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1. Introduction

The concept of envelopes in function spaces turns out to be an important
tool for studying spaces of Besov or Triebel-Lizorkin type in limiting situa-
tions. The investigation of envelopes of function spaces was initiated by D.D.
Haroske in [10] and H. Triebel in [17]. A systematic study of this concept
started only rather recently, see, e.g. [17, Chapter II], [11] and [12]. The
interested reader is referred to the monograph [17] for further information on
the history of this concept. For recent contributions on growth envelopes of
spaces of generalized smoothness we refer to [6], [7], [3], [4] and [5].

In this work we consider growth envelopes of anisotropic Besov and Triebel-
Lizorkin spaces in the subcritical and critical case. The main purpose of this
paper is to give an affirmative answer to the conjecture posed by H. Triebel in
[19], where the question was raised whether the results on growth envelopes
for anisotropic function spaces are affected by anisotropy.

Let us now present the contents of this work in some detail. The next
section collects the necessary background material. In Subsection 2.1 some
general notation is introduced. Subsection 2.2 covers results from the theory
of anisotropic function spaces, namely interpolation properties, embeddings
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and characterization by atomic decompositions whereas Subsection 2.3 col-
lects the fundamentals on growth envelopes. On Section 3 we present some
embedding results which are useful when discussing growth envelopes for
anisotropic function spaces. Section 4 is devoted to the study of growth
envelopes of anisotropic function spaces in the subcritical case and Section
5 deals with the critical case. In both cases we prove that the growth en-
velopes are independent of the anisotropy. The last section deals with related
anisotropic Hardy type inequalities and a connection to some anisotropic
fractal sets.

2. Preliminaries

2.1. General Notation. For a real number a, [a] stands for the greatest
integer less than or equal to a and let a+ := max(a, 0). By c, c1, c2, etc.
we denote positive constants independent of appropriate quantities. For two
non-negative expressions (i.e. functions or functionals) A, B, the symbol
A . B (or A & B) means that A ≤ cB (or cA ≥ B). If A . B and A & B,
we write A ∼ B and say that A and B are equivalent. For p ∈ [1,∞], the
conjugate number p′ is defined by 1/p + 1/p′ = 1 with the convention that
1/∞ = 0. Given two quasi-Banach spaces X and Y , we write X →֒ Y if
X ⊂ Y and the natural embedding is bounded. In the following let both dx
and | · | stand for the Lebesgue measure in R

n. Recall that the distribution
function µf(λ) and the non-increasing rearrangement f ∗ of a complex-valued
Lebesgue measurable function f are given by

µf(λ) := |{x ∈ R
n : |f(x)| > λ}|

and

f ∗(t) := inf{λ : µf (λ) ≤ t}, t ≥ 0,

respectively. Analogously, for a complex-valued sequence (am)m∈Zn, its non-
increasing rearrangement is given as the sequence (a∗l )l∈N, where

a∗l := inf
{
λ ≥ 0 : #{m ∈ Z

n : |am| > λ} < l
}
, l ∈ N.

Let 0 < r, v ≤ ∞. Then the Lorentz space Lrv(R
n) consists of all Lebesgue

measurable complex-valued functions f on R
n for which the quasi-norm
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‖f |Lrv(R
n)‖ :=






(∫ ∞

0

(
t1/rf ∗(t)

)v dt

t

)1/v

, for 0 < v < ∞

sup
t>0

t1/rf ∗(t), for v = ∞

(1)

is finite.

2.2. Anisotropic function spaces. In this subsection we introduce the
anisotropic Besov and Triebel-Lizorkin spaces and describe some important
properties. Let us start by recalling briefly the basic ingredients needed to
introduce these spaces by the Fourier-analytical approach. Throughout the
paper we call the vector

α = (α1, . . . , αn) with 0 < α1 ≤ . . . ≤ αn < ∞ and
n∑

j=1

αj = n

(2)

an anisotropy in Rn. For t > 0, r ∈ R and x = (x1, . . . , xn) ∈ Rn we put

tαx := (tα1x1, . . . t
αnxn) and trαx := (tr)αx.

For x = (x1, . . . , xn) ∈ R
n, x 6= 0, let |x|α be the unique positive number t

such that

x2
1

t2α1

+ . . . +
x2

n

t2αn
= 1 (3)

and put |0|α = 0. It turns out that | · |α is an anisotropic distance function in
C∞(Rn)\{0} according to [8, Definition 2.1]. Note that in the isotropic case,
which means α1 = · · · = αn = 1, |x|α is the Euclidean distance of x to the
origin.

Let ϕα
0 ∈ S(Rn) be a function such that

ϕα
0 (x) = 1 for sup

l
|xl| ≤ 1 and ϕα

0 (y) = 0 for sup
l

2−αl|yl| ≥ 1,

with x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n. We define

ϕα
j (x) := ϕα

0 (2−jαx) − ϕα
0 (2−(j−1)αx), x ∈ R

n, j ∈ N. (4)
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Then since
∑∞

j=0 ϕα
j (x) = 1 for all x ∈ Rn, the sequence (ϕα

j )j∈N0
is an

anisotropic resolution of unity with

supp ϕα
0 ⊂ Rα

1 and supp ϕα
j ⊂ Rα

j+1\R
α
j−1, j ∈ N,

where Rα
j are rectangles given by

Rα
j := {x : |xl| ≤ 2αlj, l = 1, . . . , n}, j ∈ N0.

Definition 2.1. Let α be an anisotropy as in (2) and let ϕα = (ϕα
j )j∈N0

be
an anisotropic dyadic resolution of unity in the sense of (4).
(i) For 0 < p, q ≤ ∞ and s ∈ R the anisotropic Besov space Bs,α

pq (Rn) is
defined to be the set of all tempered distributions f ∈ S ′(Rn) such that

∥∥f |Bs,α
pq (Rn)

∥∥ :=

(
∞∑

j=0

2jsq
∥∥(ϕα

j f̂)∨|Lp(R
n)
∥∥q

)1/q

(5)

is finite. In the limiting case q = ∞ the usual modification is required.
(ii) For 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R the anisotropic Triebel-Lizorkin

space F s,α
pq (Rn) is defined to be the set of all tempered distributions f ∈

S ′(Rn) such that

∥∥f |F s,α
pq (Rn)

∥∥ :=

∥∥∥∥∥∥

(
∞∑

j=0

2jsq|(ϕα
j f̂)∨(·)|q

)1/q

|Lp(R
n)

∥∥∥∥∥∥
(6)

is finite. In the limiting case q = ∞ the usual modification is required.

