
Citation: Bouadila, A.; Bouizrou, I.;

Aqnouy, M.; En-nagre, K.; El Yousfi,

Y.; Khafouri, A.; Hilal, I.;

Abdelrahman, K.; Benaabidate, L.;

Abu-Alam, T.; et al. Streamflow

Simulation in Semiarid Data-Scarce

Regions: A Comparative Study of

Distributed and Lumped Models at

Aguenza Watershed (Morocco).

Water 2023, 15, 1602. https://

doi.org/10.3390/w15081602

Academic Editor: Renato Morbidelli

Received: 29 March 2023

Revised: 15 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Streamflow Simulation in Semiarid Data-Scarce Regions:
A Comparative Study of Distributed and Lumped Models
at Aguenza Watershed (Morocco)
Abdelmounim Bouadila 1, Ismail Bouizrou 1, Mourad Aqnouy 2,3 , Khalid En-nagre 3, Yassine El Yousfi 4 ,
Azzeddine Khafouri 5 , Ismail Hilal 6 , Kamal Abdelrahman 7 , Lahcen Benaabidate 1 ,
Tamer Abu-Alam 8,9,* , Jamal Eddine Stitou El Messari 3 and Mohamed Abioui 10,11,*

1 Laboratory of Functional Ecology and Environmental Engineering, Department of Environment,
Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco

2 Applied Geology Research Laboratory—AGRSRT, Department of Geosciences, Faculty of Sciences and
Techniques, Moulay Ismail University of Meknes, Errachidia 52000, Morocco

3 Department of Earth Sciences, Faculty of Sciences, Abdelmalek Essaadi University, Tétouan 416, Morocco
4 Environmental Management and Civil Engineering Team—ENSAH, Abdelmalek Essaadi University,

Tétouan 93030, Morocco
5 Laboratory of Geoheritage, Geoenvironment and Prospecting of Mines & Water, Department of Earth

Sciences, Faculty of Sciences, Mohammed Premier University, Oujda 60000, Morocco
6 Centre National de l’Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat 10001, Morocco
7 Department of Geology & Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
8 The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway,

9037 Tromsø, Norway
9 OSEAN—Outermost Regions Sustainable Ecosystem for Entrepreneurship and Innovation,

University of Madeira, Colégio dos Jesuítas, 9000-039 Funchal, Portugal
10 Geosciences, Environment and Geomatics Laboratory (GEG), Department of Earth Sciences,

Faculty of Sciences, Ibnou Zohr University, Agadir 80000, Morocco
11 MARE-Marine and Environmental Sciences Centre—Sedimentary Geology Group, Department of Earth

Sciences, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
* Correspondence: tamer.abu-alam@uit.no (T.A.-A.); m.abioui@uiz.ac.ma (M.A.)

Abstract: In semi-arid regions such as the southwestern zone of Morocco, better management of
water resources is crucial due to the frequent flooding phenomena. In this context, the use of
hydrological models is becoming increasingly important, specifically in the Aguenza watershed.
A multitude of hydrological models are available to make very efficient modeling, and from this
perspective, a comparative approach was adopted using two models with different characteristics.
Streamflow simulations were carried out continuously at daily time steps using GR4J and ATHYS
(2002–2011). The latter was used also to simulate rainfall-runoff events (1984–2014). Simulation
results using the distributed model are very efficient compared to those obtained by the lumped
model “GR4J”, which shows the disadvantages of neglecting the hydrological processes during a
hydrological study. However, a remarkable improvement was observed in the general appearance
of the resulting hydrographs and the performance parameters after using the distributed model
((Calibration: NSE, RSR, and PBIAS increased successively by 8%, 6%, and 45.2%); (Validation: NSE,
RSR, and PBIAS increased successively by 6%, 4%, and 8.9%)). In terms of flood event simulations,
a good concordance between observed and simulated discharge was observed (NSEmedian = 0.7),
indicating its great reliability for simulating rainfall-runoff events in semi-arid and data-scarce regions.
This research highlights the importance of using hydrological models, specifically the distributed
model ATHYS, for the better management of water resources in semi-arid regions with frequent
flooding events.

Keywords: semi-arid region; Aguenza watershed; distributed model “ATHYS”; lumped model
“GR4J”; continuous and event-based modeling
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1. Introduction

Water resource availability is directly connected to the sustainability and development
of human society and ecosystems [1–3]. Due to limited water supplies and pressure from
increasing water consumption, water resources are becoming scarcer, especially in arid
and semi-arid environments [4–9]. As a result, hydrological patterns, particularly in these
climatic zones, are likely to be affected. Therefore, these regions are likely to face the
greatest pressure in freshwater supply and management [10–13]. In addition, there is an
urgent need to characterize the rapid response of runoff to extreme precipitation events
that are becoming more frequent in arid and semi-arid and Mediterranean regions [14,15],
as they often generate extremely damaging flash floods and inundations [16–18]. Since
accurate simulations of flow are possible in arid and semi-arid regions, effective water
resource management and flood warning require accurate and precise simulations of
streamflow [19–25].

