). However, when the data set collected is
small, it is sometimes impossible, in order to validate the model, to guarantee access to
an independent test set. In that case, the alternative is to perform what is called a cross-
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validation by creating “test sets” within the “training data set”, i.e., the data set used to
create the model itself (internal validation) [49].

In the case of internal validation, the training data set is divided into blocks; one block
is left aside in each run, and a new model is obtained with the remaining blocks, which
is used to estimate the response of the removed blocks. The cross-validation prediction
errors are calculated for this new situation, and this process is repeated successively, each
time removing a new block while the previously removed one is integrated again in the
training data set. The overall cross-validation error will be estimated once this process
is completed [48–50]. At the end of the cross-validation process, it is also possible to
determine the model dimension, i.e., the number of PLS components (latent variables) the
model should have.

In this study, this last methodology was used due to the lack of additional experimental
data to be used as an independent test set.

4. Results and Discussion

As shown by Figueiredo (2014), the mechanical properties (qu max and Eu 50) of a
soft soil chemically stabilized with Portland cement can be significantly improved by the
addition of CNTs when they are dispersed adequately in the medium [33]. Thus, the im-
provement is somehow related with the surfactants’ characteristics and CNT concentration.

In the present work, the mechanical properties, qu max and Eu 50, were studied as
the response variables in two different tests. In both tests, three predictor variables were
considered: surfactant concentration (x1), surfactant hydrodynamic diameter (x2), and
CNT concentration (x3).

The main objective of this study was to identify the most important variables for the
relationship between the response and the predictor variables and to find the combination
of factors that better described the qu max and Eu 50. The PLS methodology was used for
this purpose. In every test, each set of conditions (surfactant type and concentration and
CNT concentration) was repeated at least twice. However, in the PLS regression modeling,
each test was considered individually, i.e., the values in the matrix were not the average
values of the repetitions, but the individual values for each sample.

4.1. Case 1: qu max

A full quadratic model was estimated by PLS regression after expanding the original
data set with the quadratic and cross-product terms of the quadratic expansion. All
variables were considered as continuous variables.

Figure 2 represents the evolution of the model’s coefficients of determination versus
the number of components of the PLS model, and Figure 3 corresponds to the predicted
response versus the actual response in the leave-one-out cross-validation (where the cross-
validation blocks are formed by a single observation).

The vertical line in Figure 2 shows that the optimum model has five components
and can explain 70% of the model response. The response plot (Figure 3) indicates that
the model predicts the removed observations quite well. Although there are differences
between the fitted and cross-validated fitted models, none are severe enough to indicate an
extreme leverage point.

The ANOVA test of the model for qu max with five components is presented in Table 5,
which shows the degree of freedom (DF), the sum of squares (SS), the mean square (MS),
and the F- and P-tests. As the p-value is under 0.05, the model is significant [51].

Table 5 also shows the variance of the indicators (X variance), the error (Er), the square
error (R2), the prediction sum squares (PRESS), and the predicted determination coefficient
(R2 (pred)). The model with five components has a reasonably high R2 of 78% and R2(pred)
of 70% (Table 5), providing good indicators for its fitting ability and predictive accuracy.
The regression coefficients for the qu max model were used with the predictors to calculate
the fitted value of the response variables, and the results are listed in Table 6.
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Table 5. Summary of the performance statistics for the PLS model—qu max.

ANOVA Test

Source DF SS MS F-test P-test

Regression 5 65,501.9 13,100.4 24.25 0.000
Residual

Error 35 18,905.7 540.2

Total 40 84,407.6

Performance Statistics for the PLS Model

Components X Variance Er R2 PRESS R2 (pred)

1 0.27653 53,943.3 0.360919 70,208.9 0.168216
2 0.58601 46,419.1 0.450060 58,481.8 0.307150
3 0.67210 26,476.7 0.686324 31,339 0.628718
4 0.99928 24,830.4 0.705828 31,357.6 0.628498
5 1.00000 18,905.7 0.776019 25,195.1 0.701507