Remark 2.2. We occasionally use the symbol As,α
pq (Rn) to consider the spaces

Bs,α
pq (Rn) and F s,α

pq (Rn) simultaneously. It turns out that As,α
pq (Rn) are quasi-

Banach spaces which are independent of ϕα, in the sense of equivalent quasi-
norms, according to either (5) or (6). Taking α = (1, . . . , 1) brings us back
to the isotropic case usually denoted by Bs

pq(R
n) and F s

pq(R
n). The above

Fourier analytical approach is due to H. Triebel [16]. For further information
the reader may consult [13] and [18], specially in the later monograph one
can find historical considerations.

We start by stating an anisotropic Littlewood-Paley theorem. Details may
be found in [13, 4.2.2].

Proposition 2.3. Let α be an anisotropy as in (2) and let 1 < p < ∞. Then

F 0,α
p,2 (Rn) = Lp(R

n).



GROWTH ENVELOPES OF ANISOTROPIC FUNCTION SPACES 5

Let us continue by describing the interpolation property of anisotropic
Besov spaces according to [9, Appendix C.2, Lemma 2].

Proposition 2.4. Let α be an anisotropy as in (2). Furthermore, let 0 <
q0, q1 ≤ ∞, s0, s1 ∈ R such that s0 6= s1 and let s = (1 − θ)s0 + θs1 with
0 < θ < 1. Then

(Bs0,α
pq0

(Rn), Bs1,α
pq1

(Rn))θ,q = Bs,α
pq (Rn) for all 0 < p, q ≤ ∞.

We refer to [9, Appendix C.3, Proposition 7] for the next assertion on
embeddings between anisotropic Besov and Triebel-Lizorkin spaces.

Proposition 2.5. Let α be an anisotropy as in (2). Let 0 < p0 < p < p1 ≤
∞, s1 < s < s0 and 0 < q ≤ ∞. Then

Bs0,α
p0p

(Rn) →֒ F s,α
pq (Rn) →֒ Bs1,α

p1p
(Rn), (7)

provided that s0 − n/p0 = s − n/p = s1 − n/p1.

Let us proceed with a review of the needed notation to state the atomic
decomposition result. Hereby, we closely follow the exposition of W. Farkas
from [8]. Let α be an anisotropy as in (2). Let Qα

νm be the rectangle in R
n

with sides parallel to the axes of coordinates, centered at

2−ναm = (2−να1m1, . . . , 2
−ναnmn), m ∈ Z

n, ν ∈ N0,

and with sides lengths 2−(ν−1)α1, . . . , 2−(ν−1)αn. In particular, Qα
0m are rect-

angles of sides lengths 2α1, . . . , 2αn centered at m ∈ Zn. If Qα
νm is such a

rectangle in Rn and d > 0 then dQα
νm is the rectangle in Rn concentric with

Qα
νm and with side lengths d2−(ν−1)α1, . . . , d2−(ν−1)αn.
Remark that for fixed ν ∈ N0 and d > 0, there are at most (2d)n cubes

dQα
νm, m ∈ N, that overlap. For x ∈ Rn and γ ∈ Nn

0 we put

αγ = γα :=
n∑

j=1

γjαj and xγ := xγ1

1 . . . xγn

n .

We are now in a position to introduce the respective building blocks.

Definition 2.6. Let α be an anisotropy according to (2). Let K ≥ 0 and
d > 1. A continuous function a : Rn → C with all derivatives Dγa for αγ ≤ K
is said to be an 1α

K-atom if

(i) supp a ⊂ dQα
0m for some m ∈ Z

n,
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(ii) |Dγa(x)| ≤ 1 for αγ ≤ K, x ∈ R
n.

Let s ∈ R, 0 < p ≤ ∞, K, L ≥ 0 and d > 1. A continuous function
a : Rn → C with all derivatives Dγa for αγ ≤ K is said to be an (s, p)α

K,L-
atom if

(i) supp a ⊂ dQα
νm for some ν ∈ N0, m ∈ Z

n,

(ii) |Dγa(x)| ≤ 2−ν(s−n
p
−γα) for αγ ≤ K, x ∈ Rn,

(iii)
∫

Rn xβa(x)dx = 0 for β ∈ Nn
0 with βα < L.

Definition 2.7. If 0 < p, q ≤ ∞, the Besov sequence space bpq is the collec-
tion of all sequences λ = (λνm)ν∈N0,m∈Zn ⊂ C such that

∥∥λ|bpq

∥∥ :=




∞∑

ν=0

(
∑

m∈Zn

|λνm|
p

)q/p



1/q

(with the usual modification if either p = ∞ or q = ∞) is finite.

In the sequel, to shorten the notation, we use the following abbreviation

σp := n

(
1

p
− 1

)

+

. (8)

Below we formulate the atomic decomposition of anisotropic Besov spaces
Bs,α

pq (Rn) as presented in [8, Theorem 3.3].

Theorem 2.8. Let 0 < p, q ≤ ∞, s ∈ R and α be an anisotropy according
to (2). Let K, L ≥ 0 with

K ≥

{
0 for s < 0

s + αn for s ≥ 0,
(9)

and L > σp − s be fixed.
A tempered distribution f ∈ S ′(Rn) belongs to Bs,α

pq (Rn) if, and only if, it
can be written as

f =

∞∑

ν=0

∑

m∈Zn

λνm aα
νm, converging in S ′(Rn), (10)

where aα
νm are 1α

K-atoms (ν = 0) or (s, p)α
K,L-atoms (ν ∈ N) and λ ∈ bpq.

Furthermore

inf ‖λ|bpq‖, (11)
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where the infimum is taken over all admissible representations (10), is an
equivalent quasi-norm in Bs,α

pq (Rn).

2.3. Growth envelopes. The notion of growth envelopes was introduced
by D. D. Haroske in [10] and H. Triebel in [17]. Following [10], we present the
basic definitions and properties concerning growth envelopes in quasi-Banach
function spaces in the sense of [1]. However, we shall be rather concise and
we mainly refer to [10, 11, 17, 12] for heuristics, motivations and details on
this subject.

Definition 2.9. Let X be some quasi-Banach function space on Rn.

(i) The growth envelope function E
G

X : (0,∞) → [0,∞) is defined by

E
G

X(t) := sup
‖f |X‖≤1

f ∗(t), t > 0. (12)

(ii) Assume X 6 →֒ L∞(Rn). Let ε ∈ (0, 1), H(t) := − log EG X(t), t ∈ (0, ε],
and let µH be the associated Borel measure. The number uX , 0 <
uX ≤ ∞, is defined as the minimum (assuming it exists) of all numbers
v, 0 < v ≤ ∞, such that

( ε∫

0

( f ∗(t)

E
G

X(t)

)v

µH(dt)

)1/v

≤ c ‖f |X‖ (13)

(with the usual modification if v = ∞) holds for some c > 0 and all
f ∈ X. The couple

EG(X) =
(
E

G
X(·), uX

)

is called growth envelope for the function space X.

