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Abstract: Over the last few decades, climate change and global warming have intensified a serious
threat that may deteriorate global sustainable development. The factors significantly contributing
to global warming are greenhouse gases, mainly carbon dioxide emissions. Therefore, it is crucial
to consider the variables affecting carbon emissions considerably. This study examines symmetric
(linear) and asymmetric (non-linear) effects of green technology innovation (GTI), economic policy
uncertainty (EPU) along with foreign direct investment (FDI), and economic development (GDP) on
carbon emissions (CO2) by utilizing yearly time series data between 1970–2018 in Italy. We employed
linear and non-linear autoregressive distributed lag (ARDL) approaches to examine short- and long-
run estimates. The symmetric results show that GTI and EPU mitigate environmental degradation in
the long run and intensify in the short run, whereas FDI increases environmental issues over the long
and short run. Nevertheless, the asymmetric outcomes demonstrate that positive shocks in GTI lessen
CO2 emissions, whereas negative shocks in GTI significantly escalate CO2 emissions. Furthermore,
EPU and FDI positive and negative shocks significantly enhance environmental degradation. Based
on these findings, important policy implications for policymakers to make strong policies to achieve
carbon neutrality targets and achieve sustainable economic growth are proposed. Finally, because
positive and negative changes in GTI, EPU, and FDI have different consequences on CO2 emissions,
policymakers should consider asymmetry across these variables when assessing their impact.

Keywords: CO2 emissions; green technology innovation; economic policy uncertainty; foreign direct
investment; GDP

1. Introduction

Climate change has recently gained prominence on a global scale as a major threat to
achieving sustainable development. Rapid economic development in some nations has
necessitated the use of a lot of resources, which has caused substantial environmental harm,
such as high pollution and overuse of resources [1]. It is commonly accepted that the world
will experience major environmental disasters if appropriate climate initiatives are not
implemented to stop global warming [2]. In order to limit the extent of damage from global
warming, scholars believe that maintaining the increase in global temperature below 1.5 ◦C
and lowering CO2 emissions to net zero is essential [3,4]. The greenhouse gases that are the
main contributors to climate change are mainly caused by human activities geared toward
economic growth that results in the emission of CO2, and these emanations are brought
on by the usage of conventional energy (fossil fuels). As a result, fossil fuel consumption
exacerbates environmental issues. The future of a nation can be jeopardized by dependence
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on fossil fuels and being a major contributor to global climate change. For instance, more
than 40% of the European Union’s (EU) natural gas supplies originate from Russia, and as
a result, strongly reliant European nations such as Italy may be particularly severely struck
by the consequences of the Ukraine crisis. Italy was the second-highest CO2 emitter in the
EU in 2018, after Germany (see Figure 1).
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Many environmental problems, such as soil, water, and air pollution, climate change,
loss of biodiversity, and overexploitation of natural resources, have been getting worse with
the development of technology [5]. Since the term “sustainable development” was coined,
many market players, including institutional and private investors, have expressed a desire
to consider environmental sustainability when making investment decisions. However,
attaining sustainable development was difficult before the rise of environmental, social,
and governance (ESG) investing, which is directly linked to sustainability and carbon
neutrality targets [6]. It has led to the widespread adoption of green technology innovation,
clean energy, and the circular economy concept as effective methods of environmental
management to achieve carbon neutrality targets.

Despite the recent decline in the global CO2 emissions level, the World Energy Outlook
2017 anticipated that, under the new policies scenario, global CO2 emissions will increase
gradually until 2040. However, this result is insufficient to stop the worst effects of climate
change. Because of this, human activity is to blame for global warming. Therefore, humans
must take immediate action to save the planet from disastrous climate change. Experts
believe that the only way to enhance the quality of the environment without compromis-
ing the level of economic growth is the adoption of green innovation (clean energy and
energy efficiency), and these environmentally friendly technologies substantially influence
the reduction of environmental degradation. In recent years, clean energy sources have
become a substitute for traditional ones. These clean energy sources not only improve the
environment but also have several other favorable economic benefits [7,8]. Thus, to fight
against climate change and global warming, the world should reduce its dependence on
fossil fuels. However, the spread of green technology innovation often does not progress
simultaneously in different countries or locations. As a result, certain social and economic
factors may influence the real impact of green technology developments [9]. Therefore,
understanding the intricate connection between technological developments, EPU, and
CO2 emissions may help protect the environment we rely on.

Recent advancements in green technology innovation have greatly reduced environ-
mental degradation globally [10,11]. Even though it is theoretically assumed that prospects
of addressing environmental challenges increase with the number of environment-related
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technology, there is little empirical evidence to support this argument [12]. According to the
existing literature, the impact of breakthroughs in eco-innovation on the environment might
vary depending on the situation and might also be affected by factors such as income and
time [13,14]. Furthermore, [15] stated that even though eco-innovations are usually seen
as crucial elements of a green growth approach, the influence of environmentally friendly
technologies on the environment has long been a subject of discussion because of the
presence of the rebound effect. According to [10], green technologies boost environmental
productivity in Italy but have minimal impact on lowering CO2 emissions.

Economic policy uncertainty (EPU) may have environmental and economic conse-
quences. For instance, EPU might push firms to degrade the environment by promoting
conventional and environmentally harmful manufacturing techniques. On the other hand,
EPU could also influence spending and consumption patterns, which would reduce CO2
emissions. Additionally, because of the high EPU, a decline in R&D, innovations, and usage
of clean energy sources can lead to a rise in environmental deterioration. Therefore, it is
essential to study the connection between EPU and CO2 emissions to suggest strategies for
addressing environmental deterioration.