Hydrological modeling in semi-arid areas is strongly influenced by alternating
seasons [26,27]. These studies have shown that the flow regime of rivers in these con-
texts is largely influenced by a highly variable distribution of precipitation during the
seasons; i.e., maximum flows are generally observed in winter, autumn, and sometimes
spring, while low-flow periods are most often marked during the dry period of the year,
namely“summer”. During the last decades, hydrological modeling has undergone a
long process of improvement through the development of advanced models that differ
in terms of temporal classification of space and processes and integrate the complexity
of the system in hydrological simulations. In addition, modeling has become one of the
main tools for water resources management since extreme events (floods and droughts)
are more devastating and threaten the population worldwide [28–32]. It is noteworthy
that the improvement of the performance of flow simulations in semi-arid regions is nec-
essary, and this can only be done through the implementation of models more suitable
for these areas, especially the discrete, semi-distributed, and global conceptual models
that are most used in hydrological studies due to their adaptability to different climatic
contexts [33–35]. This applicability usually differs from one climate to another, and even
within the same climate, one can sometimes have very different results from one period
to another [36–45]. Conceptual hydrological models offer several advantages in terms
of applicability, especially in developing country basins that are characterized by data
scarcity [46–48]. Among their advantages are the reduced number of data inputs and
consequently a reduced number of calibrated parameters of hydrological models. This is
known to be effective for avoiding overparameterization risk and reducing the model
uncertainty issue [49]. Based on these advantages, the applicability of these conceptual
models to a wide range of watersheds around the world can be easily justified.

In this study, a comparative hydrological modeling approach was adopted through
the use of two models with different levels of sophistication: the distributed model
(ATHYS) [50] and the lumped model (GR4J) developed by CEMAGREF [51]. The ATHYS
model was based on a variety of production and transfer methods. The runoff from each
grid cell was computed using a reservoir model, and the runoff volume was routed to
the outlet using a lag and route routing method to obtain the hydrograph and volume
of the discharge. The main advantage of the GR4J model is that it does not require a
comprehensive description of the watershed and its continuous functioning, ensuring
throughout the year a complete accounting of the water entering and leaving the basin
and monitoring the overall humidity level [52]. The input data are precipitation and
evapotranspiration, which are simple measurements with few parameters to be adjusted.

The region of Souss-Massa (southwest Morocco), including the Aguenza watershed,
which is the subject of this study, presents a great constraint, that could be a limiting
factor if not a brake of its development: the problem of floods and inundations. Indeed,
this watershed is one of the Moroccan watersheds that contain a large number of sites
threatened by floods. The latter sometimes disrupts the economic activities of this basin
and causes considerable damage to the basic infrastructures and also to agricultural
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production, which is the main source for most inhabitants in these regions [53]. During
this study, two modeling approaches were used to understand better the hydrological
behavior of the Aguenza watershed. The first approach consists of using daily data to
carry out continuous modeling that allows us to better analyze the fast-evolution inflows
after the rainstorms. Generally, this approach is considered the most appropriate since it
takes into account for each event the previous rainfall (previous 10 days) in determining
the parameters. Furthermore, continuous hydrological models are considered the most
appropriate for estimating initial conditions [54,55]. In this sense, the continuous ap-
proach has some disadvantages concerning the data series used; i.e., it needs to provide
long precipitation time series and, in some cases, other data such as evapotranspiration,
temperature, relative soil moisture, etc. [56]. The continuous mode simulation uses
two conceptual rainfall-runoff models that differ in terms of spatialization to test their
influence on the quality of results. The second phase of this study consisted of using the
most important historical flood events that occurred in the Aguenza watershed either in
autumn or winter between 1984 and 2014 in order to elaborate an event-based modeling
(time step = 60 min). Indeed, ten of the most intense rainfall-runoff events (maximum
rainfall intensity reaching in the studied basin a value of 13.20 mm·h−1) were used to
study and simulate the hydrological behavior of the Aguenza watershed, in particular
the flood-generation process.

The main objectives of the present study are the following: (1) comparing distributed
and lumped models to evaluate the utility of using a spatially distributed modeling
approach for correctly reproducing the Aguenza streamflow continuously at daily time
steps and (2) using the event-based mode to characterize the flood-generation process
by simulating historical rainfall-runoff events. Our findings are expected to provide
water managers with valuable information for better water resource management and
subsequently for establishing preventive measures.

2. Materials and Methods
2.1. Study Area

The general context of the study is part of a comprehensive framework that includes
the full extent of the land affected by the flood problem, namely the Souss Plain that
is part of the large Souss-Massa Basin. The origin of floods comes from the various
tributaries of the Souss Basin, which have violent and irregular floods. Therefore, it is
the Souss Basin and more precisely the station of the Aguenza watershed that is the
subject of this study. The Aguenza watershed covers an area of 1162 km2 (Figure 1).
The Anti-Atlas Mountains from the southern part and the High-Atlas Mountains, which
constitute the eastern and northern parts of the watershed, delimit it. In terms of climate,
the river is dominated by arid to semi-arid climates, with the heaviest precipitation
falling on the upper Atlas outcrops [57]. The mean annual precipitation varies from 280
mm in the Anti-Atlas downstream part to 600 mm, which is observed in the High Atlas
Mountains upstream part.

2.2. Data Processing
2.2.1. Geographic Data

The digital elevation model (DEM) is a set of altimetric points (three coordinates: x,
y, and z). The assembly of these points makes it possible to reconstitute the topography
of the site; note that, in this study, a DEM with a high resolution of 12.5 m was used.
The software then processes these data to obtain the hydrographic network, the sub-
watersheds, the drainage directions, etc. (Figure 2). In addition, to have correct results, it
is necessary to make some corrections, especially for the drainage files (depression and
loop correction).
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2.2.2. Meteorological Data

In this study, daily precipitation, temperature, and evapotranspiration (from 1 January
1982 to 31 December 2011) were obtained for two meteorological stations (Aguenza and
Amsoul), and flow data series were obtained for one flow gauge (Aguenza: from 1 January
2000 to 31 December 2011). It is also important to note that the hydro-meteorological data
were obtained on an hourly time step to perform an event study focusing on the ten most
significant flood events that occurred in the Aguenza watershed between the years 1984
and 2014.