As it will be useful in the sequel, we recall some properties of the growth
envelopes. In view of Definition 2.9 (i) we obtain – strictly speaking – equiv-
alence classes of growth envelope functions when working with equivalent
(quasi-) norms in X. However, for convenience we do not want to distin-
guish between representative and equivalence class in what follows and thus
stick at the notation introduced in Definition 2.9 (i). Note that E

G
X is a
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monotonically decreasing function. Concerning Definition 2.9 (ii) it is obvi-
ous that (13) holds for v = ∞ and any X. Moreover, one verifies that

sup
0<t≤ε

g(t)

E
G

X(t)
≤ c1

( ε∫

0

( g(t)

E
G
X(t)

)v1

µH(dt)

)1/v1

≤ c2

( ε∫

0

( g(t)

E
G
X(t)

)v0

µH(dt)

)1/v0

(14)

for 0 < v0 < v1 < ∞ and all non-negative monotonically decreasing functions
g on (0, ε]; cf. [17, Proposition 12.2, p. 183-184]. So we observe that the left-
hand sides in (13) are monotonically ordered in v and it is natural to look
for the smallest possible one.

Proposition 2.10. (i) Let X be some quasi-Banach function space on Rn.
Then X →֒ L∞(Rn) if, and only if, EGX(·) is bounded.

(ii) Let Xi, i = 1, 2, be some quasi-Banach function spaces on R
n. Then

X1 →֒ X2 implies that there is some positive constant c such that for all
t > 0,

EGX1(t) ≤ c EGX2(t).

(iii) Let Xi, i = 1, 2, be some quasi-Banach function spaces on R
n with

X1 →֒ X2. Assume that

EGX1(t) ∼ EGX2(t), t ∈ (0, ε),

for some ε > 0. Then, the corresponding indices uXi
, i = 1, 2, satisfy

uX1
≤ uX2

.

For the proof of the previous proposition and further properties of growth
envelopes we refer to [10], in particular to Propositions 2.4 and 3.5, and the
forthcoming book [12].

3. Embeddings into Lloc
1 (Rn) and L∞(Rn)

In this section we study some embedding results which will be useful when
discussing growth envelopes for anisotropic function spaces.

The proposition below gives a sufficient condition under which the aniso-
tropic spaces of Besov and Triebel-Lizorkin type consist only of regular dis-
tributions. For a complete characterization of the inclusion of the isotropic
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spaces of Besov and Triebel-Lizorkin type into Lloc
1 (Rn) we refer to

[14, Theorem 3.3.2].

Proposition 3.1. Let 0 < p, q ≤ ∞ (with p < ∞ in the F -case), s ∈ R and
α be an anisotropy according to (2). If s > σp then it holds

As,α
pq (Rn) ⊂ Lloc

1 (Rn).

Proof : Using the same strategy as in the proof of [14, Theorem 3.3.2], we
shall have established the proposition if we prove that

As,α
pq (Rn) →֒ Lmax(1,p)(R

n) for s > σp. (15)

We shall prove this first for A = B. Let s > σp and let f ∈ Bs,α
pq (Rn). By

Theorem 2.8,

f =
∞∑

ν=0

∑

m∈Zn

λνm aα
νm, (16)

where λ = (λνm) ∈ bpq and aα
νm are 1K-atoms (ν = 0) or (s, p)α

K,L - atoms
(ν ∈ N), according to Definition 2.6.

Let first 1 < p < ∞. Then s > 0 and choose ε ∈ (0, s). For L, M ∈ N with
M > L, we have

∥∥∥
M∑

ν=L

∑

m∈Zn

λνm aα
νm(·)

∣∣∣Lp(R
n)
∥∥∥

p

≤

∫

Rn

(
M∑

ν=L

∑

m∈Zn

|λνm| 2−ν(s−n/p)χdQα
νm

(x)

)p

dx

≤

∫

Rn

(
M∑

ν=L

2−ενp′

)p/p′ M∑

ν=L

2−ν(s−n/p−ε)p

(
∑

m∈Zn

|λνm| χdQα
νm

(x)

)p

dx

≤ c1

(
M∑

ν=L

2−ενp′

)p/p′ M∑

ν=L

2−ν(s−n/p−ε)p

∫

Rn

∑

m∈Zn

|λνm|
p χdQα

νm
(x) dx

≤ c1

(
M∑

ν=L

2−ενp′

)p/p′ M∑

ν=L

2−ν(s−n/p−ε)p
∑

m∈Zn

|λνm|
p |dQα

νm|

≤ c2

(
M∑

ν=L

2−ενp′

)p/p′ M∑

ν=L

2−ν(s−ε)p
∑

m∈Zn

|λνm|
p,
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where χdQα
νm

denotes the characteristic function of the rectangle dQα
νm. Note

that the constant c1 depends only on p and on the number of those rectangles
for which each fixed x ∈ Rn belongs. Thus, since 1/p < 1, we get

∥∥∥
M∑

ν=L

∑

m∈Zn

λνm aα
νm(·)

∣∣∣Lp(R
n)
∥∥∥ ≤ c

(
M∑

ν=L

2−ενp′

)1/p′( M∑

ν=L

∑

m∈Zn

|λνm|
p2−ν(s−ε)p

)1/p

≤ c

(
M∑

ν=L

2−ενp′

)1/p′ M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)1/p

2−ν(s−ε). (17)

Now, if 0 < q ≤ 1, the right-hand side of (17) can be estimated from above
by

c

(
M∑

ν=L

2−ενp′

)1/p′



M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)q/p

2−ν(s−ε)q




1/q

≤ c ‖λ| bpq‖

(
M∑

ν=L

2−ενp′

)1/p′

,

which, since ε > 0, enables us to conclude that convergence in (16) is not
only in S ′(Rn) but also in Lp(R

n), and hence f ∈ Lp(R
n).

We now show that the same conclusion can be drawn for q > 1. By Hölder’s
inequality, the right-hand side of (17) can be estimated from above by

c

(
∞∑

ν=0

2−ενp′

)1/p′



M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)q/p



1/q(

M∑

ν=L

2−ν(s−ε)q′

)1/q′

≤ c ‖λ| bpq‖

(
M∑

ν=L

2−ν(s−ε)q′

)1/q′

.

Once more, since s − ε > 0, we see that the convergence in (16) is not only
in S ′(Rn) but also in Lp(R

n), leading to f ∈ Lp(R
n).