Furthermore, the inflow of foreign investment is frequently seen as one of the essential
instruments for the economic prosperity of nations, as well as a channel for the transmission
of breakthrough technologies in host nations [16]. The potential for negative environmental
effects has been one of the most crucial and widely discussed aspects of inward foreign
direct investment [17]. Because FDI may occur concurrently with large environmental
discharges, the development associated with an increase in inward FDI will likely be wiped
out by potential environmental costs [18].

Based on the discussion above, it is crucial to research the dynamic connections among
GTI, EPU, FDI, GDP, and CO2 emissions to help policymakers provide a more precise
and accurate picture of environmental quality strategies. In the given context, the present
study adds to the current literature in various ways. First, to our best understanding, no
empirical study has yet explored the consequences of GTI, EPU, and FDI on CO2 emission
in symmetric and asymmetric frameworks, particularly in Italy. The current study fulfills
this gap by analyzing the symmetric and asymmetric effects of GTI, EPU, and FDI on
CO2 emissions for Italy over the period 1970–2018. Earlier literature only examined the
symmetric impacts of GTI, EPU, and FDI on the environment. However, the asymmetric
impact of GTI, EPU, and FDI on CO2 emissions has not yet been studied in the literature.
The most unique and comprehensive contribution of the current study is that it analyzes
the linear and non-linear effects of GTI, EPU, and FDI on CO2 emissions in a single study
by employing the symmetric and asymmetric ARDL approaches advanced by [19,20]. The
non-linear autoregressive distributed lag (NARDL) approach enables us to analyze the
positive and negative effects of GTI, EPU, and FDI on environmental degradation.

Second, the economic policy uncertainty (EPU) index created by [21] is generally
utilized by various researchers in the literature as a measure of policy uncertainty (see,
e.g., [22–24]. However, the EPU index has several drawbacks and is criticized by scholars
for its incomplete nature. For instance, the EPU index only accounts for monetary, trade,
and fiscal policy uncertainty; it does not account for political events [25]. Furthermore,
there are problems with accuracy, dependability, and ideological bias because the index of
EPU for various nations is not computed from a single base. In order to overcome these
drawbacks, [26] developed a new index world uncertainty index (WUI) for 143 nations.
This index is computed using country reports from the EIU (economist intelligence unit).
Moreover, WUI is preferable to EPU since it considers political and economic changes
(events) in a nation and is derived from a single foundation (i.e., EIU reports). Therefore,
the current study uses the WUI as a stand-in for the EPU. It also investigates how the WUI
affects the quality of the environment.

The rest of the research is arranged as follows. The appropriate literature on factors that
affect CO2 emissions is evaluated in Section 2. Section 3 covers the data and methodology
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that we utilized in this study. The outcomes and their discussions are explained in the
Section 4. The final section concludes the investigation, which also offers policy suggestions.

2. Literature Review

During the last few decades, the relationship between CO2 emissions and its deter-
mining factors has drawn the attention of both academics and policymakers. As a result,
several studies have investigated the association among CO2 emissions, GTI, EPU, FDI,
and GDP. However, the results of these studies are contradictory and ambiguous. In this
study, we classified the literature into four categories. The first phase of the literature shows
how developments in green technology and the environment are related. The second phase
explains the nexus between EPU and CO2 emissions.

Furthermore, the third phase of the literature explains how FDI and CO2 emissions
are related. Moreover, the final part of the literature investigates the association between
GDP and CO2 emissions. Table 1 provides an overview of the prevailing literature.

Table 1. Literature summary.

Authors Country Period Estimation Technique Findings

Part 1: GTI and CO2 emissions

[27] Singapore 1990–2018 Bootstrap ARDL ↓
[28] OECD 1990–2014 GMM ↓
[29] 27 developed economies 1997–2009 REM ↑
[30] BRICS nations 1990–2017 Quantile-on-Quantile regression ↓
[31] 27 countries of European Union 1992–2014 GMM ↓
[32] OECD 1990–2015 ARDL, Granger causality test ↓
[33] N-11 countries 1980–2018 CS-ARDL ↓
[5] Italy 1994–2018 Dynamic ARDL ↓
Part 2: EPU and CO2 emissions

[25] 10 most CO2 emitters economies 1990–2015 PMG-ARDL ↑
[34] USA 1985–2017 Causality in quantiles ↑
[35] China 2008–2011 STIRPAT ↑
[23] UK 1985–2017 ARDL ↑
[36] USA 1960–2016 ARDL ↑
[37] BRICS 2000–2019 FMOLS, DOLS ↑
Part 3: FDI and CO2 emissions

[38] France 1995–2016 Bootstrap ARDL ↑
[39] Pakistan 1980–2014 3SLS ↑

[40] Turkey 1974–2013 DOLS, Hacker and Hatemi-J
causality method ↑

[41] Top five carbon emitters of
countries 1982–2016 Panel quantile regression ↑

[42] Bangladesh 1972–2016 Dynamic simulated ARDL ↓
[43] Latin America 1970–2019 Spatial Models ↑
[44] BRICS 2000–2018 Panel ARDL ↑
Part 4: GDP and CO2 emissions

[45] Mexico 1990–2018 ARDL ↑
[46] BRICS 1992–2016 PMG and GMM ↑

[47] Azerbaijan 1992–2013 Johansen, ARDLBT, DOLS,
FMOLS, and CCR ↑

[48] Pakistan 1971–2014 ARDL-NARDL ↑
[49] Pakistan 1965–2015 ARDL ↑
[50] Greece 1970–2014 ARDL ↑
[51] OECD 1991–2012 PMG test ↑
[52] Bangladesh 1972Q1–2020Q4 ARDL ↑

Note: ↑, ↓, denote positive, negative, and no effect of GTI, FDI, and GDP carbon emissions.
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3. Methodology and Data

This study aims to analyze linear and non-linear effects of GTI, EPU, FDI, and GDP
carbon emissions by employing the yearly time series data from 1970–2018 for Italy. Carbon
dioxide emission (CO2) measured in (metric tons per capita) is explained variable. In
contrast, the explanatory variables are green technological innovations (GTI) is based on
the (related environmental technologies as % total technologies), and EPU is used as a
proxy of the world uncertainty index (WUI). WUI is accessible quarterly. Using the average
of the previous four quarters, we transformed the data into an annual frequency [25]. By
counting the number of times, the word “uncertainty” (or its synonyms) in reports from
EIU (economic intelligence unit), [26] computed the world uncertainty index. In addition, a
high value of WDI denotes a high degree of EPU.