In a PLS regression, standardized coefficients identify the importance of each predictor
in the model and correspond to the standardized X variables and standardized Y variables.
The coefficient matrix (dimension p.r, where p = number of predictors and r = number of
responses) is calculated from the x-weights and x-loadings [50]. Standardization of the
variables can be conducted in different ways. In this study, for the normalization of the
variables, the procedure of subtracting the mean and dividing by the standard deviation
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was used. In this way, multicollinearity resulting from the interaction terms can be min-
imized [50]. From the magnitude and sign of the standardized coefficients (Table 6), it
can be seen that the CNT concentration (x3) and its quadratic relation (x3.x3) are the most
important factors influencing the response (qu max). While x3 has a positive effect on qu max,
x3.x3 has a negative impact. It means that the CNT concentration has a non-linear effect
in the response, i.e., there is an optimum value of CNT concentration that maximizes the
response. Indeed, as the concentration of MWCNTs increases, the probability of agglom-
eration increases, resulting in a loss of their beneficial properties. On the other hand, the
surfactant concentration (x1) and surfactant hydrodynamic diameter (x2) have a negative
impact on qu max, but, curiously, when combined (x1.x2) the impact becomes positive. It
means that these variables depend on each other. Indeed, an increase in the surfactant
concentration or surfactant hydrodynamic diameter promotes larger particles’ spacing
(especially regarding cement particles), resulting in a less strong and stiff stabilized matrix.
However, when both effects are combined, the impact on unconfined compression strength
(qu max) becomes positive, meaning that these two variables (surfactant concentration and
surfactant hydrodynamic diameter) depend on each other. In fact, if a surfactant has a
higher hydrodynamic diameter, less molecules will be necessary to cover the surface of the
CNTs, and, thus, a lower concentration of the surfactant will be required to guarantee a
good dispersion of the CNTs. Thus, the two variables are correlated, as expected.

Table 6. Regression coefficients for the qu max model.

Component qu max (kPa) qu max Standardized

Intercept 243 0
1−x1 −60 −1.2
2−x2 −3 −1.0
3−x3 34,203 3.3

4−x1x2 2 1.2
5−x3x3 −3,131,470 −3.2

The PLS residual versus leverage is useful to understand the distribution of the obser-
vations. Figure 4 confirms the significance of the data set. The leverage of an observation
measures its ability to move the regression model as a whole by simply moving in the
y-direction. The leverage always takes values between zero and one. A point with zero
leverage has no effect on the regression model. If a point has a leverage equal to one, the
line must follow the point perfectly. As all points are inside the defined limits and no outlier
is present, the data set is significant.
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The surface plot shows the behavior of qu max with x1 and x3 (Figure 5) and x2 and x3
(Figure 6). As expected, it is a non-linear relation. qu max increases with x2 (higher surfactant



Appl. Sci. 2023, 13, 4880 9 of 15

hydrodynamic diameter leads to higher qu max) and shows an optimum regarding x1
(surfactant concentration) and x3 (CNT concentration).
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In order to better understand the structure of the composite material, Figure 7 shows
a scanning electron microscope (SEM) image of a stabilized soil sample additivated with
MWCNTs dispersed in an aqueous solution of Amber 4001. Three kinds of materials can
be identified in the SEM image: the needle-shaped lattice materials are calcium silicate
associated with the Portland cement reactions with water, the materials in the form of
irregular polyhedrons are soil particles, while the long and narrow particles are the MWC-
NTs. As can be seen from Figure 7, the MWCNTs are adequately dispersed in the matrix
due to the effect of the surfactant, thus ensuring that the beneficial properties associated
with the presence of the MWCNTs are not lost. The low crystallinity of the MWCNTs [38]
ensures good interaction with surrounding particles, in particular with Portland cement
particles. Thus, these results suggest that the MWCNTs seem to give some continuity to the
calcium silicates produced by the Portland cement, allowing the establishment of denser
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cementitious bonds, i.e., the CNTs seem to act as a nanofiller and a nano-reinforcement
agent, promoting the construction of a denser and more resistant structure.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 
Figure 7. SEM image of a chemically stabilized soil sample additivated with MWCNTs (0.01%) dis-
persed in a solution of Amber 4001 (3%) for 7 curing days. 

4.2. Case 2: Eu 50 
A similar study was performed for Eu 50. A full quadratic model was estimated by PLS 

regression after expanding the original data set with the quadratic and cross-product 
terms of the quadratic expansion. All variables were considered as continuous variables. 
The detailed explanations given in the previous section will not be repeated again. 

The model selection plot (Figure 8) sets the optimal model with five components, 
which can predict 89% of the model response. The response plot (Figure 9) shows that the 
model predicts quite well the predicted response versus the actual response in the leave-
one-out cross-validation. 

 
Figure 8. PLS model selection plot—Eu 50. 

Figure 7. SEM image of a chemically stabilized soil sample additivated with MWCNTs (0.01%)
dispersed in a solution of Amber 4001 (3%) for 7 curing days.

4.2. Case 2: Eu 50

A similar study was performed for Eu 50. A full quadratic model was estimated by
PLS regression after expanding the original data set with the quadratic and cross-product
terms of the quadratic expansion. All variables were considered as continuous variables.
The detailed explanations given in the previous section will not be repeated again.