The same reasoning applies to the case 0 < p ≤ 1. For M, L ∈ N with
M > L, we have
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∥∥∥
M∑

ν=L

∑

m∈Zn

λνmaα
νm(·)

∣∣∣L1(R
n)
∥∥∥ ≤

∫

Rn

M∑

ν=L

∑

m∈Zn

|λνm| 2−ν(s−n/p)χdQα
νm

(x) dx

≤
M∑

ν=L

∑

m∈Zn

|λνm| 2−ν(s−n/p)|dQα
νm| ≤ c

M∑

ν=L

∑

m∈Zn

|λνm| 2−ν(s−n/p−n)

≤ c
M∑

ν=L

2−ν(s−n/p−n)

(
∑

m∈Zn

|λνm|
p

)1/p

. (18)

If 0 < q ≤ 1, the right-hand side of (18) can be estimated from above by

c1




M∑

ν=L

2−ν(s−n/p−n)q

(
∑

m∈Zn

|λνm|
p

)q/p



1/q

≤ c1




M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)q/p



1/q

,

which implies, since λ ∈ bpq, that the convergence of (16) is not only in S ′(Rn)
but also in L1(R

n).
If q > 1, using Hölder’s inequality, the right-hand side of (18) can be

estimated from above by

c1




M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)q/p



1/q(

M∑

ν=L

2−ν(s−n/p−n)q′

)1/q′

≤ c1‖λ| bpq‖

(
M∑

ν=L

2−ν(s−n/p−n)q′

)1/q′

,

and once more, since s− n/p− n > 0 in this case, the convergence in (16) is
not only in S ′(Rn) but also in L1(R

n), so that f ∈ L1(R
n).

If p = ∞, then s > 0 and we get

|f(x)| ≤
∞∑

ν=0

∑

m∈Zn

|λνm|2
−νsχdQα

νm
(x) ≤ c2

∞∑

ν=0

2−νs sup
m∈Zn

|λνm|. (19)

If 0 < q ≤ 1, then the right-hand side of (19) has the upper estimate

c2

(
∞∑

ν=0

2−νsq

(
sup
m∈Zn

|λνm|

)q
)1/q

≤ c2 ‖λ| b∞q‖,
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leading to f ∈ L∞(Rn).
If q > 1, then the right-hand side of (19) can be estimated from above by

c2

(
∞∑

ν=0

2−νsq′

)1/q′( ∞∑

ν=0

(
sup
m∈Zn

|λνm|

)q
)1/q

≤ c3 ‖λ| b∞q‖

and, once more, f ∈ L∞(Rn).
We shall now be concerned with the proof of (15) for A = F . Assuming

s > σp, there is a σ such that s > σ > σp. Define p1 by the equation
s − n/p = σ − n/p1. By virtue of Proposition 2.5 we get

F s,α
pq (Rn) →֒ Bσ,α

p1p
(Rn).

We check at once that σ > σp1
. Namely, we have σ = s − n/p + n/p1 >

−n + n/p1. Then the desired inclusion follows from what has been proved
above.

Regarding the embeddings of the anisotropic spaces into L∞(Rn), we have
the following:

Proposition 3.2. Let 0 < p, q ≤ ∞ and let α be an anisotropy according to
(2).

(i) Then

Bn/p,α
pq (Rn) →֒ L∞(Rn) if, and only if, 0 < p ≤ ∞ and 0 < q ≤ 1.

(ii) Let 0 < p < ∞. Then

F n/p,α
pq (Rn) →֒ L∞(Rn) if, and only if, 0 < p ≤ 1 and 0 < q ≤ ∞.

Proof : We only prove here the “if part” as the reverse implications will follow
immediately from our results on growth envelopes (see Remark 5.2).

Starting the proof for (i), let 0 < q ≤ 1 and let f ∈ B
n/p,α
pq (Rn). By the

atomic decomposition theorem (cf. Theorem 2.8)

f =

∞∑

ν=0

∑

m∈Zn

λνm aα
νm,

where λ = (λνm) ∈ bpq and aα
νm are 1K-atoms (ν = 0) or (s, p)α

K,L - atoms
(ν ∈ N) according to Definition 2.6. Let x ∈ R

n. By the properties of atoms
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we obtain

|f(x)| ≤

∞∑

ν=0

∑

m∈Zn

|λνm||a
α
νm(x)| ≤

∞∑

ν=0

∑

{m∈Zn: x∈dQα
νm}

|λνm|

≤ c(p, d, n)
∞∑

ν=0




∑

{m∈Zn: x∈dQα
νm}

|λνm|
p




1/p

≤ c(p, d, n)
∞∑

ν=0

(
∑

m∈Zn

|λνm|
p

)1/p

≤ c(p, d, n)




∞∑

ν=0

(
∑

m∈Zn

|λνm|
p

)q/p



1/q

.

In the last inequality we have used only the fact that q ≤ 1. The result of
the “if part” of (i) now follows.

To prove the “if part” of (ii), we again apply Proposition 2.5. Assume that
p ≤ 1. By what has been proved above and taking some p1 > p, we obtain

F n/p,α
pq (Rn) →֒ Bn/p1,α

p1p
(Rn) →֒ L∞(Rn).

4. Growth envelopes of anisotropic function spaces in

the subcritical case

It turns out that the notion of growth envelope, as introduced in Subsection
2.3, makes sense only for anisotropic function spaces of regular distributions.
Due to Proposition 3.1 we shall consider only function spaces As,α

pq (Rn) such
that s > σp.

This section deals with growth envelopes of anisotropic spaces As,α
pq (Rn) in

the subcritical case whether the critical case is postponed to the next section.
In this section, the spaces of interest for us will be As,α

pq (Rn) with

σp < s <
n

p
, 0 < p < ∞, and 0 < q ≤ ∞ (20)

the so-called subcritical case. Let us remark that according to Theorem
4.3, the growth envelope functions of As,α

pq (Rn), in the subcritical case, are
unbounded and, hence, the embedding As,α

pq (Rn) →֒ L∞(Rn) does not hold.
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Figure 1. Sub-critical case

Proposition 4.1. Let α be an anisotropy according to (2). Furthermore let
s, p and q be as in (20) and define r ∈ (1,∞) by the equation

s −
n

p
= −

n

r
. (21)

Then there is a constant c > 0 such that

EGBs,α
pq (Rn)(t) ≤ c t−

1

r for t ∈ (0, 1]. (22)

Moreover, for each v ∈ [q,∞] there is a positive constant c, depending only
on v, such that
(∫ 1

0

(
t1/rf ∗(t)

)v dt

t

)1/v

≤ c ‖f |Bs,α
pq (Rn)‖ for all f ∈ Bs,α

pq (Rn), (23)

with the modification as in (1) on the left-hand side for v = ∞.