Furthermore, the inflow of foreign direct investment (FDI) is defined as the net inflow
of FDI% of GDP, and per capita, gross domestic product (GDP) is defined in constant
2010 USD as a proxy of economic growth. The FDI, GDP, and CO2 emissions data are
collected from the World Bank. The green technological innovation data are gathered from
the OECD database, while data on EPU is gathered from the World Uncertainty Index.
Furthermore, to eradicate the problem of heteroscedasticity, we transformed the data series
into a logarithmic form. Table 2 briefly depicts the study variables, unit of measurement,
and sources.

Table 2. Variable’s description and data sources.

Variables Symbol Measurement Sources

Carbon dioxide emissions CO2 Metric tons per capita WDI
Green technology innovation GTI Patents related to the environment as (% total patents) OECD Statistics
Economic policy uncertainty EPU World uncertainty index WUI
Foreign direct investment FDI Net inflows (% of GDP) WDI
GDP per capita GDP Per capita (constant 2010 USD) WDI

Furthermore, Figure 2 illustrates the flow chart of the methodology utilized. In the first
step, we analyzed the stationarity properties of the underlying variables by employing three
different stationarity tests. In the second step, we examined the long-term cointegration
between the variables by applying linear and non-linear cointegration approaches. The
long- and short-run relationship among the variables are investigated in the third step by
using linear and non-linear ARDL approaches. Finally, we also performed some diagnostics
tests to confirm the validity of our estimated models.

Furthermore, to explore the connection among research variables, the econometric
model, which we developed by following the literature, is given below:

lnCO2t = β0 + β1lnGTIt + β2lnEPUt + β3lnFDIt + β4lnGDPt + εt (1)

where lnCO2t denotes the logarithm of carbon dioxide emissions, lnGTIt signifies the
logarithm of green technology innovations, lnEPUt symbolizes the logarithm of economic
policy uncertainty, lnFDIt indicates logarithm of foreign investment, and lnGDPt indicates
the logarithm GDP per capita. While β0 is constant, β1 to β5 are the coefficients. εt denotes
the error term, and t is the time.
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3.1. Autoregressive Distributed Lag Model (ARDL)

We utilized the ARDL cointegration approach suggested by [19,53] to observe the
long-run connection between GTI, EPU, FDI, GDP, and CO2 emissions. Several researchers
have extensively used the ARDL model to inspect long- and short-run correlations among
variables. The ARDL model has several advantages in contrast to other approaches [54–56].
First, this methodology can be utilized when research factors are integrated into I(0) and I(1)
or a combination of both. Second, this model estimates short- and long-run factors simulta-
neously. Third, this approach can be utilized even with a small sample size. Fourth, the
ARDL model resolves endogeneity and serial correlation problem between the variables by
selecting an appropriate lag length. So, due to the above-stated characteristics of the ARDL
cointegration approach, we utilized the ARDL model to assess long-run relations among
researched variables. The model we utilized for the evaluation of long-run relationships is
given below:
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∆lnCO2t = β0+
p
∑

i=1
β1∆lnC02t−1+

p
∑

i=1
β2∆lnGTIt−1+

p
∑

i=1
β3∆lnEPUt−1

+
p
∑

i=1
β4∆lnFDIt−1 +

p
∑

i=1
β5∆lnGDPt−1+λ1lnC02t−1

+λ2lnGTIt−1+λ3lnEPUt−1 + λ4lnFDIt−1 + λ5lnGDPt−1 + εt

(2)

In the equation above, ∆ stands for the first difference and εt denotes the error term.
While β1 to β5 and λ1 to λ5 illustrates short- and long-run coefficients, respectively. Ad-
ditionally, t − 1 indicates the best lag choices as defined by Akaike’s information criteria
(AIC). [53] recommended utilizing the F-Statistics joint significance test to examine long-run
cointegration among studied variables. According to the F-Statistics joint significance test,
the following are the null and alternate hypotheses: Ho = λ1 = λ2 = λ3 = λ4 = 0, and
H1 = λ1 6= λ2 6= λ3 6= λ4 6= 0.

The calculated value of F-statistics determines whether null and alternative hypotheses
are accepted or rejected. A long-run relation exists among research variables if the computed
value of F-statistics exceeds upper bound critical values. On the other hand, no long-run
cointegration exists if the calculated value is below the lower critical boundary. However,
judgment will be uncertain if the computed value falls between lower and upper critical
boundaries. If a long-run relationship exists, we look at short-run association among the
studied variables. The short-run ARDL model uses the following error correction model:

∆lnCO2t = β0+
p
∑

i=1
β1∆lnC02t−1+

p
∑

i=1
β2∆lnGTIt−1+

p
∑

i=1
β3∆lnEPUt−1

+
p
∑

i=1
β4∆lnFDIt−1 +

p
∑

i=1
β5∆lnGDPt−1+λ

1
lnC02t−1 + λ2lnGTIt−1+λ3lnEPUt−1

+λ4lnFDIt−1 + λ5lnGDPt−1 + θECTt−1 + εt

(3)

where θ is the error correction term (ECT) coefficient and calculates the disequilibrium
correction speed in response to any shock. ECT ranges from −1 to 0. Therefore, the
coefficient value of ECT must be negative and significant, and it is recommended that each
shock adjusts towards equilibrium in the following time.