The Aguenza watershed is characterized by a rainy season and a hot and dry sum-
mer with an average of 271.34 mm/year (1982–2011). Two seasons can be distinguished:
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the rainy season (October to April) with irregular rainfall and the dry season (May to
September) where precipitation is relatively low (Figure 3). The temperature regime is
characterized by strong annual amplitudes that accentuate the phenomenon of evapotran-
spiration. The annual evaporation is 2279 mm. Evaporation is highest in July (360 mm) and
lowest in December and January (46 mm).
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2.3. ATHYS Platform

ATHYS is a rainfall-runoff modeling platform developed by the Research Institute
for Development (IRD) in Montpellier, France; it consists of four modules: (i) MERCEDES
(Regular Square Elementary Mesh for the Study of Superficial Flows); (ii) VISHYR (Visu-
alization of Hydrological data); (iii) VICAIR (Visualization of Raster Maps and Images);
and (iv) SPATIAL: spatial interpolation platform [58]. MERCEDES is based on the spatial
discretization of the basin in regular square meshes, which makes it possible to take into
account the spatial variability of the main factors that determine the flows [59]; the main
interest of this free software is the possibility to spatialized the rainfall–runoff transforma-
tion. Indeed, the model uses a DEM as input to calculate the runoff mesh by mesh. This
principle is combined with a spatialization of rainfall data, which allows large catchments
to account for spatial variation of rainfall intensities. The flow generated for a rainy event
(rainfall–runoff transformation) is calculated in three steps (Figure 4):

• For each mesh, the production model is used to estimate the amount of rain that
contributes to runoff;

• The transfer model calculates the hydrograph produced by each mesh at the outlet
of the catchment. This calculation is made from the result obtained by applying the
production function;

• The inputs of each mesh are summed to obtain the total flow at the outlet.

From the input data (DEM, drainage file, and precipitation), the ATHYS hydrological
model allows to definition of the streamflow at the daily and hourly time step in various
points of the catchment.

The software offers several production and transfer models. The following choices
were made.



Water 2023, 15, 1602 6 of 23

Water 2023, 15, x FOR PEER REVIEW 6 of 25 
 

 

• The transfer model calculates the hydrograph produced by each mesh at the outlet 
of the catchment. This calculation is made from the result obtained by applying the 
production function; 

• The inputs of each mesh are summed to obtain the total flow at the outlet. 
From the input data (DEM, drainage file, and precipitation), the ATHYS hydrologi-

cal model allows to definition of the streamflow at the daily and hourly time step in 
various points of the catchment. 

 
Figure 4. Functioning of the ATHYS model (www.athys-soft.org, accessed on 15 March 2022). 

The software offers several production and transfer models. The following choices 
were made. 

2.3.1. Production Function “SCS” 
The U.S. Department of Agriculture Soil Conservation Service (USDA-SCS) model 

[60] was selected as a production function to estimate the precipitation amounts that 
contribute to the runoff generation. This function was extensively used in successively 
applied in a semi-arid environment, including the Moroccan basins [19,20,33,61,62]. The 
SCS principle of functioning is illustrated in Figure 5. For each square mesh of the wa-
tershed discretization, a ground tank is associated. The capacity of this soil reservoir de-
fines the initial water deficit of the mesh: this parameter is denoted as S (mm). It is the 
function of the initial water content in the soil and the maximum storage capacity of local 
water when the soils are dry, or at least, very little moist. This parameter constitutes the 
initial condition of the model and is variable from one event to another. The SCS model is 
particularly sensitive to the capacity of this soil reservoir [57,63]. 

The SCS method is the most commonly used and is capable of fitting different types 
of flooding processes [60]. The version used in this study is composed of three parame-
ters: 
• S(mm) represents the total capacity of the ground tank, and this capacity depends on 

many characteristics of the soil (depth, heterogeneity, porosity, hydraulic conduc-
tivity, a dip of the subsoil, etc.); 

• ds(d−1) is the proportional emptying at the level of the reservoir by deep percolation, 
evaporation, sub-surface flow, etc.; 

• ω (dimensionless) represents the fraction of drainage, which participates in the 
runoff in the form of exfiltration. 

Figure 4. Functioning of the ATHYS model (www.athys-soft.org, accessed on 15 March 2022).

2.3.1. Production Function “SCS”

The U.S. Department of Agriculture Soil Conservation Service (USDA-SCS) model [60]
was selected as a production function to estimate the precipitation amounts that contribute
to the runoff generation. This function was extensively used in successively applied
in a semi-arid environment, including the Moroccan basins [19,20,33,61,62]. The SCS
principle of functioning is illustrated in Figure 5. For each square mesh of the watershed
discretization, a ground tank is associated. The capacity of this soil reservoir defines the
initial water deficit of the mesh: this parameter is denoted as S (mm). It is the function of
the initial water content in the soil and the maximum storage capacity of local water when
the soils are dry, or at least, very little moist. This parameter constitutes the initial condition
of the model and is variable from one event to another. The SCS model is particularly
sensitive to the capacity of this soil reservoir [57,63].
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The SCS method is the most commonly used and is capable of fitting different types of
flooding processes [60]. The version used in this study is composed of three parameters:

• S (mm) represents the total capacity of the ground tank, and this capacity depends on
many characteristics of the soil (depth, heterogeneity, porosity, hydraulic conductivity,
a dip of the subsoil, etc.);

• ds (d−1) is the proportional emptying at the level of the reservoir by deep percolation,
evaporation, sub-surface flow, etc.;

• ω (dimensionless) represents the fraction of drainage, which participates in the runoff
in the form of exfiltration.