Proof : Our method will be an adaptation of the reasoning used on pp. 189–
191 of [17], but we have to examine very carefully the influence of the
anisotropy.

As (1/p, s) belongs to the subcritical strip (see Figure 1), there are s0, s1 ∈
R such that s0 < s < s1 and (1/p, si), i = 0, 1, also belong to the subcritical
strip. Define ri by si − n/p = −n/ri, i = 0, 1. Plainly ri ∈ (1,∞) and by
elementary embeddings, Proposition 2.5 and Proposition 2.3 we obtain

Bsi,α
p1 (Rn) →֒ Bsi,α

pri
(Rn) →֒ F 0,α

ri2
(Rn) = Lri

for i = 0, 1. (24)

We complete the proof by using the real interpolation method. By virtue of
Proposition 2.4, with 0 < θ < 1 and s = (1 − θ)s0 + θs1, we have

(
Bs0,α

p1 (Rn), Bs1,α
p1 (Rn)

)
θ,v

= Bs,α
pv (Rn)
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for any 0 < v ≤ ∞. Since 1 < r0 < r1 < ∞ and 1/r = (1 − θ)/r0 + θ/r1, we
obtain

(Lr0
, Lr1

)θ,v = Lrv.

Thus the interpolation property yields,

Bs,α
pv (Rn) =

(
Bs0,α

p1 (Rn), Bs1,α
p1 (Rn)

)
θ,v

→֒ (Lr0
, Lr1

)θ,v = Lr,v.

Translating the above embedding into the language of inequalities, there is
a constant c > 0 such that

(∫ 1

0

(
t1/rf ∗(t)

)v dt

t

)1/v

≤ c ‖f |Bs,α
pv (Rn)‖ for all f ∈ Bs,α

pv (Rn).

Taking into account that v ≥ q we have, by elementary embeddings, that
‖f |Bs,α

pv (Rn)‖ ≤ c ‖f |Bs,α
pq (Rn)‖, which completes the proof of (23). To

establish (22) we now use the already proved inequality (23) with v = ∞, to
obtain

sup
0<t<ε

t
1

r f ∗(t) ≤ c ‖f |Bs,α
pq (Rn)‖.

This, together with (12), finishes the proof.

Proposition 4.2. Let α, p, q, s and r be as in Proposition 4.1. Then there
are an ε ∈ (0, 1) and a constant c > 0 such that

EGBs,α
pq (Rn)(t) ≥ c t−

1

r for all t ∈ (0, ε]. (25)

Moreover, for each v ∈ (0, q) there is no positive constant c for which
(∫ ε

0

(
t1/rf ∗(t)

)v dt

t

)1/v

≤ c ‖f |Bs,α
pq (Rn)‖ (26)

holds for all f ∈ Bs,α
pq (Rn).

Proof : Our proof is based upon ideas found in Steps 2 and 3 in the proof
of [17, Theorem 15.2] with necessary modification which comes from the
influence of the anisotropy. Let us consider the function ϕ given by

ϕ(x) :=





exp

(
−

1

1 − |x|2

)
for |x| < 1

0 for |x| ≥ 1,
(27)



16 S. D. MOURA, J. S. NEVES AND M. PIOTROWSKI

and define

fj(x) := 2jn/rϕ(2jαx), x ∈ R
n, j ∈ N. (28)

It turns out that the fj’s are, up to an unimportant constant, atoms in
Bs,α

pq (Rn) according to the Definition 2.6 when considering the subcritical
case. We first note that no moment conditions are needed. Let us check the
remaining conditions from the definition of atoms. For j ∈ N, we have

supp fj ⊂ {x ∈ R
n : |2jαx| ≤ 1} ⊂ {x ∈ R

n : |xk| ≤ 2−jαk, k = 1, . . . , n}

⊂ cQα
j0

and

|Dγfj(x)| = 2jn/r|Dγϕ(2jαx)| ≤ sup
|y|≤1

sup
αγ≤K

|Dγϕ(y)| 2−αγ 2jn/r ≤ c 2−j(s−n
p
−γα).

For the distribution function of fj we obtain

µfj
(λ) = |{x ∈ R

n : |fj(x)| > λ}| =
∣∣∣
{
x ∈ R

n : |ϕ(2jαx)| > 2−jn/rλ
}∣∣∣

=
∣∣∣
{

2−jαy : |ϕ(y)| > 2−jn/rλ
}∣∣∣ = 2−jαµϕ(2−jn/rλ), j ∈ N.

Note that in the last equality we have used the fact that
∑n

j=1 αj = n.
Consequently,

f ∗
j (d2−jn) ∼ 2jn/r, j ∈ N,

for some d > 0, and therefore

E
G

Bs,α
pq (Rn)(d2−jn) ≥ cf ∗

j (d2−jn) ∼ 2jn/r, j ∈ N.

Then the monotonicity of the growth envelope function together with its
definition proves (25).

The next step of the proof is to show the sharpness expressed by the second
assertion of our proposition.

Suppose that, contrary to our claim, there exist a v < q and a constant
c > 0 such that

(∫ ε

0

(
t1/rf ∗(t)

)v dt

t

)1/v

≤ c ‖f |Bs,α
pq (Rn)‖ (29)

holds for all f ∈ Bs,α
pq (Rn).
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Consider, for each J ∈ N, f ∈ Bs,α
pq (Rn) defined by

f(x) =
J∑

j=1

2jn/rϕ
(
2jαx − x0

)
(30)

where ϕ has the same meaning as before and x0 ∈ Z
n is chosen in such a

way that the supports of ϕ(2jα · −x0), j ∈ N, are disjoint. Note that it is
sufficient to take x0 = (x0

1, . . . , x
0
n) ∈ R

n such that

|x0
k| > 1 +

2

2αk − 1
, k = 1, . . . , n.

Then it follows that

f ∗(d2−jn) ≥ c 2jn/r, j = 1, . . . , J, (31)

with some c, d > 0. Plugging (31) into (29) and using an equivalent quasi-
norm (11) coming from atomic decomposition as stated in Theorem 2.8, we
obtain

(
J∑

j=1

1

)1/v

≤ c1 ‖f |Bs,α
pq (Rn)‖ ≤ c2

(
J∑

j=1

1

)1/q

, (32)

where the constants c1, c2 > 0 are independent of J . This is a clear contra-
diction to the fact that v < q, which completes the proof.

It is now easy to see that by virtue of (22) jointly with (25) we immediately
obtain EG Bs,α

pq (t) ∼ t−1/r. Moreover, the second part of Proposition 4.2 shows
that q is the optimal index. This already gives the proof for the first part of
the following theorem.

Theorem 4.3. Let α, p, q, s and r be as in Proposition 4.1. Then

(i) EG Bs,α
pq (Rn) =

(
t−

1

r , q
)
;

(ii) EG F s,α
pq (Rn) =

(
t−

1

r , p
)

.