3.2. Non-Linear Autoregressive Distributed Lag (NARDL) Model

The linear ARDL model only investigates the variables’ short- and long-run cointegra-
tion. However, it does not depict the asymmetric effect of the studied variables. In order
to capture the asymmetric effects of GTI, EPU, and FDI on CO2 emissions, we employed
the NARDL model recommended by [20]. We split GTI, EPU, and FDI into their negative
and positive components using the partial sum method of [20] to examine the asymmetric
influence of the underlying factors on CO2 emissions. Moreover, the partial sum of GI,
EPU, and FDI are as follows:

LnGTI+t =
t

∑
j=1

∆LnGTI+j =
t

∑
j=1

max (∆GTI+j , 0) (4)

LnGTI−t =
t

∑
j=1

∆LnGTI−j =
t

∑
j=1

min (∆GTI−j , 0) (5)

LnEPU+
t =

t

∑
j=1

∆LnEPU+
j =

t

∑
j=1

max (∆EPU+
j , 0) (6)

LnEPU−t =
t

∑
j=1

∆LnEPU−j =
t

∑
j=1

min (∆EPU−j , 0) (7)
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LnFDI+t =
t

∑
j=1

∆LnFDI+j =
t

∑
j=1

max (∆FDI+j , 0) (8)

LnFDI−t =
t

∑
j=1

∆LnFDI−j =
t

∑
j=1

min (∆FDI−j , 0) (9)

where LnGI+t , LnGTI−t , LnEPU+
t , and LnEPU−t explain positive and negative variations in

green technology innovation and economic policy uncertainty. Similarly, LnFDI+t , LnFDI−t rep-
resents positive and negative variations in foreign direct investment. Equations (4), (6) and (8)
show the increase in GTI, EPU, and FDI, while Equations (5), (7) and (9) demonstrate the
decrease in GTI, EPU, and FDI, respectively. We expand our basic model by first splitting
the variables into their positive and negative components, then substituting these negative
and positive parts into Equation (2) as follows:

∆lnCO2t = δ0+
p
∑

i=1
δi∆lnC02t−i+

p
∑

i=1
δi∆lnGTI+t−i

+
p
∑

i=1
δi∆lnGTI−t−i+

p
∑

i=1
δi∆EPU+

t−i+
p
∑

i=1
δi∆lnEPU−t−i+

p
∑

i=1
δi∆lnFDI+t−i+

p
∑

i=1
δi∆lnFDI−t−i

+λ1lnCO2t−1 + λ2lnGTI+t−1 + λ3lnGTI−t−1 + λ4lnEPU+
t−1 + λ5lnEPU+

t−1 + λ6lnFDI+t−1
+λ7lnFDI−t−1 + εt

(10)

Equation (10) above describes the NARDL model of Shin et al. (2014) due to the partial
sum of positive and negative changes in GTI, EPU, and FDI. However, the model revealed
by Equation (2) is established as an asymmetric ARDL approach.

The NARDL model is the extended form of ARDL. It follows the same steps taken
under the ARDL technique. Furthermore, we performed the bounds F-test recommended
by [53] to validate long-run co-integration between variables. The null hypothesis of no
correlation is tested against the alternative hypothesis. After establishing the long-run
cointegration amongst the variables, we conduct additional tests to determine whether or
not GTI, EPU, and FDI have asymmetric effects on CO2 emissions. First, we confirm the ex-
istence of asymmetry if the number of lags connected to (LnGTI+t , LnEPU+

t , and LnFDI+t )
are different from the numbers of lags taken by (LnGTI−t , LnEPU−t , and LnFDI−t ), we con-
firm the existence of dynamic asymmetry. Secondly, we confirm asymmetric consequences
of GTI, EPU, and FDI on CO2 emissions if estimates of

(
LnGTI+t , LnEPU+

t , and LnFDI+t )
are significantly different from the estimates of (LnGTI−t , LnEPU−t , and LnFDI−t ). Finally,

a long-run Wald test is used to determine whether we can reject the hypothesis that λ+
2

λ1
= λ−3

λ1
,

λ+
4

λ1
= λ−5

λ1
, λ+

6
λ1

= λ−7
λ1

, and, therefore, validate the asymmetric impacts of GTI, EPU, and FDI.
Furthermore, the asymmetric cumulative dynamic multiplier impact is evaluated, where
the 1% change in lnGTI+t−1, lnGTI−t−1, lnEPU+

t−1, lnEPU−t−1, lnFDI+t−1, and lnFDI−t−1 on
lnCO2t can be obtained, respectively, as follows

m+
h = ∑h

j=0
φlnCO2t+j

φlnGTI+t
, m−h = ∑h

j=0
φlnCO2t+j

φlnGTI−t
,

h = 0, 1, 2, 3, . . . Noting that h→ ∞, m+
h → λ+

2 , m−h → λ−3
m+

h = ∑h
j=0

φlnCO2t+j

φlnEPU+
t

, m−h = ∑h
j=0

φlnCO2t+j

φlnEPU−t
, b

= 0, 1, 2, 3 . . . Nothing that h→ ∞, K+
b → λ+

4 , K−b →λ−5
m+

h = ∑h
j=0

φlnCO2t+j

φlnFDI+t
, m−h = ∑h

j=0
φlnCO2t+j

φlnFDI−t
, b

= 0, 1, 2, 3, . . . noting that h→ ∞, m+
h → λ+

6 , m−h → λ−7

(11)

The equation above describes the asymmetric cumulative dynamic multiplier effects.
In addition, it explains the asymmetric reaction of independent variables to their corre-
sponding (positive and negative) shocks on the explained variable. We also performed
several diagnostic tests to evaluate the goodness of ARDL and NARDL models, including
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the Jarque–Bera normality test. In addition, we used ARCH LM and Breusch–Pagan–
Godfrey tests for heteroscedasticity issues and Breusch–Godfrey for the problem of serial
correlation. Finally, we also use CUSUM and CUSUM-Sq stability tests to evaluate the
dynamic stability of the models.