2.3.2. Transfer Function “Lag and Route”

The choice of the lag and route model is explained by the desire to obtain both global
modelings in the contribution of different parameters (losses, runoff, etc.) and precision by
choosing to know this contribution for each mesh independently of the others (Figure 6).
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15 March 2022).

Moreover, in this model, all parameters are constant over time. This function consisted
of the two following parameters:

• V0 (m/s) is the maximum velocity reached at the outlet during the event. This model
calculates a transfer time Tm that designates the time elapsed between the rain falling
on the mesh m and the start of the passage of the event in the outlet. It is calculated
from the position of the mesh and the outlet (length Lm between mesh and outlet), the
drainage pattern, and the speed V0;

• K0 (dimensionless) is called the damping parameter. It is connected to the damping
time Km by the following relationship:

Km = Ko × Tm (1)

2.4. GR4J Model

The GR4J model is a four-parameter rainfall–runoff transformation model [51]. The
version used was developed by Perrin in 2002 and improved by Perrin and his team in
2003. The GR4J model is characterized by a structure with two associated tanks (Figure 7):
the first tank is a production tank, and the second is a routing tank; these are linked to unit
hydrographs (SH1 and SH2) to obtain finally a simulated flow (expressed in mm) as an
output of the model. This model also allows monitoring of the pond’s moisture status to
take into account previous conditions and ensure continuous operation [64].

www.athys-soft.org
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The GR4J model is a global model with four parameters, and these parameters are
as follows:

X1: Maximum capacity of the production tank (in mm);
X2: Coefficient of the underground exchange function (in mm);
X3: Maximum capacity of the routing tank (in mm);
X4: Base time of the unit hydrograph (days);
Input data: Daily precipitation and evapotranspiration (mm/d);
Data produced average daily flow (mm/d).

2.5. Performance Criteria

The performance criteria of a hydrological model can be based on mere visual appreci-
ation or based on statistical calculations known as objective functions to standardize the
comparison between the result of the simulation or forecast and observations [65]. The
identification of the parameter values of the hydrological model, depending on the objective
function used, quantifies the difference between the observed and simulated variables. The
most commonly used objective function in hydrology is the Nash–Sutcliffe criterion (NSE),
and closer the latter is to 1, the closer the simulation is to the observation [66]:

NSE = 1 − ∑n
i=1(Qobs, i − Qcalc, i)2

∑n
i=1(Qobs, i − Qobs, m)2 (2)

The determination coefficient (R2) was also used in this study. This criterion varies
between 0 and 1 (a value of 1 indicates that the simulation is identical to the observation).
The mathematical equation describing this criterion is as follows:

R2 =
∑n

i=1(Qobs, i − Qobs, m) · (Qcalc, i − Qcalc, m)√
∑n

i=1(Qobs, i − Qobs, m)2 ·
√

∑n
i=1(Qcalc, i − Qcalc, m)2

(3)

However, the RMSE-observations standard deviation ratio (RSR) is also used to evalu-
ate the performance of the model. The use of this standard deviation (SD) of the observed
data allows the normalization of the RMSE criterion. It is frequently used to measure the
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differences between the values predicted by a model and the observed values [67–69]. Its
range varies from 0 to infinity, while a value of 0 is a perfect score. It is given as follows:

RSR =
RMSE

STDEV obs
=

√√√√ ∑n
i=1(Qobs, i − Qcalc, i)2

∑n
i=1(Qobs, i − Qcalc, m)2 (4)

To evaluate further model simulations in terms of error quantification, another perfor-
mance criterion was selected to know better the tendency of the model to underestimate
or overestimate streamflow. This criterion is the bias error (PBIAS), which varies between
−∞ and +∞, with a value of 0 for an unbiased model. Generally, the hydrological model
underestimates flows when the value of this criterion is positive, but negative values indi-
cate an overestimation of flows [70]. The descriptive equation for this criterion is written
as follows:

PBIAS % =
∑n

i=1(Qobs, i − Qcalc, i)
∑n

i=1 Q, obs, i
∗ 100 (5)

where Qobs,i; Qcalc,i; and Qobs,m present the observed and simulated flows over a time step
and the average of the observed flows, respectively. These functions compare the model
simulation on the n-time step with the mean of the observations taken as a reference model.

3. Results
3.1. Model Calibration (GR4J)

The calibration consisted of selecting the set of model parameters known as optimal
values that give the best simulation results over the calibrated period. In this study, manual
calibration was used to find the best fit between the observed and simulated hydrographs.
The split sample method consisted of dividing the simulated period into two equal parts:
the first part that is between 1 January 2002 and 31 December 2006 was used for model
calibration, while the second part was usable to validate the model. After calibration,
relevant results were found and are depicted in Figure 8.
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The simulated hydrographs by the GR4J model are in daily time steps. This time step
is particularly interesting for the problems of preservation of the aquatic environment: a
single day of unmet needs is enough to affect the hydrological cycle [71–73]. By comparing
the daily flows (Figure 8), it was observed and simulated that the values are essentially
close for days with low flows, which indicates a good restitution of baseflow. Overall, the
calibrated model has the following advantages/disadvantages:

• Peak flows are underestimated;
• The low flow is correctly simulated;
• The modeled values are close to the observed values.