Proof : It only remains to verify (ii). Let s0, s1 ∈ R and 0 < p0 < p < p1 ≤ ∞
be such that (1/pi, si), i = 0, 1, belong to the subcritical strip, i.e. σpi

< si <
n/pi, i = 0, 1, and s0 − n/p0 = s − n/p = s1 − n/p1 = −n/r. Then, by
Proposition 2.5, we have

Bs1,α
p1p

(Rn) →֒ F s,α
pq (Rn) →֒ Bs0,α

p0p
(Rn). (33)
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Then, by part (i) and Proposition 2.10(ii), we obtain

t−1/r ∼ E
G

Bs1,α
p1q (t) . E

G
F s,α

pq (t) . E
G

Bs0,α
p0q (t) ∼ t−1/r, t ∈ (0, ε),

for some ε ∈ (0, 1). This fact, together with (33), Proposition 2.10 (iii) and
part (i) of the present theorem, leads us to

p = uB
s1,α
p1p (Rn) ≤ uF s,α

pq (Rn) ≤ uB
s0,α
p0p (Rn) = p,

which finishes the proof.

5. Growth envelopes of anisotropic function spaces in

the critical case

In this section we consider the spaces As,α
pq (Rn) in the critical case, which

means that the corresponding parameters satisfy

s =
n

p
and

{
0 < p < ∞, 1 < q ≤ ∞, if A = B;

1 < p < ∞, 0 < q ≤ ∞, if A = F .
(34)

According to Proposition 3.2, the embedding As,α
pq (Rn) →֒ L∞(Rn), in the

critical case, does not hold.

Theorem 5.1. Let α be an anisotropy according to (2).

(i) Let 0 < p ≤ ∞ and 1 < q ≤ ∞. Then

EG Bn/p,α
pq (Rn) =

(
| log t|1/q′, q

)
. (35)

(ii) Let 1 < p < ∞ and 0 < q ≤ ∞. Then

EG F n/p,α
pq (Rn) =

(
| log t|1/p′, p

)
. (36)

Proof : Although our proof runs along similar lines as the proof of Theorem
13.2 of [17], there are subtle adjustments necessary to fit the argument to
the anisotropic situation. We divide the proof into 3 steps. In the first two
steps we compute the growth envelope function in B and F -case. Hereby we
closely follow the argument given in [10]. The last step contains the proof of
the correctness of corresponding indices.

Step 1. Let us work with p and q as assumed in (i). The first objective
is to prove that there exists a constant c > 0 such that
(∫ ε

0

(
f ∗(t)

| log t|

)q
dt

t

)1/q

≤ c ‖f |Bn/p,α
pq (Rn)‖ for all f ∈ Bn/p,α

pq (Rn) (37)
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with the obvious modification in the case q = ∞. Remark that by virtue
of elementary embeddings, there is no loss of generality in assuming that
1 < p < ∞ and 1 < q ≤ ∞. Let us consider an optimal atomic decomposition

of a given f ∈ B
n/p,α
pq (Rn) in the form

f =
∞∑

ν=0

fν with fν(x) =
∑

m∈Zn

bνm aα
νm(x). (38)

Additionally, the formula




∞∑

ν=0

(
∑

m∈Zn

|bνm|
p

)q/p



1/p

gives an equivalent quasi-norm on B
n/p,α
pq . It may be worth reminding that

aα
ν,m have the following properties

• supp aα
νm ⊂ {y ∈ R

n : |yk − 2−ναkmk| < d 2−ναk, k = 1, . . . , n} for
some d > 1, ν ∈ N0, m ∈ Z

n,
• |Dγaα

νm(x)| ≤ 2νγα for αγ ≤ K, x ∈ R
n.

Let us now denote by χνl(t) the characteristic function of the interval (C2−νn(l−
1), C2−νnl] with C > 0 to be computed later, ν ∈ N0 and l ∈ N. Furthermore
for fixed ν ∈ N0 let (b∗νl)l∈N stand for the non-increasing rearrangement of
(bνm)m∈Zn. We now prove that

f ∗
ν (t) ≤ c

∞∑

l=1

b∗νl χνm(t), with t > 0 and ν ∈ N0. (39)

Let ∈ N0 and D := (4d)n. Then

(D−1fν)
∗(t) = inf

{

λ > 0 :

∣∣∣∣∣

{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνmaα
νm(x)

∣∣∣ > λ
}∣∣∣∣∣ ≤ t

}

.
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Suppose that t ∈ (C2−νn(l − 1), C2−νnl] for some l ∈ N and C > 0 to be
chosen later. We remark that if x ∈ R

n is such that

b∗νl ≤ D−1
∣∣∣
∑

m∈Zn

bνm aα
νm(x)

∣∣∣

≤ D−1
∑

m∈Zn

|bνm||a
α
νm(x)|χ2dQα

νm
(x)

≤ D−1
∑

m∈Zn

|bνm|χ2dQα
νm

(x)

then, for such an x, b∗νl < |bνm′|, where m′ is such that |bνm′| is the biggest from
all D possibilities of x ∈ 2dQα

νm. Hence x ∈ 2dQα
νm such that b∗νl < |bνm|. By

definition of b∗νl, for any k ∈ N the number of m’s such that |bνm| ≥ b∗νl + 1/k
is less or equal to l − 1. Therefore, we get

∣∣∣∣∣

{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνmaα
νm(x)

∣∣∣ > b∗νl

}∣∣∣∣∣

=

∣∣∣∣∣
⋂

k∈N

{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνmaα
νm(x)

∣∣∣ > b∗νl +
1

k

}∣∣∣∣∣

= lim
k→∞

∣∣∣∣∣

{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνmaα
νm(x)

∣∣∣ > b∗νl +
1

k

}∣∣∣∣∣

≤ lim
k→∞

∣∣∣∣∣∣

⋃

{m: |bνm|≥b∗νl+1/k}

2dQα
νm

∣∣∣∣∣∣
≤ lim

k→∞

∑

{m: |bνm|≥b∗νl+1/k}

|2dQα
νm|

≤ (l − 1)2n+1dn2−νn < t.