The model selection plot (Figure 8) sets the optimal model with five components,
which can predict 89% of the model response. The response plot (Figure 9) shows that
the model predicts quite well the predicted response versus the actual response in the
leave-one-out cross-validation.
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The ANOVA test for the PLS model with five components is presented in Table 7.
Once again, as the p-value is under 0.05, the model is significant [51]. Table 7 also shows
the performance statistics for the PLS model. Statistically, the model with five components
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has a quite high R2 of 92% and R2 (pred) of 89% (Table 7), which are good indicators of its
fitting ability and predictive accuracy.
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Table 7. Summary of the performance statistics for the PLS model—Eu 50.

ANOVA Test

Source DF SS MS F-test P-test

Regression 5 2906.39 581.278 71.46 0.000
Residual

Error 33 268.42 8.134

Total 38 3174.81

Performance Statistics for the PLS Model

Components X Variance Er R2 PRESS R2 (pred)

1 0.28485 1596.57 0.497112 2098.69 0.338954
2 0.60152 1292.49 0.592890 1607.12 0.493788
3 0.69374 531.93 0.832454 633.92 0.800329
4 0.99941 433.51 0.863453 539.30 0.830132
5 1.00000 268.42 0.915454 362.65 0.885773

The analysis of the standard coefficients of Eu 50 (Table 8) leads to similar conclusions
as for qu max. The MWCNT concentration (x3) and its quadratic relation (x3.x3) are the
most important factors influencing the response (Eu 50). While x3 has a positive effect
on Eu 50, x3.x3 has a negative impact. It means that the CNT concentration has a non-
linear behavior, i.e., there is an optimum value of CNT concentration that maximizes
the response. As stated previously, the probability of agglomeration increases with the
MWCNT concentration, resulting in a loss of MWCNT beneficial properties. On the
other hand, the surfactant concentration (x1) and surfactant hydrodynamic diameter (x2)
have a negative impact on Eu 50, but, once again, when combined (x1.x2), the impact
becomes positive, meaning that these variables depend on each other. Standardization
was conducted in a similar way as for qu max. As it was previously discussed, an increase
in the surfactant concentration or surfactant hydrodynamic diameter promotes particles’
spacing (especially regarding cement particles), resulting in a less strong and stiff stabilized
matrix. Again, when both effects are combined, the impact on Eu 50, the undrained Young’s
modulus, becomes positive, meaning that these two variables (surfactant concentration and
surfactant hydrodynamic diameter) depend on each other, following what was observed
previously for qu max.
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Table 8. Regression coefficients for the Eu 50 model.

Component Eu 50 (MPa) Eu 50 Standardized

Intercept 44 0
1−x1 −13 −1.2
2−x2 −1 −1.3
3−x3 5857 3.0

4−x1x2 0 0.9
5−x3x3 −58,4973 −3.1

The PLS residual vs. leverage plot (Figure 10) shows at least two points in the border
of leverage; thus, they can be considered as possible outliers, but the result continues to
be significant.
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The behavior of Eu 50 as a function of x1 and x3 and a function of x2 and x3 is rep-
resented in Figures 11 and 12, respectively. As expected, again, a non-linear relation is
observed. The model presents an optimum for x3 (CNT concentration) and x1 (surfac-
tant concentration), while x2 (surfactant hydrodynamic diameter—related to the type of
surfactant) influences Eu 50 only slightly.
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5. Conclusions

Cementitious composites reinforced with MWCNTs were developed and applied to
soft soil to improve its mechanical properties. Two surfactants with different hydrodynamic
diameters were used to disperse the MWCNTs in water. A preliminary analysis of the
results obtained showed that the mechanical properties of the soft soil chemically improved
with the addition of MWCNTs is mainly related to three variables: the concentration
and the hydrodynamic diameter of the surfactant and the MWCNT concentration. The
improvement in the mechanical properties in relation with these three variables was
assessed by determining qu max and Eu 50.

A PLS methodology was used to identify the influence of each variable on qu max and
Eu 50, and two models were constructed, namely a model for qu max and a model for Eu 50.

In both cases, the optimum model was composed of five components, and the model of
qumax can explain 70% of the model response while the model for Eu 50 is able to explain 89%
of the model response. However, the conclusions regarding the influence of the variables
on the response parameters are very similar for the two parameters. The MWCNT concen-
tration is the most important factor and has a positive impact on the response (qu max and
Eu 50). However, it was observed that the probability of agglomeration increases with the
MWCNT concentration, meaning that there is an optimum value of MWCNT concentration
that maximizes the response. The surfactant concentration and surfactant hydrodynamic
diameter have a negative impact on the response, but, curiously, when combined, the
impact becomes positive. It means that these variables depend on each other. Indeed,
the MWCNTs are directly responsible for improving the mechanical performance of the
stabilized soil, while the surfactant properties ensure a better performance of the MWCNTs.

Considering the results obtained, it is possible to propose two models for both qu max
and Eu 50 when MWCNTs are added to the binder for soil stabilization purposes. These
models can be helpful for further developments toward the application of carbon nanotubes
on soil stabilization in real situations.
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