The daily variability of the flows is remarkable in the simulation periods. This variabil-
ity of the daily flows is expressed in the model by the level of the production tank (X1) and
the capacity of the routing tank (X3). Our model has four parameters not directly measured
in the field. The optimal values of calibrated parameters obtained for the GR4J model are
depicted in Table 1. From the analysis of these values, it is can be noticed that they are in
the same range of variation as those obtained by Perrin et al. [51].

Table 1. Optimal values of the model parameters (GR4J).

Procedure Simulation Period Parameters Optimal Values

Calibration 1 January 2002–31 December 2006

X1 4.3
X2 0.6
X3 1.7
X4 −0.7

Validation 1 January 2007–31 December 2011

X1 4.3
X2 0.6
X3 1.7
X4 −0.7

A sensitivity analysis was adopted in this study that consisted of identifying the
most sensitive parameters that influence the overall shape of the simulated hydrograph
and produce significant changes in model performance to isolate the effect of certain
parameters [74]. Default parameter values are changed within the ranges of these parame-
ters to determine which parameters influence the final results [75]. In terms of the GR4J
model parameter sensitivity, the most sensitive parameters were found to be the capacity
of the production reservoir (X1) and the routing reservoir (X3). Therefore, by focusing on
these two parameters, the best set was finally reached for the NSE, RSR, PBIAS, and R2

performance criteria (Table 2). Consequently, this shows that the quality of our simulation
is satisfactory (NSE value of about 0.57).

Table 2. Performance comparison of the results of two hydrological models used (GR4J and ATHYS).

Procedure Simulation Period
GR4J Model ATHYS Model

Performance
Criteria Values Evaluation Performance

Criteria Values Evaluation

Calibration 1 January 2002–31 December 2006

NSE 0.57 Satisfactory * NSE 0.65 Good *
RSR 0.65 Satisfactory RSR 0.59 Good

PBIAS 67.8 No satisfactory * PBIAS 22.6 Satisfactory *
R2 0.63 Good R2 0.62 Good

Validation 1 January 2007–31 December 2011

NSE 0.52 Satisfactory * NSE 0.58 Satisfactory *
RSR 0.69 Satisfactory RSR 0.65 Satisfactory

PBIAS 10.5 Good * PBIAS 1.6 Very good *
R2 0.62 Good R2 0.61 Good

Note: * Noticeable improvement when using a spatially distributed modeling approach.

3.2. Validation of the Model (GR4J)

Model validation is a necessary step to perform efficient hydrological modeling. In
this study, the optimal values were used to control the robustness of the GR4J model in
the studied context. More precisely, the second sub-period, which was not used in the
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calibration phase, was retained for model validation or verification (between 1 January 2007
and 31 December 2011). The analysis of our resulting hydrograph (Figure 9) shows that
the applied model is close to the one that simulates the observed hydrograph, especially
during low-flow periods.
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Based on the performance criteria of NSE, RSR, and R2 presented in Table 2, the results
of the rainfall-runoff modeling using the GR4J model during the validation period can be
considered satisfactory. However, the PBIAS criterion analysis shows that the model tends
to underestimate the flows, with a positive value of +10.5. This indicates that while the
model performs well in terms of overall accuracy, there may be some bias in the predictions.
Overall, the application of the GR4J model for rainfall-runoff modeling in the study area is
satisfactory, which is mainly justified by the agreement between observed and simulated
flows as well as the performance criteria values mentioned in Table 2.

3.3. Calibration of the Model (ATHYS)

The ATHYS modeling platform is used to simulate the flows from 1 January 2002 to
31 December 2006 with calibration by computing the streamflow at the Aguenza out-
let. Figure 10 presents the results of the calibration of a distributed model over the
considered period.

Based on these results, there is good agreement between observations and simulations.
Moreover, our findings indicate that the SCS-LR model underestimates the peak flows
during the considered period.
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The analysis of the resulting parameters (Table 3), which give less difference between
observed and modeled flows, shows that these parameters are generally realistic in the
study area. The S calibrated value (S = 110 mm) is similar to the S values obtained by
Laganier et al. [76], who found a similar range of variation in the Anduze basin with a
rural dominance.

Table 3. Optimal parameter values of the ATHYS model.

Procedure Simulation Period
Parameters

S W Ds V0 k0

Calibration 1 January 2002–31 December 2006 110 0.2 1.1 3 0.7
Validation 1 January 2007–31 December 2011 110 0.2 1.1 3 0.7

The objective functions used to evaluate this study are successively the NSE, RSR, R2,

and PBIAS criteria. Table 2 shows that the values of NSE and R2 criteria are successively
0.65 and 0.62. These values mean that the calibration is good according to the classification
of Moriasi et al. [68]. Moreover, the value of the RSR error is low (RSR = 0.59), which
confirms that our simulation is very efficient. However, the value of the PBIAS is positive,
which indicates that our model tends to underestimate flows as illustrated in Figure 10.