Taking C := 2n+1dn we arrive at

f ∗
ν (t) ≤ D b∗νl for t ∈ (C2−νn(l − 1), C2−νnl],

which proves (39). The rest of the proof of (37) is an exact analogue of the
proof of Theorem 13.2 of [17]. For a detailed exposition we refer the reader to
this monograph. Let us only mention that it relies on a clever application of
the Hardy-Littlewood maximal inequality. By virtue of (37) we immediately
obtain

sup
0<t<ε

f ∗(t)

| log t|1/q′
≤ c ‖f |B

n
p
,α

pq (Rn)‖,
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which shows that

E
G

B
n
p
,α

pq (t) ≤ c | log t|1/q′ for 0 < p < ∞, 1 < q ≤ ∞. (40)

To prove the F -result, we again exploit embeddings described in Proposition
2.5 jointly with the properties of growth envelope functions to get

E
G

F
n
p
,α

pq (t) ≤ c | log t|1/p′ for 1 < p < ∞, 0 < q ≤ ∞.

Step 2. We shall prove the converse of the inequality (40), that is

E
G

B
n
p
,α

pq (t) ≥ c | log t|1/q′ for 0 < p < ∞, 1 < q ≤ ∞. (41)

To see this, we again benefit from the construction of extremal functions
(see [17] for the isotropic case). Let us consider

f(x) :=
∞∑

j=1

bj ϕ(2(j−1)αx), x ∈ R
n, (42)

where the function ϕ is given by (27) and b = (bj)
∞
j=1 is a sequence of positive

numbers with b ∈ ℓq. In a similar way as in the subcritical case we may
check that aj(x) := ϕ(2(j−1)αx) with x ∈ R

n and j ∈ N are, up to constants,
(n/p, p)α

K,0-atoms. Next, let x ∈ R
n be such that 1/4 ≤ |2(k−1)αx| ≤ 1/2 for

some k ∈ N. Easy computation shows that putting

k0(α) =

{
2α−1

1 − 1 for 2α−1
1 ∈ N

[2α−1
1 ] otherwise

yields

f(x) =

k+k0(α)∑

j=1

bj ϕ(2(j−1)αx).

Hence we immediately obtain

f(x) ≤ e−1

k+k0(α)∑

j=1

bj and f(x) ≥ e−4/3
k∑

j=1

bj.
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Consequently, for λ with 0 < λ < c
∑k

j=1 bj, where c = e−4/3 we get

µf (λ) ≥

∣∣∣∣∣

{
x ∈ R

n : |f(x)| ≥ c

k∑

j=1

bj

}∣∣∣∣∣

≥
∣∣∣
{

x ∈ R
n : 1/4 ≤ |2(k−1)αx| ≤ 1/2

}∣∣∣

= 2−(k−1)n |{y : 1/4 ≤ |y| ≤ 1/2}| = c′2−kn.

Therefore it follows that, for 0 < t < c′2−kn,

f ∗(t) ≥ c
k∑

j=1

bj. (43)

For each J ∈ N we consider the function f = fJ defined by (42) with the
special sequence b = (bj)

∞
j=1 given by

bj :=

{
J−1/q for j = 1, . . . J,

0 otherwise.

It is easy to see that ‖b |ℓq‖ = 1. Thus, (43) yields

f ∗
J(c′2−(J+1)n) ≥ c

J∑

j=1

bj = c J−1/q′. (44)

Put c′2−(J+1)n ≤ t ≤ c′2−Jn for some J ∈ N. Then, using monotonicity of

the growth envelope function EG B
n
p
,α

pq (·) together with (44) yields

EG B
n
p
,α

pq (t) ≥ EG B
n
p
,α

pq (2−(J+1)n) ≥ c f ∗
J(2−(J+1)n) ≥ c J1/q ≥ c | log t|1/q′.

(45)

The F -counterpart follows from the embedding B
n/p,α
rp (Rn) →֒ F

n/p,α
pq (Rn)

with 0 < r < p, since then

EG F
n
p
,α

pq (t) ≥ EG B
n
p
,α

r,p (t) ≥ c | log t|1/p′. (46)

Step 3. In the reminder of the proof we show that the indices q in the
B-case and p in the F -case cannot be improved. The proof of this part for B-
spaces is essentially a repetition of the arguments used to prove the isotropic
case. For the sake of completeness we repeat the main steps of this proof.
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We proceed by assuming that there exist a v < q and a constant c > 0 such
that

(∫ ε

0

(
f ∗(t)

| log t|1/q′

)v
dt

t| log t|

)1/v

≤ c ‖f |Bn/p,α
pq (Rn)‖ (47)

holds for all f ∈ B
n/p,α
pq (Rn). This stands in contrary to our claim. We

again consider the function f given by (42), but this time we work with the
sequence b = (bj)

∞
j=1 defined by

bj :=

{
0 for j = 1

j−1/q(log(j))−1/v for j ≥ 2.

Note that b ∈ ℓq and hence the right-hand side of (47) is bounded. Plugging
the inequality (43) into the left-hand side of (47) we may estimate it from
below by

c1

∞∑

k=M

(kbk)
vk−v/q′−1 = c1

∞∑

k=M

k−1(log k)−1 = ∞,

which gives a contradiction. The theorem is proved, since the correctness of
the exponent for the F -case follows as in the subcritical case.

Remark 5.2. The necessity of the conditions in Proposition 3.2 are a con-
sequence of the last theorem, due to Proposition 2.10(i).

6. Anisotropic Hardy inequalities

This section deals with inequalities of Hardy type related to the anisotropic
function spaces Bs,α

pq (Rn) and F s,α
pq (Rn). Hardy inequalities related to the

isotropic function spaces of Besov and Triebel-Lizorkin type have been stud-
ied in [17, Section 16]. The results we present in this section are essentially
adaptations of reasoning used there to the anisotropic case. In the follow-
ing applications use will be made of envelopes results obtained in last two
sections.

In the sequel, if ε > 0 then Kα
ε := {x ∈ R

n : |x|α < ε} is the anisotropic
ball centered at the origin with (anisotropic) radius ε. The Lebesgue measure
of such a ball is |Kα

ε | = c εn with c independent of ε.

Theorem 6.1. Let ε > 0 and let κ be a positive monotonically decreasing
function on (0, ε]. Let α be an anisotropy according to (2), s > 0 and s −
n/p = −n/r with 1 < r < ∞.
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(i) Let 0 < q ≤ r. Then
∫

Kα
ε

∣∣∣κ(|x|α)|x|n/r
α f(x)

∣∣∣
q dx

|x|nα
≤ c ‖f |Bs,α

pq (Rn)‖q (48)

for some c > 0 and all f ∈ Bs,α
pq (Rn) if, and only if, κ is bounded.

(ii) Let 0 < q ≤ ∞. Then
∫

Kα
ε

∣∣∣κ(|x|α)|x|n/r
α f(x)

∣∣∣
p dx

|x|nα
≤ c ‖f |F s,α

pq (Rn)‖p

for some c > 0 and all f ∈ F s,α
pq (Rn) if, and only if, κ is bounded.