4. Results and Discussion
4.1. Summary Statistics and Correlation

Table 3 displays the descriptive statistics of all variables. The statistics reveal that
GDP has the highest mean value (10.1759), followed by GTI (5.4260), whereas the standard
deviation illustrates that FDI shows higher volatility than variations in EPU and GTI.
Figure 3 visualizes the trend of all the variables. The correlation between carbon emissions
and all regressors is presented in Table 4. The findings illustrate that most variables
positively correlate with carbon emissions, but EPU negatively impacts CO2 emissions.
GDP and GTI have a positive association. Additionally, a moderate positive association is
also found between EPU and FDI.

Table 3. Descriptive statistics.

Statistics LNCO2 LNGTI LNEPU LNFDI LNGDP

Mean 1.9088 5.4260 −3.2852 −0.8276 10.1759
Median 1.9137 5.2891 −3.0997 −0.7691 10.2553
Maximum 2.1028 6.8727 1.0936 1.0936 10.4361
Minimum 1.6820 3.2189 −6.3936 −6.3936 9.6633
Std. deviation 0.1157 0.9798 1.0755 1.2063 0.2311
Obs 49 49 49 49 49
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Table 4. Correlation matrix.

Variables LNCO2 LNGTI LNEPU LNFDI LNGDP

LNCO2 1.0000
LNGTI 0.1518 1.0000
LNEPU −0.0894 0.3038 1.0000
LNFDI 0.1468 0.3001 0.1180 1.0000
LNGDP 0.4300 0.9064 0.2774 0.3491 1.0000
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4.2. Unit Root Results

The stationarity properties of GTI, EPU, FDI, GDP, and CO2 emissions were evaluated
after describing descriptive statistics and the correlation between the variables. Before
modeling the time series data, it is critical to check the integration order because an
inappropriate one produces unreliable results. Furthermore, the ARDL model necessitates
the research variables to be integrated at I(0) and I(1) or a combination of both. For this
reason, we employed ADF and PP unit root tests. The statistics are displayed in Table 5 and
reveal mixed order of integration. According to the findings, EPU and FDI are stationary at
levels, whereas GTI, GDP, and CO2 emissions are non-stationary.

Table 5. Unit root tests.

ADF PP

Variables Level ∆ Level ∆

t-Stat. t-Stat. t-Stat. p-Values t-Stat. p-Values

LNCO2 −0.6726 −6.1963 *** −0.7870 0.9597 −6.1963 *** 0.0000
LNNGTI −2.7550 −7.1456 *** −2.8827 0.1770 −7.1617 *** 0.0000
LNEPU −4.6264 −9.5954 *** −4.6089 0.1254 −14.6208 *** 0.0000
LNFDI −5.8317 −5.1664 *** −5.9285 0.2389 −37.5067 *** 0.0000
LNGDP −1.0182 −5.3671 *** −0.6523 0.9709 −6.1557 *** 0.0000

Note: *** shows significance at the 1% level. ∆ denotes the first difference.

Additionally, we looked at the difference and discovered that variables turn station-
ary after taking the first differences. The results of ADF and PP demonstrate the mixed
integration order I(0) and I(1), indicating that the ARDL models are appropriate for em-
pirical research. Furthermore, due to wide criticism in the earlier studies regarding the
inadequacies of traditional unit root tests to produce unreliable results in the presence of
structural breakdowns. In this study, we also applied Zivot–Andrews [57] unit root test,
which detects a structural break in the series. Table 6 results suggest that GTI, EPU, FDI,
GDP, and CO2 emissions are not stationary at their levels. However, turn stationary at first
difference. These structural breaks lead us to use the NARDL approach since explanatory
variables may affect the explained variable differently in case of non-linearity.

Table 6. ZA unit root test.

Variables Level ∆

t-Stat. Break-Year t-Stat. Break-Year

LNCO2 −4.6392 2002 −7.1901 *** 2008
LNGTI −4.3417 2006 −9.0863 *** 1983
LNEPU −6.8478 1985 −10.6463 *** 1985
LNFDI −8.6362 2011 −14.0022 *** 2014
LNGDP −3.5662 1999 −7.0066 *** 2008

Note: *** shows significance at the 1% level. ∆ denotes the first difference.

4.3. Autoregressive Distributed Lag (ARDL) Model

We utilized the ARDL approach to verify the long-run cointegration among research
variables under examination. Table 7 displays bounds cointegration results. The results
demonstrate that the computed F-statistics value (6.8264) surpasses the upper bounds
critical value at a 1% significance level. These results provide evidence of long-run co-
integration between GTI, EPU, FDI, GDP, and CO2 emissions. After validation of cointe-
gration existence, long- and short-run relationships amongst explained and explanatory
variables are stated in Tables 8 and 9, respectively. We observed that GTI negatively and
substantially influences CO2 emissions under the symmetrical framework. This outcome
suggests that a 1% surge in GTI corresponds to a 0.3037% drop in CO2 emissions, while
everything else is constant. This positive connection may be explained by the fact that GTI
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considerably lowers the cost of mitigating CO2 emissions by advancing effective technolo-
gies and, as a result, lower contributions to GHG [58]. In addition, GTI contains capacity
innovation such as energy-saving techniques, trash recycling, and pollution control mea-
sures, which lessen the adverse effects on the environment [59]. Contrarily, as demonstrated
in Table 7, GTI holds a significant favorable association with emissions level in the short
run. The results illustrate that a 1% intensification in GTI boosts CO2 emissions by 0.0261.
The findings are aligned with [49,60,61]. They stated that GTI enhanced emissions in many
countries and promoted environmental degradation.