3.4. Validation of the Model (ATHYS)

The ATHYS platform was used to validate the model in the Aguenza watershed over
the period going from 1 January 2007 to 31 December 2011. By comparing the simulated
and observed streamflow (Figure 11), it can be seen that they are in perfect concordance
during the summer period. The description of the calibrated model allows concluding that:

• The low-flow period is reproduced well by the model;
• The two large peak flows ((24 December 2009; Q max observed = 864 m3/s) and

(18 February 2010; Q max observed = 902 m3/s)) are underestimated by the model
((24 December 2009; Q max simulated = 392 m3/s) and (18 February 2010; Q max
simulated = 516 m3/s)), while the other peaks are correctly restituted by this model.
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To validate the model in this study, the parameter values obtained during the calibra-
tion step were used (Table 2) to properly test the ability of the ATHYS model to reproduce
other data sets at the Aguenza outlet without changing any of these parameters. Table 2
shows the performance criteria resulting from the validation phase. These parameters
give a small difference between the general appearance of the observed and modeled
hydrographs. According to the table below, the RSR criterion has a value of 0.65, and the
values of NSE and R2 are higher than 0.5, which means that the quality of performance
is satisfactory based on Moriasi et al. [68]. Moreover, the value of the criterion PBIAS
(+1.6) indicates a weak underestimation of the flows by the discretized model (ATHYS) in
comparison with that obtained by the lumped model (PBIASGR4J = +10.5), which makes it
possible to say that the discretized model succeeded well in reproducing the regime of flow
at the Aguenza outlet. This finding allows concluding that taking into account the spatial
variation of precipitation and topography can clearly improve the model performance and
consequently the streamflow simulations in the Aguenza watershed.

3.5. Event-Based Simulations (ATHYS)

Insufficient knowledge of hydrological events can cause economic and sometimes
human damage [22]. Therefore, in this context, it is easy to understand the need for an
adequate estimation of these extreme hydrological events. The event-based modeling
consisted of reproducing the flood hydrograph, mainly in the parts of flood rise, peak
flows, and beginning of the recession until the drying up, all based on the histograms
of precipitation observed in the Aguenza and Amsoul rain gauge stations of the studied
watershed, to finally reproduce well the simulated flood hydrographs as the model output.
The calibration consisted of assigning to the parameters the numerical values, leading to
minimizing the difference between the calculated responses and the observed responses.
The two most important elements of this procedure are the following:

• Assessment of the quality of the simulations by adopting a performance measurement;
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• The method of modifying the parameters if the concordance between the observed
and simulated values is insufficient.

The ATHYS platform was used also to simulate 10 important rainfall events avail-
able between 1984 and 2014 at the Aguenza stations, with maximum rainfall intensity at
an hourly time step ranging from 2.90 to 13.20 mm·h−1 and a peak flow ranging from
50 m3·s−1 to 425 m3·s−1. By adopting the split sample method, the first five events were
used to calibrate the model, while the remaining events were used to validate the model.
These events are listed in increasing chronological order in Table 4.

Table 4. Classification of events according to applied modeling procedure.

N◦ Event Start Date/End Date Maximum Rainfall Intensity
(mm·h−1) Time Step = 60 min Procedure

1 4 November 1984 15:00–12 November 1984 13:00 9.25 Calibration
2 15 October 1988 01:00–20 October 1988 22:00 2.90 Calibration
3 9 November 1988 09:00–13 November 1988 23:00 6.25 Calibration
4 17 February 1991 00:00–23 February 1991 00:00 4.70 Calibration
5 10 January 1996 01:00–24 January 1996 04:00 13.20 Calibration
6 1 January 1997 00:00–8 January 1997 00:00 10.20 Validation
7 1 February 1998 00:00–7 February 1998 00:00 4.90 Validation
8 6 December 1999 10:00–11 December 1999 15:00 3.90 Validation
9 21 December 2000 14:00–23 December 2000 13:00 8.65 Validation
10 28 November 2014 04:00–28 November 2014 22:00 9.30 Validation

Climate information is collected periodically at each station. This information needs to
be spatialized to be extended to the entire watershed area. The Thiessen polygon method
was used to spatialize the precipitation provided by Aguenza and Amsoul rain gauge
stations by defining the area of influence of each station. The smallest time step available
for flood episodes is 60 min. In this part of the study, the SCS model was chosen as a
production function, and lag and route (LR) was chosen as a transfer function.

Upon comparison of the hourly discharge values, as shown in Figure 12, it can be
observed that the observed and simulated values are closely aligned, particularly during
periods of low flow. The calibrated model has the following strengths and weaknesses:
(i) the model tends to underestimate peak flows; (ii) however, overall, the simulated results
are highly comparable to the observed data.

Calibration consisted of adjusting the numerical values assigned to the model param-
eters to reproduce the observed response. In this study, a manual procedure was used
by sensitivity analysis mainly for the three production function parameters (S, w, and
ds) and then for the transfer function parameters (V0 and K0). The parameters of the
coupled SCS-LR model were manually modified by the trial and error technique to reduce
the difference between the observed and calculated flows. The influence on the overall
appearance of the simulated hydrograph differs from one parameter to another, which
reflects the importance of performing a sensitivity analysis to determine the most and least
influential parameters on the model results and automatically on the values of the objective
functions chosen to evaluate these results. From the sensitivity analysis performed, the
following can be concluded:

• The change in the S-parameter values (SCS) has a strong influence on the peak flow;
• The decrease of the hydrogram explained by the emptying time is generally influenced

by the parameter “ds”, which allows seeing a better appearance between the simulated
and the observed in terms of drying.

The parameters that have less influence on the general appearance of the hydrograph
are fixed, essentially for the transfer function, namely the diffusion coefficient (K0), and for
the production function the parameter (ω), which represents the emptying fraction that
participates in runoff and generally varies slightly from one event to another. Previous
studies in Morocco have shown that similar parameters have a significant impact on
the flow [20,22]. Table 5 shows that the variability of the parameters S, ds, and velocity
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(V0) transfer parameter is very large, which means their remarkable influences on the
hydrograph and the other parameters have very low values.
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Table 5. The parameters resulting from events calibration (ATHYS).