Proof : We begin by proving (48) with κ = 1. Let c > 0 and consider

b(x) :=

{
|x|−cn

α for x ∈ Kα
ε

0 for x /∈ Kα
ε .

(49)

Then b∗(t) ∼ t−c near the origin. We now apply this observation with c =
1/q − 1/r to estimate

∫

Kα
ε

∣∣∣|x|n/r
α f(x)

∣∣∣
q dx

|x|nα
=

∫

Kα
ε

bq(x)|f(x)|q dx

≤

∫ |Kα
ε |

0

b∗q(t)f ∗q(t) dt ∼

∫ c1ε
n

0

(
t1/rf ∗(t)

)q dt

t
≤ c2 ‖f |Bs,α

pq (Rn)‖q.

For the first inequality we have used a well-known property (see [1, Chapter
II, Corollary 4.5]). The second inequality follows from Proposition 4.1. The
proof of (i) is completed by showing that κ has to be bounded if (48) holds.
For simplicity, let us assume that ε = 1. Suppose that, contrary to our claim,
κ(t) → ∞ as t ↓ 0. The argument here makes essential use of the extremal
function given by (28). For more details we refer the reader to the proof of
Proposition 4.2. After plugging these functions into (48), we conclude that
κ(2−j) ≤ c, for any sufficiently large j, which is a contradiction.

The proof of (ii) can be handled in much the same way as in the proof of
Theorem 4.3 (ii), namely by using Proposition 2.5. This method enable us to
avoid the use of extremal functions in F -spaces that might require moment
conditions, as was done in [17, Step 5 in the proof of Theorem 13.2] for the
isotropic case.

Theorem 6.2. Let ε ∈ (0, 1) and let κ be a positive monotonically decreasing
function on (0, ε]. Moreover, let α be an anisotropy according to (2).
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(i) Let 0 < p < ∞ and 1 < q < ∞. Then
∫

Kα
ε

∣∣∣∣
κ(|x|α)f(x)

log |x|α

∣∣∣∣
q

dx

|x|nα
≤ c ‖f |Bn/p,α

pq (Rn)‖q (50)

for some c > 0 and all f ∈ B
n/p,α
pq (Rn) if, and only if, κ is bounded.

(ii) Let 1 < p < ∞ and 0 < q ≤ ∞. Then
∫

Kα
ε

∣∣∣∣
κ(|x|α)f(x)

log |x|α

∣∣∣∣
p

dx

|x|nα
≤ c ‖f |F n/p,α

pq (Rn)‖p

for some c > 0 and all f ∈ F
n/p,α
pq (Rn) if, and only if, κ is bounded.

Proof : Let us first prove (50) with κ = 1. We consider

a(x) :=

{
|x|

−n/q
α |log |x|α|

−1 for x ∈ Kα
ε

0 for x /∈ Kα
ε .

(51)

Computing the measure-preserving rearrangement of a yields a∗(t) ∼ t−1/q| log t|−1

for t near the origin. To prove this we have used asymptotic inversion, in
particular the assertions of Proposition 1.1.15 and Appendix 5/2. of [2].
Hence,

∫

Kα
ε

∣∣∣∣
f(x)

log |x|α

∣∣∣∣
q

dx

|x|nα
=

∫

Kα
ε

aq(x)|f(x)|q dx

≤

∫ |Kα
ε |

0

a∗q(t)f ∗q(t) dt ∼

∫ c1ε
n

0

∣∣∣∣
f ∗(t)

log t

∣∣∣∣
q
dt

t
≤ c2 ‖f |Bn/p,α

pq (Rn)‖q,

which gives (50). Once again, for the first inequality we have used a well-
known property of rearrangements. The second inequality follows from Propo-
sition 5.1 (i). For the reverse implication we must show that κ is bounded.
Again for simplicity, let us assume that ε = 1. To obtain a contradiction, we
suppose that κ(t) → ∞ as t ↓ 0. Moreover, assume that f(x) is a positive
monotonically decreasing function in Kα

1 . By virtue of monotonicity of κ we
get

sup
0<t<δ

κ(t)f ∗(t)

| log t|1/q′
≤ c1

(∫ δ

0

(
κ(t)f ∗(t)

| log t|

)q
dt

t

)1/q

(52)

= c1

(∫

Kα
ε

∣∣∣∣
κ(|x|α)f(x)

log |x|α

∣∣∣∣
q

dx

|x|nα

)1/q

≤ c1‖f |Bn/p,α
pq (Rn)‖.
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This time we make use of the extremal functions given by

fJ(x) :=
J∑

j=1

J−1/q ϕ(2(j−1)αx), x ∈ R
n, J ∈ N. (53)

More details are found in the proof of Theorem 5.1, Step 2, especially (44).
Inserting (53) into (52), we obtain a contradiction to our assumption.

The proof of (ii) can be handled as in the proof of Theorem 6.1.

Now, we shall be concerned with an apllication of Theorem 6.2, in the
context of some anisotropic fractals.

Following the recent work of E. Tamási [15], we consider the next definition.

Definition 6.3. Let α be an anisotropy in R
n and let 0 < d < n. A compact

set Γα in R
n is called an anisotropic d-set if there are a Borel measure µ in

Rn and two positive constants c1 and c2 such that supp µ = Γ and

c1t
d ≤ µ(Bα(γ, t)) ≤ c2t

d for all 0 < t < 1 and γ ∈ Γ, (54)

where
Bα(γ, t) := {x ∈ R

n : |x − γ|α < t}.

Let

Dα(x) := distα(x, Γα) = inf
y∈Γα

|x − y|α

be the anisotropic distance of x ∈ Rn to Γα. Moreover, for ε > 0 we define
the anisotropic neighbourhood Γα

ε of Γα by

Γα
ε := {x ∈ R

n : Dα(x) < ε}.

Proposition 6.4. Let α be an anisotropy in Rn, 0 < d < n and let Γα be a
compact anisotropic d-set in Rn. Moreover, let 1 < p < ∞ and 0 < q ≤ ∞.
Then ∫

Γα
ε

∣∣∣∣
f(x)

log Dα(x)

∣∣∣∣
p

dx

Dn−d
α (x)

≤ c ‖f |F n/p,α
pq (Rn)‖p (55)

for some c > 0 and all f ∈ F
n/p,α
pq (Rn).

Proof : Consider

Γj :=
{

x ∈ R
n : 2−

j+1

n−d < Dα(x) ≤ 2−
j

n−d

}
, j ≥ J.
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Standard calculations show that |Γj| ∼ 2−j. In analogy to (51), we take into
account the function

a(x) := | log Dα(x)|−pDd−n
α (x).

It follows that
a∗(t) ∼ t−1| log t|−p, 0 < t < δ < 1.

The rest of the proof runs as the proof of the previous theorem.
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