Table 7. ARDL bounds test.

F-Statistics H0: No Level of Relationship

Significance I(0) I(1)

F-statistics 6.8246 *** 10% 2.2 3.09
K 4 5% 2.56 3.49

2.50% 2.88 3.87
1% 3.29 4.37

Note: *** shows significance at a 2.5% level.

Table 8. ARDL long-run results.

Variables Coeff. Std. Err. t-Stat. p-Values

LNGTI −0.3037 *** 0.0558 −5.4419 0.0000
LNEPU −0.1015 *** 0.0274 −3.7031 0.0000
LNFDI 0.0632 ** 0.0257 2.4647 0.0234
LNGDP 1.1650 *** 0.1530 7.6115 0.0000
Constant −8.582 *** 1.3915 −6.168 0.0000

Note: ** and *** denote significance at 5% and 1%, respectively.

Table 9. ARDL short-run results.

Variables Coeff. Std. Err. t-Stat. p-Values

LNGTI 0.0261 0.0243 1.0764 0.2952
LNEPU 0.0206 *** 0.0061 3.3837 0.0031
LNFDI 0.0022 0.0030 0.7287 0.4751
LNGDP 0.7232 *** 0.1838 3.9343 0.0009
Coint. Eq(−1) −0.2742 *** 0.0381 −7.1919 0.0000

Diagnostic tests

χ2 p-values

Normality 0.0448 (0.9778)
Serial-Corr. 0.1069 (0.8992)
Hetero. 1.2125 (0.3394)
ARCH 1.0816 (0.3057)
CUSUM Stability Confirmed
CUSUM-Sq Stability Confirmed

Note: *** denotes significance at the 1% level.

Furthermore, findings reveal that EPU exerts a negative and significant effect on CO2
emissions. The outcomes suggest a 1% surge in EPU lessens CO2 emissions by 0.101%
in the long run. A similar conclusion was also stated by [22]. The fact that can explain
this positive relationship is that EPU may substantially influence the economy, which
can affect overall business operations, lowering energy utilization and, as a result, lower
emissions [34]. In contrast, results explain that EPU boosts CO2 emissions over the short-
run, indicating that a 1% rise in EPU contributes towards environmental deterioration
by 0.0206%. There are two potential explanations for this discovery. First, EPU might
hinder R&D expenditures, inventions, and the use of green energy, ultimately enhancing
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environmental degradation. Second, EPU encourages producers to adopt conventional
and environmentally harmful production methods, which increases carbon emissions [34].
The findings are in line with [24,62,63]. They showed that EPU increases environmental
deterioration.

Additionally, findings demonstrate that FDI significantly influences CO2 emissions
over the long and short run. These findings confirm the pollution heaven hypothesis in
Italy by demonstrating that a 1% intensification in FDI raises emissions levels by 0.0632% in
the long run and 0.0022% in the short run. Similar outcomes are also described by [63] in the
case of Pakistan, [64] for Malaysia, and [65] for the Chinese economy. They all discovered a
positive connection between FDI and environmental degradation. Moreover, the outcomes
reveal that GDP and CO2 emissions are positively and significantly correlated. This finding
reveals that a 1% rise in GDP results in increases in environmental deterioration by 1.165%
and 0.723%, proving that growth positively impacts environmental deprivation in the long
and short run. These outcomes are coherent with [51,59,66,67]. They revealed that GDP
increases CO2.

Furthermore, lagged ECT, which shows reasonable convergence towards long-run
equilibrium at a speed of 27.42%, is significant and negative at the 1% level. Table 9, lower
section, summarizes the diagnostic test performed to ensure the stability of the estimated
model. In addition, we conducted Breusch–Pagan–Godfrey, ARCH, and Breusch–Godfrey
LM tests to determine heteroscedasticity and serial correlation, respectively. The results
reveal no problem of heteroscedasticity and serial correlation in our model. Moreover, the
stability of parameters analyzed with the CUSUM and CUSUM Square indicates that the
model is stable (Figure 4).
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4.4. NARDL Results

The results of the NARDL cointegration test are displayed in Table 10. The outcomes
demonstrate that the estimated value of F-statistics surpasses the upper bounds critical
value at 1% significance, suggesting that variables have a long-run cointegration. The antic-
ipated long and short-run outcomes of the NARDL model are given in Tables 11 and 12,
respectively. The findings demonstrate that the estimated coefficient of positive variations
in GTI is negative and significant, suggesting that positive variations in GTI negatively
impact environmental degradation. More precisely, any positive shocks in GTI decrease
environmental degradation by 0.1436% and promote long-run environmental quality. It
indicates that GTI has a significant role in decreasing environmental deterioration by
reducing CO2 emissions through the use of green sources of energy in production and
consumption activities. This result is in line with the findings of [5]. Ref. [68] also asserted
that GTI fosters environmental sustainability by lowering environmental damage.
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Table 10. NARDL bounds test.

F-Statistics H0: No Level of Relationship

Significance I(0) I(1)

F-statistics 6.2916 *** 10% 1.92 2.89
K 4 5% 2.17 3.21

2.50% 2.43 3.51
1% 2.73 3.9

Note: *** indicates a statistically significant level at 2.5%.

Table 11. NARDL long-run estimates.

Variables Coefficients Std. Error t-Stat. Probability

LNGTI-Positive −0.1436 *** 0.0432 −3.3257 0.0060
LNGTI-Negative 0.2307 *** 0.0422 5.4646 0.0001
LNEPU-Positive 0.0208 ** 0.0068 3.0533 0.0100
LNEPU-Negative 0.0390 *** 0.0066 5.9039 0.0001
LNFDI-Positive 0.0464 *** 0.0103 4.4911 0.0007
LFDI-Negative 0.0497 *** 0.0076 6.5429 0.0000
LNGDP 1.8594 *** 1.2704 14.6358 0.0000
Constant −16.1723 1.2014 −13.4617 0.0000

Note: ** and *** denote statistically significant levels at 5% and 1%, respectively.