N◦ Event Episodes
Parameters

S W Ds V0 K0

1 4 November 1984 100 0.1 1 2.9 0.7
2 15 October 1988 90 0.1 0.6 3 0.7
3 9 November 1988 120 0.5 1.8 3.4 0.7
4 17 February 1991 100 0.3 0.6 2.4 0.7
5 10 January 1996 120 0.1 0.3 2.6 0.7

Average 106 0.2 0.9 2.9 0.7
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Evaluation of the Model

After calibration and validation of the model, it was necessary to evaluate its quality.
Generally, the evaluation of the quality of a simulation can sometimes be used as an
objective function or performance measure during model calibration and validation. Table 6
determines the quality of the modeling based on the values of the performance criteria
used in this study. This table also shows the variation in performance criteria from one
event to another. According to Table 6, the average NSE, PBIAS, R2, and RSR values of the
events selected for calibration were 0.76, −7.57, 0.74, and 0.48, respectively.

Table 6. Statistical analysis of calibration and validation events by calculating some performance criteria.

N◦ Event Episode
Criteria

Performance Evaluation
PBIAS RSR R2 NSE

1 4 November 1984 −42.81 0.41 0.82 0.83 Very good
2 15 October 1988 −9.35 0.42 0.79 0.82 Very good
3 9 November 1988 −8.07 0.46 0.69 0.78 Very good
4 17 February 1991 4.71 0.62 0.65 0.62 Satisfactory
5 10 January 1996 17.68 0.51 0.75 0.74 Good

Average −7.57 0.48 0.74 0.76 Very good

6 1 January 1997 36.62 0.53 0.86 0.72 Good
7 1 February 1998 −8.55 0.48 0.81 0.77 Very good
8 6 December 1999 −11.06 0.80 0.37 0.36 No satisfactory
9 21 December 2000 −14.37 0.71 0.52 0.50 Satisfactory

10 28 November 2014 −11.21 0.45 0.86 0.80 Very good
Average −1.71 0.59 0.68 0.63 Satisfactory

However, the quality of the simulation during the calibration phase is satisfactory
for only one event, while for the others, the quality of the simulation varies from good to
very good. This indicates the very high capacity of the ATHYS platform to reproduce
flood events in the semi-arid context. This finding must be confirmed during the val-
idation phase. The latter was developed in this study using the average values of the
parameters retained during the calibration. The results obtained after using the values of
the parameters listed in Table 5 give the hydrographs presented in Figure 12. The final
results obtained in the validation phase also confirm the applicability of the spatially
distributed SCS-LR model, with mean values of NSE, PBIAS, R2, and RSR of 0.63, −1.71,
0.68, and 0.59, respectively.

Table 7 presents a detailed analysis of the hydrographs resulting from the calibration
and validation processes, as obtained from the output files. The table provides an in-
depth understanding of the hydrographs illustrated above. For the validation phase,
recent events were selected to validate the model; this choice was made to ensure that
the model could accurately simulate the most recent events. This is important to ensure
that the model can accurately predict future events and support the management and
conservation of water resources in the area.

Table 7 presents the characteristics of the observed and simulated hydrographs used
during the calibration and validation procedures. Further analysis of these indicates and
confirms the tendency of the coupled model (SCS-LR) to underestimate flows (observed
peak flows are higher than modeled for all events). Similarly, the runoff volumes
are logical and largely reflect the actual flow system in the study area. Furthermore,
note that the rise times in the simulated hydrographs are higher than those of the
observed hydrographs.
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Table 7. Characteristics extracted by hydrographs after model calibration and validation.

Characteristics

Observed Hydrograph Simulated Hydrograph

N◦ Event Episodes Peak Flow
(m3/s)

Runoff Volume
(km3)

Rise Time
(mn)

Basic
Time (h)

Peak Flow
(m3/s)

Runoff Volume
(km3)

Rise Time
(mn)

Basic
Time (h)

1 4 November 1984 197 4824 480 21 159 6136 3180 41
2 15 October 1988 81 4996 660 28 77.9 4944 3060 26
3 9 November 1988 351 21,081 1080 52 176 20,673 1920 54
4 17 February 1991 140 6067 720 39 104 4822 2040 41
5 10 January 1996 261 4114 1560 47 223 13,226 10,080 37

6 1 January 1997 326 16,383 1440 21 313 12,656 2100 40
7 1 February 1998 132 13,867 1320 72 125 16,886 1620 78
8 6 December 1999 126 4741 960 30 44.9 5071 720 38
9 21 December 2000 94 2876 840 24 62.7 2238 720 16
10 28 November 2014 425 9869 480 13 343 8421 540 14

4. Discussion

The estimation of streamflow in the data-scarce Aguenza watershed was made using
two models with different characteristics: the conceptual and lumped model GR4J, which
does not take into consideration the spatial variability of the hydrological processes, and the
spatially distributed model ATHYS, which estimates the water level on each mesh by taking
into account the spatial organization of various factors influencing streamflow generation.