Table 12. NARDL short-run estimates and diagnostics tests.

Variables Coeff. Std. Err. t-Stat. p-Values

LNGTI-Positive −0.0269 0.0192 −1.4009 0.1866
LNGTI-Negative 0.1033 *** 0.0262 3.9374 0.0020
LNEPU-Positive 0.0102 ** 0.0034 2.9878 0.0113
LNEPU-Negative −0.0050 0.0025 −1.9948 0.0693
LNFDI-Positive 0.0051 0.0052 0.9878 0.3427
LNFDI-Negative −0.0034 * 0.0018 −1.9077 0.0806
LNGDP 1.6736 *** 0.0770 21.7296 0.0000
Coint. Eq(−1) −0.1381 *** 0.1172 −9.7146 0.0000

Diagnostics Tests

χ2 p-value

Normality 2.2809 0.3197
Serial-Corre. 2.7029 0.1152
Hetero. 0.7868 0.7163
ARCH 0.0127 0.9109
CUSUM Stability Confirmed
CUSUM-sq Stability Confirmed

Note: ***, ** and * denote statistically significant levels at 1%, 5%, and 10%, respectively.

On the contrary, GTI increases CO2 emissions by 0.2307% in response to any negative
shock. The asymmetry connection between GTI and emissions is confirmed by the fact
that any increase or decrease in GTI has a different influence on CO2 emissions. However,
regarding the magnitude, the statistics illustrate that negative shocks in GTI affect emissions
growth more than positive shocks, which have approximately half the effect. These findings
notify that GTI is essential for sustainable growth, and its positive effects can be reduced if
GTI falls. Similar findings are also highlighted by [27,69]. They reported that GTI reduces
carbon emissions.

Furthermore, in the short-run direction, the connection between both factors remains
the same, but the significance level changes. The findings show that CO2 emissions are
not significantly affected by any positive shock to GTI. In contrast, negative shocks in GTI
influence CO2 emissions, which indicates that negative growth in GTI results in a rise of
CO2 by 0.1033%. This outcome confirms the asymmetric impact of GTI on CO2 emissions
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because the estimated coefficients of positive and negative shocks are noticeably different.
Moreover, we also performed a Wald test to confirm the long-run asymmetric influence of
GTI on CO2 emissions. The findings are given in Table 13. The results demonstrate that
GTI and CO2 emissions have a significant asymmetric association.

Table 13. Long-run asymmetries results.

Variables F-Stat. p-Values Decision

LNGTI 24.977 *** 0.000 GTI and CO2 have an asymmetric relationship
LNEPU 5.751 ** 0.030 EPU and CO2 have an asymmetric relationship
LNFDI 0.537 0.537 FDI and CO2 have no asymmetric relationship

Note: ** and *** denote statistically significant levels at 5% and 1%, respectively.

Additionally, the asymmetries brought on by GTI are investigated using dynamic
multiplier modifications, plotted in Figure 5. Black lines in different patterns, dotted
and solid, represent the nonlinear adjustments of CO2 emissions to positive and negative
changes in GTI. The asymmetric pattern of red lines indicates the difference between
positive and negative shocks.
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Furthermore, findings demonstrate that positive shocks to EPU substantially affect
CO2 emissions, suggesting that a rise in EPU (positive shock) enhances environmental
degradation by 0.0208% in the long run. This outcome is logical and supports that EPU
may impact the quality of the environment by influencing economic activities, including
investment, stock market, and commerce. This result is consistent with [23]. Similarly,
when the policy is ambiguous, policies meant to protect environmental quality are not
implemented well, leading to continued environmental harm by economic agents. [70]
have proven the terrible influence of policy uncertainty on the environment in Chile.
Negative shocks to EPU also positively influence carbon emissions with an estimated value
of 0.0390%. This result explains that negative shocks in EPU enhance CO2 emissions.

When the EPU level decreases, individuals and businesses start investing and pro-
ducing again, and consumer demand rises. These factors increase the utilization of energy
and, consequently, the level of emissions. However, short-run outcomes demonstrate that
positive changes in EPU significantly enhance CO2 emissions by 0.0102%, whereas negative
shocks do not significantly impact CO2 emissions to EPU. Furthermore, the results of the
Wald test given in Table 13 and the dynamic multiplier graph of EPU shown in Figure 6
further support this asymmetric link between EPU and environmental degradation. In
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the case of FDI, outcomes explain that a positive shock to FDI (rise in FDI) enhances the
emissions level by 0.0464% in the long run, while any decline in FDI (negative changes in
FDI) also raises CO2 emissions. However, the level of the negative shocks in FDI on CO2
emissions is more remarkable than the negative.
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Conversely, the short-run outcomes explain that (positive shock) rise in FDI does not
significantly impact CO2 emissions, whereas (negative shock) a decline in FDI enhances
CO2 emissions. These results confirm the pollution heaven hypothesis by showing that
positive and negative changes in FDI considerably enhance environmental degradation.
Similar outcomes are also identified by [48,71,72]. They indicated that the rise and decline
in FDI harm the environment by increasing CO2 emissions. Furthermore, the findings
of the Wald test given in Table 13 for determining the asymmetric effects of FDI on CO2
emissions do not confirm the asymmetry also shown in FDI dynamic multiplier graph
(Figure 7). Proceedings to statistics of GDP, both long- and short-run results demonstrate
that GDP increases CO2 emissions. Our outcomes are coherent with [22,48,50].
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Additionally, the lagged ECT is also negative and significant, suggesting a speed
of adjustment is 13.18%, which indicates that if any shock appears in the short-run will
converge toward long-run equilibrium at a speed of approximately 13% annually. The
findings of numerous diagnostic tests, including the Breusch–Pagan–Godfrey, ARCH, and
Breusch–Godfrey LM tests, are reported in the lower portion of Table 12. The findings
demonstrate that our model is reliable and does not have autocorrelation or heteroskedas-
ticity issues. Furthermore, the model’s parameters shown by CUSUM and CUSUM Square
appear stable in Figure 8.
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5. Robustness Analysis