The results obtained after the implementation of the two hydrological models men-
tioned above in the Aguenza watershed confirm that the inclusion of spatial information
improves the modeling results, particularly for the calibration period, where the use of
ATHYS led to an improvement of 8%, 6%, and 45.2% in the values of NSE, RSR, and
PBIAS, respectively, compared to GR4J. Additionally, during the validation process, the
use of the spatially distributed model ATHYS resulted in a remarkable increase in model
performance, with NSE values improving by 6% and errors estimated by the RSR and
PBIAS criteria minimized by 4% and 8.9%. These findings demonstrate the benefit of
using a distributed approach in the estimation of flows in the studied watershed. The
validation results obtained using the two models on the Aguenza watershed are satisfactory
(NSE > 0.5), indicating that these models are suitable for use in semi-arid areas, specifically
in the southwest of Morocco, where the Aguenza watershed is located.

The GR4J model and the coupled SCS-LR model tend to underestimate flows in the
studied watershed. In general, the underestimation or overestimation of peak flows is
closely related to land use, soil type, and saturation, especially in arid and semi-arid
areas [11,20,21,77–80]. In these environments, the rainfall–runoff transformation primarily
depends on the soil saturation condition where, for example, during the dry period, the
first rain events seep through the previous layer and do not transform into surface runoff.
It should also be noted that the most recent layer of the geology of the Aguenza watershed
is formed mainly by dolomitic limestones and fine sandstones, forming the most erosion-
resistant soils [81], as these types of soils allow better infiltration of surface water and
subsequently influence the underestimation of peak flows in karstic basins [77,82,83]; this
is confirmed by the very important value of the parameter of a total capacity of the ground
reservoir (S = 110 mm); therefore, a great quantity of precipitation is lost by infiltration,
causing the underestimation of the peaks of flow during the hydrological modeling of the
basins of karstic and rural nature.

Nevertheless, this ATHYS model has a very important advantage because it allows the
good reproduction of low flows, which have a very important impact on the hydrological
cycle, and it also allows the consideration of the water exchanges between the surface and
the underground, which reduces greatly the significant underestimation of the peak flows
during hydrological modeling of the karst areas.

Event-based models have several advantages over continuous models and are often
preferred for real-time and operational applications [56]. They require only event-scale data
and avoid the use of full-time series, and they consider only event-scale flood processes. In
this study, event-based modeling is elaborated to allow the simulation of the rainfall–runoff
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relationship to simulate the hydrologic behavior of the Aguenza watershed for a specific
operating mode. In general, flood events are used without considering the specification of
the history of previous conditions.

The results obtained for 70% of the events selected for calibration and validation
have a quality between good and very good, which shows the applicability of the coupled
model SCS-LR in the Aguenza watershed. It should be noted that the underestimation
of point flows in all events is mainly due to the karstic and rural nature of the studied
watershed [81]. Nevertheless, the rise time in the simulated hydrographs is higher than
those of the observed hydrographs, which is mainly due to the difficulties encountered
in accessing data related to the hydrodynamic properties of the soils; this condition and
the simplicity and applicability of the empirical SCS model in semi-arid areas [20,84,85]
were among the main conditions for the implementation of the SCS model that does not
take into consideration the state of soil moisture before each rainfall event and subsequent
influences on the simulation of the rise times.

Finally, it is important to note the importance of this study regarding knowing the
evolution of floods and the resulting volumes after a rain event for better management
of water resources in areas with a semi-arid climate that is characterized by a non-linear
relationship between the volumes of water runoff and rainfall [85]. The reservoirs of
these areas strongly influence the amount of water runoff, especially after a long period of
absence or low precipitation in semi-arid basins of karst nature such as the Aguenza Basin
which is the subject of this study, and all these factors generally make the simulation of
flows more and more complicated in watersheds with arid and semi-arid climates [86–89].

5. Conclusions

This work focused on rainfall-flow modeling using two different models: one the
global “GR4J” and the other the discretized “ATHYS”. The first phase aimed to study the
influence of the spatialization of the watersheds on the modeling results through the use of
two hydrological models with different characteristics, and the second phase consisted of
using the ATHYS model to simulate the flows by applying the event-based approach and
to study the main floods that occurred between 1984 and 2014 in the Aguenza watershed.

The obtained results from the comparative study of lumped and distributed models
show the importance of taking into account the hydrological processes since, after the
use of the discretized model “ATHYS”, remarkable improvements were observed in the
general aspect of the resulting hydrographs. This improvement was also confirmed based
on the performance criteria; as an example, the value of NSE during the calibration process
increased successively by 8%, and the errors were minimized by 45.2% according to the
PBIAS criterion when applying the SCS-LR model instead of the GR4J model. In this
context, it is necessary to understand the importance of taking into account the hydro-
logical processes during the modeling to obtain realistic results close to the reality of the
watersheds. The validation results of the two hydrological models are satisfactory (average
of NSE = 0.55), which confirms their applicability in the semi-arid context.

In this study, an event-mode model was also developed to allow the simulation of the
rainfall–runoff relationship to simulate the hydrological behavior of the Aguenza watershed
for a specific operating mode. In general, flood events are used without considering the
specification of the history of previous conditions. The results obtained by applying the
ATHYS model in event mode are interesting and give appreciable results, namely that
the values of the NSE criterion obtained for the calibration procedure vary between 0.60
and 0.83 as the maximum value. During the validation procedure, although the observed
contrast in the quality of the results is remarkable, the average value of the NSE (average
NSE = 0.60) shows that the validation was well done, and this confirms the first results
obtained by the ATHYS and GR4J models in continuous mode.

By comparing and analyzing the results and simulations, decision-makers can under-
stand the hydrological behavior in the considered watershed to better specify the limits of
this study, to allow an evaluation of the availability and/or access to data to find much more
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relevant simulation results in the future, and also to increase the relevance and applicability
of other hydrological models with different characteristics.
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