The current study also applied the dynamic ordinary least square (DOLS) and fully
modified ordinary least square (FMOLS) models to examine the robustness of the ARDL
results. Tables 14 and 15 present the outcomes of the (DOLS) and (FMOLS), respectively.
The findings of both models are compatible with the outcomes of ARDL estimations.
For instance, GTI and EPU negatively influence CO2 emissions, which is persistent with
findings of ARDL estimations. As a result, findings of long-run ARDL and NARDL coincide
with those of (DOLS) and (FMOLS).

Table 14. Dynamic ordinary least square results.

Variables Coeff. Std. Err. t-Stat. p-Values

LNGTI −0.2335 *** 0.0521 −4.4806 0.0005
LNEPU −0.0859 ** 0.0345 −2.4901 0.0260
LNFDI 0.0603 * 0.0325 1.8558 0.0847
LNGDP 0.8695 *** 0.1290 6.7427 0.0000
Constant −5.8680 *** 1.2320 −4.7630 0.0003

Note: *, ** and *** demonstrate significant levels at 10%, 5%, and 1%, respectively.

Table 15. Fully modified ordinary least square.

Variables Coeff. Std. Err. t-Stat. p-Values

LNGTI −0.1429 *** 0.0308 −4.6367 0.0000
LNEPU −0.0409 *** 0.0123 −3.3198 0.0020
LNFDI 0.0210 * 0.0106 1.9751 0.0554
LNGDP 1.0080 *** 0.1255 8.0309 0.0000
Constant −7.6756 *** 1.1378 −6.7459 0.0000

Note: * and *** demonstrate significant levels at 10 and 1%, respectively.

6. Conclusions

The present study examined the symmetric and asymmetric impacts of EPU, GTI, FDI,
and GDP on CO2 from 1970 to 2018 in Italy. We employed linear and non-linear ARDL
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techniques to scrutinize long- and short-run correlations between the study’s variables.
The symmetric and asymmetric bounds tests provide evidence of long-run relationships
among variables. Additionally, empirical findings of the ARDL model reveal that GTI
negatively influences CO2 emissions under the symmetrical framework. This result implies
that a rise in GTI reduces environmental damage, encouraging sustainable growth in Italy.
Conversely, GTI harms the environment by raising emissions in the short run. Furthermore,
in the case of EPU, long-run outcomes demonstrate that the influence of EPU on CO2
emissions is negative and significant, suggesting that rising EPU reduces CO2 emissions.

However, EPU enhances environmental issues over the short run, indicating that it
hastens environmental deterioration. Furthermore, we see that FDI has a favorable effect on
CO2 emissions both in the long and short run, establishing the pollution haven hypothesis
in Italy. Finally, the non-linear ARDL approach outcomes show that GTI and EPU have
considerable asymmetric effects on CO2 emissions in the long and short run. According
to findings, GTI positive shocks significantly lower CO2 emissions, whereas GTI negative
shocks considerably increase CO2. Furthermore, the results demonstrate that positive
shocks to EPU favorably influence CO2 emissions, while negative shocks to EPU similarly
affect CO2 emissions.

Based on the study’s findings, we propose some important policy implications to
enhance the quality of the environment. First, the results demonstrate that positive shocks
in GTI lower CO2 emissions and promote sustainability. However, the effects of negative
shocks in GTI on environmental quality are more harmful, as a decline in green technology
innovations led to higher emissions with greater intensity. This result suggests that the
emissions-reducing effects of using green technologies are less significant than the effects
of a negative shock on increasing emissions. Therefore, the authorities should prevent a
decline in the use of green technologies. Furthermore, increased research and development
expenditures in green technology innovations could promote environmental innovation,
resulting in more efficiency and lower environmental degradation.

Additionally, authorities should encourage investors to acquire and protect patents
about environmental protection, and more specifically, innovation concerning renewable
energy should be encouraged. In contrast, a green energy strategy should reduce non-
renewable energy sources and substitute them with renewable energy (wind, solar, hydro,
and nuclear power) in the overall energy mix. Finally, the government should reform and
execute green growth policies and initiatives to achieve carbon neutrality targets.

The outcomes show that EPU promotes environmental deprivation by enhancing
carbon dioxide emissions. Therefore, the authorities should consider the possible influence
of EPU when making economic policies, especially environmentally friendly policies,
because a decrease in EPU is preferred for environmental protection. It is advised that
the government should promote clear and stable policies to encourage investment in
clean energy sectors. It would help to reduce CO2 emissions and diminish environmental
deterioration. Authorities should also take deliberate measures to mitigate policy-related
economic uncertainty. Stable economic policies will boost stable growth and promote
environmental quality.

Additionally, the findings support the claim that both positive and negative FDI shocks
have a negative effect on Italy’s environmental quality. Therefore, it is recommended that
the authorities adopt stringent environmental regulations and entry requirements for
FDI rather than allowing it at the expense of ecological deterioration. Moreover, the
government must adopt tools such as tax rebates, feed-in tariffs, subsidies, and incentives
to encourage and motivate green investments in the country. This action will help to boost
their productivity without harming the environment. Furthermore, governments should
reward foreign companies that use green technologies in their manufacturing processes by
lowering taxes and offering green subsidies. On the other side, it is suggested that high
tariffs should be imposed on foreign companies in the host country that utilize cheap and
dirty technologies in their production processes.
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